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Summary. The lift distribution on a two-dimensional wing oscillating in accelerated flight is obtained by 
solving the linearised partial differential equation for the velocity potential in the fluid flow about the wing 
and applying the linearised Bernoulli equation. Expressions for the total lift and moment are obtained as 
integrals in,)olving the upwash on the wing. Numerical values for the lift and moment on a heaving wing and 

• on a pitching wing have been obtained when the forward acceleration of thelwing is uniform. 

1. Introduction. It is important to investigate whether acceleration Will have an appreciable 
effect on the airforces acting on the lifting surfaces of certain missiles which have moderate 

acceleration in order to determine whether this effect need be taken into account in stability and 

flutter calculations. 
For a wing travelling at supersonic speed any disturbances emanating at the wing surface move 

backwards relative to the wing and after a short interval of time do not affect the lift distribution 

over the wing. If  its acceleration is small then the lift distribution over the wing is affected only by 

disturbances which emanated from the wing surface when the speed was not much different from 

its actual speed, and it is therefore to be expected that the lift distribution is very nearly the same 

as if the wing had been travelling at uniform speed. However, in order to have a quantitative estimate 

of the effect of acceleration, airforces on an oscillating two-dimensional wing in uniformly-accelerated 

supersonic flight have been evaluated. The wing is assumed to be oscillating with constant amplitude 

and frequency. 
Values of lift and moment  on a heaving and on a pitching two-dimensional wing in uniform 

acceleration are given at different speeds in a supersonic speed range. For comparison the steady- 

state values of lift and moment  are given at each of these speeds. 

2. Basic Equations. The two-dimensional wing will be assumed thin and nearly plane and to be 

executing oscillations of small amplitude only so that linearised theory may be used. As far as the 
effect of wing oscillations is concerned it is consistent with the accuracy of linearised theory to 

replace the wing by an indefinitely thin plate oscillating about a mean plane and to take the airforces 

on the wing to be the same as those on the plate. The  projection of the wing onto the mean plane 
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is assumed to move with velocity V, dependent on time, in the direction normal to the leading edge 

of the projection and parallel to the mean plane. The  fluid medium through which the wing moves 
is assumed to be at rest at infinity. 

Two systems of co-ordinates will be taken. The origin of the (x, y, z) system is stationary with 

respect to the fluid medium at infinity. The positive x-axis is in the direction opposite to that of the 
wing velocity V, the positive z-axis is vertically upwards (i.e., normal to the mean plane) and the 

positive y-axis is mutually at right angles to form a right-handed system. The distances of the point 
(x, y, z) from the co-ordinate planes are defined by cx, cy,  c z  where c is the wing chord. The origin 

of the (~, ~7, ~) system moves with velocity V in the same direction as the wing so that it is at rest 
relative to the projection of the wing on its mean plane. The positive axes of ~, ~ and ~ are in the 
same directions as those of x, y, z respectively and the distances of the point (~, % ~) from the 

co-ordinate planes are c~, c~ 7 and c~. The origin of the (~, ~, ~) system of co-ordinates is taken at the 

mean position of the leading edge of the wing and the origins of the two systems are taken to be 
coincident at time t = 0. 

It is convenient to define a non-dimensional time by means of the equation: 

a 

= - t  ( 1 )  
C 

where a is the speed of sound in the fluid medium, c is the chord of the wing, and t the ordinary 

time. The veloc!ty of the wing may then be taken as a function of ¢. 

v = v(.,-). (2)  

The velocity potential ¢(x, y, z, v) of the gaseous medium satisfies the linearised partial differential 
equation 

c - ~ \ 3 x  ~ + ~ +  3z  ~] a ~ 3t 2 
I 

o r  

3-x- 2 + ~ + 3z-- ~ = 3T 2 • (3) 

The wing is assumed to distort so that the vertical upward displacement of the point (~, ~/, 0) on 
the wing may be given by the formula 

z = c ( 4 )  

where Z(~, ~) is a given function. 

The velocity potential must  then satisfy the following linearised boundary condition on the 
plane z = 0 over the wing chord: 

OZ 0Z 

+ 

= aw( , ( s )  
where 

1 V(,r) (6) = 

is the instantaneous Mach number  and w(~, 7) is the upwash at z = 0. 



