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Foreword (1961). Parts I and II of this R. & M. were written as separate Reports in 1958 and 1960.
They deal with two stages of an exploratory investigation into the stability, control and response characteristics
of jet-flap aircraft, undertaken at a time when the basic aerodynamic theory of the jet-flapped aerofoil was
still being developed by such people as Spence, Maskell, Kiichemann and Ross. The aerodynamic assumptions
on which the investigation were based were thus necessarily of a tentative and approximate nature. In particular,
the incompleteness of the three-dimensional theory, combined with its relative complexity, virtually dictated
the use of two-dimensional theoretical lift and moment data as the basis of a tractable stability and control
analysis of the generalized nature which was envisaged. Inevitably, therefore, the field of application of the
results of these investigations is somewhat restricted, and in any fresh approach to the problem one would
certainly hope to proceed from alternative assumptions, based on three-dimensional theory.

In Part I, where attention was restricted to considerations of trim, static stability and quasi-steady
manoeuvrability, some further simplifying assumptions were made, in particular by neglecting the contributions
of thrust and drag forces to the pitching moment of the aircraft about its c.g. However, to ensure self-
consistency of the dynamic analysis undertaken in Part II, it was found necessary to revise the trim and
stability analysis of Part I so as to include the effects of thrust and drag forces. This was done only for the
case where the aircraft is trimmed by variation of the jet deflection, although in Part I, trimming by variation
of tailplane setting or thrust/weight ratio (throttle setting) had also been considered. Thus although some
sections of Part I have effectively been superseded in Part II, much of the earlier Report remains valid as a
first approximation which has not, so far, been improved upon. Accordingly it has been thought worth while
to publish both Reports in what is substantially their original form, with a few minor amendments and the
addition of one or two footnotes, explaining where the analysis or conclusions of Part I need to be modified
in the light of Part IL ‘ ‘ , '

The overall scope of the work is indicated by the summaries for the respective Parts.

* Previously issued as R.A.E. Report No. Aero. 2600, and Tech. Note No. Aero. 2670—A.R.C. 19,925 and
21,867.



Part I

An Examination of some Longitudinal Stability and Control Problems
of Jet—Flap Aircraft with Particular Reference to the Use
of Jet Thrust and Jet-Flap Deflection Controls

Summary. This Part of the Report extends and largely supersedes the work of Ref. 1 by considering the
jet-flap controls (throttle, flap deflection) as alternatives to conventional (tail) controls, for the longitudinal
control of jet-flapped aircraft. The investigation has been based on Spence’s theoretical two-dimensional
Jift and moment data (Ref. 2) so that its results should not be applied to low-aspect-ratio layouts.

Attention has been restricted to considerations of trim, static stability and quasi-steady manoeuvrability,
on the basis of which jet controls appear to compare somewhat unfavourably with tail controls.

In order to effect this comparison it has been necessary to postulate a particular ‘basic design condition’
(Section 3) but the proposed method of analysis may be applied quite generally, whatever design condition
is adopted. .

An aircraft with high-aspect-ratio jet-flapped wing, employing jet thrust and jet-flap deflection controls
respectively for the high lift and cruising conditions, would require a tail volume ratio of about 0-86, coupled
with a c.g. position of 0-46¢. If tail controls were used, a reduction in tail volume to about 0-71 might be
possible.

1. Introduction. In Ref. 1, the author made a preliminary examination of some of the stability
and control problems associated with the design of a jet-flapped aircraft. The investigation was
restricted to a consideration of static longitudinal stability and of the manoeuvrability criterion
related to the quasi-steady condition of flight at constant speed in a vertical circle. It was assumed
that the aircraft would be stabilized and controlled longitudinally by a conventional tailplane and
elevator (or all-moving tailplane). At the same time it was recognised that since, at a given airspeed,
the lift of a jet-flapped aerofoil is a function not only of aerofoil incidence o, but also of jet deflection
angle 9 and thrust/weight ratio 2, some other method of control might ultimately be examined and
prove to be superior. I. M. Davidson of the National Gas Turbine Establishment had, for instance,
maintained that, under cruising conditions, a jet-flapped aircraft should be controlled longitudinally
by variations in & with A held constant, while for take-off and landing approach, he argued that
9 should be fixed and the throttle (varying A) alone used for control. ‘

Tt is the purpose of the present Report (Parts I and II) to examine these alternative methods of
control. In Part I the investigation is again restricted to considerations of trim, static longitudinal
stability and quasi-steady manocuvrability criteria. Dynamic stability and response characteristics
are investigated in Part 11,

It was originally intended to base the work on the same. empirical two-dimensional data as were
used in Ref. 1, since at the time, the theoretical results of Spence? (two-dimensional) and Maskell
and Spence? (three-dimensional) had not been published. In fact, a good deal of work was accom-
plished using the old data, but with the appearance of Spence’s results, which permit of some
simplification in the stability and control analysis, it was decided to make a fresh start, using the
theoretical two-dimensional data as a basis. The possible use of Maskell’s three-dimensional results
was rejected on the grounds that the mathematical analysis would thereby be rendered too
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complicated for the present generalized investigation, whose aim is a qualitative, rather than a
precise quantitative, assessment of the effects under consideration. In these circumstances, while
the results of the investigation are probably applicable qualitatively to aircraft with jet-flapped
aerofoils of fairly large aspect ratio, it would be unwise to apply them in cases where the wing
aspect ratio is small.

The work of Ref. 1 is largely superseded by that of the present Report, inasmuch as the
characteristics of the jet-flap aircraft with conventional tail control have been re-assessed, on the
basis of Spence’s results, and are presented here for comparison with the corresponding characteristics
appertaining to the use of the jet controls for trimming and manoeuvring of the aircraft.

Stability and control analysis is inevitably more complicated for jet-flapped aircraft than for
conventional aircraft because more parameters are involved. This increased complication also
makes it more difficult to decide on the best basis of design (from the stability and control point of
view) for a jet-flapped aircraft. The fundamental parameters at the disposal of the designer in this
connection are the position of the c.g. and tail volume, which may be determined so as to satisfy
a specified set of conditions; once these parameters have been fixed, the trim and stability
characteristics of the aircraft are determined throughout the flight range. The choice of a set of
conditions to be satisfied, such that the resulting design will be an optimum, not only from trim
and stability considerations, but also from the performance point of view, is a problem of some
complexity, the formal solution of which has not been attempted here. Instead, in Section 3,
semi-intuitive reasoning has been used in arriving at the definition of a ‘basic design condition’
which, while it may not lead to the optimum design, should at least produce one which provides a
sufficiently realistic basis for the comparison of the respective merits of different types of longitudinal
control, which is the main object of this investigation.

The analysis is not fundamentally affected by this particular choice of a basic design condition
and the designer of a jet-flap aircraft who chooses some other basis of design may still follow the
general method described herein, to determine the stability and control characteristics of his design.

Since the completion of the work described in the main text of this Report, an alternative method
of formulating the trim and manoeuvrability analysis has been suggested to the author by
S. B. Gates. This is set out in the Appendix, which includes the results of some sample calculations
which have been made to illustrate how the method would be applied in practice.

2. General Theory. If the results of Spence’s two-dimensional theory? are accepted, it can be
inferred that the total lift acting on a wing at incidence «, with jet emerging at angle & to the wing
chord, may be written

L= Cp3pUS = L(o) + L) = {Cpwy + Crip} 3 pUS (1a)
with
Crw = Ao, Cpy) = BY, (1b)

where 4 and B are functions of C; only (C; being the jet coefficient defined by C, = JI4pU%),
and that the two components of lift act respectively at distances £,¢, £;¢ behind the leading edge,
where €,, £, are also functions of C; only.

Thus the system of forces acting normally to the flight path of a jet-flapped aircraft with tail is as
illustrated in Fig. 1, where G is the centre of gravity, at distance Ac from the wing leading edge,
Cyp o is the lift coefficient of the tail, whose volume ratio is ¥ and y is the inclination of the flight
path to the horizontal. To simplify the analysis it is assumed, when considering the balance of
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normal forces, that the lift provided by the tailplane is negligible in comparison with the wing lift
(1a), which may accordingly be taken as the total lift on the aircraft. The wing zero-lift pitching
moment will be assumed zero and in addition, the body pitching moment and any moments due to
thrust or drag will be neglected.*

Then the pitching-moment coefficient about the c.g. is

Cp = Cra(b—E)+ Crpf(h— &) — VCpp (2)
with .

Crpr = a(a—e+y), 3)

where 7, is the setting of the (all-moving) tailplane relative to the wing, and ¢ is the downwash
angle at the tailplane, where we may write

¢ = e(Crep» Crm) = €(Cpy o, 9). ’ 4)
From (2) and (3) 3
Cop = Cr(h—§&) + Crp(h— &) — a,V(ie—e+ng). . (5)

It will be useful to consider the partial derivatives of C,, with respect to Cy, and Cp, respectively,
when speed and thrust (and hence C;) are held constant. We have

oC,, Va, de
Km—"m—fw““—[(l“a) (€)
and
_ aCm 7(11 de )
Keo= =565~ % " o9 @)

where K, ,, K,; may be referred to as the aircraft restoring margins with respect to changes of
incidence and jet deflection respectively.

K, is directly analogous to the restoring margin K,, = — 9C,,/3Cy, for a conventional aircraft

and provides a measure of the (initial) tendency of the aircraft to return to its trimmed condition
following an inadvertent change of incidence.

In considering the significance of K, , it should be remembered that whereas changes of incidence
(and hence of Cp,) may occur accidentally, changes of jet deflection (and hence of Cpy) should
normally occur only at the pilot’s behest, when he requires an increment of lift for control purposes.
For the purposes of argument it will be assumed that the pilot’s immediate objective in applying
$-control is to provide an increment of lift AL(9) which will produce a linear acceleration of the
aircraft c.g. normal to the flight path, without producing any angular acceleration about the c.g.
The complete response of the aircraft to a given control action can be determined theoretically,
only by a full mathematical analysis, but in order that the initial response should be in accordance
with the pilot’s (assumed) requirement, it is evident that the lift increment AL($) corresponding to
the increment A9 of jet-flap deflection should act through the aircraft c.g. If it does not, then a
moment will be produced which tends to increase or decrease the incidence (and hence Cryy)
‘according as AL(9) acts ahead of or behind the c.g. The quantity K, is clearly a measure of the
tendency for the lift increment AL(?) to be cancelled out as a result of the change in incidence

* Footnote (1961). The inclusion of moments due to thrust and drag is shown in Part I to exert an appreciable
effect on the tail volume and c.g. position required to satisfy specified design conditions.
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(i.e., it is a measure of the tendency for the total lift coefficient to be restored to its initial value).
‘Thus the direct lift increment resulting from an increment in jet-flap deflection is diminished or
augmented according as K, ; is positive or negative.

The values of % for which K, ,, K, , are respectively zero, namely

Va, de
b=l = bt gt (1= ) ®)
and '
Va, d¢
h-—hra—§19~—3—@ (9)

correspond to points N,, Ny on the aerofoil chord (see Fig. 2), which may be referred to as the
aerodynamic centres with respect to incidence and jet deflection respectively, for the complete
aircraft. ‘Through N, will act the resultant of the forces produced on the wing and tailplane by a
change of incidence at constant speed and angular velocity with the thrust fixed (C, constant).
Similarly, through N will act the resultant of the forces produced on the wing and tailplane by a
change of jet deflection under the same conditions. Since &,, 4 and de¢/dx in (8) and £, B and
0e/o¢ in (9) are functions of C, it follows that the positions of N, and N, vary with the jet
coeflicient, which itself varies with both aircraft speed and jet thrust.

It will be noted that K, ,, K, , are the distances (expressed as fractions of the wing chord) of the
points N,, Nj respectively, aft of the centre of gravity. :

From the foregoing analysis it follows that the system of three aerodynamic forces shown in Fig. 1
may be replaced by an equivalent set of two forces and a moment, as illustrated in Fig. 2. L(), L{)
representing the resultant normal forces on the complete. aircraft, due respectively to wing incidence
and jet-flap deflection, act at N, N respectively. The moment M(z;) about the centre of gravity
is due to that part of the tail lift which arises from the tail-setting 7.

2.1. Trimmed Rectilinear Flight. [Note. An alternative formulation of the trim and manoeuvr-
ability analysis of Sections 2.1 and 2.2, suggested by S. B. Gates, is outlined in the Appendix.]

For steady rectilinear flight at a small angle y to the horizontal, the aerodynamic force and moment
system of Fig. 2 must balance the component of the weight normal to the flight path, viz., W cos y,
acting through G. In the following analysis it will be assumed that cos y & 1. Then if for the present,
symbols appropriate to steady (trimmed) rectilinear flight are distinguished by the suffix ‘s’ and if
the thrust/weight ratio J/I¥ is denoted by A, the condition of equilibrium of the normal forces; in
conjunction with Equations (1a) leads directly to the relationship

Cye = ACy;, (10)
where
Crs = Ao, + B, [(11)
giving ,
Cr,— BS
oy = —%_, (12)

8

from which, equation it is possible to construct Cy, vs. o, curves with &, X as parameters: In the
process, C; having been calculated from (10), 4, B, will also have been determined as functions
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of «, and subsequently, (£,); and (&), may similarly be determined. Thus Cp A, By, (&) and
(&), may all be plotted against o, with # and A as parameters.*
The trim condition C,, = 0, using (5) with (1), gives

A%

Ag th = (£)s — —~ 9+ aVe, — a,V(ng)s = 0. (13)

g + Bs ih - (519)3

For a given aircraft, whose tail volume (V) and c.g. position (/) have been fixed (remembering that
A, B, etc. are expressible as functions of «, for given X and ), Equation (13) may be regarded as an
equation for determining the trimmed incidence o, corresponding to a prescribed combination of
control settings A, %, 15, while Equations (6) and (7) give the values of the two restoring margins.

2.1.1. Tail volume and c.g. position required to satisfy a prescribed design condition. 1f Equations
(6) and (13) are rearranged thus: '

Va de
mf(ua):g-z{m,, (6a)
(Aot B — Vay(a—e-+ny) = Aok, + B, (13a)

we may regard them as equations to determine the tail volume and c.g. position required to satisfy
a prescribed design condition. Examining the equations we see that before they can be solved
explicitly for 77 and %, values must be known for the following somewhat formidable list of parameters:
ay, A, B, &,, &, 9, o, np, € 0efdx, K, .

As we are employing two-dimensional data, the tailplane lift slope @; may be considered fixed.
Of the other parameters, 4, B, &, and &, have been shown to be functions of the jet parameters
), & and trimmed incidence «. Further, it may be assumed (see Section 2.1.2) that ¢ and Je¢/dx are
also known if A, ¢ and « are known. Thus values of only five parameters—A, &, 9, o, K, ,—need,
in fact, be assigned in order that all the coefficients in Equations (6a) and (13a) should be calculable
and the equations themselves soluble for ¥ and /. Hence, one way of determining the tail volume
and c.g. position for a projected aircraft is to specify that it should trim at a given incidence (x) and
with a given a-restoring margin (K, ,) for a particular combination of jet and tail control settings
(X) 19‘) 771‘) o o

The difficulty of choosing &, K, ,, A, # and 7, so that the resulting design should be an optimum,
not only from trim and stability considerations but also from the point of view of performance, has
already been alluded to in the Introduction and, in Section 3, we shall discuss in some detail the

# Numerical work, results of which are presented in Figs. 4 to 6, indicates that over most of the practical
incidence range, Cy,, can be well approximated by a linear relationship Cp, ¢ = Pa; + Q where P and Q
are functions of A and & only, for which numerical values may be derived from the plotted curves. Similarly,

A, B, (£,)s and (€5), may be expressed as p, o + ¢, 7 = 1, . . . 4, respectively, where p,, g, are functions
of X and & only.

+ The suffix ‘s’ is now dropped to simplify the writing although the following analysis refers to trimmed
conditions.



selection of a ‘basic design condition’. Meanwhile, on the assumption that values have been assigned
to these parameters, the solution of equations (6a) and (13a) may be written as

_ AF
V = a—l'—é,
_ (14a)
F de - _
h=§(1_a_a)+§“— o d
where
F = _aza_" Eﬁ(—ﬁ_é‘:of‘-Kra)
and - - 4 (14b)
G = BY (1 ———) — Az — + A(e—7p).
Jo o

A, B, &, £, € J¢|ow are values of 4, B, &, &,, ¢, 3¢/3x corresponding to trimmed incidence &, for
which the trimmed lift coefficient is C;, & Pa + Q; (see footnote Section 2.1) and the jet coefficient
is C; = ACy. B '
The value of the ‘O-restoring margin’ in the design condition (K,) cannot be 1ndependent1y
assigned for, with ¥ and £ fixed by (14a), its value follows from (7) as
K-a=E»—éﬁl?m—g(l—ggar%%). (15)
In general, when ¥ and & have been fixed to satisfy the specified design condition (trim at
incidence @ with control settings A, 3, 7,), any change in the control settings, singly or in combination,
will produce changes in the trimmed incidence and trimmed lift coefficient which may be
determined from Equations (13) and (11). At the same time, the values of the restoring margins

K.,, K, given by (6) and (7) will change.

ro?

2.1.2. The effect of downwash on the required tail volume and c.g. position. For a given wing
geometry and tailplane location, the downwash at the tail () will depend on the values of Cj,
« and &. Since G (Equation (14b)) involves € and 9e/do and since it appears in the equations for 77
and % (14a), the second of which also contains a factor (1—0de/0x), it may be expected that, in
general, the required tail volume and c.g. position will both depend on the value of the downwash
at the tail.

The simplest assumption (based on the behaviour of a conventional wing) which could be made
regarding the downwash would be that it is proportional to total Cy, in which case we could write

€ = ECy, = E(Cry+ Cr) = AOH-BlS‘) (16)
where E is a constant.
Then the function G reduces to

G = G, = BY — A7y, (17)
which is independent of E. Hence the tail volume, given by

p_4L | (18)



is independent of the downwash when the latter varies in accordance with (16). The c.g. position,
given by

h= 2 (1-ED)+E-F, (19)
G

depends on the value of E, however. The equation for the ‘P-restoring margin’ (15) reduces to

— - o - F

Krﬂ = fﬂ—é‘:zx"}‘Kra—'?: (20)
1

so that K, like 7 is independent of E.

In the special case under consideration, the pitching-moment equation (5) may be written in the
form '
— Cn = K, Crp + K,y Cry + Vayng, (21a)
where the restoring margins are given by

Va,

Ko= €= h+- g (1-E4),

(21b)
Kr,» = f{) - h e EVal.

The results of a theoretical downwash investigation by Miss Ross suggest that the assumption (16)
may not be far removed from the truth for a two-dimensional jet-flapped wing, although it might
be more accurate to write ‘

¢ = EiCro + E,Cpypy = Eydo + E,BY, (22)
where E, is somewhat greater than E,. In that case
G = G, — ABNE,—E,) < G,

and the tail volume required is greater than in the case where E; = E, = E. It can also be seen
that if E; and E, are both increased in the same ratio, the required tail volume is also increased. The
foregoing conclusions would be reversed if E, were greater than .

From Miss Ross’s results for a three-dimensional jet-flapped wing it is clear that the downwash
is not related to the total lift coefficient by a simple equation of type (16) for the manner in which
¢ varies with Cy, depends very much on whether C;, is varied by changing « or by changing the
jet parameters C;; or ¢. In fact, it does not appear possible at the moment, to express € as a function
of Cy, o, and ¢ in a form sufficiently simple for use in developing the trim and stability equations
for the three-dimensional case, beyond the stage corresponding to Equations (13) and (6) for the
two-dimensional case. In a particular three-dimensional design problem, it would be necessary to
calculate € and de/dx for a range of parameters and then for each flight condition under consideration,
to substitute appropriate values directly into the equations.

