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Summary. 
The report contains a description of a method used to find the solution of an integral equation on an 

automatic computer together with some illustrative examples. 

Introduction. 
Knowledge of the pressure distribution on a body moving in a fluid is required in a variety of 

applications, such as the prediction of cavitation inception conditions and the study of boundary- 
layer development. For many purposes the effects of viscosity can be neglected and it is sufficient to 

consider inviscid incompressible flow. In general this is essentially the problem of solving Laplace's 
equation with the condition of no flow through the surface of the body, but in the special case of a 

smooth, simply connected body of revolution in uniform axial flow it can be reduced (Ref. 1) to 

finding the solution of a linear integral equation. This equation is satisfied by the velocity- 
distribution function on the body surface from which the pressure distribution can be found by 

using Bernoulli 's equation. 
This report describes a numerical solution of the integral equation which is suitable for an 

automatic digital computer and which has been programmed for the Ferranti 'Pegasus'. Illustrative 
examples for the particularly difficult case of bodies of revolution with flat heads are given in the 

Appendix. 
The integral equation will not be derived here but it should be remarked that the mathematical 

model is a system of co-axial vortex rings (replacing the body) at rest in an axial, inviscid, 

incompressible, uniform flow of unit speed. 

Integral Equation. 
Let the generating curve of a body of revolution be parameterized by the distance along the curve 

measured from one of the two points where the curve meets the axis of revolution, y = 0. Also let 
the total length of the curve be taken as L, then any point on the curve is specified by 

x = x ( s ) ,  y = y(s) 
with ) (1) 

x(O) O, y(O) = y (L)  = O. 
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I f  the curve is such that x' = dx/ds, y' = dy/ds are continuous and x '~+  y'~ = 1 the integral 

equation satisfied by w(s), the speed at points of the body specified by s, is (Ref. 1) 

(2) w(s) = 2x '  - -1 r l L K ( s ,  ~ )w(~ )d~ ,  0 <. s <. L. 
"17" ~.) 0 

The  kernel fufiction K(s, or) of this integral equation is 

1 l[x'y-y'(x-~)] [K(k) - ECk)] - 2~ 
v ' [ (~ -  ~)~ + (y + ~)~] y 

where 
(1) ~ = ~(~), ~ = y(~) 

(2) k~ = 4y~ 
(~ -  ~)~ + (y + ~)~ 

and 

(3) K(k)= d9 E(k) = ~/(1-k2s inZg)d ~ 
~0 ~/(1 - k 2 sin2cp) ' ; 0  

are the complete elliptic integrals of the first and second kinds (Ref. 2 p. 155). 

[x'(Y- ~) - Y'(~- ~)1 E(k) t (3) ( ~ -  ~)~ + ( y -  ~)~ 

T h e  method described in this report  for solving this integral equation for a given body is to 

approximate to the integral term in (2) using a quadrature formula of the form: 

E A i ( s ) w ( ( Y i ) ,  0 = ~7 0 < (71 < . . . < (7~Z_ 1 < 0", n = L .  (4) 
i -0  

I f  s is given the values %, al, • • • , cr~ the integral equation can be replaced by a set of linear 

simultaneous equations which when solved give w(s) at the quadrature points %, ~1 . . . .  , (r~. 

T h e  accuracy of the result will evidently depend on the quadrature formula used, which in turn 

will depend on the form of the integrand. In order to determine an appropriate quadrature formula 

i t  will be necessary to investigate the kernel. 

