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S u m m a r y .  

This report presents an account of the demand made by solar radiation pressure 6n the attitude-control 
system of an earth satellite whose external configuration is in the shape of a rectangular prism, the surfaces 

being assumed to be perfectly reflecting. Expressions determining the amount of angular impulse that must 
be supp~ed by an attitude-control system in the course of a year in order to provide perfect stabilisation for 
a space-stabilised satellite, and an earth-pointing satellite in a non-precessing orbit, are developed. Examples 
are given for particular cases and further examples include a comparison of the radiation-pressure torque 
with the torque set up by the earth's gravitational field, and the attitude deviations arising as a result of radiation 
pressure on an earth-pointing satellite employing gravity-gradient stabilisation alone. 
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1. Introduction and General Discussion. 

Radiation falling on a surface may be partly absorbed, partly reflected and, unless the body be 

very thick or opaque, partly transmitted. Assuming no transmission, any surface may be specified 

by its reflectivity or absorptivity, the former being the fraction of the radiation incident on the 

surface which is reflected and t h e  latter the fraction which is absorbed. A surface having an 

absorptivity of unity for all wavelengths is called an 'ideal' black surface. In general, the absorptivity 

varies greatly with wavelength and, "to a lesser extent, with the temperature of the absorber. 

T h e  amount  of the sun's radiant energy in the vicinity of the earth is generally expressed in terms 

of the solar constant, this being the amount  of the sun's radiation received on unit area in unit time, 

the receiving area being perpendicular to the sun's rays and at a distance from the sun equal to the 

mean radius of the earth's orbit. The  solar constant S '  may be expressed as 1.94 cal cm -~ rnin -1 

or 1.3 × 106 erg cm -~ sec -I. If  the radiation is completely absorbed by the body then 1.3 × 106 ergs 

will be absorbed by 1 cm ~ every second. In accordance with Einstein's energy-mass relationship 

(E = mc 2 where  c is the velocity of the radiation) the mass associated with a unit erg of radiation 
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is 1/c 2 so that the momentum imparted to unit  area per second is cS'/c 2. Thus,  taking 

c = 3 x 101° cm sec -1, the radiation pressure due to radiation at normal incidence on a completely 

absorbing body in the vicinity of the earth is 

p _ 
S '  1.3 x l0 G 

c 3 × 10 l° 
- 4.3 x 10 -5 erg cm -s ,  

i.e. P = 4" 3 x 10 -~ dynes/cm °" 

since erg cm -3 - dyne cm -2. 

In the F.P.S. system of units, P = 2 .9  x 10 -6 pdl/ft  ~. 
Radiation pressure will be capable of producing a torque about the centre of mass of an orbiting 

earth satellite. The  magnitude of the radiation-pressure torque will be influenced by the nature 

of the satellite's surface, i.e. whether  the surface reflects or absorbs most of the radiation. Bombard- 

ment  by cosmic dust (micrometeorites) will inevitably produce a gradual erosion of the outer 

metallic skin of the satellite, similar to the erosion of a metal by the impact of high-speed molecules. 

This  report  presents an analysis of tile effect of the sun's radiation pressure on the attitude control 

of a satellite in the shape of a rectangular prism and whose surfaces completely reflect the radiation 

incident on them; both space-stabilised and earth-pointing satellites are considered. Although the 

theory is carried out specifically for the rectangular-prism configuration, the method can be 

generalised to allow corresponding theoretical deductions to be made for many of the more 

charactg~istic satellite configurations, for example cylinders, spheres and cones. Whenever  curved 

surfaces are involved in the calculations the effective areas presented to the sun must be used in 

any theoretical analysis, and it is perhaps best to carry out the analysis for a given configuration 

rather than at tempt a more general t reatment to cover a range of configurations. Alternatively, the 

results for the rectangular prism may be used as an approximation for the sphere or cylinder if, as 

may well be the case, very  accurate estimates are not required. Simple calculations will show tile 

order of the error that may be expected by employing such an approximation. 
A detailed analysis of tile more general problem of absorption and reflection at the satellite's 

surface proves to be more complex than the analysis for a completely reflecting surface. In the latter 

case only the normal compohent  of the force due to radiation pressure on a given surface need be 

considered, whereas in the case of. a 'black body '  surface the force on the surface will be in the 

direction of the incident radiation, and has therefore a tangential component  as well as a normal 

component  of force. A further complication may arise as a result of re-radiation from a surface 

at a given temperature;  if the surface acts as a diffuse emitter, i.e. emits radiation uniformly in all 

directions, there will be a reaction on the surface along the direction normal to the surface. However,  

such considerations have not been included in the present work, which is restricted to the case 

of complete reflection. 
As defined in Ref. 1, 'earth-pointing'  satellite generally refers to a satellite whose principal axis 

about which the moment  of inertia is least points continually towards the centre of the earth; 

the earth's gravitational field provides a stabilising effect for attitude motion about the other two 

principal axes. However,  for relatively large orbital radii, when the stabilising effect may be very 

small, it may still be desired to have one axis continually pointing at the ear th- -and such a satellite 

would still be an earth-pointing satellite even though a built-in atti tude-control system would 

probably be required to achieve this. 
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2. Assumptions. 

(1) The sun's radiation is the only source of attitude perturbation acting on the satellite. 

(2) The magnitude of the solar radiation pressure in the vicinity of the earth is constant for all 
positions of the earth along its orbit. 

(3) The satellite's surface is homogeneous and has a reflectivity of unity. 

(4) Translational motion of the satellite relative to the earth is neglected, so that the intensity 
of the radiation in the vicinity of the satellite is taken to be constant and equal to that amount 
defined by the solar constant. 

(5) Eclipses of the satellite as it passes through the earth's shadow are neglected so that the satellite 

is regarded as being continuously under the influence of the radiation. The expressions developed 
in the text for the amount of angular impulse will therefore represent maximum values. The actual 

values will clearly depend on the amount of time spent by the satellite in the earth's shadow; 
for example, if the satellite spends half of its time in the shadow, the angular impulse will be approxi- 

mately half the corresponding maximum value. If the control system is designed to provide this 
maximum angular impulse it will be capable of providing compensation at all times, irrespective 
of the changing shadowing effect due, for example, to orbital regression. 

(6) Attitude control will in general be pro,(ided about the principal axes of inertia of the satellite, 
but the theory presented in this report applies to any systems of orthogonal right-handed axes 
(origin at the centre of mass of the satellite) assumed to be rigidly embedded in the vehiclg ~. 

It will be assumed that the chosen axes lie along directions parallel to the faces of the satellite 
so that each pair of axes lies in a plane parallel to two surfaces of the configuration (Fig. 1). 

Assumptions (4) and (5) applied to the case of the space-stabilised satellite reduce the problem 
to an investigation into the effect of solar radiation pressure on the attitude control of a space- 
stabilised body following the same orbit round the sun as that of the earth. In the case of the 
earth-pointing satellite (in a non-precessing orbit) the problem reduces to a similar investigation 
for a body spinning about an axis whose direction remains fixed in space. 

3. Radiation Pressure on a Perfectly Reflecting Rectangular Prism. 

By assumption (6) it follows that the normal passing through the centre of pressure of a given 
surface is along a direction parallel to one of the satellite axes. As the satellite is carried round the 
sun by the earth the direction of the sun will change relative to the surface geometry of the satellite, 
the only exception being a satellite which continually points the same surface towards the sun. 

Let X Y Z  be an orthogonal right-handed system of axes (origin at the centre of mass of the 
satellite) having a fixed orientation in space, and let n be the unit vector specifying the direction 
of the sun's radiation relative to these axes. Let [cos 7x, cos Yz~, cos 7z] be the direction cosines 
such that 

n = cosyx i + cos 7j~ j + cos y z k  (1) 

where (i, j, k) are unit vectors along X, Y, Z respectively. 

Let Xs, Ys, Zs  be a similar system of axes representing satellite axes, with (is, Js, ks) unit 
vectors along Xs, Ys, Zs. Suppose, for the present, that satellite axes are coincident with X, Y, Z 
and let Sxs~s  , S~:szs and Sysz s  be the surface areas parallel to the planes containing the 
Xs, Ys; Xs, Zs; and Ys, Zs axes. 