For the present investigation, whose object is to study broad trends, it has been considered
satisfactory to employ two-dimensional data throughout and in the following section, dealing with
constant speed manoeuvres, it will therefore be assumed that the downwash is given by (16) so
that Equations (21a) and (21b) are applicable. ‘

2.2. Constant Speed Manoeuvres. We consider motion in a steady circle following application
of tail and jet controls (separately or in combination), when the aircraft is in trimmed (rectilinear)
flight at incidence o, and lift coefficient Cp,, corresponding to initial control settings 5y, A, .
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Let Anp, A), A9 denote the increments of control settings; Ao, ACy, and Az the incremental
incidence, lift coeflicient and load factor respectively and ¢ the angular velocity.
In accordance with Equations (1), the lift coeflicient Cy, in the circle is given by

CL = CLS+ACL =A(¥+Bl9’,
where ]
o = g + Aa, (23)

& = O + Ad

and A4 and B are functions of the jet coefficient C; appertaining to circling flight. Since the speed
remains constant in the manoeuvre,

A ) .
Cr = )‘_s Crs = /\Csz , - ‘ (24)

where
A=A+ A

Thus 4, B (and also ¢,, &, K, ,, K,;) are functions of A only and the incremental lift coefficient
may be written as.

ACy = ACy + ACLy,

where A
ACy, = AAa'+ o (ﬁ) A
A/
and ‘ ' (25)
' 9B
ACyy = BAS + 9, —) AN,
a/,
so that
‘ AC, = Apa+ o (P2) 1o, (2B) | ax+ BAS. (26)
‘ /. A/, '
The incremental load factor is given by
An =202, (27)
CLs
The radial force equation is
mgV = ACy, S $pl2.
or :
gly _ACY
7 - 2#:1 E] ) .
where (28)
_om
b= o5
From (21a), the incremental pitching-moment coefficient is
~ : — 2] /
= AC,, = K DCrio + CrbK, o + KA Cri + CrplK,y + Varhng — L m, 42
' _ I~ ACy
= K, ACpp + CrAK, , + K, jACys + CrphK, s + VayAng — 7 M P (29)
1
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(using (28)), where the last term on the right-hand side is due to rotary damping. For steady
conditions, AC,, = 0; then if we use (25), and drop the suffix ‘s’ from now on to simplify the writing,
Equation (29) gives

04 K, , . dB 0K, 5
K,.aAAOC = — (K?.“OC .ﬁ + AOC —a'— + K,.ﬂ'& 'a—X -+ Bz? T) AA —
- l A
— K, 3BAS — VaAqy + Zm, €z (30)
¢ P _
Eliminating Aa between (26) and (30) and solving for AC}, we have
| Iy m, aK,, K., . 3B
T = — R St - —
(Km ! ul) AC, = - A\ 3/1(1 7= BS 4 9 S0 (K,, KM)E

— A {B(K73~K1'oc)} -

— Anyp Va,. 31
Y 1
From (21)
: Va, )
K,y —K,, = fﬂ'“foc _A.—l:
0K,, 93¢, Va, 04
el S (52)
Kyy _ %
aA oA’ ]
Writing
lpm,
Hmcx - KT“_—CE . (33)

in Equation (31), substituting from (32) therein and using (27), we obtain the following expressions
for on/dA, on/od and on/dn,:

an 1 acy
A~ Cp or
—1 9¢, Ta, 34\ 3, Va,\ 0B

e (G S JERI L SRS EL T .
o 19C, —-B P Va,
ﬁ_EW—CLHmm(ﬁ ~a—7)’
om193C,  Va
8771' CL 9771’ CLHm a '

In evaluating the above quantities it must be remembered that all coefficients, derivatives etc.
are to be assigned values appropriate to the initial trimmed condition. It may be noted that, using
the first of Equations (32), the formula for 9r/0¢, (34, (ii)) may be written as

on _ B(Kra'—Krﬁ)

@ - C’LI{m o .
It may be assumed that K, , and H,, , will be positive for all conditions of flight. Thus for effective
J-control, K, ; must be negative or, if positive, small in comparison with K, . If K, ; were equal
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to K,, (ie., if the aero-dynamic centres with respect to incidence and jet deflection, Ny, N,
respectively, coincided) H-control would be completely ineffective while for K, 5 > K, , there would

be a reversal of effectiveness.

3. The Selection of a Basic Design Condition. 3.1. General Design Considerations. Suppose
that we are considering the design of a jet-flapped aircraft. At the outset, a general consideration of
operational requirements will determine (approximately) the weight of the aircraft under various
conditions and will lead to the choice of a particular engine (or engines) of known performance.
Hence the maximum value of the thrust/weight ratio (An,y) may be assumed to be effectively specified.
Similar considerations, taken in conjunction\with the known or predicted aerodynamic characteristics
of the proposed jet-flap installation, will determine the maximum jet-flap deflection (¥y,,5) that
may usefully be employed. |

The aircraft’s trim and static stability characteristics will be largely determined by the tail
volume (7) and the c.g. location (%) so that suitable values must be assigned to these parameters

at the outset.

3.2. Design Condition to Determine Tail Volume and c.g. Position. It has been seen in Section
2.1.1 that 7 and % may be chosen to satisfy one prescribed design condition, namely that the aircraft
should trim at a particular incidence @ and with a given ‘ax-restoring margin’ K, ,, for a particular
combination of control settings X, & and 7p. When 7 and % have been thus chosen, it remains to be
established that trim and stability characteristics will remain satisfactory over the full ranges of
the control parameters that must be used to enable the aircraft to perform its tasks. Clearly the basic
design condition should be selected with some care, although at present the choice is, for various
reasons, a difficult one. On the one hand, ideas of how best to operate a jet-flap aircraft, so as to
realize its full potentialities, do not seem to have crystallized, while on the other hand, unresolved
doubts as to the stalling characteristics of jet-flapped aerofoils and the extent to which such
characteristics can be controlled by aerofoil design, make it uncertain what range of incidence may
be usefully employed. ‘

Tt was suggested, some time ago, by I. M. Davidson of N.G.T.E., that a jet-flapped aircraft
should be flown continuously at zero effective incidence and that under cruising conditions, control
should be exercised by variations in & with A held constant, while for take-off and landing approach,
9 should be fixed and the throttle alone used for control. Mathematical analysis indicates that it is
not possible to maintain trim at zero incidence for all settings of the controls; moreover there appears
to be no good reason why the incidence should be restricted except insofar as this is necessary to
avoid flow separations.* Nevertheless, on the assumption that the basic design condition should
be associated with a condition of high lift (Z.e., A/Ay,x and /9 max to have values not less than
0-75 say) it is not unreasonable to assign @ and 7, the value zero, for then any usable range of positive
iricidence is available for manoeuvres using tailplane control and is, in addition, an insurance against
stalling if gusts are encountered. ‘

Accordingly, it is suggested that the basic design condition be taken as:

# In the early two-dimensional experimental work at N.G.T.E. flow separation from the leading edge was
found to occur at approximately zero incidence for the larger values of C; and &. It is now considered,
however, that unseparated flow could be maintained up to quite large incidences by suitable section design.
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Aircraft to trim at zero incidence (& = 0) with ‘a-restoring margin’ K,, when A = X, & = & and
nr = 0. '

As a ‘datum’ condition this has the ‘merit of simplicity, for with the downwash assumption (16),
the equations for the required tail volume and c¢.g. position ((18) and (19)) reduce to

- A . _
V=— (gﬁ_ga"'Kru)
2
and _ o _ o B . (35)
h =& — EA(¢,—£,+K,,) = & — Ea,T,
while

K'f} = 0.

It is at once seen that the required tail volume is independent of the downwash* but increases
linearly with the required ‘a-restoring margin’, K, .. For a given value of the downwash, the required
c.g. position moves forward as K, , is increased, the variation again being linear. If the downwash
coefficient Z is increased, the rate of forward movement of the c.g. with increasing K, , is increased.

3.3. Manoeuvres Initiated from the Basic Design Condition. When the aircraft is trimmed in the
basic design condition (A =X, 9 = §, @ = 7, = 0, K,, = K.,) with ¥ and % given by (35),
Equations (34) reduce to

L[y g T, i K1

aA A H oA oA H,, o H, B\
an_%_ E—m__ml

o0 ai —C_L_—mo: Hmocg, (36)
om o Va,

g My éLHma,

where

= Ly m,

ma re T T T .

¢ Wy

3.4. Manoeuvres Initiated from Other Trimmed Conditions. For manoeuvres initiated from
trimmed conditions other than the basic design condition, 30, 3rn/d9 and on/ dnyp must be evaluated
from Equations (34) with ¥ = (A/a,)(& &, + K, ).

4. Numerical Examples. In Ref. 2, Spence gives the following formulae for the coefficients
A and B appearing in the formula for lift coefficient (Equation (1)):

A =27 +1-152C,12 4 1-106C, + 0-051C,%,
B = 3:-545C; 2 + 0-325C; + 0-156C, 32,

These functions of C; are plotted over the range 0 < C; < 5 in Fig. 3. The coefficients ¢,, £, which
determine the distances behind the wing leading edge at which the two lift contributions Crn Crip

(37)

* It should be stressed that this is only true on the assumption that the downwash is given by ¢ = ECy.
For an actual (three-dimensional) design, where the downwash relationship is certainly less simple, the
required tail volume will depend on the actual values of ¢ andde/da.
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respectively act, are also functions of Cj, and values have been calculated from the information
given in Table 3 of Spence’s report and plotted here in Fig. 3. These curves can be fairly well
approximated by the formulae

£, =0-25-0-01Cy,

&y = 0:50 + 0-077C,172,

and together with the formulae (37) these have been used as the basis for the numerical work of
this Report. Some consideration was given to the possibility of approximating to (37) by series with
fewer terms and also to the possibility of taking £, and &, to be constant. Since, however, the
computational effort involved in the use of (37) and (38) was not prohibitively large, the author has
preferred to work with these formulae, knowing that it could then truly be claimed that the results
of the investigation are based on Spence’s theoretical results.

In the ensuing sub-sections of Section 4, the derivation of the numerical results presented in
Figs. 4 to 18 is described without comment on the results themselves which are, however, discussed

(38)

at length in Section 3.

4.1. Trimmed Rectilinear Flight. Equations (10) to (12) were used with (37) and (38), to compute
curves of Cy, A, B, (£,); and (&,), against o, for three values of the thrust/weight ratio A:0-2,0-3
and 0-4, and for four values of the jet deflection $#:0-2, 0-5, 075 and 1-0 radian, in each case.
These curves are shown in Figs. 4 to 6. It was found that the various curves could be reasonably
well approximated by straight lines over most of the incidence range so that the five coefficients
could be expressed as

‘ Crs= Q+ Pog, (£.)s = gs + Psts, ) .
As = g1+ pros, (£0)e = @a + Pacts, ) (39)
B = g5 + pyoss. ‘
Values of P, Q, s, ¢, etc. were determined by inspection and have been indicated on the appropriate
curves.

4.1.1. Tail volume and c.g. position as determined by basic design conditions. 'The basic design
condition was taken as: X = 0-3, # = 1 radian, @ = 7 = 0, with a-restoring margin K, , as a
disposable parameter. Tailplane lift slope @; and downwash coefficient E (Equation (16)) were
taken as @; = 27, £ = 0-025.%*

From Figs. 5a, b, c the following values were obtained:

C,=534=96B=53 & =0:59,¢, =0-234. .

 Equations (35) give V =0:553 +1-53K,,,
k= 0-509 — 0-24K,, (40)
‘E)“z‘} = O.

V, h and K,, are plotted against K, , in Fig. 7 which also shows corresponding curves for
alternative design cases in which trim at zero incidence is achieved with 7 = 0-1 and 7 = — 0-1
respectively, instead of %, = 0.

# This value of E was selected before the results of Miss Ross’s downwash investigation became available.
These would suggest a value of about 0-016 for a typical two-dimensional configuration but the higher value
assumed here is probably more realistic if the results are to be applied (qualitatively) to actual (three-
dimensional) configurations.
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When 7, + 0, V, &, K, , must be calculated from (18), (19) and (20) respectively which, in the
present example, become '

— r
V =153 G
h=076 1 1 0-234— K,
Gy
o F _
K,.,& = 0'362—'51—*—]{7‘“,
with
F  Byz,—%,+K,,)
B M A R d1
G B = A, from (14b) and (17},
reducing to
g— = (0-362+K,,)/(1 —1-8127,).
1

For the two values of %, assumed here, we finally obtain:
V =0-468 + 1-296K, ,,
For %, = — 0-1 h = 0-467 — 0-356K, ,, (41)
K,; = 0-055 + 0-153K, .
V =0-675+ 1-868K,
For 7, = 0-1 h = 0-570 — 0-072K, ,, (42)

K,, = —(0-080 + 0-221K,,).

I

4.1.2. Effect of downwash assumptions on requived tatl volume and c.g. position. 'T'o give some idea
of how sensitive the required tail volume and c.g. position are to the particular downwash assumptions
made in their calculations, 7 and % have been estimated for the basic design condition, (& = 7, = 0)
using the downwash equation in the form (22):

e = E;Cry + ECri)

and assigning various pairs of values to the coefficients E;, E,. The results are given in equation
form in the following table and plotted in Fig. 8.

E, E, | Tail volume ¥ c.g. Position: %

0-025 | 0:025 | 0-553 + 1-53 K, | 0-509 — 0-240 K, _
0-050 | 0050 | 0-553 4 1-53 K, , | 0-422 — 0-481 K, _
0-025 | 0-020 | 0-582 + 1-606 K, , | 0-524 — 0-201 K, _
0-050 | 0-040 | 0613 + 1-692K, , | 0-443 — 0-424 K, _
0-020 | 0-025 | 0-528 + 1-458 K, | 0-514 — 0-228 K, ,
0-040 | 0-050 | 0-505 + 1-393 K, | 0-438 — 0-438 K, ,
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4.1.3. Variation of trimmed incidence and lift coefficient with changes of control settings. (1) Variation
with tailplane setting (7;). Suppose ¥V and % have been determined with reference to a specific
design condition (Fig. 7) and that it is required to find the variation of trimmed incidence «,; and
lift coefficient Cy, as 9y is varied, with A and & fixed. For a selected value of o, values of 4, B, (£,)s,
(£5)s may be obtained from Figs. 4 to 6 for the appropriate values of A and &. Values of Cyy =4
and Cy = B, may then be calculated and also values of K, ,, K, ,, from Equations (21b). The tail
setting 7, to produce trim at incidence a4 then follows by equating the pitching-moment coefficient
C,, (Equation (21a)) to zero; thus

Nr = “T‘/-v;l‘ (Kpo Crn+Kys Cris) - (43)
1 B

Figs. 9 and 10 give curves of «, and Cp, versus 75 with X and & fixed at their design condition

values X (= 0-3) and & (= 1 rad); Fig. 9 relates to the case oy = 0 when 7, = 0, Fig. 10 to the

case og = 0 when n; = — 0-1 rad. Fig. 11 shows the variation of o, and C,, with %, when

A=2X=0:3,9 = 02 rad (+ 9), the design conditions being as for Fig. 9. '

(2) Variation with jet deflection (&) and with thrust/weight ratio (A). With the downwash
assumption of Equation (16), the trim condition (13) may be written

[Ah — (6)3 — Va(1 - EAJ o + Bh — (§)s + EVar}d — aVijp = 0. - (49

_If the linear approximations of Equations (39) (see also Figs. 4 to 6), are substituted in the above
equation, and squares and higher powers of «, are neglected, the following approximate linear
equation for trimmed incidence o, (valid for small incidences) is obtained:

[0:(g5— k) + Vay(1 - Eq)) + {pfgs—h—EVay) + P4§2}79] g

= — g(gs—h—EVa)d — Vayip (45)
With @, = 27, E = 0:025, 5, = 0, this becomes

{Cqy + 20V + (Dpy+pyge)9} s = — Dgy,
where
C=g,—h—0:1577, (46)

D=g,—h—01577.

Since the p’s and ¢’s are functions of A and & only (see Figs. 4 to 6), while % and 7 are fixed by
the given basic design condition (see Fig. 7), Equations (46) may be used to obtain curves of «, vs. &
for A = X with various values of K, ,, and curves of o, vs. A for & = J with various values of K, ,.
Once «, has been determined, the corresponding Cr, = A, + B (& O+ Pey) can be calculated,
while the values of the restoring margins K, ,, K, s follow from Equations (21b).

The above procedure has been followed in deriving Figs. 12 to 16. Figs. 12 and 13 show the
variations of trimmed incidence and lift coefficient and of the restoring margins K, ,, K,, with
jet-flap deflection for various values of the design‘restoring margin K, ,, (0-05, 0-1, 0-2, 0-3) the
tail-plane being fixed at zero incidence and the jet thrust/weight ratio A fixed at the design value A.
Figs. 14 and 15 provide similar information for the case where the jet-flap deflection is fixed at the
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design value & and the jet thrust/weight ratio A is varied, while Fig.16 gives the variations of trimmed
incidence and lift coefficient with flap deflection and thrust/weight ratio for the particular
combination of tail volume and c.g. position corresponding to K, , = 0-2.

_ 4.2. Constant Speed Manoeuvres. Configurations corresponding to the basic design conditions
A=03,9=1rad,a =75 =0, K, =005 01, 0-2 or 0-3 have again been considered, with
@y = 27 and E = 0-025. To evaluate the control effectiveness parameter dz/dA (or its inverse, the
increment of thrust/weight ratio per g) from Equations (34) or (36) it is necessary to obtain expressions
for the partial derivatives of 4, B, £,, & with respect to A, at constant speed. In the steady circle,
initiated from a trimmed condition with lift coefficient C;

A
Cy = by Crs = ACLy,
8
so that
0 aC; ¢ d

A~ e a0, Cregg
Hence, from (37) and (38)

04 A

e €L (05760, +1-106+0-0765C, ),

oB ' '
= = Cr1:773C,; 712 +0-325+0-234C; 1), & (47)
a¢, _ 0y —12

- = —0-01CL o 0-0385C;, CJS

4.2.1. Manoeuvres initiated Jrom the basic design condition. 1f the aircraft is initially in trim at
zero incidence with A = A =03, & =3 = 1 radian, 2y = jp = 0, then C,, = C, = 5-3,
B, = B =153, C;, = 1-59 and from Equations (36) and (47) we obtain

on 1 - h
™ 5IEL. [10-746K,, — 0-859],
n K, |
‘ il ot NG

on 27V

gy 5-3H,,’ J

where
— = lpm
H,, =K, _?T’_L_f
If rotary damping 7n, is taken as due to tail only, i.e., m, = — $a,(Sz/S), then
H,, =K, 2_V R+ it = 2.

1551
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For illustrative purposes a value of 107 has been assumed for p;, giving

Hmcx = Kra& -

==

)

in which case, the control actions per g are given by

= ~

I _
“. (K + m)/(z-ogsK,.a—o-mz),

29 7

FA 1)) o [ )
Mg 7d 4 iV
T~ 0-8435 (Km + E)/V,

with _
V =0-553 + 1-53K, ,;

1in accordance with Equation (40).
In Fig. 17, values of the control actions per g, calculated from (49) are exhibited as functions of

the design restoring margin K, ,; curves calculated on the assumption of no rotary damping are -

shown for comparison.