The Kernel. 
It  is known that the complete elliptic integral of the first kind K(k) has a logarithmic singularity 

a t k  2 = 1, and as 

1 - k  ~=(x-~)~+(y-~)2 ( x -  ~)~ + (y + ~)~ (5) 

the kernel K(s, or) will have a logarithmic singularity when ~r = s. Using the expansions of K(k) 
and E(k) given in Ref. 2 p. 155 it can be shown that the kernel can be put  into the form: 

K(s, or) = P(s, c 0 log Is - ~t + 9 (  s, a) (6) 
where 

1 l[x'y - y ' (x -  ~)] 2 E(kl) - 
P(s, ~) = ~/[(x- .~)z + ( y -  ~)2] , y ~r 

- 2~ [~'(Y(~ _-~)~ ~) +- (y y'(~_ -~)~ ~)] ~2 [K(kl) - E(kl)] I (7) 

Q(s,  ,~) = K ( s ,  ,~) - P(s, =)log, I s -  ~l (8) 
and 

k ?  = 1 - - k  s = (x - -~ )~+  (y--~)~ 
(~_ ~)~ + (y + n )  ~ . (9) 
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Analysis of P(s, ~) shows that  it is a continuous function of ~ for 0 < s < L, and that  its derivatives 

wi th  respect  to ~ are continuous except at points of discontinuity of curvature of the generating curve. 

When  cr = s it is found that  
X t X t 

P(s, s) = - 2y '  Q(s, s) = - x"y' + x'y" + ~y ( 1 - 1 o g S y ) .  (10) 

I t  is seen f rom the fo rm of Q(s, s) that  at points of discontinuity of curvature of the generating 

curve Q(s, s) will have step discontinuities. For  cr # s, Q(s, (z) is a continuous function of a for 

0 < s < L and its derivatives wi th  respect  to (r will have the same propert ies as those of P(s, ~). 
When  s = 0 or L the kernel has the simple form: 

~rx'~2 where  x, x'  are taken at s = 0 or L respectively. (11) 
+ 

Near  the end points where  ~7 = O, 0 < s < L, P(s, (z) and Q(s, a) have the respective forms: 

A(s, ~)~21og~ + B(s, c 0 I 
(12) 

J - A(s ,  a)V ~ log ~ + C(s, a) 

where  A, B, C are continuous functions of a for 0 < s < L. 

Regarding the fo rm of the solution, little can be said except that  it is continuous and that  its 

derivatives will have discontinuities at points of discontinuity of curvature of the body. On physical 

grounds it is expected that  around such points the solution will peak, i.e., that  the fluid will move 

quickly in those regions. For  bodies dealt with in this report  at points where  y = 0, x'  will be zero 

so that  there w(s) = 0, which will be the stagnation points of the flow. 

With  these remarks in mind,  the integral equation will be writ ten:  

w(s) = 2 x '  1 - E [P(s, ~) log l s -  ~[ + Q(s, ~)]w(~)d~ (13) 
77" i = 0  . i s  i 

0 = s o < s 1 < . . .  < s,~_ 1 < s~ = L 

where  the points sl, s2, . . . ,  s,~_ 1 are chosen so that  P(s, cr)w(cr) and Q(s, a)w(~) are continuous 

and have continuous derivatives in (si, si+l), i = O, 1, . . . , n - 1. In  this case these functions can 

be approximated by polynomials. 

Quadrature Formula. 

T h e  method  of approximat ing the integral t e rm described here was communica ted  to the author 

by  G. F. Miller of the National  Physical Laboratory.  

Consider the numerical  quadrature  of integrals of the fo rm 

f ~ F( ~)m( ~ - s)d~ (14) 

where  F ( a ) i s  continuous in (a, b) and re(t), the weight  function, may have an integrable singularity 

a t t =  O. 

I f h  = (b -a ) /n  and ~5 = a +jh,  j = 0, 1, . . .  , n  (15) 

then the integral can be wri t ten as the sum of integrals in the form: 

n-I ['°'#+1 ~--i [ ' i  
[ F(cr)m@-s)d~ = h 3~ ° J F ( ~ + p h ) m ( ~ + p h - s ) d p .  (16) 

j = o  z ~ j  " =  o 
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N o w  Everett 's  formula (Ref. 3, p. 56) is 

F@j+ph) = (1-p)F(¢~)  + pF(~y+~) + EzS~F(%.) + F~3ZF(¢a+,) + . . . ]  

with prp-Dtp-2~,, , ,  , F2 ( p + l ) p ( p - 1 )  t (17) 
E~ = - 3! = 3! 