Consider radiation incident on face I of area Sxszs--Figs.  2 and 3. The incident radiation is at 
an angle y:z with the surface normal and so, assuming complete reflection at the surface, the force 

exerted on this surface is 

F = 2PSxsz  s cos~y~js (2) 

where P is the radiation pressure on a 'black body'  surface placed at right angles to the direction 

of the radiation. The normal component given by equation (2) is proportional to cos2yg because 

of the obliquity of the radiation on the surface as explained in Appendix II. 
The torque about the centre of mass due to this force component is 

L1 = r l  x F (3) 

where rl = (X l i s+y j s+z~ks )  is the position vector of the centre of pressure of face 1 relative to 

the centre of mass, 

i.e. L1 = 2PSxsz  s cos~yF(xlks-  z l i s ) .  (4) 

Since the force is normal to the surface, the torque acting about the centre of mass, due to radiation 

incident on the face opposite to face 1 must be exactly the same as if the radiation was supposed 

incident on the inner side of face 1. Hence, if the force given by equation (2) is written as 

F = 2PSxszslCOS y r l cos  Ys~ j,~ (5) 

then this equation represents the magnitude and the direction of the force for all yy .  If  l cos YY [cos Y~ 

is written instead of cos2y~- in equation (4) then this equation represents the torque for all YY, 

since the torque-arm components entering into the equation are the same whether the radiation is 

incident on face 1 or the opposite face. Thus,  

LI = 2PSxszsl cos ~,y I cos r r  (x,ks- z,i~). (6) 

A similar argument applies for radiation incident on the other two pairs of faces giving tl~e 
torque components 

L~ = 2PSysz,  s I cos Yx [cos Yx (z2Js-Y2ks) (7) 

due to radiation incident on face 2 or the opposite face, and 

L 3 = 2P&zsj~s[ cos r z [  cos r z  (Yai,s- xajs) (8) 

due to radiation incident on face 3 or the opposite face. 
The torque-arm components in the latter two equations are the components defined by the 

position vectors r 2 = (x2i s +Y2Js + z2ks), r3 = (xais +Yajs + zak,s) representing the positions of the 
centres of pressure of faces 2 and 3 relative to the centre of mass, Fig. 2. The directions of the 

satellite axes relative to three faces of the configuration can always be chosen to make the torque-arm 
components entering equations (6), (7) and (8) positive quantities, and all torque-arm components 

will be regarded as positive throughout the remairLder of this report. 
The resultant torque about the centre of mass may be written 

r = 2 P [ ( y a S x j s  ] cos YzI cos yz - z~Sxszs[ cos yx~ [cos y . ) i  s + 

+ ( ~ s r , ~ , l  cos r~ lcos  r~  - ~ s ~ [  cos r .  I cos rz)Js + 

+ (xtSxszsl  cos r r  [cos y r  - y2Srszs[C°S yx]COS 7x)ks].  (9) 
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I f  any changes in the directions of the satellite axes, and any shifts in the position of the centre 

of mass relative to the fixed surface geometry of the satellite are neglected, the radiation-pressure 

torque will vary only as the direction cosines vary. For  a space-stabilised satellite the change in 

the direction cosines will be due to the satellite's motion about the sun; in the case of an earth- 

pointing satellite, i.e. one which points the same axis continually towards the centre of the earth, 

the torque components  will also vary as a result of the changing orientation of the satellite as it 

revolves around the earth. 

4. The Space-Stabilised Satellite. 

Certain theoretical investigations which follow require integrations along the path described by 

the earth in its journey round the sun, and to perform such integrations it is convenient to express 

the radiation-pressure torque in terms of the angle 0 measured in the plane of the ecliptic, 0 being 

zero when the earth is at perigee. Let  X' ,  Y' ,  Z '  define a system of space-fixed axes with Z'  perpen- 

dicular to the plane of the ecliptic and X '  and Y' along the major and minor axes respectively of the 

orbit followed by the earth in its path round the sun, the axes having origin at the centre of mass 

of the satellite (Fig. 4). Let  ( i ' ,  j ' ,  k') b e u n i t  vectors along X' ,  Y',  Z '  and have direction cosines 

[(l 1, m 1, nl); (12, m2, nz); (18, ma, n~)] relative to axes X, Y, Z. Then,  since satellite axes are coincident 
with X,  Y, Z, 

i '  = l l i  s + mlj s + nlk ~ 

j '  = 12is + m2js + n~ks (10) 

k'  = l~i s + majs + naks. 

Relative to the two sets of axes, 

n = cos Yx is  + cos Yr Js + cos Yz k,s (11) 

n = cos 0i' + sin 0j' (12) 

since n moves in the plane of the ecliptic and 0 defines the angular position in the ellipse as indicated 
in Fig. 4. Combining (10) and (12) we have 

n = ( l~ is+mljs ,+nlkv)  cos 0 + ( 1 2 i s + m j s + n 2 k s )  sin 0, 

i.e. n = (l I cos 0 + l~ sin 0)i s + (m~ cos 0 + m 2 sin O)j s + (n 1 cos 0 + n~ sin O)k s .  (13) 

Equating coefficients of is, Js, ks  in equations (11) and (13) gives the relations 

c o s y x  = l l c o s 0 + l  2 s i n 0  

c o s y r  = ml cos 0 + m 2 sin 0 J (14) 

cos Yz = nl cos 0 + u~ sin 0. 

T h e  torque due to radiation pressure may therefore be written, using (9) and (14), 

r = 2P[yaS~czrslnl  cos 0 + u 2 sin 0[(n t cos O+n 2 sin 0) - 

- z lSxs z , s [ml  cos 0 + N2 sin Ol(m 1 cos O+m 2 sin 0)]i s + 

+ 2P[zzSr~zs l lx  cos 0 + lu sin 01(h cos 0+z  sin 0) - 

- x a S x s r s ] n  1 cos 0 + n.z sin O](n~ cos O+n 2 sin 0)]js + 

+ 2P[xiSxzz~]m~ cos 0 + m2 sin O](m t cos O+mz sin 0) - 

- y ~ S r s z s l h  cos 0 + l~ sin 0I( h cos 0+ l 2 sin 0)]k~. (15) 
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4.1. Amount  of  Angular Impulse per Year. 

T he  amount  of angular impulse required from the attitude control in order that the satellite 

shall remain completely space-stabilised throughout  one year may be determined by summing the 

angular impulses required to maintain each of the satellite axes in the desired direction throughout  

the year; satellite axes are chosen since the atti tude-control torques are assumed to be provided 

about satellite axes. The  total amount  of angular impulse per year is therefore 

F F 0=0 0=0 0=0 

where (P 1, Pz, P3) are the components of r along (i s, is ,  ks)- 

Taking each component  in turn, 

(16) 

Let  

and 

and write 

r l (0)  = 2 P [ y a S x s r s l n ~  cos O + nz sin OI(n 1 cos O+n 2 sin 0) + 

+ z l S x s z s [ m l  cos 0 + mz sin O[(ml cos 0 + m  2 sin 0)]. 

f~(O) = n l cos O + n 2s in0  

f,~(O) = m 1 cos 0 + m2 sin 0, 

hi ~ = y a S x s r s ,  k~ 2 = z lSx~.Zs ,  

then the expression for the torque component  becomes 

FI(0) = 2P [k~[ f~(0) ]f,~(0) - h~lf,~(O) [/,~(0)]. 
I f  

f~(O), fm(O) > O: r~(O) = 2P[k12L~e(O)- k22f,~z(O)] 

f~(O), f,~(O) < 0:  F~(0) = 2P[k2~f,~2(O) - k12f~2(0)] 

. o 2 f~(O) > 0, f,~(0) < 0 : F I ( 0  ) = 2P[k~f~2(O)+k2"f, ,  (0)] > 0 

f~(O) < 0, f,~(0) > 0: Cl(0) = 2P[-k~2f~2(O)-k~ef,~e(O)] < O. 