4.2.2. Manoeuvres initiated from other trimmed conditions. The basic design condition is
essentially a high lift condition corresponding to take-off or landing. For cruising at moderate or
low lift coefficients, smaller jet deflections will be employed and it is thus necessary to consider the
comparative manoeuvrability, using the various controls, under such conditions. For illustrative
purposes, it has been assumed that in trimmed cruising flight the thrust/weight ratio A retains its
basic design value A = 0-3. Equations (34) have been used in conjunction with (47) to calculate
a\/on, 08/on and Omy/on for a range of values of & and for various values of the design restoring
margin K, .. The results are shown in Fig. 18 as graphs of the quantities in question against ¢ for
the various K, ,. Curves of equal trimmed lift coeflicient C ; are also indicated in the figures.

5. Discussion. It has been assumed that from the stability and control point of view, a jet-
flapped aircraft would be designed around a certain high-lift condition which has been referred to
as the ‘basic design condition’. For the purposes of illustration, the values of the jet-flap control
parameters A and & corresponding to this condition have been fixedas A = A = 0-3and ¢ = & = 1
radian, while for the most part it has been assumed that with these control settings the aircraft will
trim at zero incidence with zero tail setting. The combination of tail volume V7 and c.g. position 7,
required to achieve this depends (see Fig. 7) on the value assigned to the parameter K, ,—the
design restoring margin. A suitable value must be selected from a consideration of the trim and
manoeuvrability characteristics exhibited in Figs. 9 to 12, 14 and 16 to 18. The choice may be
influenced by the consideration of whether the role of the jet-flap is to be simply that of a lift-
augmenter, leaving the trimming and manoeuvring to be accomplished by tail controls, or whether
the jet-flap controls themselves are to be employed to control the aircraft longitudinally.

With the jet-flap employed purely to augment lift, it is seen from Figs. 9 and 11 that the trim
curves have stable slopes for all values of the design restoring margin (X, ,) considered, both in |

17

(84109)



the high-lift case (¢ = & = 1 rad) and under cruising conditions with & = 0-2 rad. Since the
required tail volume increases with K, , (Fig. 7) it is desirable to design for the smallest restoring
margin consistent with satisfactory manoeuvring characteristics. It is worth noting from Fig. 13
that for a given value of the design restoring margin K, ,, the restoring margin K, , increases as
the jet deflection decreases so that if an adequate stability margin is provided in the design condition
(high lift), the margin will certainly be adequate in the cruising condition with small jet deflection.
Conversely, if the jet-flap deflection is increased beyond the basic design condition value, the
«-restoring margin will be reduced and care must therefore be exercised to ensure that it cannot
become dangerously small within the useable range of flap deflections. It should also be noted
from Fig. 15, that K, , is a decreasing function of the thrust/weight ratio A and that this may limit
the amount by which A may be increased beyond the basic design value A.

Figs. 17c and 18c show that the tailplane deflection per g in constant speed manoeuvres increases
with K, , and in attempting to strike a balance between an excessive value under high lift conditions
and too small a value under cruising conditions, we are led to suggest a value for the restoring margin
in the range 0-1 < K, , < 0-2 provided that it is not intended to operate with values of & or A much
in excess of the design values & and 2.

If deflection of the jet-flap is used to trim the aircraft with fixed tailplane and fixed throttle setting,
the trimmed lift coefficient increases progressively with increasing flap deflection for all values of
K,, in the range 0-05 to 0-30 (see Fig. 12a). There is some variation in the trimmed incidence
(Fig. 12b) from the zero value corresponding to the basic design condition. The deviation from zero
decreases with increasing K, , and for a given value of the restoring margin, attains a maximum for a
value of ¢ equal to about 0-7%. Thus, to minimize the variations in trimmed incidence, K, should
be made as large as possible. From Fig. 17b it is seen that, provided there is some rotary damping,
the jet-flap deflection per g in constant speed manoeuvres (initiated from the basic design condition)
tends to infinity as K, , tends to zero; clearly, a fairly large restoring margin (> 0-2 say) is necessary
in order to keep the flap deflection per g reasonably close to the asymptotic value of 1 radian per g in
the basic design condition. However, it seems unlikely that jet-flap deflection control would be
used in the high-lift case, while under cruising conditions (see Fig. 18b) the jet-flap deflection per g
is not critically dependent on the value of K, .

If throttle (A) — control is to be used for re-trimming or manoeuvring when the aircraft is
initially in the basic design condition, it is clear from Figs. 14 and 17a that a restoring margin
K, of at least 0-2 must be achieved. For, on the one hand, if K, , is much less than 0-2, the negative
incidence acquired as the result of increasing A will be such as to cause a net reduction in trimmed
lift. On the other hand, as can be seen from Fig. 17a, the increment in jet thrust/weight ratio per
g (0A/dn) tends to infinity as K, , decreases towards a value of (approximately) 0-08. It will be
, observed that the asymptote for dA/dn (Fig. 17a) is K,, = 0-08 and not K, , = 0, as in the case
of 89/on (Fig. 17b). This is explained by the presence in the expression for 87/9A (Equations (36)),
of the term involving 3£,/dA, which arises from the fact that £; varies with the jet coefficient C;
(see Fig. 3). If the approximation {; = constant had been made at the outset, the term in question
would, of course, have disappeared and the asymptote for dA/dn would then have been K,, = 0.

To sum up: it may be concluded that if the jet-flap controls are to be used to trim and manocuvre
the aircraft, a value of at least 0-2 should be assigned to the design restoring margin K, ,. If, however,
tail controls are to be employed, a value of 0-1 may well be adequate and certainly it should not be
necessary. to design for a value greater than 0-2.
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The following table compares the effectiveness of the various controls on the basis of the
respective control actions per g in constant speed manoeuvres, initiated from a high-lift (basic
design) condition and from a cruising condition (Cy = 0-3) respectively.

High-lift (basic design)
condition: Cz = 5-3 Cruise condition
A=rA=039=04=573 Cp =103
deg, np = 7y = 0) (A=0-3,d = 12-6 deg)
Type of 7 Tail vol. | c.g. position’ A a9 Iy A o anyp
control re 174 h on on on on on o
(AAper g) | (deglg) | (deglg) | (AA perg) | (deglg) | (degle)
TJet-flap 0-2| 0-858 0-460 1-17 82 —_— 0-75 17-2 —
0-2| 0-858 0-460 — — 16-1 — — 1-72
Tail
0-1| '0-705 0-485 — — 11-7 — — 1-5

For the purposes of further argument, let us assume that A/A,,. = &/¢,.. = 0:75 so that
Amax = 0-4 and &, = 765 deg, and also that the tailplane travel available for control purposes
is + 5 deg. Then in the high-lift condition rather less than 1/10 g and 1/4 g could be applied
respectively by throttle control (AA = 0-1) and flap deflection control (Ad = 19-2 deg) whereas,
with tailplane control, more than 3/10g could be applied if K, , = 0-2, while with K, , reduced to
0-1, this figure would be increased to more than 2/5 g.%

Under cruising conditions (Cz, = 0-3) the maximum available increment 0-1 in A would produce
only 0-133 g, 10 degrees of jet-flap deflection would give 0-58 g while, according as K, , = 0-2 or
0-1, — 5 degrees of tailplane deflection should produce 2:9 g or 3+3 g respectively.

Although the amount of ‘g’ produced by a specified control action provides a valid basis of
comparison between the effectiveness of different controls, it does not, perhaps, give a very clear
idea as to the adequaey or otherwise of a particular control, especially at the unusually high C;’s
(and hence low speeds) which are under consideration. The radius of turn produced by the given
control action may possibly serve as a more useful criterion in these circumstances.

The radius of turn corresponding to unit incremental load factor is given by U?/g where U, the
forward speed, is given by U2 = 2 (W/S)/op,Cy s, o being the relative air density and p, = 0-002378
slugs/ft3, the standard sea-level density. For low-level flight (¢ = 1) with a wing loading of 35 Ib/ft?
at a lift coefficient of C;, = 5-3, the forward speed is 74-5 ft/sec and the radius of turn for unit
incremental load factor is 1725 ft. Thus, in the example cited above for the aircraft with K, , = 0-2,
trimmed in the basic design condition, the maximum available increment of thrust AX = 0-1 would

* The figures are approximate inasmuch as it has been assumed that Az = AA 9r/J] etc. for finite increments
AA etc., which is not strictly valid. It should also be noted that realization of the figures quoted for tailplane
control is dependent on the maintenance of unseparated flow over the aerofoil when positive incidence is
acquired as the result of control application (see first footnote to Section 3).
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produce a radius of turn in the pull-up of about 2000 ft. In 1 second the flight path would turn
through about 2 deg, and in covering a forward distance of 74 5 ft, the aircraft would rise about 1-2 ft.

For an aircraft with K, , reduced to 0-1 and trimmed to the same high-lift condition, a téilplane
deflection of — 5 deg would produce a radius of turn of about 400 ft. In a second, the flight path
would turn through nearly 11 deg and, in covering a forward distance of 745 ft, the aircraft would
rise about 6-8 ft. ‘

These calculations are, of course, based on the steady manoeuvring flight condition and take no
account of the initial response characteristics, investigation of which lies outside the scope of the
present Report.* However, it is evident that on the basis of the ultimate (steady) response achieved,
variation of jet thrust alone is not a very effective method of longitudinal control at low speed and
in this respect, at least, it would seem to compare unfavourably with tailplane control which, on
the same basis, appears to be somewhat superior to jet-flap deflection control for the cruising
condition.

It will have been noted from Fig. 17 and the foregoing discussion, that with jet controls (Figs. 17a
and b), the manoeuvrability increases with increasing stability whereas with conventional (tail)
controls (Fig. 17c) manoeuvrability decreases with increasing stability. This reversal of the usual
state of affairs was observed by I. M. Davidson in Ref. 5, and it may be helpful to look a little more
closely at the physical reasons which account for it.

Consider the aircraft trimmed in the basic design condition, for which the incidence is zero.
Then with the simplifying assumptions made in Section 2, the resultant lift on the complete aircraft -
(L) is simply L(9), acting through the centre of jet deflection loading Ny, with which, in this
condition, the centre of gravity G must clearly coincide (Z.e., K, , must be zero). This is illustrated
in Fig. 19a, which may be compared with Fig. 2 for the more general case of non-zero incidence.

Suppose now control is applied by deflecting the jet-flap, with thrust maintained constant.
Then, instantaneously, of the two lift components L(#) and L(«) (= 0), only the former is changed
—by an amount AL(J) say—where the increment AL($) acts through N;.+ Motion in a vertical
circle now ensues with incremental normal acceleration An. If rotary damping forces can be neglected,
AL(%) continues to act through N, and the balance of forces (including reversed mass-accelerations)
is as illustrated in Fig. 19b. At no time are «-forces involved and the normal acceleration produced
is independent of the position of N, .e., independent of the design restoring margin K, ,, as we
have already observed in Fig. 17b.

The effect of damping forces in the steady circle is to move the point of application of AL(9) aft,
by an amount Ac, to a point M, which, by analogy with conventional aircraft manoeuvrability
theory, may be called ‘the manoeuvre point with respect to jet deflection’. (In general,
A¢ = ~ (Ip[c) (my/p,) while, if tail damping only is taken into account, A¢ = a,7/(2y,)). Since
(AL®) now acts behind the centre of gravity, the aircraft will acquire a negative incidence such that
the corresponding (negative) lift increment AL(«) provides the necessary counterbalancing moment
to restore equilibrium. The point of application of AL(«) will be M,, ‘the manoeuvre point with
respect to incidence’, which lies at a distance Aéc behind N, which is itself a distance K, ¢ behind

* Footnote (1961). The response calculations of Part II indicate a need to modify, in some respects, the
conclusions derived from quasi-steady manoeuvrability theory.

1 It should be remembered that this takes account of the moment effect due to the tail forces brought into
play by the wing lift increment AL($).
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the c.g. The system of forces is now as shown in Fig. 19¢c and by taking moments about the c.g.
it is easily shown that the net increase in lift is given by

AL AL(S) + AL(x) K

AL~ AL®)- K., +AE
(It should be noted that this formula is applicable only when the aircraft is trimmed initially in the
basic design condition for which K, , = 0). Clearly the effectiveness of the jet-flap deflection control
is always reduced by rotary damping, but by an amount that decreases with increasing design

restoring margin K, ,. Thus, as already observed, manoeuvrability increases with increasing stability.

Similar arguments may be produced to explain the form of the curves in Fig. 17a, which shows
increment in jet thrust/weight ratio per g plotted against K, ,. Here it may be noted that when the
thrust is varied, C; is changed and consequently, in add1t10n to a change in the lift component Cy,
there is also a shift of the centre of loading N,. Thus, even in the case where damping is neglected,
there will be 2 moment about the c.g. which results in a change of incidence and the introduction
of a-forces, so that manoeuvrability varies with restoring margin Whether damping is neglected or

~ included.

6. Conclusions. 'The following are the salient points which emerge from the foregoing discussion:

(1) The present investigation has produced no evidence that would rule out the use of the jet-flap
controls (throttle and flap deflection) as an alternative to conventional tail controls for trimming and
manoeuvring a jet-flapped aircraft in the longitudinal plane. Nevertheless, on the basis of the steady
manoeuvrability criterion (control action per g) jet controls would appear-to be less effective than
tail controls. For a complete assessment of relative merits, an investigation of dynamic response
characteristics must be made (see Part II).

(2) Tailplane size and centre of gravity position may probably best be determined to satisfy a
prescribed high-lift condition in which the jet thrust/weight ratio A and the jet-flap deflection
¢ have values of (say) 0-75 A, and 0-75 &, respectively. For the purpose of numerical illustration,
it has been assumed, in this Report, that with such a combination of control settings, the aircraft is
required to trim at zero incidence with zero tail setting Considerations of trim and manoeuvrability
throughout the speed range then suggest that a restoring margin (with respect to incidence changes)

K, of at least 0-2 should be provided in this ‘basic design condition’, if jet controls are to be used.
"This necessitates 2 tail volume ratio of about 0-86 with centre of gravity located at.0-46¢. To provide
a larger restoring margin, the tail volume would have to be 1ncreased and the centre of gravity
moved forward.

If tail controls are to be used instead of jet controls, a design restoring margin of less than 0-2
will probably suffice. If, for instance, K, = 0-1, a tail volume of only 0-705 is required with
centre of gravity at 0-485¢.

(3) For a jet-flapped aircraft, under high-lift conditions, manoeuvrability with jet controls increases
with stability (as measured by the design restoring margin K, ). This is, of course, the reverse of the
tendency exhibited by an aircraft of orthodox design and also by a jet-flapped aircraft employing
tail controls. Control actions per g in the basic design condition, with jet controls, decrease with
increasing K, ,, tending asymptotically to values which compare rather unfavourably with the
values of tailplane deflection per g which may be achieved with a reasonably small value (say 0-1)
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of K, , (see Fig. 17). Because of the penalty of increasing tailplane size, it is clearly not profitable
to increase K, , beyond about 0-3 in the case where jet controls are used, because the improvement
in manoeuvrability thereby achieved is no longer worthwhile.

In conclusion, attention must be drawn to the limitations of the present investigation:

(a) The analysis has been based on two-dimensional theorctical data so that the results should
not be applied to jet-flapped aircraft with low-aspect-ratio wings. For lay-outs of moderately high
or high aspect ratio, the conclusions should be at least qualitatively valid.

(5) Numerical results depend fairly critically on the assumptions made as regards the downwash
at the tail (see Fig. 8) even when, as here, the investigation is based on two-dimensional data.
Reliable data regarding the downwash field behind three-dimensional jet-flapped wings would be
an essential pre-requisite for a stability and control analysis of a jet-flapped aircraft with a moderate
or small-aspect-ratio wing.

(¢) Only trim, static stability and quasi-steady manoeuvrability have been considered here.
For a complete appraisal of the relative merits of jet and tail controls, it is necessary to study
dynamic response characteristics; this has been done in Part II.
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LIST OF SYMBOLS
Coefficients defined by Equation (1) (functions of C; only)

See Equations (46)
Jet coefficient = Jj3pU?c
Total wing lift coeflicient

Component lift coefficients (Equation (1)), proportional to « and & respectively
for a given Cj.

Tail lift coefficient

Pitching-moment coefficient of complete aircraft referred to c.g.
See Equations (46)

Downwash constant (Equation (16))

Downwash constants (Equation (22))

Defined by Equations (14b)

Defined by Equation (17)

Iy m .
o — — —2 (‘a-manoeuvre margin’)
c .

Gross jet thrust per unit length
B . .
i (Equation (55) of Appendix)

ac,,
0C 1

ac,,
IC )

: aircraft restoring margin with respect to change of incidence

: aircraft restoring margin with respect to jet deflection
Aerodynamic centres with respect to incidence and jet deflection respectively,
for the complete aircraft

Coefficient of o, in linear approximation for trimmed lift coefficient C;: a
function of A and &

" Term independent of «, in linear approximation for Cy ¢ a function of Aand &

Wing and tailplane areas respectively
Free-stream velocity
Tail volume ratio
Weight of aircraft
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M1
foc! 50

Prefix
A

Suffix

8

LIST OF SYMBOLS—continued

Defined by Equation (59) of the Appendix

Tailplane lift slope: agjLT\

Qo

Wing chord
Distance of c.g. from leading edge of chord, as fraction of chord

Values of & for which K, ,, K, are respectively zero (these correspond to the
points N,, N on the aerofoil chord)

Tail arm measured from c.g. to aerodynamic centre of tailplane
Mass of aircraft

¢ C,.
21y Aql] U)

Additional normal acceleration (relative to steady rectilinear flight)

, rotary damping derivative

Coefficients of « in linear approximations for A, B,, (£,), (£s)s respectively:
functions of A and &

Angular velocity in pitch

Terms independent of o« in linear approximations for A, B, (£)s (&5)s
respectively: functions of A and &

Wing incidence

Angle of inclination of flight path to horizontal in steady rectilinear flight
Angle of downwash at tail

Tailplane setting relative to wing

Angle between jet and wing chord

Jet thrust/weight ratio

m/pSly, aircraft relative density

Distances aft of wing leading edge at which component lift coeflicients Cyyy,
Cyy respectively act (as fractions of chord)

Air density
Defined by Equation (54) of the Appendix

increment

referring to steady rectilinear flight

A bar over a symbol (e.g., 9) is used to denote the value appropriate to the basic design condition

(except in ¥ = tail volume ratio).
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APPENDIX
An Alternative Formulation of the Trim and Manoeuvrability Analysis

The following method of analysis has been suggested by S. B. Gates.
If it is assumed that the downwash at the tailplane is given by the simple relationship

e=ECp = E(Cry+ Crp), (50)
where
Crw = Aoy Cr = BY; (51)

then using Equations (21) of the main text, we may write the trim equation as

Kyo Cp+ o8 + &Py = 0, ' (52)
where 3 )
Kya = b=+ 2 (1 B4) (5)
and ’
¢ = B(Krz‘}_Kra)
= B(§,— &) — o VK, (54)
with :
B ,
K =". (55)

For a given design, K, , and o are functions of C; only, where

CJ = ACL (56)
in steady rectilinear flight. .
Differentiating (52) and (56) we have

K, 5C;, + C1K,,'8Cy + ad0 + 96'3C, + a,Vony = 0,
§C; = ASCy + T8\,

where primes denote differentiation with respect to C,. Elimination of 3C; and collection of
terms leads to '

(K, + MK, , Cp+ 09} 6C, + (K, Cr+ o) Cr8X + o8t + a;VSnZ. =0, (57)
giving
€, Cp X 1
an AK,+X’
8CL g N
- KX G8)
oC, aV
Iy B K.+ X’
where
X=K,,/C;+ X (59)

is a function of Cj, A& for a given design.
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the controls can be obtained. To illustrate the procedure, some sample calculations have been made
with V' = 0-859, % = 0-461, E = 0-025, a; = 2, which correspond to a ‘basic design condition’
(see Section 3 of main text) defined by A = 0-3, & = 1 radian, & = 7, = 0, K, = 0-2.

