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1. Introduction. During the preparation at the N.P.L. of a manual of tunnel interference the 

necessity arose for calculating additional values of the blockage-interference corrections for small 

bodies in incompressible flow in rectangular tunnels having longitudinally slotted roofs and floors. 

This consisted essentially of extending the work of Davis and MoorO to include a wider range of 
tunnel height/breadth ratio. In order to do this without excessive computation it was necessary to 

simplify the formulae given in Ref. 1, and this report is concerned with the manner of simplification 

and with the results of the calculations. 

2. Simpli f ied Formulae for Blockage Interference. The configuration considered is a rectangular 
tunnel with solid side walls of height H and longitudinally slotted roof and floor each containing 
N slots, each slot being of width d. The breadth of the tunnel is denoted by B. A small model placed 
symmetrically iri the tunnel is represented by a doublet of strength m. In Ref. 1, Davis and Moore, 
using an equivalent homogeneous boundary condition, have derived the following expression for the 

longitudinal incremental velocity, u 2, at the position of the model 
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and K0(x ) and Kz(x ) are Bessel functions in the notation of Ref. 2. The  parameter c represents the 
openness of the roof and floor of the tunnel; for a closed tunnel c tends to + co, and for a tunnel 
with completely open roof and floor c = 0. 

For computing purposes some simplification of equations (1) to (6) is desirable. Consider first 
H o and H r Since Ko(x ) tends to zero exponentially as x tends to + co, 
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In the first term in equation (9) put  a - 2 k  = - 0 ,  and in the third ~ + 2 k  = 0. Then, since 
s is an integer, 
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or, since (Ref. 2, p. 80) 
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Substituting equations (15) and (16) in equation (1), we have 
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The expression given by Maeder a is equivalent to equation (18) with the terms corresponding to 
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by Ref. 2, p. 172. Since 

Kl(x ) -~ e -~ for large x, 

the successive terms in s tend rapidly to zero, unless )t is small. Equation (18) is therefore a suitable 
form for computation. 

For the special case of a closed tunnel, c tends to + oo and equation (18) becomes 
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for the tunnel with open roof and floor, c -- 0, and 
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For the purpose of assessing the effect of varying c and A it is more convenient to use the ratio of 

the interference for the slotted tunnel to the interference for a closed tunnel of the same shape, 
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As A -> 0% g2 -=~ 1 for all c. As ~t -> 0 both numerator and denominator tend to infinity. However, 
the limiting ratio may be determined by multiplying both by 2)taw ~. Thus  
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3. Calculation of Blockage Correction. Although in a few special cases the integrals arising in 

equation (26) can be expressed in closed form, no simple expression was found for the general case 
and recourse was made to numerical integration. For A greater than about one the terms with 

s greater than zero were negligible, but for the smaller values of )t more had to be included. In 

such cases the approximation of Ref. 3 is unacceptable. 
For  • > 1, with an error less than 5 x 10 -4, 

where 

ueB a I 
- -  -~ 0.023914 + - - -  (32) 
8m 47rA 2 

I = fo~ te-t(ct- 1)dt (33) 
t=0 cosh t + ct sinh t" 
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Some values of the integral in equation (33) are given in Table 1, which also contains values of 

u~Ba/8m calculated from equation (18) including terms in s = 1, 2, 3 . . . .  where necessary. The  

limiting ratio f/(0, c) from equation (31) is also tabulated. 

Fig. 1 contains curves of the corresponding values of ~ plotted against (1 + c) -l& In practice the 

open/closed ratio is such tha t  c is small, and the left-hand side of Fig. 1 is only of academic interest. 

In the practical range, say 0.8 < (1 + c) -1/2 < 1, f2 is a monotonic function of both A and c. I t  should 

be noted that for A greater than about 1.17 zero blockage cannot be obtained even for a tunnel with 

completely open roof and floor. This confirms the prediction of Wieselberger ~. 

4. Acknowledgements. The calculation of the nmnerical values given in Table 1 was carried out 

by Mrs. B. Armour and Miss B. A. Foster. 
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LIST  OF SYMBOLS 

Breadth of tunnel 

Slotted-wall parameter, defined in equation (8) 

Function defined in equation (5) 

Width of a slot 

Functions defined in equations (28) and (29) 

Height of tunnel 

Functions defined in equations (3) and (4) 

Function defined in equation (33) 

Strength of doublet used to represent model, m = (Volume of Model) x (Free- 
Stream Speed) 

Number of slots in the roof or in the floor 

Function defined in equation (2) 

Function defined in equation (6) 

Increment in longitudinal velocity'due to tunnel blockage effect 

Function defined in equation (19) 

H/B 

Ratio of solid blockage in slotted tunnel to the solid blockage in a solid-walled 
tunnel of the same cross-section. 
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TABLE 1 - 

Blockage Interference for a Rectangular Tunnel with Solid Side Walls and Longitudinally Slotted Roof and Floor 
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FIG. 1. Solid-blockage interference for rectangular tunnels with slotted roof and floor. 
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