Consequently, 121(0 ) is zero only when klf~(O ) - k,L~(O ) = 0 giving 

[ k l n l - k ~ m l l  
0 tan -1 \ k~m~-k ln~ /  + N%r (17) 

where N '  is an integer or zero. 
Hence, as 0 increases over a range of 2~, I~1(0) will be zero when 0 = 01' and 0 = 01 ' + ~r, 

where 01' is the value given by equation (17) with N '  = 0. Therefore  

Irl(0)l dO = rl(0) d o -  r (0) d o .  ( is)  
' o=o J0=01" d0 Jo=ol"+- ~ I 

Similarly, F2(0 ) is zero when ka.~(O ) - kJ~(O) = 0 w h e re , (0 )  = / i  cos 0 + l 2 sin 0, ha ~ = z 2 S r s z s  
and k4 z = x ~ S x s r s ,  giving P2(0) zero when 

(kal 1 - k4n 1 
0 = tan -1 ~ ~ /  + N%r. (19) 



Again, Pa(0) is zero when kJ,,(O)- kJ~(O)= 0 where ks~= x, Sxszs and k ~ =  y2Syszs , 
giving Pa(0) zero when 

[l¢sm1- k61l ~ 
0 = tan -~ \kfl2_k:n2] + N'rr. (20) 

The expressions corresponding to equation (18) are therefore 

and 

Ir~(o)l 7o do = [ r~(o) d o -  f F~(0) dO (21) 
o=o .o=o¢ ~ .o=o~,+~ 2-~ 

j'z'~ (dr )  ] °a'+" (dr) oa'+2,~ (dO) 
Iv~(o)l 7o dO= ~ r~(0) d O - ~  va(o ) dO (22) 

o=o .3o=oa' 7o .3o=oa'+,~ &- 

where 0=' and 0 a' are given by equations (19) and 20) respectively, with N '  = 0. Returning to 
equation (18), 

let 

Now 

, 0 1 ' + r r  

, :  
7O = h~:(l+et~ cos O) ~' 

dO. 

where l E is the semi-latus rectum and e~ the eccentricity of the earth's orbit round the sun, hi,: being 
the angular momentum per unit mass of the earth. However, since e E ~ 1, @1,: = 0.0167) a 

sufficiently good approximation for the present analysis will be to assume e E = 0, i.e. a circular orbit. 

Thus,  

Consider 

I = ~ .30:0; P,(O) dO - h~, .3o-o~, [k:=]I"(o)IL(o)-&'V"(o)I:'(o)] ao. 

f 01"+rr 
11 = I fde)] f ,~(o)  dO 

,)0=01' 

~ 01'+7r 
= In, cos O + n~ sin 0I(n , cos e + n2 sin O) dO. 

.30=01" 

Put n, 

Hence 

where 

i.e. 

= n cos X and n2 = n sin PC, n >/0; giving (n 1 cos 0+n~ sin 0) = n cos ¢,,, where ¢,, = ( 0 -  PC). 

i ,  = : lcos ¢~lcos ¢,, a¢,~ 
,J95 * ' 

¢,' = ( 0 , ' -  x ) ,  

f 
¢l'+rr 

I 1 = n 2 (sign cos ¢~) cos2¢,,, d¢~. 
J¢, '  

(23) 



I f  ¢,~ is considered to lie in the range - ~r/2 < ¢~ ~< 3rr/2 then 

11 11' rt 2 (sign cos ¢1') c°s=¢~ d¢,~ - (sign cos ¢1') c°s2¢,, d¢~ 
\ '1 ¢1' drd~ 

i f  
- rr/2 < ¢1' < ~r/2, since (sign cos ¢,,) changes when  ¢,4 = rr/2, 

i.e. 

• / (.Tr12\d ~¢1'+,v ) 11' = n2(sign cos ¢1') / / ¢ (  cos"¢,, - ,, c o s % ,  d e , ,  , 

( /1' = - n~(sign cos ¢1') ¢1' + - • 

I f  rr/2 < ¢1' < 3~r/2, the integral is 

giving 

= = ( F  r ) /1 I1" n~ (sign cos ¢1') c°s~¢,~ d¢.,~ - (sign cos ¢i ')  c°s2¢~ d¢~ 
""] ¢:t' d-rr/2 

since (sign cos ¢~) Changes when  ¢,~ = 3rr/2. 

I f  we wri te  ¢1' = ¢1" + ~r, then  since 7r/2 < ¢1' < 37r/2, ¢1" must  lie in the range - ~/2 < ¢1" < 7r/2. 

T h e  integral becomes 

(F ? ) I1" = n 2 sign cos (¢1"+ rr) cose¢~ de,, - sign cos (¢1" + ~r) cos2¢,, de,, . 
\ O ¢ l " + r r  -rr/2 

This  may  be wri t ten  

/1" = - n2 (sign cos ¢1") \o01" 0~'2 

Hence  /1" is s imply equal to - 1 1 '  wi th  ¢1' replaced by ¢1". ¢1" [defined in the open interval 
( -  rr/2, ~r/2)] is, of course, s imply the value of ¢~. in this interval corresponding to Pl(0) = 0 

so that  when  ¢1' lies in the range rr/2 < ¢ 1 ' <  3rr/2 the integral ,nay be taken be tween limits 

(¢1'-~r)  and ¢1' and the sign of the integral reversed. A general expression for the integral may  

therefore be wr i t ten  

where  961 is defined in the range - rr/2 < ¢1 < rr/2, ¢1' in the range - rr/2 < ¢1' < 3rr/2, excluding 

¢1' = ~r/2, and ¢1 = ¢1' if ¢1' falls in the range - ~r/2 < ¢1' < rr/2 or ¢1 = ¢1' - ~r if ¢1' falls in the 

range rr/2 < ¢1' < 3Tr/2. 

I f  ¢1' = - ~r/2, equat ion (23) gives 

= ~7r12 
I 1 n 2 (sign cos ¢~) cos2¢,~ de,, ,  (25) 

O-a/2 

i.e. 11 = n2rr/2 since cos ¢~ remains positive th roughou t  the integration. Similarly, if ¢1' = rr/2, 

I1 = - ~z~r/2 since cos ¢,~ is now always negative. 



f 
01"+lr 

Treating 12 = [f,~(0) If,,~(0) dO in a similar manner, with n h = m cos ¢ and m 2 = m sin ¢, 
dO=O 1, 

m /> 0 and Cm = (0 -¢ ) ,  ¢~' = (01 ' -¢)  with ¢2' restricted to the range - ¢r/2 < ¢~' < 3~r/2 and 
excluding Ca' = ~r/2, then 

I 2 =  - m~(signcos¢~') (¢2 + s i n :  ¢ ~ )  (26) 

with ¢2 and ¢2' defined in a similar manner to ¢1 and ¢i' in equation (24). When applying these 
results it is probably better to evaluate the integrals separately and then determine I = I 1 - I ~ ,  
rather than combine the two integrals and then perform a numerical substitution. 

Since the integral of the ]21(0 ) function over a complete cycle is zero, then 

(o1.-,-. rl(o) ao = _ (o1.+2. rl(o) do. 
,d O=O 1" dOl"+g 

Hence 

0=0 

i.e. 

(dt) 21E 2 [°~'+"Fl(O) d 0 
l r l ( 0 ) ]  dO  o-ol. 

4PlB ~ 
J 1 -  

where the integrals I t and 12 

The analysis for J2 and Ja 
and the results will merely be 

4PIE ~ 

w h e r e / , =  -/2(sign cos Ca') (¢3 + ~ )  

with the relations 11 = I cos s e and l~ = l sin ~:, .1/> 0, ¢~' = ( 0 2 ' - ~ )  

and 

I~ = ~n~(signcos¢4 ') (¢,~+ _ s ~ ) ,  

J3- 4PIE~ 
• - I(k  4-kg-r°)l 

hE ](k12Ii-k2212) (27) 

are given by equations (24) and (26) and J1  = Irl(°)l ~0 dO. 
0=0 

follows exactly the same line of argument as that presented for Jt 
stated. 

where 

and 

I 5 =  -m2(s ignc°s¢5 ' ) ,  ( ¢ 5 + ~ ) ,  

(28) 

with ¢4' = (02'- X). 

(29) 

with ¢5' = (02'- ¢) 

16= -/2(sign cos 66') (¢6 + ~ ) ,  with 66' = (0a ' -~)  . 

The angles ¢a', ¢4', 65', ¢6' are defined in the same range as 61' and ¢2' and the integrals should be 
treated exactly as 11 and 12 in the detailed theory. 