The basic trim diagram for this case is shown in Fig. 20. It will be seen at once, that in this form,
the diagram is not very convenient for interpolation. In practice we shall want to know how C,
(and hence C;, and o) vary when, with two of the controls held fixed, the third control is varied.
For this purpose, diagrams of the form shown in Figs. 21, 22 and 23 (obtained by cross-plotting
from Fig. 20) are probably more suitable.* .

In Fig. 21 C; is plotted against M for various values of Anp; this form of the d1agram is most
useful when A, 7, are the fixed controls and & is the variable control.

In Fig. 22, C; is plotted against Az, for various values of A; this form is most useful when 2,
& are the fixed controls and #; is varied.

If A is used as the trimming control, with & and 7, fixed, then both A% and Ay, vary and neither
Fig. 21 nor Fig. 22 is very convenient for studying how C; varies with A. In this case, however,
np/® remains constant and Fig. 23, in which C 7 1s plotted against AP for various values of 7/ is more
useful.

To evaluate the partial trimming slopes (Equations (58)) and also the quantity onfoA (Equation
(61)(i)) the function X is required. From (59), this is seen to be a linear function of A9 for a given

value of C; and Fig. 24 shows the straight lines X versus A& for a range of values of Cjy, calculated
for V' = 0-859, as before.}

(b) Determination of c.g. position and tail volume to satisfy a specified design condition. 1If it is
specified that a trimmed lift coefficient Cy, is to be produced with control settings A, &, 7 and that
the restoring margin in this condition is to be K, , then Cy, (= AC;)4, B, K, 7, ¢, and & are all
known and Equations (52) and (53) may be written

alV{Eg - 771'} = Kraéb + Eﬁ(gﬂ_ Ea)! (66)
-4 (82 = £~ K., | (67)

and solved for % and V.
For the ‘basic design condition’ discussed in the main text it was assumed that 7, = @ = 0 in
which case C;, = BJ. Equation (66) then becomes

7 - 2 (& E-E) (69)
1
and (67) simplifies to _ o _ :

h=& —EAK, ,+&—¢) =& — Eaq, V. (69)

Equations (68) and (69) are identical with the first two of Equations (35) of the main text.

The range of applicability of Figs. 20 to 23. 'The basic trim diagram of Fig. 20 has been plotted
for a range of values of Cj, extending up to 10, for which the interpolation formulae for 4 and B
(Equations (37) of main text) are theoretically valid. Similarly, in cross-plotting the data to obtain
Figs. 21 to 23, the full range of C; up to 10 has been used.

* Some remarks on the range of applicability of these figures are made at the end of this Appendix.
1 X depends (through K, " and ¢’) on the value of V' but is independent of the value of .
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It must not be inferred, however, that all points coming within the scope of the various trim
diagrams necessarily represent trimmed conditions which are realisable in practice. For it may well
be that the trimmed incidence which corresponds theoretically to a given point of the trim diagram
is, in fact, outside the range for which the linear theory is valid; such a point has no practical
significance. On the basis of such considerations, it seems probable that the upper branches of the
curves in Figs. 21 and 23 and the corresponding parts of the curves of Fig. 22, for which C; > 347,
may be disregarded for practical purposes.

’

29.



0¢

L. () Lre
Cy Epu's T eyEpu’s CLr BpWSy
G —
PR TAIL VoL,
b 41 =V
?1}‘3 Weos &
c

F1c. 1. System of forces acting normally to the flight
path of a jet-flapped aircraft with tail.

L(s) L)
= 2
M (o) = - Vpre 2PU S
Krag
Kege
M)
< G
N
v \h/ 0\"1&
e
forge Weos¥
A c
C
1

Fic. 2. An equivalent force and
moment system.

14 /
Es
A=27r+152 €, +1106Cy + 0-051 C5 2
12 o
A 4 /
10 rd 7
AB /

8
6 A -
B- 35453t + 0325 Cy + 0156 Gy
4
C=Cia)t C() = Ax+By
2
o
) 1 2 3 4 5
S
M
e | =T -
" Y
/
APPROXIMATIONS: B, = 0-285-0-01C5 |
. (BROKEN LINES)  £4 = 0-50+0-077 C;*
0'
£,,8s
o2 Sa
o | 2 3 4 5
Cr
F1c. 3. Theoretical values of 4, B, €, and

£o (Spence).



70
<,
éo 18- | RADIAN
A=02 /
50 &5
pLeT
y =075
40 / i
50 / eox \A'E’V 19
y : - 05
y 3
/ = / o= d-o2
e
/ /
/ / ook /
10 014+
"
/
1 |
-0 -0:08  -0:06  -0:04  -0:02 0 0-02 004 0-06 008 010 [ 016 018
olg t RADIANS
F1c. 4a. Total lift coefficient C'y, , in trimmed rectilinear flight with A = 0-2.
A= 02
0 10-0
s J= | RADIAN
9+ P olg = 7-85+6-5dsg RS [
&0 T | 730+ 6:0s —-—-——"_’19=°'-,15
—— I C—e+ TYe TR 4:05
|l e | b
| N N -0 ol #z 02
—] "1 _ §:55450dg
e |t l ‘
&0 l
= IRADIAN
4.0 aspydls s 3O +3:0dks |
———__B_f!___’;__.———"/ 214958 —] 19’0]75
— e —T 14 + 10-0k8 ————'—"&:0"5
20 — |  + 1005 02
/ E— o7+
P — [
-oio -008  ~Q06  -004  -002 o o-0e 004 006 0.08 o0 ola ol o8

F1G. 4b. The coeflicients 4., B, in trimmed rectilinear flight with A = 0-2.

ols : RADIANS

31




060

1
¢ | | | <8< {RADIAN
058 Qatpsdls = 056+ 013 s —i
T . || ——y-075
056 e 0-542+ ﬁ'&:—————-—'
| | e | 0528 +0-20ds L T O-IS
= 054 [ e e 4 QB s s 02
| et el oy
K L I |
052 s
frT
050
h:02
Ey
< — = 025 93+ pyolg = D28 ~ 002
I e S R I 9 0-03 ol +4:0
= e e
oes — | 0 -035 g . o-|7
1= | RADIAN
023
-0 008  -006 <004  -0:02 ) 002 004 008 008 00 ol o ol6 OB
' ) olg : RADIANS
Fre. 4c.  The coefficients £, £, in trimmed rectilinear flight with A = 0-2.
c I T | l
Ls LINEAR APPROXlMATl(V ¢ = | RADIAN
3 _;):#5
s
40»75
022
65X /
o
542 =0
w $=05
/ 2 /
/ / | —
2+ 10%2 "o
/ // 10 _— °/2/19' o2
/] ——
/
/ )
~Ol4 -02 =010 -0-08 -0-06 -004 -0:02 o Q-oz 0-04- 006 008 o0 o2
ols : RADIANS
Fic. 5a. Total lift coeficient Cy, , in trimmed rectilinear flight with A = 0-3.

32




As
A=03 8 “
- 9.6 +134s TS
+hts 22 As
0o _,:fll.._—'-— _,_.T-——
I ey el 4 = L ORADIAN
ey 2.2 +10ds I B =075
B | -
"] ——0——‘—_ 1.3 '4-3451 s St N 1}:0;5 PAs
. / -———'_—_— ! o
Ve /_’—"' _| DS S e, oy 66 + 8d~s' $#2 02
P R \S*! .-
60 goapds ST
|t = DIAN
I @ = | RADIA § ol oms )
I — 3.5+\3'5 5,
— L | |
40
I T
[ — R e s _%._gg:gi#______—-——ﬁw'si ey
a0
/ // /""/ |o+1354s _—————-1-0=0'3J
/] P T
+ 10 =
-o4 -0z -0  -008  -006  -004  -002 o 002 004 006 008 010 ol ~
o olg : RADIANS
F1e. 5b.  The coefficients 4,, B, in trimmed rectilinear flight with A = 0-3.
b [T e [
% = | RADIAN
0-60 A —t— 2:075 -
A" 0569+ 02l ds 1
- 088 . —— @:08
I e L1 0545408888 ]
056
[ { l H=02
/7 —T| 054 L AT | 0-520+ 0BBAS | A
d T | i |
Hos2 -
080
// r:03
£x
25
~ T~ \\\_O [Tt 025 0.04 g
— 1 ] 5 S
— S - 247- 0045 ug W02
\\\ ] . e
. 024 S rrwwn. ¥-05
—~]__| 055t
S \lﬁ\\\
11 I J-075
' B-1LORADIAN |,
~ 023 [ I l - 0234 . oo «s
I —
-0l4  -0i2  -0l0  -008 -0G6  -004 -002 0 002 004 006 008 010 o
. ds : RADIANS
Fic. 5c.  'The coefficients ¢, £, in trimmed rectilinear flight with A = 0-3.
(84109) c



2 = [ RADIAN
Cg
10 /
A= 04
#=075
/ pros
£ #:02
. %40 .
X ) /
/
! Ges 22 =
-025 °  -0®?0 Coels -0 -0:05 0 005 ) o5 0-20
ols i RADIANS

F1c. 6a. Total lift coefficient Cy, ; in trimmed rectilinear flight with A = 0-4.

14 = | RADIAN

®=05

3=02
/

=05

—f=02

-o2s -0:20 -ols -010 ~0-05 o 005 10 o5 020
ds 1 RADIANS

Fic. 6b. 'The coefficients 4, B, in trimmed rectilinear flight with A = 04-

34



{84108)

£y
070 ”
-0 5454085 g,
A= 0% ‘LA*F4°(5=064/' = | RADIAN
| e AT . +4:075
// W I
0-60 o< #=05 — -
/ // 05604025 _____’,__———-—-""l =02
050 7
1 2
b
N \\LL%FS«\
0.
\0@,4‘ . \ o as. \»dh o
W A w_“"s
T o2
2-075
020 ™~ - -0 RADIAN
-0-25 -0-20 ~Ols =010 ~0-05 [s] 005 0-10, oS 020
dg : RADIANS
F16. 6¢c.  The coefficients £,, £y in trimmed rectilinear flight with A = 0-4.

'

[F8)
[543

I

2



9¢

" 15 —BASIC DESIGN CONDITION:
A=03, ¢:(RAD, =0,

/
1

v

TAIL. VOLUME :

C.G. POSITION: &

Rl

RESTORING MARGIN: Ky

'
e

05

0y

o] [s¥]

DESIGN RESTOR

o2

o]

»3

ING MARGIN * Ky

06

04

Tp = OIRAD

— =0

T ————— %y =-O-1RAD

Ol

ol

02

o3
DESIGN RESTORING MARGIN ¢ K

o4

M. = =01 RAD

/

/|

Kyg O FOR
=0

]

O

\

/
] [

-2

Y
DESIGN RESTORING MARGIN + Kay

3

o4&

-\

Ty +OIRAD

Fic. 7. Tail volume and c.g.
position as determined by basic
design conditions.

v

TAIL VOLUME :

C.G. POSITION : &

08

BASIC DESIGN CONDITION
TRIM AT ZERQ INCIDENCE W

T
ZERO TAIL. SETTING (&= 7,.20) ;

=03, ¥ |RADIAN.

N

/]

Ey=0-05, E;=0-04
20025, E;=0-02
Ey=E,=E (ANYE)

£,20:08, E,=0025
£,: 004, E,=0-0S

p

N

//

P

\
N\

DOWNWASH GIVEN BY

06
82 B Gy + Eo- )
04
o2
0 ] o2 03 04
DESIGN RESTORING MARGIN : Ky
06
e—— |

0-4

\
%

£,=0:025, Ea=0-02
£,:0:02, E, - 0-025

E%

§

€ : Ez= 0025

E,:0-05, E,<0-04
E =004, E320:05
Ei = E2= 0-05.

o

oca

o3 o3

DESIGN RESTORING MARGIN & Ky,

Fic. 8. Effect of downwash
assumptions on required tail
volume and c.g. position.

4



LE

0 el
= RAD)
K, - 010
03 -s°
o~e\\ .

\\\\\\ 0-05

o
] O I

-0l  ~0:05 ~ 008 olo s
) b _ (Rap

\‘\\ Koy

\\\ 0-05

\

-0:05 [~ ol

~ 02

™~ o3

_-s°
-0-10
DESIGN CONDITION *
203, V=1 EAD,
= olg.= O WHEN
Kty : ST & M0
03 02 0l 005 e
S~ °
\\ \‘
-~

)
-4 4
~0-086 -004 - =002 Q ‘002 004 7. 006

- (RAD)

Fic, 9. Variation of trimmed incidence and lift coefficient
with tailplane setting: & = 9, A = X; 5, = 0.

l
Ri [5°
030 K
020, (RAD)
A
010 %, 0-05
sos 2\
\\\ \
N
N a
015 -010) -008 005 s
AN (RAD)
\\
\\“
) N
-005
'S
N
\ [ .
)
R
DESIGN CONDITION \ _
X=03, ¥:IRAD. -05 X Ko
ols = O WHEN 7)_=-0-[ RAD. \\OIO
|5 ;71- L S 020
: 0307
g
T &0
R,
030 0?0 010005
60
T 20
AR -
.\\\\\ <
RN
20 SN
006 01d0D030
Ri,
-5° l 5
-5 o010 -0-08 o 008 7. ol
(RAD)
Fi1e. 10. Variation of trimmed 1nc1dence and lift
coefficient with tailplane setting: & =&, A= A;

fjp = — 0-1 radian,



8¢

ol : RADIANS
0-04 008

008

oo

ola

T ‘l}c

1

-0:02
K
(RaD)

-0-04]

-008

-008

\
N

T

Ky, =005
-2 ]
|
DESIGN CONDITION ! N;o»ao
TRIM AT ZERO INCIDENCE WITH
2ERO TAIL SETTING (Z= 772 0)
=03, ¥ | RADIAN.
__4°
% | V| &
0-05 | 0-63 [o0497
020 | 0-86 {0-46!
Cig
2.0
Ky, =020 Ky,=005
NG .
= 5
N 0
\\\ 05
-4° _.2"
-008 -008 -004 -0:02 o
Ny RADIANS
F1e. 11. Variation of trimmed incidence and lift

coefficient with tailplane setting: A = 0-3, ¢ =0-2

radian; 7, =

0.

TRIMMED LIFT COEFFICIENT : Cpg

TRIMMED INCIDENCE o5 : RADIANS

5-0
40
@
30
5 O
3
2:0 @
FIXED TAILPLANE
1o 4 (n+ =_°)
7 A=X=03
> 20° 0° a0° °
o 0 ) 3( i ¥
oz o4 - 08 08 10
JET FLAP DEFLECTION -f: RADIANS
= = |3 = = )
curves |[Ke, |V | A YV AND Ac ARE TAIL VOL.
AND C.G. POSITION REQUIRED
@® |oo05 [oew0joast FOR TRIM AT ZERD INCIDENCE
A=0- S A
voe ® oo |omsloats WHEN A:0-3, #2110 RAD
.0 I -
@ |[o-20 |o8s204st! D
o
-3 @ |o-30 1ol 7/\ €]
o0s @
i // D
002 // //@\\
: / / T

[o] o2 o4 =33 08 [He]

JET FLAP DEFLECTION #: RADIANS

Fic. 12. Variation of trimmed incidence
and lift coefficient with jet-flap deflection.



6¢

06

K =03
o5 \
°* \ \
o \
R ot ’ \
¥ 03 \
5
3 005
<
: \
e : L
y 02 :
g
"‘ FIXED TAILPLANE S~
O (711_ =0) - -
A:=R:08 \
JET FLAP DEFLECTION -1 RADIANS
o ) 0% 06 08 o
o 02 04 06 o8 10
JET FLAP DEFLECTION +# : RADIANS
R,d=o-os7/
i
002 { o
2
o2
< A103
z o3
]
% -00s
b5
(g
z
Z
5
Y 006

F16.13. Variation of restoring margins K. ,

K, with

jet-flap deflection.

€0

IS o
=] (=}

TRIMMED LIFT COEFFICIENT ¢ CLg
w
<}

oz

Kl

TRIMMED INCIDENCE : olg

-02

Koy,
o3
| ———— 02
_ = .
Ky
005 005
ot
o2 JET DEFLECTION %=} =1 RADIAN
03 ¥ AND A CHOSEN TO GIVE TRIM
AT ZERO INCIDENCE WHEN
A= 03, = iRADIAN. —
Mr 70
o2 03 o4
JET THRUST-WEIGHT RATIO A
F10°
= = | RADIAN
= =0
K*d. T
s° 0-05
Y §
[
o3
7 e A os\ o4
\ RQ
03
-5° o2
o
0-05
| -ic°
L

Fic. 14. Variation of trimmed incidence

and lift coefficient with jet thrust.



0¥

RESTORING MARGIN @ Kay

RESTORING MARGIN : Ky g

0s
R,
' 0-3\ <%= @ = | RADIAN
=0
oa \ r
o2
" \\
o2
" \ \
005 .
ol \\ —~—
\ \
——
oA,
o2 03 [
JET THRUST - WEIGHT RATIO A
0-04] l
1 = = | RADIAN Ray
T+=0 0.3
002 - o2
4 ol
005
ok —
oz 03 X 04
w| S
—002 i) /
0-05 /
o1
[+X-4
03
~004
F1e. 15. Variation of restoring margins

K, ., K, with jet thrust.

ro’ 7

TRIMMED LIFT COEFFICIENT = C_

: RADIANS

TRIMMED INCIDENCE g

60
o4
03
50 :
roro /
V=0-858 | GIVING Kry=02, ds=0
40— A : 0460 [ WHEN A=0-3, = | RADIAN
/o
30 / /
o ////
o
o o2 o4 06 o8 10
JET FLAP DEFLECTION +%: RADIANS
oo
_.5°
A
005
| 02
A= 04 %Z
o —— ' \ 03
02 o4 (%) 08 10
JET FLAP DEFLECTION -%: RADIANS
-0-05
- -5°
o4
-oio

Fic. 16. Variation  of trimmed incidence
and lift coeflicient with jet-flap deflection and
jet thrust for a particular combination of tail

volume and c.g. position,



4 } -
' "BASIC DESIGN CONDITION *
| . =03, @ =IRAD.
3 i &0, peoO
! C.: 53 -
l o 4 oa
— i s E 2
P \ a
& g L |
Ay
& I \ ~ & TAIL DAMPING INCLUDED
g NI 8 gL e
o l | .. e 8l g ’
g | 5 .
TN ® -
~-d o -
& | 52 TAIL DAMPING INCLWUDED  __| & o2 et
= : g |ioo’ (p=tom) . 5 | o
] J 5 .
§ o - o oz oa u g _+“DAMPING NEGLECTED
DESIGN RESTORING MARGIN K &
: \\\ Gi G MARGIN Ky d | DAMPING 8o / L
NG g 'f o
. B i [ -=~=-= ROTARY DAMPING & Z Il
F T NEGLECTED (ju, = 02 o Z ;
1 I 4 /
= l | R Z /
5 Y :\CT'JE%?AIL) ) % ol o2 03 ¢ % ol o2 03
it | ) w0 . 2 ' : y o
; i DESIGN RESTORING MARGIN Ri, . DE)SIG-N RESTORING MARGIN Ky,
-2
3 I (c
w
o
g !
R
-3 ]
(a)
Fic. 17a to c. Control actions per g in constant speed manoeuvres initiated from the basic -
design condition.
] 1
BASIC DESIGN CONDITION: om Re,03/1
X:0-3, =IRADIAN :
. ¥ 3 1
& ’ 30 z:0, 7,70 ‘ ° Y
28 28 L | | | 028 '
, TRIMMED CONDITION PRIOR Yoz}
26 26— O MaNcEUvRE : o2 . ; :
j Ae* A:03 I . |
&4 I 2 7 0% 1 {
3 |
Y5+ & =0 | !
2.2 / 22 T / ozg- g }‘/ |‘| :
o] Loy
&o 20 o2~ £ A TR
4 / g g : ST
PRl Lgl- £ | TAIL DAMPING INCLUDED —] ot VAN« !
(& 2 (py=tom) « als / ' |
[ [ A oA
6 u 16f— - t 0 lef 0-05
B, 0 sy ~, & II |
<} o s [ d ,/n‘ |
|4 E o -4 — o . 1’ ]
o ] V g g // ! / :
rer- g 3 2w mE AT %5 53
¥ y, z .l 4 P {
o } rof- 2 ' +
- %3 9] a
&l o
ogl b — R\ Ay ogf- "5' ot oo 4 30
z 3(\ & / oo é
6| L 06l o 006~
O8 2T e o8 [ 26| 30 40 53 3 7 0 z
S -
O-4i—g | 04t A C"fi p 004
g i /
g .
oel— 02 G203, Ky =03 ooe
CLg 03, Ky :00S ¢ 03
. ) h ! bs,
o] o2 04 086 og (S o2 04 06 o8 o o o2 04 . o6 08 [s]
JeT FLAP DEFLECTION <% - RADIANS (b) JET FLAP DEFLECTION - : RADIANS . TET FLAP DEFLECTION <9 : RADIANS .
C

Fi1c. 18ato c.