The distance between the origins of the two systems of co-ordinates at the time r is cs(r) where 

s(r) = _1 V(u)du (7) 
a 0 

The following relationships then exist between the co-ordinates in the two systems: 

y} = y  

= ~.  (8) 

3. The Derivation of the Velocity Potential. The partial differential equation (3) is satisfied by 

the function 

l f fm(xo,  yo, ._r)  dxodyo ¢(~, y,  z, . )  = G ,. 
z=O 

p l a n e  

where 

(9) 

r = ~ { ( . - . o )  ~ + (y-yo) "~ + ~ )  (10) 

and re(x0, Y0, 7) is an arbitrary function which is twice differentiable with respect to 7. 
This solution of the differential equation corresponds to the velocity potential about a layer of 

sources in the z = 0 plane. 
Differentiating equation (9) with respect to z, and proceeding to the limit z = + 0, we obtain 

( 3 ¢ I =  m(x,y, r) (11) lim 3z 
z---> + 0 \ / 

when re(x, y, r) satisfies some elementary conditions of continhity and boundedness. 

If we proceed to the limit z = - 0 we obtain 

l im_ (~¢z) = - m ( x , y , , ) .  (12) 
z 0 

There is therefore a discontinuity in (a¢ /az)  in passing through the layer of sources. Since there is no 
discontinuity of (aC/a~) in passing through the wing it is not possible to replace the  wing by a layer 
of sources. However it is possible to do this as far as the flow either above the wing or below the 
wing is concerned for these two flows are independent of each other and of conditions behind the' 

wing in supersonic flow. For flow above the wing we take 

re(x, y, r) = caw{, + s(,), ~} (13) 

with w(~, r) defined by equation (5). 
The velocity potential in the flow above the wing is therefore given by 

c a r l  - . (14) ¢(x, y, z, r) = G d d  w{x° + s ( r - r ) ,  r - r }  d~°dY°r 

p la l l e  

The velocity potential in the flow below the wing is given by the same formula (14) only that the 
sign of the right-hand side is changed. The velocity potential is then seen to be antisymmetric about 

the plane z = 0. 



The wing will be assumed to oscillate harmon!cally with circular frequency ~o. Since the problem 
is linear it is possible to express the displacement as the real part of 

= ~Z(~ ,  ~) 

= ~2(~)~ , ,~  
where 

(15) 

(16) 

where 

where 

~o = ~ / { ( ~ - ~ o )  ~ + yo~} .  ( 20 )  
If we write 

¢(x, + O, ~) = ¢(¢, 7)e ~ (21) 
we obtain from (19) 

= f f W{xo + SO__ro),.r_ro}e_.i.,,odxodyoro (22) 

g,=O 
p i a n o  

ro = ~ / [ { ~  - x0 - s(r)}2 + y j ] .  

The  polar co-ordinates (r0, O) are introduced through the equations 

xo = ro c o s  0 + ~ - s(~)  ] 

J Yo -' ro sin 0 

so that the expression for ¢(s e, ~-) may be written 

f; = dO W{~ + r o cos 0 - s('r) + s ( r -  ro) , "r - "o} e-i"°dro 
¢( ~' ~) G o 

f: F - ~ d o  w { ~  + ,'o co s  o - ~(~) -~ s ( ~ - ~ ' o ) ,  ~ - ~o)~-~,'Odro. 
7r o 
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(23) 

(24) 

(25 )  

¢oc 

a 

is the frequency parameter. The  physical quantity corresponding to any complex number  or function 
will always be taken as the real part of the complex number  or function. 

It may be well to mention here that it is usual in problems on oscillating wings having constant 

forward speed to define the frequency parameter v = coc/V. In problems involving variable forward 

speed of the wing this definition of v is unsuitable, so a definition such as that given in equation (16) 
is introduced. 