Substitution of J1, Je, Ja into equation (16) allows a determination of the total amount of angular 
impulse per year which would be necessary to keep the satellite completely space-stabilised when 
under the continuous influence of the sun's radiation. However, as the satellite may spend almost 
half of its time in the earth's shadow, equation (16) will represent an upper estimate of the quantity 
under discussion. 
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4.2. Numerical Example on Amount  of Angular Impulse. 

Suppose the centre of mass of the satellite to lie along the Z z axis, and suppose that  the orientation 

of the satellite is such that  /1 = m 2 = n 3 = 1 (all other direction cosines being zero) i.e. satellite 

axes are coincident with X' ,  Y '  Z' ,  making Z z perpendicular  to the plane of the ecliptic. The re  

is no torque componen t  about the Z S axis since x 1 = Y2 = 0. F r o m  equation (17) the torque about  

the X s axis is zero when  01' = tan -1 ( - m l / m 2 )  = 0, giving ¢2' = -Zr/2 since ~ = 7r/2 f rom the 

relations m 1 = m cos ~ and m~ = m cos ¢, m 1 being zero and m 2 unity. 

Since 

Hence,  
¢ (  = - 7r/2, I e = m e rr/2 = ~r/2 since m = 1. 

2P/z  e 

J l =  - h ~  ~k'~2 " I 

From equation (19) the torque about  the Ys  axis is zero when  0 2' = tan-~( - l~/12) = - oo, giving 

¢ 3 '  = - ~r/2 since ~ = 0 f rom the relations 11 = I cos ~: and l 2 = l sin ~:, l~ being unity and l 2 zero. 

Since 

Hence  

Therefore  

8 t 

J 2 =  ~ , ~ k a  2 • 

2PlE 2 
J r  - ~ (k2~  + k~ ~) = - -  

hE 

= - zr/2, I a = lez/2 = 7r/2 since l = 1. 

2P1F, ~ 
hE ~ z ( S x s z s + S r z z s ) "  

I f  TE is the period of the ear th 's  orbit  then T E = 2z@,2/hE (since we are neglecting e~ in 

comparison to unity). 

Therefore  

JT = P T E z (  S x  s z s  + S r  sz~;) " (30) 

Taking  P = 2 .9  x 10 -G pdl ft -2, T~. = 365 days, z = 3 ft, S x s z ~  = S y s z s  = 30 ft 2, equation 

(30) gives J r  --~ 1.6 x 104 lb ft 2 sec -1. 

4.3. Development of a Net t  Amount  of Angular Impulse. 

I f  the earth moved  round the sun in an exactly circular orbit  the nett  angular impulse about  a 

given satellite axis during one complete orbit  round the sun would be zero. However ,  because of 

the eccentricity of the orbit  there may be a nett  angular impulse per orbit, de termined by the 

expression 

5 JR = 0=0rl(°) gO ao+ 0=0r2(°) go do+ 0:0r3(°) gO ao (31) 

dt lE 2 
where  P(0) is given by equation (15) and d-0 = hE(1 + l• cos 0) 2. 

Since the eccentricity is small, any nett  amount  of angular impulse about  a given satellite axis 

per  orbit  will be small compared  with  the build up between successive positions along the orbit  

at which the torque about  the axis in question is zero. Shadowing of the satellite by the earth will 

also cause unequal amounts  of angular impulse to be developed, but  the amount  of angular impulse 

produced in this Way is not easily calculated. However ,  in the case of a react ion- je t  att i tude control 
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system any such net t  build up is irrelevant since it is s imply the result  of ejecting gas which  provides 

the  compensa t ing  torque .  Other  systems involving, perhaps  react ion-wheels  should be designed,  

to cater for  any t endency  to develop any unidirect ional  store of angular  m o m e n t u m .  

5. The Earth-Pointing Satellite in a Non-Precessing Orbit. 

Suppose  the Z S axis of the  satellite to point  cont inuously  towards  the centre of the earth as the  

satellite orbits the earth along an elliptic orbi t  of eccentr ici ty  e'. T h e  p rob lem now is to specify the  

radia t ion-pressure  to rque  componen t s  along axes rotat ing wi th  an angular velocity about  the 

space-f ixed Y,v axis of the satellite (the Ys  axis being chosen normal  to the orbital  plane containing 

the  mot ion of the satellite about  the earth).  Let  Y be coincident  with Y s  so that  the satellite orbi t  

is conta ined in the  X Z  plane, Fig. 5; f u r t he rmore  let satellite axes be coincident  wi th  X,  Y, Z 
w h e n  the satellite is at its perigee posit ion.  T h e  uni t  vec tor  specifying the direct ion of the sun ' s  

radiat ion relative to the satellite has componen t s  (ha:s, nrs ,  nzs  ) along satellite axes, where  

n:; S = cos Y~" cos 02 - cos 72 sin 02 ] 

nj@ cos 7 r  ~ ) (32) 

nzs cos Yx  sin 02 + cos Yz cos 02 

and 02 is the t rue  anomaly  of the  satellite in its orbit ,  i.e. the  angle be tween  the cur ren t  radius 

vec tor  and the radius vector  at perigee;  (nxs, n r s  , nzs ) are in fact the direct ion cosines of the uni t  

vector  n relative to the rotat ing satellite axes. Fol lowing  the reasoning leading to equat ion  (9) 

it may  be shown  that  the radia t ion-pressure  to rque  for a given 02 will be 

r = 2P[{kl"-lcos y.v sin 0~ + cos 7z cos 02I(cos 7~-c sin 02 + cos 7z cos 02) - 

- k2 2 1 co s  + 

+ {k321cos y.~ cos 02 - cos yz  sin 02](cos y_x cos 02 - cos yz  sin 02) - 

- ha2] c°s 7~\" sin 02 + cos yz  cos 02l(cos y~  sin 02 + cos Yz cos 02)js + 

+ {k 2l cos  I(cos - 

- hG21cos y_~ cos 0~ - cos Yz sin 02[(cos y::  cos 0~ - cos Yz sin 02)}ks]. (33) 

Using the relations given by  expression (14) in the to rque  equat ion gives 

r = 2PE[k#]/~ cos 0 + 12 sin 0) sin 02 + (u~ cos 0 + n 2 sin 0) cos 02[ x 

x { ( h c o s 0 + l  2 s i n 0 )  s i n 0 2 + ( n  l c o s 0 + n  2 s i n 0 )  c o s 0 z } -  

- kz2]ml cos 0 + m z sin Ol(m 1 cos 0 + m 2 sin 0)]1 s + 

+ [k32[(/1 cos 0 + 12 sin 0) cos 02 - (n 1 cos 0 + n 2 sin 0) sin 021 × 

× {(l l c o s 0 + l  2 s i n 0 )  c o s 0 2 - ( n  l c o s 0 + n  2 s i n 0 )  s i n 0 2 } -  

- k 2l(h cos 0 + 22 sin 0) sin 0,. + (n t cos 0 + n 2 sin 0) COS 0z[ × 

x {(/1 cos 0 + lz sin 0) sin 02 + (n 1 cos 0 + nz sin 0) cos 02}]j s + 

+ [ka2]ml cos 0 + ,n 2 sin O](m~ cos 0 + m2 sin 0) - 

- h J l ( h  cos 0 + 12 sin 0) cos 02 - (n 1 cos 0 + n 2 sin 0) sin 02] x 

x {(/1 cos 0 + 12 sin 0) cos 02 - (n~ cos 0 + n 2 sin 0) sin 02}k~] ~ . (34) 
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T he  determination of the points at which the components of equation (34)become zero proves 

to be a long and tedious operation and an alternative method of analysis is employed in the theory 

which follows. 

5.1. Amount  of Angular Impulse per Satellite Orbit. 

For the purpose of simplifying the problem it will be assumed that the satellite completes one 

orbit round the earth for a fixed position of the earth relative to the sun, i.e. the orbital period of tb.e 

satellite is small compared with the orbital period of the earth. This assumption allows equation (34) 

to be treated as a function of 02 alone. 

Let  

A = (l l c o s O + l ~ s i n O ) ,  

Taking each component  in turn 

where 

If  

pl(0~) 

f~(o~) 

f~(o2) > 0, c > 0: r~(02) 

f ~ ( o ~ )  < 0 ,  c < 0: r1(02) 

L,~(o~) > 0, c < 0: rl(0~) 

= (n l c o s 0 + n z s i n 0 ) ,  C = (m l c o s 0 + m  2 s in 0 ) .  