Control actions per g in constant speed. manoeuvres initiated from trimmed conditions with

A=A B+ O
41



a3

L= (o)
u Ng =G N,
1'(
HOgQQNTN_
Weas¥

(@) TRIMMED RECTILINEAR FLIGHT IN THE BASIC DESIGN
CONDITION.

L=L(¥)+aL(e)

HORIZONTA-

(cos ¥+ an)W

(b} MOTION IN STEADY CIRCLE FOLLOWING APPLICATION OF

JET-FLAP DEFLECTION CONTROL: DAMPING NEGLECTED.

/
HORIZONTAL

(cos T+8n' )W

(C:) MOTION IN STEADY CIRCLE FOLLOWING APPLICATION OF
JET-FLAP DEFLECTION CONTROL: DAMPING INCLUDED.

Fic. 19a to c¢.  Balance of forces in manoeuvring
flight initiated by jet-flap deflection,

;210

008

006

0"17)

o4

ENVELOPE

—

A\

0-02

NG

o

5 (A} o

0s
-0

o2

I'5
ot

005

20

25

o

=002

347

-004

N

ENVELOPE

-0-06]

R

4.0

-0-08

E= 0025

a,=aw

~010

Crelo

Cr=60

Fic. 20. The basic trim diagram for ¥ = 0-859,

h = 0-461.



£

\§

\
§

V= 0859
A = c.asl

// 7
Ap;20045 003 005 | O -005 -0.03 ~0-045 /
//I

V=:0859
f: 046l

\\
\>

&\\ .
AN

NS

-2 03 o4 oS5 o6 -0 c4 -0-02 [o] 002 004 006
A Anr

‘ App = J-004s ~0-03 /—olms B

X

NN

\
\!
8 /
| N/
7
/.

F1c. 21, Alternative form of trim diagram for use F1e. 22.  Alternative form of trim diagram for use when A and &
when A and 7, controls are fixed. controls are fixed.



b

00

20

80

40

3-Q

20

V:=0859
.= 0461

N
N
AN

e

/

—

e

(oo}

7

e ol

2 &}

//
» e

ME

4 o5 o6

Fig. 23, Alternative form of trim diagram for use
when ¢ and 7 controls are fixed.

o3

oe

Qi

-0l

e

+05

-20

-25

50

4.0

30

a5

AN

20 .

5

AN

-
-6 AR

V= 0-859

\
|

50

! e 53

\m
[¢)
»
[

S 05 «X\q@

|

irc

o5

/]

/1]

Q-

Fie. 24, 'The function X.



Part 11

Dynamic 'Longitudinal Stability and Response Characteristics
of Jet-Flap Aircraft

Summary. 'The generalized stability and control investigation, based on Spence’s two-dimensional
theoretical data, which was begun in Part I with considerations of trim, static stability and quasi-steady
manoeuvrability, is extended by a study of dynamic stability and of comparative response characteristics
for step-inputs of tail and jet controls.

From numerical examples it is concluded that in the ‘basic design’ (high lift) condition, the quasi-steady
manoeuvrability criterion is not a valid basis of comparison of control effectiveness, because a divergent
phugoid of relatively short period, coupled with a rapid oscillation of relatively long period, prevents the
establishment of a quasi-steady condition. Because initial response is much slower for tail control than for
jet controls, it now appears that jet deflection control may be more effective than tail control for this case.

The manoeuvrability criterion is shown to remain substantially valid for the cruising condition, however,
and the superiority of tail over jet controls in this case is confirmed. ‘

1. Introduction. In Ref. 1 the author made a preliminary examination of some of the stability
and control problems associated with the design of a jet-flapped aircraft, stabilized and controlled
longitudinally by a conventional tailplane and elevator (or all-moving tailplane). In Part I of the
present Report, the possibility of using the jet controls (throttle and jet-flap deflection) to trim and
manoeuvre the aircraft was examined. Both of these investigations were restricted to considerations
of trim, static longitudinal stability and quasi-steady manoeuvrability criteria although, as pointed
out in the conclusions of Part I, it is necessary, in attempting a complete appraisal of the relative
merits of jet and tail controls, to study dynamic stability and response characteristics. It is the
purpose of this Part of the Report to fulfil this need.
The relevant mathematical theory is developed in Section 2, where the standard equations of
disturbed longitudinal motion with deflected controls? are adapted and extended for application to
the jet-flapped aircraft. The generalized form of the stability quartic governing the motion is derived
in Section 2.2 and operational solutions for the responses to control application are given in Section
2.3. Only step-function inputs of the three controls have been considered, because of uncertainty
as to the respective modes of application that will be realizable in practice.

" The calculation of the acrodynamic derivatives required for response calculations is discussed in
Section 2.4. For reasons given there, calculations have been based on the early version of Spence’s
two-dimensional theory?, which was used as the basis of the investigations described in Part I.
Formulae obtained for the derivatives are collected together in Table 1; their derivation is given
in full in Appendix L

To ensure self-consistency of the dynamic analysis, which must take account of changes in the
longitudinal (thrust and drag) forces, it has been necessary to revise the trim and static stability
analysis of Part I which neglected the effects of such forces. It has been found that the inclusion
of such effects results in appreciable changes in the tail volume ratio and c.g. position required to

- satisfy specified design conditions.
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The numerical work performed in connection with this investigation is described in Section 3
and the results, given in Tables 2 to 6 and Figs. 2 to 15, have been used to re-assess the comparative
effectiveness of jet and tail controls. It appears that the conclusions arrived at in Part I, on the basis
of quasi-steady manoeuvrability theory, need modification in respect of the ‘basic design’ (high lift)

_condition, but remain essentially valid for the cruising condition.
An extended summary of the work described in this Part, together with a discussion of the

results and the conclusions to be drawn therefrom, is given in Section 4. Possible future developments
are briefly discussed in Section 5.

Acknowledgement. Acknowledgement is due to Miss F. M. Ward and Miss B. E. Mills for their
assistance in performing numerical work and preparing figures for this Part.

2. Mathematical Theory. 2.1. Eguations of Disturbed Longitudinal Motion with Deflected Controls.
The jet-flapped aircraft may be considered to have three possible longitudinal controls: tail control,

(elevator or all-moving tailplane) jet-flap deflection control and jet thrust/weight ratio control
(exercised via the throttle).

If the (small) deflections of these three controls from their steady-flight settings 74, 9, and A,
are denoted by 7y, & and A respectively, and if the general notation of Ref. 2 is adopted (except
that m,, m, are written for 7,, #,) the equations of motion may be written

d ) m w %, 4 b
—— —— — %, — — L gt + k0 —
(dT ) T, g, p T
— %, Az — x589  —xA =0,
u d W 3z
-2, — —— — = (142 g — RO —
ag, ) ()
—zﬁTﬁT — 2yt — A =0, g ()
m, d  pym,\ u my, 4 pm,\ w d my\ ,
e e T - T 5 T T 7 5 T T t—
( iy dr zB)US+( iy dr zB)Us_!_(dT zB)q
_‘u’lm”T AT—"u‘l.’nﬁg—Ml.m/\Aﬁ = 0;
ip ip g
, db
—qgt+— =0.
*t 5

The terms involving #,, 2, may, in conformity with common practice, be neglected in the present
investigation. Then introducing Neumark’s subsidiary notation3 with some additions:

. /J'lmw _ mq _ mzé' 1
w = = T V= - ] X - - )
ip 3] ip
m, Hym
i 1%y
T ==y, K = — —), : & (2)
[3: ip
Fa?y,, ‘ ity SO
P : ’ 819 = — » 8,\ = - )
z ] ip g
writing
u A w A
v, © g )
Us Us '
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and' using the last of Equations (1) to eliminate ¢ from the remaining three, we may write these
in thé form ‘ : ' ‘ -

-

d ' PO
(E—xu)z'z — %, D -I-kLG——xﬂTﬁT—xgﬁ—x,\)\:O,
A d A d ’ /\" oy A
_ a0 -|—(E_—zw)'w —<E+k)0—z,anT—z,9ﬁ—z,1/\:O, { )
. d 7 d d/d A oA

. In these equations #,, & and A are to be regarded as arbitrary functions of = and to obtain the
responses to particular control inputs, use may be made of the operational calculus. If the Heaviside
method (see, for example, Ref. 4) is employed, the subsidiary equations corresponding to (4) will be

(D —x,)(D) — 2, %(D) + k0(D) =
= 2,4(D) +(D—2,)0(D) — (D+K)HD) =

(D) + 23H(D) + 2, (D) + ,D,
(D) + 25%(D) + %, A(D) +

’ + @D — D, > (5)

(YD + (D) + (xD + w)B(D) + DD +2)0(D) = — s,,TﬁT(D) — 8,9(D) — 8,\(D) +

+ YiyD + x®yD + 6,D(D +v) + 6,D, ]

A
anTIT
ZVTUT

where (D), &(D), 8(D), #4(D), (D), A(D) are the (Heaviside) operational equivalents of 4, @, 6,
Az, 9 and A respectively and 8, @y, 8, and 6, are the initial values of #, @, # and d6/d+ respectively.
For control inputs 4, etc., which are elementary functions of 7, the operational equivalents 5,(D)
etc., will be readily obtainable from Ref. 4 or otherwise and Equations (5) may then be solved
for #(D), @&(D) and (D). Itthen remains only to determine the functions whose operational equivalents
are (D) etc. and the response problem is solved. The last stage of the work may be much facilitated
by use of the tables of Ref. 4. . !

2.2, The Stability Quartic. The stability equation, obtained by equating to zero the determinant
of coefficients on the left-hand sides of Equations (5) is a quartic

F(D) = D*+ B,D® + C,D* + D,D + E;, = 0, (6)

wheére

Bi=N+v +y,

Cr=P +vNi+ x5O+ =TS8, - o

D, = vP 4+ xR+ w0 + YT + «5;,

E = - wR; + Ty,
and

Ny = — (2, +2,); R, = — (Ka, k)

P, = x,2, — %,3,; S) = x, — kg (8)

0O; = — (x,—k"); T, = kyz, + Exy. . |
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2.3. Response to Individual Control Actions. It is hardly possible at this stage of development, to
specify realistic modes of application for the three types of control. This is true in particular of
the A-type control, characteristics of which will be bound up with the question of the response of
the jet engine itself to throttle setting. In such a state of ignorance it would appear pointless to

attempt more than a crude comparison of the response characteristics resulting from simple step-
function inputs of each control in turn.

2.3.1. Response to step-function inputs of the three controls. Let 4, v = 1, 2, 3, denote increments
of tail-, jet deflection- and jet thrust-control settings respectively, '
i.e.,

1
If

1 = G Tp = VU 3 = A. 9

Then for a step-function input of the 7th control we have

A{(7) = #,, = constant

and (1)
i(r) =0, s+,

whence

and

(D) = 7o }
(11)
sE7r

(D) = 0,
Initial conditions are

A

fly =y =0y =0, =0. - (12)

The right-hand sides of Equations (5) reduce to %, ,4,, 2,4, and — §, 7, respectivel}}, and their
solutions may be written down as :

WD) FOD) D) FSD) . D) FD)

? A - ] P » 13
fo T FD) e | FD) i FO) 4
where F(D) is given by (6) and

F u@(D) = Bu(T)D3 -+ Cu(T)D 2 + D u(T)D + Eu! .
F,(D) = B,YD*+ C,D* + DD + E,,, (14)
Fo(D) = Co”D? + DD + E.

The coefficients of the first of Equations (14) are

B = Xy
CO = (=2, vt x)a,, + %, (15)
Do = Saxty, + Sy — S10,,, '
E® = k'wx,? » kszﬂ y— T187;r’
where :
Sy = vy, + krx, (16)

S3 = -——Vzw—l—k'x—i— w
and S;, T are defined by (8).
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In the second of Equations (14),

B, = Fyrs

Cw(r) = (zu—l")x,}, -+ (V—xu)27]1- - 87]7” (17)
D, = Qme' + sz*l"' - Q1877"’

B = —Kuny— Rz, — Rid,,,

where
v Qg = — v, — kY, :
2 v I ' (18)
O, = vz, — kY -« '
and Q,, R, are defined by (8). ‘
In the last of Equations (14),

CO(T) = = Yx?/ r T Xy T 87; 7
DO(T) = N3x7/ » N227/ r ]\7187]7') (19)
Eﬁ(r) = P3xz]1' + Pzzvr - Pl'Sa; )
where
PZ = WXy, — KXy
_ PS = — Wwg, + K2y (20)
Ny = yx,—Tx, — o,

Ny = —yz, + Tzw — K
and N, Py are defined by (8).

2.3.2. Interpretation of the operational solutions. The solutions #(D) etc., of the subsidiary
equations are, in all cases, algebraic fractions in which the denominator is a quartic in D, while the
numerators are of third or smaller order in D. The corresponding solutions #(7) etc., of the original
equations of motion (4) are therefore readily obtainable from Table 3 (Item No. 126) of Ref. 4 and
are of the general form ' '

) in J
fietc. = A + (L cos Jr + Nsm] T) e BT |

+ (l cosjT +n SH;.]T) e, ) (21)
where — R + #J, — r + ij are the (complex) roots of the determinantal equation F(D) = 0 (Equation

(6)) and A4, L, N, I, n are constants.

2.4. Basic Assumptions for the Estimation of the Aevodynamic Forces, Moments and Derivatives.
At this stage we must consider on what basis the aerodynamic derivatives appearing in the response
equations are to be estimated. At the same time, it must be borne in mind that the study of disturbed
motion involves the specification of the steady trimmed state about which the disturbance occurs.
Clearly these two interlinked problems must be studied on the basis of the same aerodynamic
assumptions. A

Any practical application of the jet-flap principle will, of course, involve a jet-flapped wing of
finite aspect ratio and, in the study of a specific project, the values of the aerodynamic forces and
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derivatives used in the trim, stability and response analyses should, as far as possible, be derived from
model tests or three-dimensional theory. However, the work described here was conceived as part
of a generalized investigation, begun in Part I, of which the professed aim was a qualitative, rather
than a precise quantitative, assessment of the effects under consideration. At the outset of this
work, the final versions of Spence’s two-dimensional theory® and Maskell and Spence’s three-
dimensional theory® had not been published. From a preview of the latter, at the time of writing
Part I, however, the present author had concluded that the use of the three-dimensional theoretical
results would render the trim analysis too complicated for the purpose in mind, and the decision was
made to base the whole investigation on the early version of Spence’s two-dimensional theory?,
which accordingly has been employed in developing the trim analysis of the present Paper
(Section 2.5) and in obtaining expressions for the aerodynamic derivatives (Section 2.6).

In the latter connection, no account has been taken of unsteady flow effects as regards the forces
and moments acting on the wing and assessment of the derivatives m, and m, has been based on
the concept of downwash delay at the tailplane. The rotary damping of the wing has been neglected
in comparison with that of the tailplane.

Further aerodynamic assumptions are noted in the following Section, where the trim analysis of
Part I is re-worked, taking account of the effects of thrust and drag forces which were previously
neglected.

2.5. The Determination of Trimmed Conditions. 2.5.1. Trim and stability equations. Fig. 1 shows
the configuration of the aircraft and the system of forces acting on it, following small disturbances
from the condition of steady rectilinear flight at speed U, and incidence «,, along a path inclined at
an angle y; to the horizontal. Gx, Gz are axes fixed in the aircraft, Gx coinciding with the direction
of motion in undisturbed flight.

In accordance with Spence’s theory?, the lift coefficient for the wing may be written

Cp = Cpp + Cropp = Ao+ B, (22)

with the corresponding forces L(«), L(9) acting at distances ¢,¢, &y respectively from the leading
edge, where 4, B, £, and ¢, are functions of the jet coefficient C; only*.

* It may be pointed out here that although in the three-dimensional theory® the lift coefficient may be
expressed in the form (22), the coefficients 4 and B in that case are functions not of C; only, but of C,
«, ¢ and aspect ratio 4 p,; ‘.., the contributions due to incidence and jet deflection are not, in fact, separable.
Consequently, a trim and stability analysis based on the full three-dimensional formulae for Cy, given in
Sections 5.3 and 5.4 of Ref. 6 would be prohibitively complicated. However, from a limited amount of

numerical work, it appears likely that over the practical range of parameters, the three-dimensional lift coefficient
C ;¥ might be reasonably well approximated by the relationship

CL®ICr® = G(dg, C,)
with G(4 g, C;) given by Equation (67) of Ref. 6:— 4
G = (Ap + 0637 C)(Az + 2 + 0-604 C,1/2 4 0-876 C)

Thus, for a specified value of the aspect ratio, it would be possible to express C;(® in the form (22), with
A and B depending on C only, albeit in a more complicated fashion than in the two-dimensional case.
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To simplify the analysis it is assumed, when considering the balance of normal forces, that the
lift provided by the tailplane is negligible in comparison with the wing lift so that the wing lift
- coefficient given by (22) may be taken as the total lift coefficient for the aircraft. The coefficient of
resultant force in the direction of motion, Cy, may be expressed as

Cp = Cp — Cpy, . (23)
where Cp is the skin-friction drag coefficient and Cy, is the total thrust coefficient which, according

to Spence, may be broken down into internal (direct) and external (induced) components Cj ; and
Cy . respectively, where

Cpy = Cycos(a+?) (24)
and where, according to inviscid flow theory
Cpo = Cy{1 — cos (a+ )}, (252)
so that
Cp = Cj. (26a)

In practice, it is unlikely that the full value of the induced thrust, as given by (252) will be attained
and it is preferable to write

Cr. = kpC;{1 —cos (a+}; kp<1 (25b)
and hence

Cr = C,{(1—Ey) cos (a+9) + g} (26b)

On the assumption that the coefficients §,, §;, defining the points of application of L(«), L(8)
respectively, have been chosen so as to give the correct pitching moment about the leading edge
(¢.e., in accordance with Spence’s theory) the thrust corresponding to Cy, as defined by (26b), must
be assumed to act through the leading edge. The skin-friction drag will be assumed to act at the
same position as does the lift when C; = 0, i.e., at £,(0)c. To simplify the analysis it will be further
assumed that the wing zero-lift pitching moment and the body pitching moment are zero.