The  upwash is now given by 

w(~, 7 ) =  W(~, ~)e ~"r (17) 
w h e r e  

02 
W(~, ~-) = M(~) ~ + ivZ. (18) 

In order to obtain the lift distribution it is necessary to know the velocity potential for z = + 0 

and z = - 0. Since the potential is independent of y we shall henceforth drop this co-ordinate 
where it is appropriate to do so. The  velocity potential ¢(x, + 0, T) at z = + 0 is then given by 

7) = ca _[_[ W{xo + s(r-ro) ,  "~-ro} e~'r-'°) dxody o (19) ¢(x, + 0, 
2~T ~ T 0 

z = 0  
plane 



Since there is no disturbance propagated forwards from the wing in supersonic flow the function 
W(~, r) is to be taken zero for ~ < 0. This will make the effective area of integration in (25) a finite 

one. 
The double integral in equation (25) may be evaluated numerically for given values of ~ in (0, 1) 

and of r. The procedure is to evaluate the integral as a repeated integral in the order indicated in 

equation (25). Since 
+ r o cos 0 - s(r) + s ( r - to )  (26) 

is a monotonically decreasing function of r 0 when the forward speed of the wing is always supersonic 
the upper limit of the inner integral in (25) may be replaced by the finite value of r 0 at which the 
expression (26) becomes zero for all the values of 0. 

A number of integration points 0 are taken in the interval (0, ~) and the inner integral is evaluated 
numerically for each of the integration points 0. The outer integration with respect to 0 may then be 
easily evaluated numerically. Gaussian quadrature methods are most suitable for performing these 

numerical integrations. 

4. The Airforces on the Wing. The lift distribution l(~, r) on the wing is obtained by using the 
linearised Bernoulli equation; and observing the fact that the velocity potential is antisymmetric 

about the z = 0 plane. The lift distribution is giver~ by / 

F.V(r) ~o(x, +0, r) ~o(x, +0, r)] 
l(~, q-) ~- 2p 

" - a #  + at J 
= 2palM(r)O~(~, r) ] c a----~ + iv~(~, r) e i~T. (27) 

Generalised airforces may now be obtained by multiplying the lift distribution by the expressions 
for the shapes Of the modes of oscillation and integrating over the wing chord. For example the 

lift per u~nit span is 

= c 

0 

since ~(0, r) = 0; and the moment per unit span positive nose up 'is 

N ( r ) =  - c = ~l(~, r)d~ 
0 

The integrals in (28) and (29) may be evaluated for given r once ~(~, r) has been evaluated at a 
set of points ~ in (0, 1). The function ~(~, r) is wall behaved and has no singularities for ~ in (0, 1). 

5. Supersonic Wing in Uniformly-Accelerated Flight. The wing is assumed to be travelling always 
at supersonic speed. At time r = 0 its Math number is M 0 and from time r = 0 onwards it is assumed 
tO have uniform acceleration b. Its Mach number at time r > 0 is then 

M(.)  = Mo + (30) 

where p is a coefficient given by 

p = bc/a2. (31) 

(85554) A* 



The airforces on the wing at time ~ will be influenced by disturbances generated by the wing at 
earlier times. 

The disturbance generated at the leading edge of the wing at time ~' < ~ will at time ~- be confined 

to the surface of a circular cylinder of radius a 0 - -  ~') with axis fixed at the line coincident with the 

leading edge at time ~'. I f  ~-' is near t o ,  this circular cylinder will intersect the wing surface at two 

chordwise positions and, the earlier T' is, the further away from the leading edge will these two 

positions be. The foremost of these intersections will be at the trailing edge for a disturbance 

generated at a certain time ~-' = ,~ and the disturbances generated at times earlier than ~ will 
not influence the airforces on the wing at time ,. 

Since distance travelled by the wing is a quadratic function of time, and distance travelled by a 
disturbance is a linear function of time, the value of ~2, is found by solving a quadratic equation and 
is given by 

, ; 1 
~ = ~ - I ' M ( T )  - -  1 }  + ~ 5 / [ { M ( r )  - 1 }  2 - 2 p ] .  ( 3 2 )  

The Mach number at time ~"1 is then found from (30) to be 

M(~ 0 = 1 + I/[{M(*) - 1} 2 - 22o]. (33) 

The negative signs in (32) and (33) are inadmissible for they correspond to a negative value of ~'1 
and a subsonic M0-a). The positive sign in (33) does give a supersonic M0-x). If then 

M(z~) > M0, (34) 

the only disturbances reaching the wing at time ~- will be those generated at the times when the 
wing was already travelling with uniform acceleration. 