= 2P[h~2lf_a,~(Oz)[f~B(Oz) - k221C I C], 

= (A sin 02 + B cos 0z). 

= 2P[k~2f~B2(02) - k22C °.] 

= 2 e [ -  k?L,~2(o~) + k~c~] 

= 2P[kl~f~v2(O2) + k22C ~] > 0 

f~B(O2) < 0, C > 0: F1(02) = 2 P [ -  k12f~l~2(02) - k22C ~] < O. 

Consequently, P1(02) is zero only when klf~tB(Oz) - kzC = O, 

i . e ,  

A s i n 0 2 + B c o s 0 2 = k 2 C  • . 

k1 
Put  A = r cos 7 and B = r sin ~1, r /> 0, then s in (02+7)  = k2C/rk 1 = E, say. 

Let  A be the principal value of sin-lE, then for a variation of 02 over an angle 27r 

02+ 7 = A 
o r  

0 2 + ~  / = ~ r - A ,  
i.e. 

o~ = (zx - 7) or 02 = ( ~ -  A -  7) 
where - w / 2  ~< A ~< ~r/2. 

Let  0m)' = ( A - 7 )  and 02(1)" = ( T r - A - 7 )  be the successive values of 02 at which F1(02) is zero. 

T he  magnitude of the angular impulse about the X s axis of the satellite per satellite orbit is 

J ..r 
Similarly, P2(02) is zero when 

ka(A cos 02 - B sin 02) = k4(A sin 0 z + B cos 02) 

giving 

o~ = tan-1 {k~A- kj~] \k4A + kaB] + N'Tr (36) 

where N '  is an integer or zero, and Fa(02) is zero when 

k6(A cos 02 - B sin 02) = ksC.  
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Put A = r sin/3 and B = r cos/3, r/> 0, then sin (/3- 02) = k 5C/hsr = D, say. 
Let ~ be the principal value of sin-lD, then for a variation of 0~ over an angle 27r, 

[ 3 - 0 2 =  8 
o r  

/ 3 - 0 2 = ~ - 3 ,  
i.e. 

02 =/3-8 
where - ¢r/2 ~< 8 ~< 7r/2. 

or 02 = fi + 8 - ~"  

Let 02(m' , 02(2)" and 02(3)', 02( m" be the successive values of 02 at which F2(02) and F3(02) become 
zero respectively. The magnitude of the angular impulses about the Ys and Z s axes of the satellite 

per satellite orbit is then given by 

2. ~o2(m'+2. dO2 r f02= = d02=02(2)" -- J02(2)" 

for the Ys  axis, and 

27r f 02(8)'+2n 

, Jo2=o2(~) -Jo2=02(,~)" 

for the Z s axis. 
The total amount of angular impulse per satellite orbit that must be supplied about satellite axes 

is simply the sum of the expressions given by equations (35), (37) and (38). I f  YT' denotes this total 

angular impulse then 

J T ' =  y, Ir,~02)] ~ dO 2. (39) 
r = l  - 02=0 

Consider first the integral of the torque ~bout the X s axis as given by equation (35), written 

out at length we wish to evaluate the quantity 

2pz,2 [[o2(1,"kZlA sin 02 + B cos o21(A sin 02 + B cos 02) -  k221C] C 
Yl( = T LJ0m)' (1 + e' cos 02) 2 

dO~ 

I ~°m)'+2" h12[A sin 02 + B cos 02[(A sin 02 + B cos 02) - k22[ C[ C dO2- ] 
(40) 

Jomy  (1 + e' cos 02) 2 J 

since (tit~d02) = l'2/h'(1 +e' cos 02) 2, where l' is the semi-latus rectum and h' the angular momentum 
per unit mass of the satellite in its orbit round the earth. The  expression will be split into two parts 

/2(1) and I2(2) where 

2Pl '2 If°2(1)"h12[A sin 02 + B cos 02[(A sin 02 + B cos 02) 
Ira) - h' L JOin)' (1 + e' cos 02) 2 dO2- 

~°m)'+2~h12]Asin02+ BcosO2l(Asin02+ Bcos02) 1 
J0my' (1 + e' cos 02) 2 dO2 (41) 

and 

2Pl'  I- k:l el c k:l el c ] l 
12(2) - h' LJo~(1; (1 + e' cos 02) 2 do2 - join). (1 + e' cos 02) 2 dO 2 . (42) 
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Taking the integrals in the expression for Ira) , put A = r sin fi and B = r cos fi, r /> 0, giving 
(B cos 02 + .d sin 02) = r cos era), where era) = (0~, -/3).  Hence the integrals involved are of the 
form 

I c°s Cm)[ cos era) dCm ) = (sign cos era)) [1 + e' cos (¢2(1) + fi)]2 
[1 + e' cos (¢2(~) +/3)]2 

Expanding 

cos~¢~(~as cos~[(¢2(~) + #) - p] - 

cos2(¢m) +/3) cos-~/3 - 2 sin/3 cos/3 sin (¢m) +/3) cos (¢2<1) +/3) + sin~ (¢m) +/3) sin~/3 

enables the integral to be expressed as 

f (sign cos ¢2(1)) x 

× [cos~# cos~(¢~¢, +/3) - 2 sin/3 cos/3 sin (¢2¢1)+/3) cos (¢~(1)+/3) + sin~(¢2¢~)+/3) sin~/3] d¢~(,) 
[1 + ~' cos  (¢~<,+5)]= 

f cos~d~ f sin~d~ and f s in ,cos ,d ,  
and the integrals (1 + e' cos v) ~' (1 + e' cos v) 2 (1 Y e  ~ cos v) 2' 

where v = (¢m)+fi), are given in Appendix I. Since the integration is over a complete cycle of 2~r 
radians era) may be chosen to lie within the range 

~r 3rr  
- g  < ¢~(i) -< + ~-. 

Let 
¢2(1)' = (02(1) ' --]~)  

and 
¢2d' = (%/'- P). 

The  situations which can arise are 

(1) era)' in the lower half plane, era)" in the upper half plane. 

(2) era(  in the upper half plane, ¢2(17" in the lower half plane. 

(3) era)' and era)" in the upper half plane 7 ¢2(~' > era)" 

• ] Cm)' < Cm)". 

(4) era(  and era)" in the lower half plane~ ¢2(~9' > era)" 

J 
Since (sign cos era)) changes when era) = + ~/2,  the possibilities are 

. . . .  2Pl'2h' I ( ( ~ t  2 ~¢2(1)"] / (37r[2 -}- ~02(1)']1 (43) (a) h(1) k~ ~r~ , 
L \ d¢2(1  )' d~rl2 / k ,d ¢2(1)" d--rr/2 / J 

where the integrand of each integral is cos2¢2(1)/[1 + e' cos (¢2(1) + /9)] ~, ¢2(1)' is in the lower half 
plane and era)" in the upper half plane and (sign cos era)') is therefore positive. I f  era)' is in the 
upper half plane and era)" in the lower half plane, equation (43) holds if era)' and Cm/'  are 
interchanged and the signs of the integrals reversed. 

(_ 1)2Pl,2 i ((¢2(1)") ((Brig ~7r]2 f¢2(1)') 1 
(b),  12(1) - h' h12r~ - - + (44) 

k\d¢2(1)' / \'J ¢2(1)" J-n/2 dr:~2 /J 
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if 6m)' and era)" are in the upper half plane and 6 m ) ' <  ¢2(1)", sign cos ¢~q)' being negative. 
If era)' > era)" equation (44) holds if era)' and era)" are interchanged and the signs of the integrals 

reversed. 