With the above assumptions, the pitching-moment coefficient for the complete aircraft, referred
to the c.g., located at distance /¢ behind the wing leading edge, may be written as

Cn = Crof(h—§&,) + Crpf(h— &) + Cpo{li— E(0)} o — Crho —

— a Vi — e(t) + nr + gl U} @7
The ‘a-restoring margin’ K, , and ‘-restoring margin’ K, , are given respectively by
aC,, jaCy,
LR A
B Va, de\  Cp,
=&, h+7( _g)'——g—{h"ga(o)}'}‘
C C .
‘ +z@h—j’ha(1_kT)sm(a+ﬁ~) (28)
and
aC,, [oCy,
Ko =~ 5" 5
Vi C .
= fg—h—%@—fha(l-—kfr)sm(a+ﬁ). (29)
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For trimmed rectilinear flight at a small angle y to the horizontal (cos y & 1) we have C,, = ¢ = 0,
so that if symbols appropriate to this condition are distinguished by the suffix ‘s’ and if the thrust/
weight ratio J/W is denoted by A, the conditions of equilibrium of normal forces and pitching
moments, used in conjunction with (22), lead to the equations

Cre = ACy,, (30)
where
Crs = Ags + B (31)
and
a,V '
4, 0= (€ = S0 = Gt Coa— 08 o +

+ By{h — (&)} 95 + a Ve, — aV(np)s = 0. (32)

It has been shown in Part I that Cp,, A, B, ({,)s (£5)s can be well approximated by linear
relationships

CLS = POLS -+ Q ;
A = prog + q15 (Sa)s = Pty + G35 ' (33)
By = poos + ¢s; (fﬁ)s = Pas + 45
where P, Q, py, ¢, etc. are functions of A and ¢ only. Thus, for a given aircraft, whose tail volume
(V) and c.g. position have been fixed, Equation (32) may be regarded as an equation for determining

the trimmed incidence «, corresponding to a prescribed combination of control settings A, &, %y,
while (28) and (29) give the values of the two restoring margins.

2.5.2. Tail volume and c.g. position as determined by basic design conditions. 'The trim Equation (32)
may be written in the form

[{As - (CTS— DO)} o + Bsﬁ’s]h - Val{o‘s - es + (771‘)3}
= {4y&)s + Cpofu0) o + BI(&p)s- (34)
Then if (28) is rearranged thus for the steady condition:

CTS_CD[) CJs
L=+

T ()] = e K 2 00, (35)
we have two equations from which the tail volume 7 and c.g. position ke, required to satisfy a
specified design condition, may be determined. It will be assumed that o, = 55, = 0, in the ‘basic
design condition’ (see Part I) for which, with a combination of jet conf;ol settings &' = &, A = A,
the aircraft is required to have an a-restoring margin K, ,. If it is further assumed that the downwash
angle at the tail ¢, may be expressed as

¢ = EC, = E(Aa+ BY) (36)

and if the small term (Cp o/ 4,)&,(0) in (35) is neglected, Equations (34) and (35) may be simplified
and solved to give ,

o(1— Byp) sin (o, +9) L 7 —

s

S

- a Co\ = =

V= " J)(1-2E)¢ - K §
a(1—ECy,) ( a )g” St Ko a7
. B Co\z: . p |

h=§ TR AT
2 1= EC, ( Z.)g" bt Koafs




where Cp = Cp — Cpy (Equation (23)) and ‘barred’ symbols are appropriate to the basic design

condition. (Equations (37) may be compared with Equations (25) of Part I from which they differ

because of the inclusion in the present analysis of thrust and drag forces whose effect on trim was

neglected in the earlier work.) .
With the assumption (36), the expressions (28) and (29) for the restoring margins become

V“1(1 EA) - Cj“{ — £,(0)} + Th—ﬁhau kp) sin (a+3),

K.,.=§¢—h+
(38)
K,y =& —h—EVa, - Cs 5 ho(1—Fep) sin (w+9).

2.5.3. Variation of trimmed incidence and lift coefficient with changes of control settings. The
aircraft may be trimmed to conditions other than those of ‘basic design’ by varying the control
settings 7y, ¢ and A, either singly or in combination and a complete trim analysis might be developed
along the lines of Section 4.1.3 of Part I or of the Appendix thereto. However, in view of the limited
computational effort available for this investigation, consideration has been given here onfy to the
case where the aircraft has been trimmed by variation of the jet deflection ¢, the thrust/weight
ratio /\ and the tailplane setting 7%, remaining fixed at their basic design condition values
(A = A, np = 7p = 0). In this case, if use is made of Equations (26b), (30) and (36), the equation
for trlmmed incidence is obtained from (32) as

[As{h = (£} = V(1 - EA) — ACp {(1—ky) cos (o+) + Ry} +
+ Cpofh — &0} o + By{h — (&), + EVa}d, = 0. (39)
If the linear approximations of (33) are substituted in the last equation, and squares and higher

powers of «, are neglected, the following approximate linear equation for trimmed incidence
o (valid for small incidences) is obtained:

[ga(h —gs) — Vay(1—Eqy) — XO{(1—ky) cos 9, + kp} + Cpolh — £,0)) +
+ {palh—qs+ EV‘ZI) — Page} Pl oy = — go(h—qu+ EV‘ZI) s (40)

Values of Q and of the p’s and ¢’s appropriate to A = Aand & = &, may be determined from Figs. 4
to 6 of Part I. Once o, has been calculated, the corresponding C, , = Ay, + By can also be calculated.

2.6. Formulae for the Aevodynamic Derivatives. Details of the derivation of formulae for the
aerodynamic derivatives appropriate to disturbed flight are given in Appendix I; the formulae
themselves are set out in Table 1.

3. Numerical Examples. 3.1. Data and Assumpiions. As in Part 1, all calculations have been
based on the following formulae for the coefficients 4, B, £,, £, derived from Spence’s original
two-dimensional work?;

A = 20+ 1-152C,2 + 1-1060,, +0-051C, %,
B= 3-545C,12 + 0-325C, + 0-156C,%2,
£, = 0-25—0-01C,,
&5 = 0-50 + 0-077C,12.
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Values for certain other coefficierits and parameters have been assumed as follows:

Tailplane lift slope a = 27
Downwash coefficient E = 0-025
Skin-friction drag coefficient Cpo = 0-1
Pitching inertia coefficient iz = 0-1
Tail arm ratio . bpfe = 3'5
Aircraft wing loading ' WIS = 35 1b/ft?
Aircraft relative density W = 25

Air relative density (corresponding to o = 0-862

operating height of 5000 ft)

The last four assumptions imply:
Tail arm r = 2121t
Wing chord c = 6-05ft

The ‘basic design condition’ has been taken as:

Aircraft to trim at zero incidence with ‘a-restoring margin’ K, , (disposable parameter) when
A=2X=0:39 =3 = 1radian and 9, = 7, = 0.

The induced thrust factor %, (introduced in Equation (25b)) will have a value between 0 and 1
and in order to assess the sensitivity of the results to variations in this parameter some of the initial
calculations have been performed for 2, = 0 and k; = 1. As these calculations indicated a relatively
small effect the remainder of the calculations have been based on the assumption &, = 1.

3.2. Tail Volume and c.g. Position as Determined by Basic Design Conditions. Asin the numerical
examples of Part I, the basic design condition provides a lift coefficient Cp, = 5-3, with 4 = 9-6,
B =53 C,=159 & = 0:234 and & = 0-596. The value of Cp is 1-49 if &y = 1 or 0-758

if kT = 0.
Equations (37) give
For
kp =1, V =0-426 + 1-585K,
— (42a)
h = 0-529 — 0-2495K, .
For
kp =0, V = 0-367 + 1-556K,,, ' :
— (42b)
h=0-538 - 0-245K, .

V and 4 have been calculated from these equations and plotted in Fig. 2 which also reproduces
the corresponding curves from Fig. 7 of Part I, in order to demonstrate the appreciable effect of
including in the present analysis, thrust and drag forces which were neglected in the earlier work.
The effect of varying &k, between 0 and 1 is seen to be quite small.

3.3. Dynamic Stability in the Basic Design Condition. 3.3.1. Effect of the factor kp on stability
characteristics. As a further check on the degree of importance of the factor k4, the stability quartic
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for the basic design condition with K, = 0-2 has been set up and solved for the two cases kp =1
and kp = 0, which correspond respectively to steady flight conditions of 78-9 ft/sec at 15-6 deg
"to the horizontal and 79-§ ft/sec at 8-2 deg to the horizontal.

Values of the derivatives as calculated from the formulae of Table 1 and Equations (2) (using
the data of Section 3.1), for the two values of kp, are given in Table 2, while the characteristics of
the motion for the two cascs are compared in Table 3.

From a perusal of Tables 2 and 3 it is clear that variation of kyp within the extreme limits 0 to 1
does not have a profound effect on the calculated characteristics; accordingly &, has been taken
equal to 1 throughout the remainder of the numerical work. Since in practice typical values of &, are
likely to be of the order 0-7 to 0-8, the effect of this assumption should be negligible.

3.3.2. Effect of the design restoring margin K,, on ‘ dynamic stability characteristics. The
characteristics of disturbed longitudinal motion, initiated from the basic design condition, have
been evaluated for a range of values of the design restoring margin K, , and the results are shown
in Figs. 3a, b, c.

It will be seen that as K, , is reduced, the period of the short-period mode increases while that of
the long-period mode decreases; thus while at K,, = 0-4 the long-period is nearly five times the
short-period, at K,, = 0-1 the ratio between the periods is not much more than two.

The short period mode is well-damped throughout the range of K, , considered; the absolute
time to halve the amplitude increases as K, , is reduced but the number of cycles decreases.

The long-period mode is an increasing oscillation for which the time to double amplitude (both
in seconds and in cycles) decreases as K, is reduced.

3.4. Variation of Dynamic Stability Characteristics with Trimmed Lift Coefficient. 3.4.1. Variation
of the stability derivatives. Equation (40) has been used to estimate the trimmed incidence o, and
hence the trimmed lift coefficient Cy,, for a range of values of the jet-flap deflection &, the other
control settings being fixed at their basic design values (A=2X=03, 95 = % = 0) and a value of
0-2 having been assumed for K., *. The results are exhibited in Fig. 4, which also shows the
variation of trimmed speed with &, calculated for the assumed height of 5000 ft with a wing loading
of 35 Ib/fez. '

Values of the stability derivatives corresponding to the same range of trimmed conditions have
been calculated from the formulae of Table 1 and Equations (2) (with i = 0-1, u; = 25), and the
results are shown in Figs. 5a, b.

3.4.2. Variation of the periods and dampings. The stability quartic has been solved for several
trimmed conditions in the range covered by Figs. 4 and 5 and the results are given in Fig. 6a, which
shows the periods of oscillation of the two modes, and in Figs. 6b and ¢ which show the corresponding
damping characteristics. ' V

It will be observed that as the trimmed lift coefficient is increased, the long period decreases
while the short period increases. Thus, while at C,, & 0-25 the long period is about eighty times
the short period, at C; = 53 the ratio of the two periods is little more than three. The short-period
mode is well damped over the complete range of trimmed conditions considered; the actual time
to halve the amplitude increases as C; , increases, although the corresponding number of cycles

* It was concluded in Part I from trim and manoeuvrability considerations that if jet controls are to be used,

K, , should not be less than 0-2. For tail control, K, , could be reduced down to about 0-1,
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decreases slightly. The long-period mode is (positively) damped at low values of C, but becomes
unstable for a C,,, of order 1-0; it becomes progressively more unstable as Cy, is increased until,
at the basic design value of C),, = 5-3, the amplitude of the oscillation doubles in rather less than
one cycle.

The manner in which the stability characteristics vary with Cj for the jet-flap aircraft is not
fundarmentally different from the case of a conventional aircraft. Thus, it is usual for the phugoid-
and short-periods to tend towards one another as Cy,, increases and for the phugoid damping to
deteriorate at the same time. However, the fact that much higher values of C,,, are attainable with
the jet-flap aircraft than with a conventional one, means that, within the practicable range of that
parameter, the two periods may be brought much closer together than usual, while the phugoid
damping can deteriorate well beyond the point where the mode becomes unstable.

3.5. Response Calculations. 3.5.1. Basis of Calculations. In view of the difficulty (already
alluded to in Section 2.3) of specifying realistic modes of application for the three types of
Jongitudinal control, responses have been computed only for simple step-function inputs of each
control. Two initial trim conditions have been considered:

(a) Basic design condition (A = 0-3, & = 1 radian, 5, = & = 0, K,, = 0-2, giving Cr,, = 53,
U, = 789 ftsec, v, = 15-6 deg).

(b) Cruise condition (A = 0-3, & = 0-2 radian, 7, = 0, giving C,, = 0268, U, = 357 ft/sec,
v, = — 42 deg).

The basic response quantities @, @ and # have been evaluated by application of the analysis set
out in Section 2.3; values of the relevant derivatives, calculated from the formulae of Table 1 and
Equations (2) (with i; = 0-1, g, = 25), are set out in Table 4.

Two additional response quantities—the increment of flight path angle % and the incremental
load factor An have also been calculated. The former is given simply by

p=0-%. (43)

T'o obtain an expression for Az in terms of the applied control forces and the basic response quantities,
we note that
d/\
U,
dt
U, d(0— zu)
i dr

Hence, using the second of Equations (4), we have

Incremental normal acceleration = Ang

U “ A
An = — Z(gfl+2 w-i—z,,” i+ 20 + 2 A+ R 0)
' gt
pSU2 P
="y (zzbzz+~ww+z T+ 2g0+ A+ R'0),
whence
2 9 A A
An = — 258 (2 it a Bt 2O+ A+ RO) (44)
Ls ’
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if, as in the present analysis, we take By = 0. Substitution of appropriate values for the derivatives
from Table 4 leads to the following expressions:

Basic design condition

An 756ty 14736 2 4 0-2007 L
Nro Nrao Nro Nro.
An i D a
2 0756 = +1-4736 = +0-2707 . +0-963, L (45)
Yy Yy Vo Yo
br _orse 147362 w0707 0 41052,
Ag Ag Ao 0 J
Cruising condition
PN A ) =
Mo se054 2 oe0m1 L
Nro N1o Nro Nro
An 2 & '
o 1073 = 4+ 25-054 2 —0:0731 — +3-859, L (46)
19\0 00 190 ’1‘}0
Ar o3 450542 007312 41350,
Ag Ao Ag 0 J

Alternatively, solutions for Az may be obtained by firstly deriving the operational solution
An(D) from the corresponding operational solutions 6(D), #(D) and then obtaining An() as for the
other response quantities. Thus

0 gt

D) (D)

Tro Mro

b4

or
An(D) U, D{F D) — F, (D))

o &l F(D)
from Equations (13), with F,®(D), F,%(D) given by (14). From Equation (47) the corresponding’
solution An(7)/%,, may be obtained from Table 3 (Item 126) of Ref. 4.

(+7)

?

3.5.2. Results of calculations. 'Tables 5 and 6 give the solutions of the response equations for the
basic design and cruising conditions respectively. The four response quantities that are physically
most interesting, #, @,  and Az have been plotted in Figs. 7 to 9 for the basic design condition
and in Figs. 10 to 12 for the cruising condition. Also indicated on these figures are the values of
#, % and Az derived on the basis of quasi-steady manoeuvrability theory (i is, of course, zero according
to this theory). The derivation of the simplified formulae for this case is given in Appendix II.

3.5.3. Discussion of the results. 'The modes of response to the individual controls in the basic
design condition (Figs. 7 to 9) are dominated by the facts that the long period oscillation is divergent
and that its period is only about three times that of the short period oscillation (see Fig. 6). Thus
speed changes become pronounced quite early in the motion and conditions appropriate to the
quasi-steady maneouvrability theory are never established. Accordingly, apart from giving crude
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approximations to the first turning values of @(¢) and An(#) and to the change of flight path angle $()
achieved in the corresponding time, the above-mentioned theory is not really applicable under the
basic design conditions of very high lift coefficient and low speed. The results given in Fig. 17 of
Part T for ‘Control actions per g in constant speed manoeuvres initiated from the basic design
condition” should be reviewed in the light of the above remarks.

In the case of cruising conditions, Figs. 10 to 12 show that the quasi-steady manoeuvrability
theory gives very good approximations to the conditions obtaining when the short-period oscillation
has been damped out at 1} to 2 seconds after the initiation of the motion. Subsequently, as the speed
begins to change under the influence of the long period oscillation, the response quantities @, An
and % tend to drift away from the quasi-steady values.

A cursory examination of Figs. 7 to 12 indicates that there are important differences in the
characteristics of the initial responses of a jet-flapped aircraft to the three controls. To enable these
differences to be examined more closely, Figs. 13 and 14 have been prepared. In examining these
figures it may be borne in mind that the curves for »,-control give a qualitative indication of the
response characteristics for a conventional aircraft with tail control. At the same time it must be
remembered that Fig. 13 relates to a lift coefficient much higher than the C;, max Of @ conventional
aircraft so that, as remarked in Section 3.4.2, the relevant stability characteristics differ considerably
(in degree, if not in kind), from those usually exhibited in the high-lift condition. Furthermore, as
an examination of Tables 1 and 2 readily shows, for a given C,, the values of several aerodynamic
derivatives are considerably influenced by the presence of the jet (particularly at the higher values
of Cr,and C;). Thus m, and m,, which would be taken as zero for the conventional aircraft, assume
non-zero values for the jet-flap aircraft, while =, =, and m, are all significantly affected by the
dependence of the lift on C;. With the simplifying assumptions of the present work, x, and x,,
appear unaffected but if three-dimensional effects are taken into account, these two derivatives are
also influenced by the jet through the induced drag terms. (See Appendix II1.) It has, unfortunately,
not been possible, with the limited computing effort available, to examine systematically the effects
on stability and response of variations in values of individual derivatives.

Fig. 13 relates to the basic design (high lift) condition and compares the aircraft responses during
the first six seconds following the control applications %, = — 1deg, &, = 5 deg and A, = 0-02
respectively. These control amounts are largely arbitrary but may be thought of as representing
something like one-fifth of the available deflection in each case*.

If the primary purpose of control application is to chénge the flight path angle, then it may be
concluded from Fig. 13c that, in the basic design condition, the jet controls are initially more effective
than the tail control. This is because (with the assumptions made in this Report) application of either
jet control is considered to result in an instantaneous increase of lift (and hence of normal acceleration,
see Fig. 13d), whereas with the application of tail control, the incremental lift (and hence normal
acceleration) develops only gradually as the angle of attack of the aircraft is changed. However, as
the motion following the application of &~ or A-control develops, the aircraft ac'quires a negative
angle of attack and since the corresponding (negative) lift increment opposes the direct (positive)
increment produced by the control increment, the normal acceleration and also the rate of increase
of flight path angle fall. Thus, after about two seconds, the incremental normal acceleration produced

* Relatively small deflections are considered so that the calculated perturbations are small enough for the
linearized theory to be valid.
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by the tail control exceeds that produced by either jet control. At the same time the change of flight
path angle produced by %, = — 1 deg exceeds that produced by A, = 0-02; however, while the
rate of change of path angle due to the former is now greater than that due to 9, = 5 deg, the total
change of path angle due to the tail control does not equal that due to jet deflection control until
about six seconds have elapsed, by which time, both flight path angles have begun to decrease under
the influence of the long period oscillation.