and this series can be used to replace F(,~j +ph) in (16) as long as the tabular values of F(~) required 
by the central differences do not lie outside the range of integration. If, as in the following, only 
second differences are taken into account in Everett 's  formula, only the first and last integrals 

in (16) require tabular values outside (a, b) and so there, truncated forward and backward difference 
formulae were used (Ref. 3, p. 54) 

F(a+ph) = F(a) + pAF(a) + p ( p -  1) A2F(a) + (18) 
2[ " '" 

F(b-ph)  = F(b) - pVF(b) + p(p - 1) 2[ V2F(b) - . . . .  (19) 

Substituting the truncated series in (16) will give, on rearrangement, a sum of the form: 

x (20) 
i = 0  

where Bi(s ) involves integrals of the form: 

j p"m(os+ph-s)dp, r = O, 1 , . . .  (21) 
0 

The  integrals 

s i  . i s  i 

can be replaced in this fashion by sums of the form (20) taking: 

F(cr) = w(a)P(s, a) when re(t) = log It 1 (23) 

F(a) = w(a)Q(s, or) when m(t) = 1. (24) 

In (24) the weight function is independent of s and can be evaluated easily, and the quadrature 
formula will have the simple form: 

n 

x (25) 
i = 0  

With the weight function re(t) = log It] it is necessary to compute the integrals 

;1 
J,. = h ylogl   + p h -   ldP, r = O, X, 2,  3, . . . , (26) 

0 

which can be accomplished by using the recurrence formula 

r ( s -  %')J,.-1 h ( r+  1)J,. = ( e j + l - s ) l o g  1%'+1 - s[ + ~ - - -  
r + 1 (27) 

J0 = (a j+~-s) log  ] e~+ 1 - s] + ( s -  %.)log ]s - %'1 - h. 
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The Programme. 
The method described above for solving the integral equation was programmed for the Ferrant~ 

'Pegasus' with a drum store of 7,168 words. The computing was carried out mainly in single-length 
floating-point arithmetic, equivalent to about 9 decimals. 

Due to cancellation errors arising in the recurrence (27), it was found necessary to programme 
the computation of J~ using multiple-length arithmetic. For  this reason the interpolation series (17), 

(18) and (19) were truncated after second differences so that double-length fixed-point arithmetic 
(about 23 decimals) would be sufficient. The integration formula then requires J0, J1, J2, Ya. 

To allow maximum storage space the programme was subdivided as follows: 

(i) Input of body data and parameters. Computation of body co-ordinates. 

(ii) Calculation of quadrature weights: 

(iii) Calculation of P(s, a), Q(s, a) and setting up of linear equations. 

(iv) Solution of equations and output of results. 

The parameters referred to in (i) were integers indicating the number of points to be taken in 
each interval (si, si+l). In order to obtain better definition around the points of the discontinuity 

small intervals were taken there, and where the curvature of the body was small the intervals 
(si, si+a) were made large. 

Discussion of Results. 
No satisfactory way of evaluating the error involved in this method was found. Results for a 

sphere using 11 point quadrature are given in the Appendix together with a table of the known 
flow for comparison, and it is seen that the maximum error involved was 3 x 10 -4. An increase of the 
number of points to 21 reduced the maximum error to 4 x 10 -5. 

In order to obtain an estimate of the errors for the flat-nosed bodies considered here, the 
programme was run twice with different parameters. It was found that for the bodies for which this 
was done the difference was at most of the order of 5 x 10 -a and usually less. 

Tables II  and II I  give results for the flat-nosed bodies shown in the diagrams (which show only 
the generating curve of the body). 

In both cases the length of the bodies were taken as 20, but the tables have been shortened to 
give only the velocity distribution w(s) over the front part. 