2pF2 V (C,~2(I)")(f,,2 f 3zr,2 ~,>2(1)' )i (C) I2(1)- h' k12r2 - - -}- (45) 
L\d¢2(1 )' / \0  ¢2(1)" ,d rr]2 d --;,rig /J 

if era)' and ¢2(1)" are in the lower half plane and ¢~(1)' < ¢2(1)", sign cos era)' being positive. If  
qSm)' < ¢~(])" equation (45) holds if era)' and era)" are interchanged and the signs of the integrals 

reversed. 
Let 

f cos242(1)d¢2(1 ' 
Fl(¢m)) = [1 + e' cos (¢2(1) + /3)] 2' 

so that the solutions may be expressed in the form 

rr F <~ "' (46) (a) 12(1) = W l  F1 2 q- 2 - F 1 ( ¢ 2 ( 1 ) ' ) -  1~V2(1) , 

(b) /2(1) = ~V1 [FI(¢2(1)") - FI(¢2(1)') + FI(~) -- F I ( ~ )  + El ( -  - ~ ) 1 2  (47) 

(c) (48) 

= 4Pl'2kl~r~/h '. When era)' or era)" = + Tr/2 the solution may be obtained by the same where W 1 
process as in Section 4.1. 

The  expression for I2(~) is of a simpler form since C is a constant in the integration, 

i.e. 
2pF2 ~22C E (sign V ( 02(1)" - f02(1)'=k'zr I (49) 12(2) 

- h' C)L oom)'  J02(1)" • 

where the integrand of each integral is (1 + e' cos 02) -2. 

Let 

f dO 2 F2(02) = (1 + e' cos 02) ~' giving the solution 

12(2) = W2(sig n C) VF~(O,m ") -F'(Oz(v') + F2(0m)' + 27r)~ (so) 
2 L d 

where 

Hence, 

4Pl'2 
W 2 -  h' k22C2" 

t'" [G(oDI dO2 = (51) 
02=0 

where I2(1) is given by the appropriate expression (equations (46), (47) or (48)} and I2(2) is determine.d 

by equation (50). 
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In the case of the integral of the torque about  the  Ys axis we wish  to evaluate the quant i ty  

2Pl'2 
&'=--U-× 

rr0 ( ;'h321A cos 0 2 -  sin 021(A cos B sin 
x / /  (1 +. e' cos 02) ~ L,J 02(2)' 

- k421A sin 02+ B cos Oz[(A sin 02 + B cos 02) dOs 
(1 + e' cos 02) 2 

Let  

_ ~ o 2 ( 2 ) ' + 2 ~  ka2[A 

d02(~)'" 

cos 02 - B sin 02[(A cos 0 2 -  B sin 02) - 

(1 + e' cos 02) 2 

- k42]A sin 02 + B cos 021(A sin 0.2 + B cos 02) dO2] . 
(1 + e' cos 02) 2 

2p1,2 i(o2(2)" k 21A cos 0 2 -  B sin O2[(A cos 0 ~ -  B sin 0~) d O  2 _ 

I2(a) -- h' Ld 02(2 ), (1 + e' cos 0~) 2 

and 

I2(~ - -  

(52) 



where 

f cos2¢2(3 ) 
Let Fa(¢2(a)) = [1 + e' cos (¢2(a)-e)] 2 

./2(3) = W 3 

d¢2(3 ) so that  equation (55) may be writ ten 

4P1'2 
W 3 -  h' ha2r2" 

- G(¢~(d) - G(¢2(d') (56) 

The  expression for 12(4) is identical with  that  for "/m) if k42 is substi tuted for hi 2 and 02(1)' and 
0m)" replaced by 0~(2)' and 03(2)" respectively. However,  since 03(2)' and 02(2)" are always rr radians 
apart the only case to be considered is that  corresponding to equation (43), 

i.e. 
2Pl '') h42r2 I ( ( . l  ~- f¢o.(4)") { ~3.t2 ~¢m),) l  ./2(4) 

h' \ '] ¢2(4)" k \ J  ¢2(4 )" ,} ~r/2 ] ,J -n/2/_1 
(57) 

if ¢2(4/ is in the lower half plane. If  ¢2(4)" is in the lower half plane equation (57) applies if ¢2(4( 
and ¢2(4/' are interchanged and the signs of the integrals reversed. Here, ¢3(4)' = (02(~)'-fi) and 
¢ ~ ( j  = (02c2; ' -  ~). 

Hence 

W4 IF1  ( 2 )  -}- F1 (~2~)JF al~'l(-- 2) Fl(¢2(4)t)--Fl(¢r~(4)tt) 1 (58)  

f cos2 ¢ 4Pl'2 
[ l + e ' c o s ( ¢ + f i ) ] 2 d ¢  and W a -  h' h4Zr2" 

I3(4) = 

where 

G ( ¢ )  = 

Hence, 

J2'--- o2=0 IF2(02)1 ~ dO2 = 113(3)-"/2(~1 (59) 

where "/2(3) and "/2(4) are given by equations (56) and (58). When  ¢2(3)", ¢2(3)' or ee(a)", ¢2(4)' = + 7r/2 
the solution may be obtained by the process used in Section 4.1. 

Finally, in order to develop an expression for equation (38) we must  evaluate the quanti ty 

&' = 2p1(2 [[o~(3;'a¢lClC- kdlA cos G _ B s i n  GI(A c o s G -  B sin G) dO.-  
E -  L-., o2(a)" (1 + e' cos G) 2 , 

! C°~(a) '+2~ hs~ I C[ C - h6zlA cos 02 - B sin 021(A cos 0~ - B sin 0z) d02~ 
(60) ~o~(a)'" (1 + e' cos 02) 2 J 

Let 
2Pl'2 F 02(3)" I C[ C °2(a)'+2" I CI C 

I2(5) - h' Lh~2 f (1 + e' dO2- h52 ~ (1 + e' dO 2J (61) 002(3; cos 03)2 J02(3)" cos 0~) 2 

"/2(6) ~ - - - -  
2P1'2 I ~o2(3)'" [A cos 02 - B sin 02I(A cos 02 - B sin 03) 

h' h6~ dO2 - J02(a)' (1 + e' cos 03) 2 

_k62f°2(a)'+"~lAcos02 - BsinO21(Acos02- B sin 02) ] 
J o2(3)" (1 + e' cos 02) 3 dO2 " (62) 

and 
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The expression for I~(5) is identical with that for I2(2) if k52 is substituted for k2 2 and 0m/ and 
0m(' replaced by 02(8( and 0~(3(' respectively, 

i.e. 

2PZ'Zkso"CZ<sign C)F( %(3;'- f °2(a>'+z~] ' (63) 
12(5) - -  h '  LJ 02(3) '  J02(3)" _l 

where the integrand of each integral is (1 + e' cos 02) -2, 

i . e .  

I2(5) = Ws(sign C)-IF2(02(3/') -F2(O2(j) + F2( 02(8)'+ 2~)- I- (64) 
2 k _J 

where 
4Pl'2 

W 5  - h '  k52C2"  

0 ,' and The expression for 12(6) is identical with that for 12(31 if ks z is substituted for k32 and 2(2, 
02121" replaced by 02(81' and 0~(~)" respectively. However, the solution must be expressed as one of 
three alternatives as in the case of 12(1). 

(a) If ¢2(6/is in the lower half plane and ¢2(G)" in the upper half plane then 

h , 0 ,  = W 6 Fak2]+ - Fa(¢2(6/)- F(¢2(j' ) . (65) 

If ¢2(6)' is in the upper half plane and ¢216)" in the lower half plane equation (65) applies with 
¢2(6/and ¢2{6!" interchanged and the sign reversed. 

(b) If both ¢2(G)' and ¢2¢6)" are in the upper half plane then 

I2(6) = Wa[Fs(¢2(6(')-Fa(¢2(6)')+Fa(2) - F8 ( ~ )  + F 3 ( -  2 ) ] ~ -  (66) 

if ¢2(6/< ¢2(61", and if ¢2¢61' > ¢2(6)" the equation applies with ¢2(6)' and ¢2(6)" interchanged and  the 
sign reversed. 

(c) If both ¢2(6)' and ¢2(6)" are in the lower half plane then 

when ¢~(6)' < ¢2(0", and if  ¢2(6( > ¢~{6)" the equation applies with ¢2(0' and ¢2(6/' interchanged 
and the sign reversed. 