The aircraft speed decreases continuously under the influence of the tail or jet deflection control
throughout the six-second interval considered, the decrease being rather more rapid for &, = 5 deg
than for #,, = — 1 deg. Application of the thrust control A = 0-02 results in an initial slight
increase in speed followed by a decrease. The considerable difference in the speed variation as
between - and A-controls may, at first sight, be a little surprising, but it may be accounted for by
that fact that while the 9-control provides no increment of thrust, (xy = 0) the A-control provides
a large increment (x, = 2-65). Thus, if we consider the equations for longitudinal acceleration:

a N

#-control: o = dll+ Xl — kr0 + 9,

i

A-control: —
-

X b+ 2, — k0 + 2,

and note that k; = x,, = 2-65, x, ~ 0;
then putting § — % = %, we have
#-control: d_u & — 2-659,

dr
dil
dr
% is initially zero in both cases but A = constant = 0-02 throughout the motion. Thus with #-control,
dfi/dr is initially zero but assumes increasing negative values as the aircraft begins to climb; with

-control on the other hand di/dr is initially positive so that the speed initially increases but then
decreases as the aircraft begins to climb.

The general conclusion from the foregoing discussion would seem to be that when, with the
aircraft in a high-lift condition, a sudden change in flight path angle is required (for instance, to
avoid an unexpected obstacle), application of jet deflection or jet thrust control (in that order) should
be more effective than application of tail control, although eventually the tail control might produce
a larger change of flight path angle and a larger increment of normal acceleration than either jet

A-control: ~ 265X — 2-65%.

control.

Fig. 14 compares the responses of the aircraft to the three controls in the cruising condition. The
deflections assumed for the tail and jet-flap deflection controls are, as in the basic design condition,
firg = — 1 deg, &, = 5 deg but as the responses to jet thrust control are relatively small they are
shown for A, = 0-1 in this case.

Fig. 14b shows that when tail control is applied in the cruising condition, a change of angle of
attack (and hence of lift) is very rapidly established so that although the jet controls provide instan-
taneous increments of normal acceleration, these are exceeded within one-fifth of a second of the
application of tail control. Correspondingly, the change of flight path angle produced by the tail
control exceeds that produced by either jet control within two-fifths of a second of application.
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The changes of angle of attack which occur when the jet controls are applied are very small and
initially in the sense which gives a negative lift increment, opposing the direct (positive) increment
provided by the control action. Both the 7p-control and the #-control (when applied to increase the
flight pa'th angle) tend to decrease the speed but the A-control initially causes an increase in speed.

The general conclusion from Fig. 14 is that in the cruising condition, tail control is more effective
than either jet deflection or jet thrust control; the latter, in particular, is very ineffective. .

A further illustration of the differences in initial modes of response is given by Fig. 15 which shows
the modes of An and # for the cruising condition, arbitrarily normalized with respect to the values
of these quantities at ¢ = 2 seconds (at which time the short-period oscillation has been virtually
damped out, while the long period oscillation has scarcely begun to affect the motion).

4, General Summary, ‘Discussion and Conclusions. 4.1. Scope and Validity of Investigation.
The generalised investigation of the longitudinal stability and control problems of jet-flapped
aircraft, which was begun in Ref. 1 and Part 1 of the present Re'port with considerations of trim,
static stability and quasi-steady manoeuvrability criteria, has been taken a stage further by the
present study of dynamic stability and response characteristics. As in the earlier work, the analysis
has been based on Spence’s two-dimensional theoretical data and so again, the results should not be
expected to apply to jet-flapped aircraft with low aspect ratio wings; for layouts of moderately high
or high aspect ratio, the conclusions should be at least qualitatively valid.

One way in which the use of two-dimensional data might be suspected of invalidating the
conclusions is through the neglect of induced drag. To obtain some idea of the importance of this
factor, an assessment has been made of the effect on stability characteristics in the basic design
condition, of including an induced drag term (in coefficient form: Cp; = k;C.?) in the longitudinal
force equation. The details are given in Appendix III, where it is concluded that for wings with

aspect ratio of order 10, the effects are not sufficiently large to invalidate the conclusions qualitatively.

4.2. Revised Trim and Static Stability Analysis. 'The trim and stability analysis of Part T has
been modified to the extent that the pitching moments due to thrust and drag forces, which were
previously neglected, have now been taken into account and it has been seen (Fig. 2) that there is an
appreciable effect on the tail volume and c.g. position required to satisfy specified design conditions.

4.3. Dynamic Stability Characteristics. The values of the stability derivatives (Table 2) and the
characteristics of disturbed longitudinal motion (Table 3) in the ‘basic design’ (high lift) condition
have been shown to be not very sensitive to the value assumed for the induced thrust factor kg,
defined by Equation (25b), and the bulk of the numerical work has been based on the assumption
of full thrust recovery (kp = 1). '

The disturbed longitudinal motion about the basic design condition has been investigated for a
range of values of the restoring margin K, , and it has been seen (Figs. 3a, b, c) that the period of
the quicker oscillation, which is always well damped, increases as K., is reduced, whereas, that of the
slower (phugoid) oscillation, which is divergent®, decreases with diminishing K, ,. For K, = 0-1,
the longer period would be not much more than twice the shorter period so that the phugoid can
begin to exert an appreciable influence on the resultant motion before the short-period oscillation
has been damped out.

* Tt will be recalled from Section 3.4.2 and Fig. 6¢ that the phugoid, whose damping progressively
deteriorates with increasing lift coefficient Cy, 4, is, in fact, divergent for all Cy, ; greater than about 1-0.
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The trim and manoeuvrability considerations of Part I had suggested that if jet controls were to
be used effectively, a value of at least 0-2 should be provided for K, ,, although a value as small
as 0-1 might suffice in the case of tail controls. In considering the remainder of the stability and
response results, which have been calculated for K, , = 02, it should therefore be remembered that
the performance of the tail control in relation to that of either jet control could probably be improved
by designing for a smaller restoring margin which, incidentally (see Fig. 2), would require a smialler
tail volume. !

The variations of longitudinal characteristics with trimmed lift coefficient have been studied for
a fixed value of the design restoring margin K,, = 0-2. The salient points that emerge from the
results (Figs. 6a, b, c) are:

(1) As the lift coefficient is increased, the period of the phugoid decreases, while that of the rapid
oscillation increases. "T'his feature is not peculiar to a jet-flapped aircraft but the fact that the jet-flap
enables much higher C’s to be achieved, means that the periods of the two modes may be brought
into much closer proximity than in the case of conventional aircraft. Thus, at the highest lift
coeflicient considered (C, = 5-3), the ratio between the periods of the modes is not much more
than 3, compared with values of about 9 at Cy, =.2-0 and approximately 80 at C,; = 0-25. This
would indicate a greater likelihood of the two modes interacting at high lift coeflicients than at low,
although some calculations (not reported in detail here) have indicated that even at the highest Cy,
the approximation to the short-period mode, obtained by neglecting variations of forward speed,
is quite good.

(2) The damping of the short-period mode is good at all C;’s and (in terms of cycles to halve
amplitude), increases slightly with increasing C;. The phugoid is positively damped at cruising Cy.’s
but becomes unstable for C;’s greater than about 1-0; at the highest C; the oscillation doubles its
amplitude in about one cycle.

4.4. Response to Control Application. The responses of the jet-flapped aircraft to step-function
inputs of tailplane, jet deflection and jet thrust controls have been calculated and the results, presented
in Figs. 7 to 9 (high-lift condition) and Figs. 10 to 12 (cruising condition) have enabled us to assess
the validity of the quasi-steady manoeuvrability criteria, used in Part I as a basis for comparing the
effectiveness of the three controls. :

The results indicate that in the high-lift case, nothing approaching a ‘quasi-steady’ condition is
ever established; this is a consequence of the fact that the phugoid period is of the same order as the
short period, the situation being aggravated by the additional fact of the phugmd being divergent.
In the circumstances, the quasi-steady theory gives no more than a crude approximation to the first
‘turning values of the response quantities #(¢) and An(#) and Fig. 17 of Part I should be re-interpreted
accordingly. V

In the cruising condition, the short-period oscillation rapidly dies out and, for a few seconds at
least, before the phugoid makes its presence felt, a quasi-steady condition, agreeing well with the
predictions of manoeuvrability theory, exists. A figure such as Fig. 18 of Part I is thus esséntially
valid although, if interest centres on comparative response in a very short interval following control
application, the actual response curves must be considered.

Figs. 13'to 15 have revealed significant differences in the responses to jet controls on the one hand
and tail control on the other. With the assumpﬁons made in this investigation, the jet controls provide

61



instantaneous lift increments, whereas the lift increment due to tail control is built up only gradually
as the result of changes in the angle of attack, occurring through the medium of the short-period
oscillation. Since, in the basic design (high lift) condition, the ‘short’ period is relatively large, the
response to tail control is initially much slower than the response to either jet control. Thus tail
control no longer emerges as the most effective control in the high-lift condition, as it did in Part T,
on the basis of the quasi-steady manoeuvrability criterion. Jet deflection control now appears as
the most effective. Tt is to be noted, however, that while the rate of response to tail control builds
up with increasing angle of attack, the initially high rates of response due to the direct lift
increments applied by jet controls, are subsequently reduced by unfavourable changes in angle
of attack.

In the cruising condition, because of the considerably shorter period of the rapid oscillation, the
response to tail control is built up much more rapidly than in the high-lift case and the conclusion,
arrived at in Part I on the basis of the quasi-steady manoeuvrability criterion, that for the cruise,
tail control is more effective than jet control, is broadly substantiated.

Tt should be emphasized that the control effectivenesses have been compared purely on the basis
of hypothetical step-function inputs, assuming that the corresponding direct aerodynamic control
actions (pitching-moment increment in the case of tail control, lift increments in the case of jet
controls) are developed instantaneously (i.e., Wagner effects have been neglected). Should it transpire
that the modes of control application and of development of corresponding control actions, which
can be achieved in practice, differ considerably as between the three types of control, then the
foregoing conclusions might need modification. In the basic design condition, the picture could be
further changed as the result of measures that might be taken to suppress the ‘speed instability’.

5. Future Developments. 'The investigation covered by the two Parts of this Report has not been
as comprehensive as one might have wished. With so many parameters entering the problem, the
field of possible exploration is almost unbounded. We have not, for instance, been able to examine
very closely the influence of our admittedly crude downwash assumptions on the problems considered.
Again, in the present Part, when considering response to controls, we have considered only the
simplest (and hypothetical) case of step-function inputs and a study of more realistic modes of input
(if these could be specified) would be instructive. In view of the ‘speed instability’ which, it has been
shown, will exist at high lift coefficients, it would be intéresting to consider the possible use of the
controls to suppress speed variations and then to examine the ‘stability under constraint’ of the
aircraft in the manner suggested by Neumark in Ref. 8.

However, with the pressing need to determine more precisely the stability and response characteris-
tics of practicable jet-flap aircraft configurations, it is desirable that future efforts should be directed
in the first instance to an investigation of the influence of finite aspect ratio on the stability and control
derivatives.

A sound foundation for such an investigation has been provided by Maskell and Spence®, and
Ross?. It should be noted, however, that the fundamental theory of the jet-flap in three-dimensions
has not yet been formally developed to the stage where it provides the flight dynamicist with all the
aerodynamic information he needs, in immediately assimilable form. For instance, the results of
Ref. 6 are confined to lift and drag (with no mention of pitching moment) and are appropriate only
to the case of uniform angle of attack, while the downwash theory of Ref. 9 has not yet been fully
substantiated by experiment.
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As regards pitching moments, Kiichemann'® has suggested a simple method (using Spence’s two-
dimensional results? for chordwise loading on a thin, flat jet-flapped wing, in conjunction with
Ref. 6) for calculating the chordwise loading on jet-flapped wings of finite aspect ratio, including

“effects of section thickness and camber.

Nevertheless, while there remains no insuperable obstacle in his way, the flight dynamicist is still
confronted with a large amount of purely aerodynamic spade work to perform before he can calculate
the complete range of derivatives involved in a comprehensive stability and response analysis for a
jet-flapped aircraft. ’
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LIST OF SYMBOLS
IC[ O , functions of C; only for two-dimensional jet-flapped

9C,|39 aerofoil

Coeflicients of stability quartic (see Equation (6))

Coefficients of numerator polynomials F,”, F,©, F/ in operational

solutions for response to controls (see Equations (13) and (14))

Induced drag coefficient for three-dimensional wing
Skin-friction drag coeflicient

Coefficient of resultant force in direction 6f motion
Jet coefficient = J/p U2

Total wing lift coeflicient

Component lift coefficients (Equation (22)), proportional to « and &
respectively for a given C;

Pitching-moment coefficient of complete aircraft referred to c.g.
Total thrust coefficient (= Cp ;+ Cy )

External (induced) thrust coeflicient

Internal (direct) thrust coefficient

Differential operator

Downwash constant (Equation (46)) _

Polynomial in D: L.H.S. of stability quartic (Equation (6))

Numerator polynomials in operational solutions for response to
controls (see Equations (13) and (14))

Gross jet thrust per unit length

— 9C,,]0Cy,y: aircraft restoring margin with respect to change of
incidence

— 8C _[0C ;4 aircraft restoring margin with respect to change of
m L} g g P g
jet deflection

Pitching moment about aircraft c.g.
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LIST OF SYMBOLS—continued

Shorthand constants defined by Equations (8)

Shorthand constants defined by Equations (20)

Coefficients of linear approximation (see Equations (33)) for tr1mmed
lift coeflicient C, ¢ functions of A and &

Shorthand constants defined by Equations (18)

Shorthand constants defined by Equations (16)

Wing and tailplane areas respectively

Total thrust on jet-flapped aerofoil

Component of velocity along x-axis in disturbed flight (= U, +u)
Undisturbed flight speed

Tail volume ratio

Weight of aircraft

Aerodynamic force aléng the x-axis

Aerodynamic force along the z-axis

Tailplané lift slope acLT/aaT

Wing chord

Gravitational constant

Distance of c.g. from leading edge of chord as fraction of chord
Pitching inertia coeflicient

$Cy: coefficient in equations of motion (1)

— kg, tan y,: coefficient in equations of Iﬁotion (1)

Constant in assumed formula for induced drag coefficient (Equation
(86), Appendix III)

Thrust récovery factor (see Equation (25b))
Tail arm

Aircraft mass
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My Myy My My
Mgy My, 5 My, My
Ang

Pi- P

L SIRIR /1

>

=

X

w‘x

w’x

124

X

g 90 X2

Zyy R B

z

Yo zﬂ’ z/l

&
Y
¥

8,y 8 3
€

#0r=1,2,3)

fro(r = 1,2, 3)

Nr

LIST OF SYMBOLS—continued

Dimensionless pitching-moment derivatives due to parameters
indicated by respective suffices, consistent with definitions of

Ref. 2. (Except that m,, m, are written for 7, 7,)

il

Additional normal acceleration (relative to steady rectilinear flight)

Coefficients in linear approximations for 4, B, (£,)s, (£s)s; functions
of A and ¢ only

Angular velocity in pitch

Unit of aerodynamic time in seconds

w
gPSUs

Increment of velocity along x-axis in disturbed flight

u/Ug; dimensionless increment of velocity along x-axis in disturbed

flight -
Increment of velocity along 2-axis in disturbed flight

w| U,; dimensionless increment of velocity along z-axis in disturbed
flight

Dimensionless longitudinal force derivatives due to parameters
indicated by respective suffices, consistent with definitions of
Ref. 2 '

Dimensionless normal force derivatives due to parameters indicated
by respective suffices, consistent with definitions of Ref. 2

Wing incidence
Angle of inclination of flight path to horizontal
Increment of flight path angle in disturbed flight

Concise pitching-moment derivatives appropriate to control
deflections indicated by respective suffices (see Equations (2))

Angle of downwash at tail
Increments of control settings (see Equation (9))
Constant values of 4, for step-inputs

Tailplane setting relative to wing
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LIST OF SYMBOLS—continued

Increment of tailplane setting applied as control

Constant value of 7, for step-input

Angular displacement in pitch from equilibrium position ,
Angle between jet and wing chord at jet exit

Increment of &, applied as a control’

Constant value of & for step-input

Concise pitching-moment derivative due to u (see Equations (2))

J -
V_V; jet thrust/weight ratio

Increment of A applied as a control

Constant value of X for step-input

——; aircraft relative density
pSly
Concise pitching-moment derivative due to ¢ (see Equations (2))

Distances aft of wing leading edge at which component lift
coefficients Cp,, Cp respectively act (as fractions of chord)

Air density

Relative air density

Dimensionless aerodynamic time

Concise pitching-moment derivative due to # (see Equations (2))
Concise pitching-moment derivative due to z (see Equations (2))

Concise pitching-moment derivative due to w (see Equations (2))

Réferring to steady rectilinear flight

A bar over a symbol (e.g., 9) is used to denote the value appropriate to the basic design condition

(except in ¥ = tail volume ratio).