The generating curve of body II is composed of two perpendicular straight lines joined by a 
quadrant of a circle to ensure a smooth contour. Body III  is generated by the two perpendicular 
straight lines AB and DE connected by two circular arcs BC and CD. 
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A P P E N D I X  

Body I, Sphere 

T A B L E  I 

s (in degrees) 

0 
18 
36 
54 
72 
90 

108 
126 
144 
162 
180 

w(s) 

0.0 
0.4638 
O. 8816 
1.2135 
1.4266 
1. 5000 
1.4266 
1.2135 
0.8816 
0-4638 

0 - 0  

Correct value 
= 1.5 sins 

0 
0.4635 
0.8817 
1.2135 
1.4266 
1.5 
1.4266 
1.2135 
0.8817 
0.4635 
0 

Body II  (see Fig. 1) 

T A B L E  I I  

s x y W(s)  

O. 000 
O. 125 
O. 250 
0.375 
0.500 
O. 696 
O. 893 
1. 089 
1-285 
1- 446 
1- 607 
1-767 
1.928 
2.089 
2.249 
2.410 
2.571 

0-0 
0.0 
0.0 
0-0 
0.0 
0-038 
O- 146 
O. 309 
0.500 
O. 661 
O. 821 
O. 982 
1.143 
1. 303 
1. 464 
1. 625 
1.785 

0.0 
0-125 
0.250 
0. 375 
0.500 
0. 691 
0. 854 
0.962 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1-0 
1.0 
1.0 

0.0 
O. 091 
O. 187 
O. 304 
O. 490 
O. 922 
1- 289 
1.493 
1-353 
1.177 
1-122 
1- 093 
1.075 
1.063 
1.055 
1.051 
1.051 
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T A B L E  I I I  

Body I I I  (see Fig. 1) 

s w(s) 

0 
0. 094 
0.188 
0. 281 
0. 375 
0.469 
0- 563 
0- 656 
0- 750 
0. 760 
0. 770 
0.781 
0.791 
O. 801 
0.811 
0- 822 
0.832 
0.979 
1. 126 
1.273 
1.420 
1.567 
1-714 
1- 861 
2.008 
2.155 
2.302 
2.489 

x y 

0.0 0 
0-0 0.094 
0-0 0-188 
0.0 0.281 
0.0 0-375 
0.0 0-469 
0.0 0.563 
0.0 0.656 
0.0 0.750 
0.001 0.760 
0- 003 0.770 
0. 007 0.780 
0.013 0.788 
O. 020 O. 796 
O. 028 O. 802 
O. 037 O- 807 
0.046 O. 810 
O. 189 O. 846 
O- 332 O. 876 
O- 477 O. 907 
O. 622 O. 932 
O. 767 O. 952 
O. 913 O- 970 
1.059 O- 983 
1.206 O. 992 
1.353 O. 998 
1. 500 1. 000 
1. 687 1.000 

0 
0.064 
0-129 
0.199 
0.278 
0.373 
0.498 
0.693 
1-406 
1.704 
1- 861 
1- 987 
2.078 
2.130 
2.138 
2.098 
1- 784 
1.209 
1-156 
1.137 
1.131 
1.127 
1.124 
1.120 
1.115 
1.102 
1.083 
1.059 
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FIG. 1. Generating curves of bodies I I  and I I I .  

(86358)  ~ ' t .  64 ]1857  K . 5  1/63 H w .  



) 

Publications of the 
Aeronautical Research Council 

x942 Vol. 
Vol. 

x943 Vol. 
Vol. 

x944 Vol. 
Vol. 

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL 
RESEARCH COUNCIL (BOUND VOLUMES) 

L Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (post 2s. 9d.) 
IL Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (post 2s. 3d.) 

I. Aerodynamics, Aerofoils, Airscrews. 8as. (post 2s. 6d.) 
II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. 

9as. (post 2s. 9d.) 
I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84 s. (post 3s.) 