In these equations 
4P1'2 . f c°s2¢d¢ 

W6- h' kG2r2 and F3(¢) = j [l + e' cos ( ¢ -  e)] 2" , 

Hence 

F (£) s; = Ir (o )l d02 = Ih(5)- I2(6)1 (68) 
02=0 

where I2(5) is given by equation (64) and I2(s) by the appropriate equation (65) to (67). 
The total amount of angular impulse per satellite orbit can therefore be expressed as 

= [r (o2)l ~ dO2 = t i m ) -  I2(2)] + Ih(a,-  I2(~1 + ]I2(5~- h(6)l • (69) 
r = l  02=0 

\ 
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The quantities contained in the modulus signs of equation (69) are straightforward to evaluate 
for a given case and the author feels that the result is best expressed by this equation, rather than 
attempt to combine the individual constituents into one expression. 

The total amount of angular impulse arT' is a function of the angle 0 and will be a maximum 

for some angular position 0 = 0 M of the satellite in the plane of the ecliptic. I f  J~l' is the maximum 

value of J~,' as determined from equation (69), then if the satellite completes N orbits during one 
year, an upper estimate for the magnitude of angular impulse per year is simply 

J.,v' = NJ,-r/. (70) 

Alternatively one may take the mean value of JT', denoted by JT', for a change in 0 of 27r and use 
the expression 

JN" = N[lr'  (71) 

as the total amount of angular impulse over a period of a year, as obtained by taking the mean value 
of the total angular impulse per satellite orbit. 

An example will serve to illustrate the procedure in a particular case. 

Suppose l 1 = m.a = n a = 1, (all other direction cosines being zero) so that X, Y, Z and X',  Y', Z '  
are coincident sets of axes. The  satellite now orbits in a plane normal to the plane of the ecliptic, 

the normal to the orbital plane being parallel with the direction of the minor axis of the earth's 

orbit. Let z~ = z 2 = z, (all other torque arms being zero) so that the centre of mass of the satellite 

is along the Z S axis at a distance z from the geometrical centre of the configuration. The surface 

areas involved in the problem are S x s z s  and S r s z ~ ;  assume these to be equal areas--denoted by S. 
We have 

A = cos0 ,  B = 0, C =  s in0  

k2 ~ = ka 2 = z S .  

The formula given in the general theory, for determining the points at which F1(02) = 0 cannot 
be satisfied for any choice of 0.a, i.e. the torque is unidirectional about the X s axis. 

Also 
' I .a(1) = 0 since k,.a = 0 

and 

I.,(m = W.a(sign sin O) IF.a(O.a(,,") - F2(0.a(v') + F2(2 0.a(~," + 27r!] 

since ' , 
O.a(1 )' = O~(j. 

If we assume that the satellite orbit is circular then F2(O.a ) = O.a and l~(.a) reduces to give 

4(.a) = W.a(sign sin O) ( - 7r) 
therefore 

4Pl'~ 
• 11' = [ - I,a(~)] = T zS~ sin=O , , 

i.e. 
. :  ' Z 

J,'  = 2 P T ' z S  sin~0 

since all the components of the expression are positive quantities, and T ¢ =  2rrl'2/h ' is the Orbital 
period of the satellite about the earth. ~ 
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The conditions for P2(02)= 0 give 0~(~)' = 7r/2, 02(2)" = 37r/2. We have ~b2¢ ) = ~r/2 and 
~2(~)" = 37r/2, and this is therefore the special case when the integration limits are coincident with 
the limiting points. Consequently we may write 

2Pl'~ k32r2 [ - J ~12(3~12 ~,2 -1 22,., = j _ . ,  ( 7 2 )  

since sign cos q~z is negative over the range rr/2 to 37r/2 and positive over the range -7r/2 to ~r/2, 

i.e. 
2Pl'~ 

I2(8) = h ' k32r~r 

= - P T ' z S  cos20. 

Now -/2(4) = 0 since k4 2 = 0, therefore 

J2' = P T ' z S  cos20. (73) 

Since there is no torque about the Z.~ axis we have Ja' = 0. 
Hence 

JT' = P T ' z S ( 2  sin20 + cos20). (74) 

The  total amount of angular impulse arT' is a maximum when 0 = 7r/2 or 37r/2 and thus 

and 

where T E = N T '  is the period 
The mean value of Jz '  is 

JM' = 2 P T ' z S  (75) 

JN' = 2 P z S T ~  (76) 

of the earth in its orbit round the sun. 

i.e. 

- P T ' z S  (2,~ (2 sinZ0 + cosZO)dO, 
J T ' - -  2~ d0=0 

- 3 
JT' = ~ P T ' z S .  (77) 

6. At t i tude Deviations of an Earth-Pointing Gravity-Gradient-Stabilised Satellite due to Radiation 

P~'essure. 

Consider the case where the satellite is moving along an orbit whose plane is perpendicular to 

the plane of the ecliptic and where the Ys rotational axis is pointing towards the sun. Let the 

centre of mass lie along the 'long-axis' (i.e. the axis of minimum moment of inertia) of the vehicle, 
the 'long-axis' being assumed to pass through the centre of symmetry as indicated by Fig. 6. In the 

case of a gravity-gradient-stabilised satellite the 'long-axis' is the earth pointing axis. Let z be the 

distance between the centre of symmetry and the centre of mass. The  force on the satellite due to 

radiation pressure is 2 P S  (assuming complete reflection) where S is the surface area presented 

to the sun. Also the torque about the centre of mass is 2PSz, acting along the X S axis, and is constant 
for all positions of the satellite in its orbit. 
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Ref. 1 shows that the attitude motion about the X s axis for an earth-pointing satellite (in a 

circular orbit) relying solely on the gravitational restoring torque for its stabilisation, is described 

by the equation 

IxsO ~ ~- 4(Iz~ S - Izs)OJo201 + (I2(~ + I z s  - I~-s)O 8 = L x s ' ,  (for small angles) 

where Ixs ,  I~ s  and I z s  are the principal moments  of inertia about the X~, Y z  and Z s axes, 01 

and 0 a are the angular deviations about the X s and Z s axes and co 0 is the angular velocity of the 

satellite in its orbit; L x s '  is the component  of any external disturbing torque about X s. In  the 

present instance L x s '  = 2PSz,  and since this is a constant only the steady-state solution is of 

interest, resulting in an attitude deviation given by 

2PSz  
0t = 4 ( I ~ -  - I z s ) %  ~" 

Referring to Fig. 6 if a = d and the dimensions of the configuration are such that 21 = 8 ft, 

2b = 2 ft and 2a = 3 ft, t h e n z  = 3 ft, S = (21+2b)2a = 30 sq. ft., and if the mass of the satellite 

is taken to be 500 lb then ( I y , s - I z s )  ~5 3 0 0  lb. ft ~. Taking co 0 as 10 -a rad. see-l,  the attitude 

deviation is of the order of 1½ degrees. 

7. A Comparison of the Torques due to Radiation Pressure and the Earth's Gravitational FieM 
for a Space-Stabilised Satellite of Given Orientation. 

Suppose l 1 = m 2 = n 3 = 1, (see Section 4.2). As in Section 6 let the centre of mass be a distance 

z from the centre of symmetry so that the radiation-pressure torque given by equation (15) reduces to 

r = 2PSz[ - ] s in  0[sin 0 i S + ]cos 0lcos 0 js] 
if 

S x s z s  = S~zz  S = S .  
Therefore  

I lr = 2PSz~/(sin40 + cos40) 

and attains a maximum value given by 

lrl n x = 2PSi .  

From Section 3.2 of Ref. 1 it is shown that with the X s and Z s axes in the plane of the satellite's 

orbit (making the orbital plane at right angles to the plane of the ecliptic in the present case) the 

maximum value of the gravitational torque is given by 

3 
[rolm~x = ~ c°0~[Iz s - I x s t .  

Hence, for this particular satellite having the orientation stated above, Irlm x = ]rOlm x when  

COoe = 4PSz/3[Iz  s - / x a [ .  For  a circular orbit Wo e = GMjz/R a where M E is the mass of the earth, 

G the gravitational constant and R the distance between the satellite and the centre of the earth, 

i.e. 

4PSz  

giving R ~ 10,000 miles if we chose S = 30 sq. ft, z = 3 ft and IIzs - I x s  [ = 5300 lb. ft 2 as in 

Section 6. 

22 



8. Concluding Remarks. 

The equations developed in the text may be used to estimate the annual amount of angular 
impulse required from a satellite attitude-control system to couriter the solar radiation-pressure 
torque. Two situations are considered, the space-stabilised satellite and an earth-stabilised satellite 
in a non-precessing orbit. The analysis assumes a specific geometrical configuration, namely that 
of a rectangular prism, and also complete reflection at all surfaces. The necessary amount of angular 
impulse may be provided by any suitable control system, for example by reaction jets or accelerating 
flywheels. 