(84109)
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APPENDIX I
Derivation of Formulae for Aerodynamic Derivatives

We consider an initial steady condition of flight with speed U, at inclination y, to the horizontal,
with control settings 5, A, 9, incidence o, and jet and lift coefficients C; ,, Cy, ; respectively. Then

CJ§ = ACps. . (48) .
In the disturbed flight condition (small perturbations), we write

U= U, +u=Ufl+2), )

—_— A-—— N 2N
o=y + 0 =o0,+W,

Np = Nps+ A, ' (49)
$ =3+ 8,
= A+ Al )
We also have
A (UN\?
CJ = A—s (f;) CJs’ ,
or ‘ :
o )
ch(1+x)a—mmyy (50)
8
FORMULAE FOR THE LONGITUDINAL FORCE DERIVATIVES
If we neglect tail drag, the longitudinal force X in the disturbed motion is given by
X
——ar = C Cp+ Cp®,
Bp(Traps 7 Tpe T e R
whence
X =(—Cpo+ Cp+ Cp)(3+14) ' 51)
2U2S ~ pot Lt L1@)(z . (
Then '
aC,
SRy = CDo‘*'CTs'*‘%(a—ﬁT)s
3 (C
= — Cpo + CTS'*'_%’I:% CLJ:C" l
= —Cpo+ Cps— Crpy, by use of (50),
. or
%, = — Cpos (32)

aC.
5= 1Co0+ 1 (57
8

H[Cpy — Crl—hy)sin (o +8)],  from (26b),
69
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or Xy = %CLS [1 - As(l —kT) sin (O‘s + 19'.9)] ) (53)

aC
%=1 (%)
8
= — 3C; (1—kyg) sin (a,+ ), (54)
S
=%C“(a—(§‘—’) — 325 from (50).
C,;, \ 9A A
Hence ‘
%y = 3Cps[(1—ky) cos (ag+ &) + ky]. ~(59)
Also
Y=, =0 (56)

FORMULAE FOR THE VERTICAL FORCE DERIVATIVES

If we neglect tail lift forces, the force along the z-axis is given by

Z
W = - CL‘“‘ (CT_ CDO)@’
or
VA
pU2S ~ {— Cp+ (Cp— Cp)} (3 +1). (37)
Then
aC
zu - CLS_ P ( aﬁL)
04 oB aC,
= = Cu= (o) 2+ (o), (32),
04 9B
-~ .t Oy, ("a‘c";) o + (é._;) ﬁsg, from (50).
s 8
Hence
04 oB
2u iAs CJs (anJ_)6 g %Ba CJ's <80J>5 19‘8’ ( 8)
aC
5= (Cra= oo~ 1 (55
= %(CTS_CDU—AS)’
i.e.,
R = %[CJS{(l_kT) cos (o + &) + kT} — Cpo— 4y, (59)
oC
B = — % (BCL)
(4] ()42
8C’J aC;/s I /s
aB 2 Cy,
= j C)sﬁsj A from (50).
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Hence 3A aB
oa 22N 5l 61
(acJ)s“s+(acJ)s ; (61

2, =z =0. (62)

a L

— 1
= —%Cp,

Also

FORMULAE FOR THE PITCHING-MOMENT DERIVATIVES

The pitching moment about the c.g. is given by

M ¢ c
WU+ uiSly ~ 2y ™

or

M ¢
= fl 63
PUSZSZT 2[11 (1+2u)cm) / ( )

where C,, is given by Equation (27), reproduced here from the main text
Cm = CL(a)(h_ goc) + CL(#)(}L_ 'fb‘) + CDO{k - fa(O)}Oé - CThOL -
glp

a7 o a(t) + e + 22 27)
then ¢ ¢ (3C,\ _ ¢ (3C,
= Gt (), = )
i [Jo0m (20) - A (782) + =002 (55.) -
-8 (562) - (32) | (o), o7 () )
or, if we make use of (50) and (26b),
m= =1 G [J0-60 (55), 4 (5e2) M1 ~r) cos (5 +8) + B o
#0800 (3], B (ae) 2] + 40 (ae) 9
o () 5 (8.~ -5 4 s

where K, is the a-restoring margin given by Equation (28). If we use the latter equation with
the downwash assumption of Equation (36), we obtain

c
My, = E [(h— fzxs)As + CD O(h_ ga(o» - CTsh -
— a,V(1—EA) + Cyhal—ky)sin (a,+8)], ' (65b)
¢ 9C, c o S
L _.c - _1°7
M= S A 0y - 2 275 (66)
¢ oC, ¢ - S,
= — - —1-T
T ey 2y T TP (67)
¢ aC,, ¢ ’
mo = o (). = = o BlKohe (68a)

71



where K, is the #-restoring margin given by Equation (29), so that

= o (oot @ TE)B, + o,y (1= ) sin (o + 8], C (6sD)
T

e (acm) e (acm) (acJ)
"o\ s 2 \ac, /s \ A s

- [o-e (a%) - e jéf] | + =600, (:73) -

— B2, (8_@) — ha, (iqif) _CL& +a,7 (_a_f) } ,
aC;/s 0C;/s) A A/ s

or
c 24 o¢
my = - ¢y, V-, __) fAs(——"i) — B[(1—ky) cos (ag+8,) + kp]| a, +
= g O [0 (5]~ 4 (5) ~ MO o 9 4 o
3 5 :
-6 (o2) ~ B (22) [0] #1052 (), ‘ (69)
aCJ 8 aCJ s— S a)\ 8
¢ [ aC,, ] £ = de
m, = — | —— =——a1V[-—~:i ,
21y LaGulgU%))s ~ 20, L(uad, o)
or )
o=y R[] (70)
‘ s @ o),
Similarly,
my = 152 o, [_i_} . (71)
s “ @ o). -

THE DOWNWASH DERIVATIVES

Employing the concept of downwash delay, we may express the downwash at the tail, at time
¢ after the initiation of a disturbance, in the form

&) = EC(t—1p| Uy,

where o
; Co(t) = A{C;(B o + D)} + B{C, ()} {9 + H(1)}
an :
Cyt) = (1 + %t)) {1 —28()}C,, (see Equation (50)
~ j1 + ?‘)(f)'— 200! ¢,
= CJS + AC'J' ’
with . A
AC, = i’\)(f) —2u0)! ¢, ,.
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Then et g 4+ (aaél) AC oy + D)} +
; B, + (aaé ) AC, [, + B},
or

Cr(8) ® Cps+ AD(0) + B(t) +
34 3B A . |
“|(ae,) o+ (o), # [ 5) — 20 e
Now for t < 0 :
AR = 8() = d(f) = a@) = 0
Thus, for t < Ip/U,

S

and
N E(t) = ECLS’
so that
de e _d¢_d 0 _de o (72)
o o o I on  ow
“while for t > I/U,, if we assume & = constant,
l Iy ; 4
c, (t— Ul) ¥ Cpat 4,00~ F-6| + B+
34 3B A
# (o) 2 (a) o 5 -2 w0 - ) e
provided that /;,/U; is small compared with the period of oscillation. Then
o) ~ E[CLS+A (& — BlpJU} + BS +
a4 B A |
. ?(E)“ ¥ (a—CJ)ﬂ( QA— 200~ /U] o). @

Hence

-~

— 2EC,,

|
) -0
)

I

a4 9B
(5,2 (5, ). 4
aC, /s aC, /s

= EBs; (a_f) = s ("?’4‘) o + (E) ﬁsg ’
s ac, ). " \ac, /s

4 0B
()= el

dCy/s aC;/s

[3¢)3(ly| Uy))y = — EA,. : J

In strict accordance with the downwash delay theory we should, in analysing the disturbed
motion, take all the downwash derivatives to be zero up to time ¢ = I/ U, (see Equations (72)) and
to be given by Equations (74) thereafter. In practice, if /U, is small compared with the periods
of oscillation, it is reasonable to calculate the downwash derivatives from Equations (74) for the
. whole of the disturbed motion. This assumption is implicit in the formulae for m,, and m, (Equations

(65b) and (68b)).

(74)

Y

[0¢/a(dlp| U,)), = 2EC;,
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APPENDIX II

Derivation of Response Formulae Appropriate to Quasi-Steady Manoeuvrability Theory

For steady manoeuvring flight in a vertical circle, we may put # = 0 in Equations (4) and neglect

the first equation. The remaining two reduce to

d a A
— B, — (E + k') f = 2, fr + Bt + A,

wd + v gﬁ = = 8,5 — 8% — &},
of if we put £" = 0 (i.e., assume y, = 0) and write
. do
=5
— g, —-§ = 2, A + 259 + 2R,
wd +vj = — 8, fp— 85,9 — 8,A.

RESPONSE TO TAILPLANE CONTROL

The solutions of Equations (75), with & = X = 0 and with the usual assumption 2

D=8, 4 &b

w;;T

fr @ — vz, Gp  w— vz,
The incremental normal load factor Az is given by

A

An  U,dflin) U, d (9 w) U, §

Ay gt dr ghdr \fp 4y
since ddjdr = (.

Hence
2 sy
N - C'L w — VI,
since
f= and W= C,1pU2S.
gPSUs L2P Vg
Also

RESPONSE TO JET-FLAP DEFLECTION CONTROL

The solutions of Equations (75) with i, = A = 0 are

D wRy— Oy § 2,0 — Zgw
F w—ve, &  w—vz,
from which we may readily deduce
An 2 2,05 — Zgw
B Cp ow—va,

Also
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(75)

= 0, are

(76)

(77)
(78)

(79)

(80)

(81)
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RESPONSE TO JET THRUST CONTROL

The solutions of Equations (75) with %, = & = 0 are

@ _ VA~ 8,1_ g_? _ 2,0 — 2w (83)
N w—wz, A w— g,
from which we deduce - l
An _ 2 waA —_ 2,111) V (84—)
//\ B CL w — Vzw
and
a (?) _ 8 An ' (85)
dt \A U, A

Values of @, An, 9, deduced from Equations (76) to (77), (79) to (85), using appropriate values of
the derivatives from Table 4, are shown on Figs. 7 to 12 for comparison with the results of the
full response calculations.
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APPENDIX III
An Approximate Assessment of the Effect of Induced Drag on Dynamic Stability

We assume that in flight at lift coefficient C), there is induced drag corresponding to the coefficient
Cp; = k,Cy2, (86)

where for our present purpose we assume %; to be a constant.* We neglect the effect of the induced
drag on the pitching moment.

Referring to Appendix I, Equations (51) and (57) we see that the equations for X- and Z-forces
in disturbed motion will now be:

X A A ’ - .

pU2$: (= Cpo—kCr?+ Cp+ Cr) (3 +8), (87) -
8

Z 2YHL (L 9}

SUZS {= Co+ (Cr— Cpo—kCLB} (3 +1), (88)
from which the following formulae for the x- and z-derivatives may be readily deduced:
(84 2B
ne= = G ke [L=20(56) e+ (5;) 2] |

x, = 3Crs [1 — A1 —kyp) sin (o +8) — 2k A,

, - (89
2y = — §CL N1 —ky) sin (a+9) + 2k; B,

0 = 40, [ (1) 03 (4 8) 4 by = 20,C,

04 - oB P
(aCJ)s“S (acJ)s ‘ ] J
oA JB
Ry = —jAS—CJS(E> 0‘5_5BS—CJS(‘E)
s s

2y = 3[Cr (1 —Fy) cos (ag+8) + by} — Cpp — k;Cp* — A,

By = = %Bs’
24 4 2B 9
(7). * ;).

Comparison of formulae (89) and (90) with the formulae of Table 1 shows that all the x-derivatives
are modified by the inclusion of induced drag while, of the x-derivatives, only z,, is changed.

~

B

S

g (90)

— 1
2y = — 30,

~

Numerical Example. 'The force derivatives have been evaluated from formulae (89) and (90)
for the basic design condition considered in the examples of the main text. The induced thrust
coeficient &, has been taken as 1+0 while a value of 0-03 has been assumed for the induced drag
coefficient &;. (If we consider the formula for Cy,; given by Maskell and Spence in Ref. 6, viz.,

Cpi = C¥(mA+2Cy)

where 4 denotes aspect ratio then with C; = 1-59, as in the present example, we see that our
assumption is appropriate to an aspect ratio of 9-58).

* It will be seen later in the numerical example, that according to three-dimensional theory, &; would
actually be a function of C; for a wing of given aspect ratio. '
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The calculated derivatives are compared with the corresponding ones from Table 4 in Table 7.
The results of comparative calculations of the periods and dampings are given in Table 8. (For these
calculations, the moment derivatives have been assumed unaffected by induced drag.)

It will be seen from Table 8 that the induced drag has an almost negligible effect on the short
period characteristics; the effect on the phugoid is somewhat greater but still insufficient to change

the general character of the motion.
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TABLE 1

Formulae for Aerodynamic Derivaiives

(2) Longitudinal force derivatives

Derivative Formula
KXy - C’D 0
%y, 3 CL — M1 — ky)sin (o + %}
%, —3C,(1 = Ry)sin (o + 9)
Xy $CL{(1 — kp)cos{a + F) + ky}

(b) Vertical force derivatives

Derivative Formula
04 oB
zu (CJE_A)(X—}-(C"E——B)&
% ICAQ — kp) cos (o + 8) + kg} = Cpg — 4]
2y — 3B
o4 oB
—1 _— udt
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TABLE 1—continued

(c) Pitching-moment derivatives

Derivative Formula
m, —ZC;CJ[ (h—fa)géq;—Ag—é’;—h[(l—kT) cos (et ) + kp] b o +
+ (h—fa)aﬁ—(i— B%’; &] + %-al%(%)
m, 2—; [(h—€) A + Cpofh—£,(0)) — Cph — a,V (1—EA) +
+ Cy ho{1—ky) sin (at+9)]
7, — %%al
My, - %%Zlal
g i [(h— €3+ @ VE)B + Cyh o1~ ky) sin (a+9)]
s a1 Ca | | — A5 — MU~ g) o8 (eo40) + gl o+
et - n e i (5)
meofd SET“" a(ﬁzaTe/U) |
e %%al a(z*uf; 10)

79



TABLE 1—-continued

(d) Downwash derivatives

'Derivative Formula
, 04 oB
86/852 —ZECJ *a?‘]ot-l-ffﬁ‘
de/ow EA
oe/ad EB
a oA oB
86/8/\ ECL Ea'{-éa]l?‘
0
¢ 2pc, 124, 2B
(@l UY oC, aCy
o€ ,
abpwy | 0
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TABLE 2

Values of the Aerodynamic Derivatives in the Basic Design Condition

Derivative kT =1 kp=20
%, —-0-1 —0-1
%, +2-65 +1-983 Concise moment
derivative kp =1 kp=0
2z, —4-055 —4-42
m, +0-074 +0-074 K o= — pgm,lip - —18-5 —18-5
#,, —0-274 —0-274 w = — iy +68-5 +68-5
m, —0-665 | —0-61 v =—  mylip + 6-65 + 6-1
o —0-16 —0-1465 X = — Inlig + 16 + 1-465
My ‘ +0-107 +0-098 Y= —  myfig —1-07 — 0-98
kr=%1Cy +2-65 +2-65
k= —k;tanvy, —0-745 —0-38
Stability Quartics
kT: 1: F(D) = D* + 12:405 D3 + 101-01 D? + 1739 D + 607-9 = 0
= (D? 4+ 12-985 D + 102-62) (D2 — 0-580 D + 5-924)
kp=0: FD)y= D*412-085D% + 101-32 D% + 41-19 D + 603-7 = 0
= (D? 4 12-429 D + 99-525) (D? — 0-3437 D + 6-066) .
TABLE 3
Characteristics of Motion
kp=1 kp =10
Mode
Period Time to Period Time to
(sec) & amp 2 x amp (sec) {amp 2 % amp
Short period -5-43 0-717 — 5.35 0-74 —
oscillation . sec . sec
(0-132 (0-138
period) period)
Long period 1748 — 16-06 17-0 — 26-8
oscillation sec sec
(0-918 (1-574
period) period)
81
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TABLE 4

Values of the Derivatives used in Response Calculations

Basic design Cruising
condition condition
Derivative =1, & =02
Cpy=53 | Cp,=0-268
vs = 15-6 deg |y, = —4-2deg
x, —0-1 —0-1
o +2:65 +0-134
- 0 0
Xy 0 0
®) +2-65 +0-134
Z, —2-08 —0-144
Fy —4-055 —3-36
- 0 0 Concis‘e moment Ba§ic N
derivative design Cruising
%y —2-65 —0-518 (ip =01, p, = 25) condition condition
LN —5-37 —0-181
", +0-074 —0-0017 K o= — pm,lip — 18-5 + 0-425
m,, —0-274 —0-337 w = — uym,lip + 685 + 843
m, —0-665 —0-665 ’V = —  myflip + 6:65 + 665
m, +0-107 —0-0036 Y =— mfig — 1-07 — 0-036
Mg —0-16 —0-1114 X = — iglig + 1-60 + 1-114
"y —0-665 —0-665 SO,T = —Myplip +166-2 +166-2
o 0 -+0-0109 Sy = — pymylip 0 —  2-725
iy —0-123 +0-00283 8, = — pymyip + 30-75 — 0-7075
Ry =%Cp +2:65 +0-134
B = —Fkptany, —0-745 +0-0098
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TABLE 5
Response to Controls in Basic Design Condition

Solutions for the various response quantities per unit increment of control parameter are all of the form
° A + (L cos 11571 t + M sin 1-1571 £) e—0"966% -
+ (£ cos 0-3599 ¢ + sm sin 0-3599 ¢) 0-04s18¢

with coefficients 4, L, M, I, m as given in the Afollowing table.

Response
Control quantity A L M l m
Ao +3-4775 —0-1461 +0-2074 —3-3313 —0:6596
D/Hp o —1-4871 +1-6271 +1-3601 —0-1400 +0-0150
N b7 —1-6170 +0-6659 +1-4315 +0-9511 —2:9273
Pheo —0-1299 —0-9612 +0-0714 +1-0911 —2-9423
Anffip o 0 +2-4675 +2-5485 —2-4675 —1-2690
19, —0-7920 +0-0238 | +0-0202 +0-7682 —0-0931
28, —0:2137 +0-1846 —0-1838 +0-0291 —0-0134
& /9, —0-1836 +0-1823 —0-0655 +0-0013 +0-7001
518, +0-0301 —0-0023 +0-1183 —0-0278 +0-7135
An/8, 0 +0-3390 |. —0-2733 +0-6240 +0-0994
AR —1-1833 +0-0192 +0-0840 +1-1640 +0-7384
TN —0:7681 +0-7126 —0-1022 +0-0554 +0-0145
A | /% +0-2759 +0-5126 +0-1569 —0-7885 +0-9674
DI +1-0440 —0-2000 +0-2591 —0-8439 +0-9529
Anfd, 0 +1-2034 —0-0446 +0-7482 +0-8415

' (84109)
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TABLE 6
Response to Controls in Cruising Condition

Solutions for the various response quantities per unit increment of control parameter are all of the form
A + (L cos 5-8582 ¢ + M sin 5-8582 1) e~ 748
+ (! cos 007183 ¢ + m sin 0-07183 #) ¢—0-0364¢

with coeflicients 4, L, M, I, m as given in the following table.

Response
Control quantity A L M l m
g +48-9668 — 0-0010 + 0-0078 —48-9660 —25-4947
D[y o — 2-2140 + 1-5592 + 0-9964 + 06547 +V0-3128
Ny 0/ —38-7153 + 1-0142 + 1-2492 +37-7013 —29-9309
Phpo —36-5013 — 0-5450 + 0-2528 +37-0466 —30-2437
Anfhp g 0 +39-0378 +24-9106 —-39-0378 —17-2968
TN — 4-6390 + 0-0002 — 0-0007 + 4-6388 + 2-3682
/5, + 0-0556 + 0-0067 — 0-0552 |° — 0-0624 — 0-0291
& 0/5, + 3-5167 + 0-0207 — 0-0437 — 3-5374 + 2-8515
%18, + 3-4611 + 0-0140 | + 0-0115 — 3-4750 + 2-8806
Anfb, 0 + 0-1676 - 1-3872 + 3-6964 + 1-6051
4/, — 1-4774 + 0-00008,| — 0-00002 | + 1-4773 + 2-0100
DA, + 0-0158 + 0-0046 — 0-0177 — 0-0204 — 0-0258
A /2, + 21137 + 0-0086 — 0-0133 — 2-1223 + 0-4615
P12 + 2-0979 + 0-0040 + 0-0044 — 2-1019 + 0-4873
AnlR, 0 + 0-1151 — 0-4423 + 1-2363 + 1-4773
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. TABLE 7

Effect of Induced Drag on Force Derivatives

Basic design condition: Cy, ;= 5-3; C; , = 1-59; kp = 1.

Cpi=Hk Cr?
k=0 k; = 0-03
Derivative | U, = 78-9 ftjsec | U, = 80 ft/sec
1 v = 15-6deg vs = 7 deg
%, —0-1 +0-081
%, +2:65 +1-126
Xy 0 —0-843
Xy +2:65 +0-941
2, —2-08 —2-08
2y —4-055 —4-476
LN —2-65 =265
N —5-37 —5-37
TABLE 8

Effect of Induced Drag on Stability Characteristics

.

kp=1,k =0 kp =1,k = 0-03
Mode
Time to Time to
Period §amp 2 x amp _ Period % amp 2 x amp
Short period 5-43 0-717 — 5-47 0-703 —
oscillation sec sec sec sec
(0-132 (0-1285
period) period)
Long period 17-48 — 16-06 17-05 — 21-63
oscillation sec sec sec sec
(0-918 - (1-268
period) period)
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