We assume 
p < (35) 

and this obviously excludes only irrelevant cases when either M(,)  exceeds 1 by very little only or 
p is unduly large. 

The function s(~-) for the uniformly-accelerating wing is given by 

Then 
s( . )  = M0* + (36) 

(37) 
¢) 

s('r) - s ( - r -  ro) = roM(.r ) - 2 r°2 . 

Let us now consider a heaving and a pitching wing. 
For a heaving wing we may write for Z(~) in equation (15) 

Z(s a) = 8±~ (38) 
so that 

W(~, 7) = iv3 H . (39) 

Expressions for L~z and N~r, the lift and moment, per unit length, of the airforces acting on the 
heaving wing may be written as 

= pc,, 8  {p, M(.) ,  + il ." {p, ei . (40) 

N ~  = pc2a~Sz~ [m a '  {p,  M(-r) ,  v} + imH"  {p, M(.c) ,  v}] e ~ . (41) 



For a wing pitching about its leading edge we may write for Z(~) in equation (15) 

2(~) = Sp~ (42) 
so that 

W(~, . )  = 3p [M(.)  + iv~]. (43) 

Expressions for Lp  and Np, the lift and moment, per unit length, of the airforces acting on the 
pitching wing may be written as 

L v  = oca~Sp [le' {p, M(~-), v} + i l j  {p, M(r),  v}] e i~T (44) 

N ~  = pcZaZ3v [mff {Pl M(~-), v} + imp" {p, M('r), v}] e i~T . (45) 

The  functions l±~' {p, M( , ) ,  v}, l~z" {p, M(~-), v}, etc., are all real functions and their values may be 
determined by using the formulae of this paper. In order to obtain these values for a number  of 
different combinations of the values p, M( , ) ,  v a large number  of integrals have to be evaluated. 
These integrals are all  of a similar nature and can be suitably dealt with on an  electronic digital 
computer.  

Some results which have been obtained are given in Section 6. For comparison the values of 
li~'(0, M(T), v), 1H"(0, M(~-), v), etc., which are the steady-state values are given as well. The  
difference between the corresponding values is a measure of the effect of acceleration. 

6. Results. The results below are for different combinations of acceleration parameter p and 

frequency parameter v for a series of Mach numbers  M(z) occuring during a uniformly-accelerated 
motion. When  the acceleration parameter p is zero the aerodynamic force coefficients are the 
steady-state values but  it must be remembered that the definition of frequency parameter usual 
with steady-state values is oJc/V while for these values it is ~oc/a. 

The values of p taken are all small numbers  but  in fact they correspond to enormous values of 
acceleration b in cases of practical significance. 

e.g., if we take 
' c = 4 ft, a = 1000if/sec, p = 0 .01 ,  

then 

b - a~p - 2500 ft/sec 2 
C 

SOg 

( i )  p = 0 ,  v = 1,  heaving wing 

M(-c) 1H'(p, M(-r), v) lH"(p, M(~-), v) rag'(p, M('r), v) m j ( p ,  M(-c), v) 

2 

3 

4 

5 

0.17773 

0.04314 

0-01716 

0-00844 

2.2480 

2.1131 

2.0633 

2.0404 

--0-11655 

--0.02862 

-0.01131 

--0.00562 

- - 1 - 1 0 8 9  

--1.0545 

--1.0311 

-1 .0200  



(ii) p = O-01, v = 1, heaving wing 

M(r) l,z'(p, M(r), v) li~"(p , M(-r), v) mi~'(p , M(r), v) m "" 

M(~-) 

0.18113 

0.04361 

0.01716 

0.00851 

2.2525 

2-1146 

2-0641 

2.0408 

- 0 - 1 1 9 0 7  

- 0 - 0 2 8 9 7  

- 0 . 0 1 1 4 2  

- 0 . 0 0 5 6 7  

- 1 . 1 1 1 7  

- 1 - 0 5 5 5  

- 1-0316 

- 1.0203 

(iii) p = 0"04, v = 1, heaving wing 

Z~l'(p, M(-~), ~) 