The expressions for the space-stabilised satellite indicate that as the satellite completes one orbit 
round the sun the nett angular impulse about any one of the satellite axes is zero (the effect of the 
eccentricity of the earth's orbit being neglected). If this were strictly true, the radiation-pressure 
torque could be most effectively compensated by the use of accelerating flywheels, one such wheel 
along each of the satellite axes. The angular momentum attained by a given flywheel during one 
half of the orbit would be nullified during the second half of the orbit, resulting in no nett increase 
or decrease of the flywheel's angular velocity. In general, however, the situation is not so simple 
as this since the satellite spends a certain proportion of its time passing through the earth's shadow. 
Owing to orbital regression and the fact that the 'satellite's orbit about the earth may be an ellipse, 
the unidirectional change of angular momentum about a given axis during one half of the earth's 
orbit Will not in general be compensated exactly during the remainder of the orbit. Thus, an 
accelerating flywheel would gain or loose angular momentum during the course of one year. Such 
a nett change of flywheel angular momentum may be very small in comparison to the build up of 
angular momentum between successive positions at which the torque component concerned is zero, 
and therefore be of little significance. However, if it were desired to use small flywheels for control 
over a period of several years the shadowing effect of the earth should be 'considered, especially 
if relatively large torque arms were present. This may very well be the case when the principal 
axes of inertia of the satellite have been made as nearly equal as possible in order to minimise the 
torque arising from the earth's gravitational-field gradient, especially if air-drag torques are small 
and meteoroid hazards not serious. 

The relative importance of the perturbation torques due to radiation pressure and the earth's 
gravitational-field gradient may be inspected by comparing the angular impulse given by equation 

(16) of Section 4.1 with the corresponding quantity determined by considering the angular impulse 
produced by the gravity-gradient torque over a period of a year. 

The equation for the radiation-pressure torque about the centre of mass of the rectangular prism 
configuration indicates, as one might expect, that the torque is always zero if the centre of mass 
coincides with the centre of symmetry of the external shell. This may also be the case when all the 
surfaces are completely absorbing, and if so, the situation arising when the different surfaces have 
varying absorption characteristics will result in a nett torque acting on the vehicle even when the 
centre of mass coincides with the centre of symmetry. 
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LiST  OF MAiN SYMBOLS 

Velocity of light in vacuo 

Eccentricity of satellite orbit round the earth 

Eccentricity of earth's orbit round the sun 

Angular momentum per unit mass of satellite in orbit round the earth 

Angular momentum per unit mass of earth in its orbit round the sun 

Principal moments of inertia of satellite 

Total amount of angular impulse per year imparted to space-stabilised 
satellite to maintain perfect stabilisation against radiation-pressure 

torques 

Amount of angular impulse per year about individual axes of space- 

stabilised satellite (r taking values 1, 2, 3) 

Nett angular impulse imparted to space-stabilised satellite during one 

year by radiation-pressure torques 

Total amount of angular impulse per satellite orbit that has to be 
supplied about satellite axes for perfect stabilisation of" earth- 

pointing satellite against radiation-pressure torques 

Amount of angular impulse per satellite orbit about individual axes 

of earth-pointing satellite (r taldng values 1, 2, 3) 

Maximum value of Jr '  

Upper estimate for amount of angular impulse per year for earth- 

pointing satellite 

Mean value of J~,' 

Estimate for amount of angular impulse per year for earth-pointing 

satellite based on the mean value of ,IT' 

Positive constants (r taking values 1 to 6) 

Semi-latus rectum of satellite orbit round the earth 

Semi-latus rectum of the earth's orbit round the sun 

Torque components about centre of mass of satellite due to radiation 
incident on faces 1, 2, 3 (or opposite faces) see Fig. 2 (r = 1, 2, 3) 

Unit vector specifying direction of the sun's radiation relative to 

satellite axes  

Components of n along satellite axes (earth-pointing satellite) 

Number of orbits round the earth made by the satellite during one year 

Pressure of sun's radiation on a 'black-body' surface placed at right 
angles to the direction of the radiation at the mean distance of the 

earth from the sun 
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r 1, lr 2, lr 3 

S r 

S x s z  S, S Y  ,gz 8, S x s y  S 

T' 

T. 

x ,  y,,, z,. 

r 

Axes 

Pl, F2, Fa 

0 

02 

X', Y', Z' 

(i', j ' , k') 

x , g , z  

(i, j,k) 

xz, Ys, z ,  

6o, Js, ks) 
[(/1, mr, nl); 

COS ~tX, COS ~ y ,  COS TZ 

LIST OF MAIN SYMBOLS--continued 

Position vectors of centres of pressure of faces 1, 2, 3 relative to centre 

of mass of satellite--see Fig. 2 

Solar constant 

Areas of faces of rectangular prism 

Period of satellite in its orbit round the earth 

Period of earth's orbit 

Components o f t  r along satellite axes (r taking values 1, 2, 3) 

Torque about centre of mass of satellite due to radiation pressure 
(complete reflection) 

Components of r along satellite axes 

Angle defining motion of the satellite in the plane of the ecliptic 

Angle defining the angular motion of earth-pointing satellite in its orbit 

System of space-fixed axes, origin at the centre of mass of the satellite 

and having Z' normal to the plane of the ecliptic and X'  and Y' along 
the major and minor axes respectively of the earth's orbit round the 

s u n  

Unit vectors along (X', Y', Z') 

Set of space-fixed axes, origin at the centre of mass of the satellite 

Unit vectors along (X, Y, Z) 

Satellite axes (origin at the centre of mass) 

Unit vectors along (Xe, Ys, Zs) 

Direction cosines of X', Y', Z' axes relative to X Y Z  

Direction cosines of n relative to axes X, 11, Z 

No. Author 

1 N . E .  Ives .. 

REFERENCE 

Title, etc. 

Principles of attitude control of artificial satellites. 
A.R.C.R. & M. 3276. November, 1959. 
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A P P E N D I X  I 

Integrals Occurring.in the Text 

f du [ e s inv 2 ( ~ / ( 1 -  e ) 2 ) ]  
(1 + e cos v) 2 - (1 - e ~) (1 + e cos v) + (1 - e2) 8m tan-1 ~ - e  tan 

f cos%dr  I [ e s inv  2 ( 1 - 2 e  2) ( % / ( 1 - e )  tanV~7 
(1 + e cos v) 2 - e ~ v - (1 - e 2) (1 + e cos v i + 0 Z e ~  tan-1 ~ 2 / J  

f [ e s i n v  2 1 - - e  2) 1 sin~vdv 1 ( l + e c o s  ~ / ( 1 - e  2) ( ~ / ( ~ )  (1 + e cos v) ~ - e 2 v) + tan-1  tan - v 

f s i n v c o s v d v _  1 [ e cosv l o g ~ ( l + e c o s v ) ] .  
( f - + e c o s ; ~  e ~ (1 + e c o s v )  

These integrals are taken between the limits specified in the appropriate sections of the text. 

A P P E N D I X  II 

Radiation Incident Obliquely on a Flat Surface 

Consider radiation incident at an angle 7 with the normal to a surface of area S and having an 
absorptivity of unity, Fig. 7. The  projection of the area S in a plane normal to the direction of the 
incident radiation is S cos 7, and the force on such an area is PS cos 7. Since the same amount  
of radiation is incident on the surface S, the force on this surface must also be PS cos 7, acting 
through the centre of pressure in the direction of the incident radiation. This force may be resolved 
into two components: 

and 
PS cos~7 normal to the surface S, 

PS cos 7 sin 7 tangential to the surface. 

If the radiation suffers complete reflection at the surface the resultant tangential component 
of force is zero and the normal component is 2PS cos~7. 

, ,  . : - 
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FIG. 2. 'Cut-away' view of satellite. 
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Radiation incident on face 1. 
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FIe. 4. Motion in the plane of~the ecliptic. 
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FIG. 5. Rotation of satellite axes for an earth-pointing satellite. 
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FIG. 7. Radiation incident obliquely on a flat surface. 
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