II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and 
Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (post 3s.) 

x945 Vol. I. Aero and Hydrodynamics, Aerofoils. x3os. (post 3 s. 6d.) 
Vol. II. Aircraft, Airscrews, Controls. I3os. (post 3s. 6d.) 
Vol. III.  Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and Panels, Propulsion. 

x3os. (post 3s. 3d.) 
Vol. IV. Stability, Structures, Wind Tunnels, Wind Tunnel Technique. x3os. (post 3s. 3d.) 

x946 Vol. I. Accidents, Aerodynamics, Aerofoils and Hydrofoils. I68S. (post 3s. 9d.) 
37ol. II. Airscrews, Cabin Cooling, Chemical Hazards, Controls, Flames, Flutter, Helicopters, Instruments and 

Instrumentation, Interference, Jets, Miscellaneous, Parachutes. z68s. (post 3s. 3d.) 
Vol. III. Performance, Propulsion, Seaplanes, Stability, Structures, Wind Tunnels. x68s. (post 3s. 6d.) 

1947 Vol. I. Aerodynamics, Aerofoils, Aircraft. i68s. (post 3s. 9d.) 
Voi. II. Airscrews and Rotors, Controls, Flutter, Materials, Miscellaneous, Parachutes, Propulsion, Seaplanes, 

Stability, Structures, Take-off and Landing. I68S. (post 3s. 9d.) 

948 Vol. I. Aerodynamics, Aerofoils, Aircraft, Airserews, Controls, Flutter and Vibration, Helicopters, Instruments, 
Propulsion, Seaplane, Stability, Structures, Wind Tunnels. x3os. (post 3s. 3d.) 

Vol. II. Aerodynamics, Aerofoils, Aircraft, Airscrews, Controls, Flutter and Vibration, Helicopters, Instruments, 
Propulsion, Seaplane, Stability, Structures, Wind Tunnels. xxos. (post 3s. 3d.) 

Special Volumes 
Vol. I. Aero and Hydrodynamics, Aerofoils, Controls, Flutter, Kites, Parachutes, Performance, Propulsion, 

Stability. i26s. (post 3s.) 
Vol. II. Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Materials, Miscellaneous, Parachutes, 

Propulsion, Stability, Structures. x47s. (post 3s.) 
Vol. I IL Aero and Hydrodynamics, Aerofoils, Airscrews, Controls, Flutter, Kites, Miscellaneous, Parachutes, 

Propulsion, Seaplanes, Stability, Structures, Test Equipment. i89s. (post 3s. 9d.) 

Reviews of the Aeronautical Research Council 
I939-48 3s. (post 6d.) I949-54 5s. (post 5d.) 

Index to all Reports and Memoranda published in the Annual Technical Reports 
x9o9-x947 R. & M. 2600 (out of print) 

Indexes to the Reports and Memoranda of the Aeronautical Research Council 
Between Nos. 2351-2449 R. & M. No. 2450 as. (post 3d.) 
Between Nos. 2451-2549 
Between Nos. 2551-2649 
Between Nos. 2651-2749 
Between Nos. 2751-2849 
Between Nos. 2851-2949 
Between Nos. 2951-3o49 
Between Nos. 3o5 x-3 x49 

R. & M. No. 255o 2s. 6d. (post 3d.) 
R. & M. No. 265o as. 6d. (post 3d.) 
R. & M. No. 9-750 2s. 6d. (post 3d.) 
R. & M. No. 285o 2s. 6d. (post 3d.) 
R. & M. No. 295o 3s. (post 3d.) 
R. & M. No. 3o5o 3s. 6d, (post 3d.) 

• R .  & M. No. 315 ° 3s. 6d. (post 3d.) 

HER MAJESTY'S STATIONERY OFFICE 
from the addresses overleaf 

, , , g .  



R. & M. No. 3308 

© Crown copyright 1963 

Printed and published by 
HER MAJESTY'S STATIONERY OFFICE 

To be purchased from 
York House, Kingsway, London w.c.2 

423 Oxford Street, London w.x 
x3A Castle Street, Edinburgh z 

lO 9 St. Mary Street, Cardiff 
39 King Street, Manchester z 

5o Fairfax Street, Bristol I 
35 Smallbrook, Ringway, Birmingham 5 

8o Chiehester Street, Belfast x 
or through any bookseller 

Printed in England 

Ro & Mo No0 3308 

S.Oo Code No,, ~3-33o8 