2 

3 

4 

5 

l j (p ,  M(-d, ~) 

0.19173 

0.04502 

0.01761 

0.00871 

mI_z'(p, M(7), v) 

2.2661 

2.1191 

2.0663 

2-0422 

m t t .  tp, m(,~), ,,) 

- 0 . 1 2 6 9 5  

-0 .03003  

- 0 - 0 1 1 7 6  

- 0 . 0 0 5 8 2  

2 

3 

4 

5 

- 1-1202 

- 1.0585 

- 1 . 0 3 3 1  

- 1.0212 

( i v )  p = O, v = 1,  pitching wing 

M(7) lp'(p, M(7), v) llJ"(p, M(~-), v) mp'(p, M(z), v) mp"(p, M(7), v) 

4.5572 

6.3539 

8.2589 

10.2046 

0.78366 

0.92919 

0-96420 

0.97818 

- 2 . 2 6 3 4  

- 3.1745 

- 4 . 1 2 8 6  

- 5 . 1 0 1 9  

- 0 . 5 2 4 2 6  

-0 -61961  

- 0 . 6 4 2 8 3  

- 0 . 6 5 2 1 3  

(v) p = O" 01, v = 1, pitching wing 

m(~) l/(p, M(~), ~) ll;'(p, M(~), v) m/(p, M(~), ~) mp"(p, M(~), ~) 

2 

3 

4 

5 

4-5599 

6.3546 

8.25927 

10-2048 

0.78098 

0-92890 

0-96412 

0-97815 

- 2 . 2 6 5 1  

- 3 . 1 7 4 9  

- 4 . 1 2 8 8  

- 5 - 1 0 2 1  

- 0 . 5 2 2 2 8  

- 0 . 6 1 9 3 9  

- 0 . 6 4 2 7 7  

- 0 . 6 5 2 1 0  



(v i )  p = O- 04 ,  v = 1, pitching wing 

M(-r) lzf(p , M(-r), v) l j ( p ,  M(-r), v) top'(p, M('r), v) rnp"(p, M('r), v) 

4.5683 

6.3567 

8-2600 

10-2051 

0.77256 

0.92801 

0.96390 

0.97807 

-2.2707 

-3.1763 

-4.1293 

-5.1023 

-0-51603 

-0.61872 

-0.64261 

-0.65205 

7. Conclusions. Rather simple physical reasons suggest that for practical dimensions and 

accelerations the values of the airforces for accelerated flight are only little different from the 

steady-state values. This is borne out in the two-dimensional case by the results given in the tables 

of Section 6, where the force coefficients for accelerated flow are seen to be very little different from 

the steady-state values. 



x, y, z 

~,~, 

C 

a 

t 

,7. m 

V = 

M(~) - 

cZ(~, ~) = 

~(~, t) 

¢(x, y,  z, ~) 

cs(7) 

~'0 

09 

l(~=, T) 

Lb') 

N(~) 

b 

p - 

l [ z '  , lft" , mzt' , m~", etc. 

~p 

N O T A T I O N  

Non-dimensional co-ordinates in a system with origin fixed relative 
to the fluid medium at infinity 

Non-dimensional co-ordinates in a system with origin fixed relative 
to the wing 

Wing chord 

Speed of sound in the fluid medium 

Time 
a 

- - t, Non-dimensional time 
C 

V(7), Forward velocity of wing 

V(7) Mach number 
a 

cZ(~)e~L Vertical displacement of a point on wing surface at time ~- 

Upwash 

Velocity potential in the gaseous medium 

Distance between origins of the two co-ordinate systems at time T 

See equation (20) 

Circular frequency 

~oc, Frequency parameter 
a 

Lift distribution 

Lift per unit span 

Moment per unit span, positive nose up 

Acceleration of wing 

bc 
Acceleration parameter 

a 2  

Coefficients defined in Section 5 

Parameter determining 
equation (39)} 

Parameter determining 
equation ,(43)} 

amplitude of heaving oscillation {see 

amplitude of pitching oscillation {see 

No. Author 

1 I.E. Garrick and S. I. Rubinow 
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