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Summary. The concept of complex stiffness in problems of oscillations with viscous, or structural (hysteretic) 
damping is often used in a wrong way, leading to erroneous solutions. I t  is shown in the Paper that  correct expressions 
for complex stiffness are different in the cases of forced and free oscillations. All fundamental cases for a single degree 
of freedom are critically re-examined and compared, and fallacious solutions eliminated. 

The law of hysteretic damping being only known for a simple harmonic oscillation, all problems involving decaying 
oscillations, or more than one oscillatory mode, can only be treated tentatively at present, until the general law is 
found. This requires further experimental work. 

-1. I n t r o d u c t i o n . - - T h e  first systematic experiments on structural damping were reported as 
early as 1927 by Kimball and LovelP and 1928 by Becker and F6ppF. They both led to the 
conclusion that  this sort of damping, if occurring in oscillatory systems of a single degree of 
freedom performing simple harmonic oscillations of small amplitudes, might be treated approxi- 
mately by the usual linear method (as viscous damping), i.e., by assuming that  the damping 
forces or moments were proportional to linear or angular velocity, respectively. There was 
one important proviso, however, that  the coefficients of proportionality were not constants 
characteristic for the given structure and material, but were themselves functions of the 
oscillatory frequency, viz., they varied in inverse proportion to the frequency, to a fair degree 
of approximation. It  was found appropriate therefore to modify the typical equation of 
forced oscillations" 

rn~ + c~ + kx = F cos (~t + ~)  . . . . . . . .  (1) 
by the following one • 

m2 + k s 2  + kx  = F cos (~ot + ~) , . . . . . . . .  (2) 
OI 

i.e., by making the damping coefficient • 

c = kg - ,  . . . . . . . . . . . .  (a) 
09 

so that  it is assumed inversely proportional to  the frequency o~, and proportional to k (stiffness, 
restoring force constant, spring constant), while g is a dimensionless constant, considered as 
characteristic for the given structure and material. The inclusion of k in the formula (3) is 

* Previously issued as R.A.E. Report No. Aero. 2592---A.R.C. 20,038. 



justified not only by the convenience of having a non-dimensional constant (g) but  also by the 
fact that,  in this case, the damping is a small additional part  of the total  reaction of the 
structure under distortion, of which the major part  is the restoring force kx. In this respect, 
the structural damping differs significantly from the viscous one which (at least in the typical 
case of a 'dashpot' in the oscillating system) is quite unrelated to the restoring force (e.g., that  
due to a perfectly elastic spring). The structural damping is often conveniently called 
'hysteretic' because the graph of the total reaction k{x q- (g/w)2} plotted against the harmonically 
varying x is a closed loop (ellipse), reminiscent of that  of magnetic hysteresis--the area of the 
loop being independent of frequency. 

The above assumption as to the properties of structural damping, deduced from Ref. 2, 
was at once applied by Kiissner ~, ° in his investigations of wing flutter, where he had to deal 
with self-excited coupled oscillations of complicated structures of several degrees of freedom, 
the important  problem being merely to determine the critical flight speed Vc at which one of the 
several oscillatory modes has its effective damping reduced to zero (while other modes are 
still effectively damped and thus practically non-existent). The oscillation could therefore be 
treated as simple harmonic, with one definite frequency, so that  all damping coefficients could 
be represented by the formula (3), with various appropriate values of h and g in each elastic 
element of the system. The difficulty was that  the frequency co was not known in advance 
being, naturally, one of the quantities to be found, along with V~, by solving the determinantal 
(characteristic) equation of the given system of differential equations. I t  seemed therefore 
necessary to consider a characteristic equation in which some coefficients were fun#.ions of o,~e 
of its roots (the purely imaginary one). K/issuer has avoided this difficulty by writing the 
equations analogous to (2) in complex form, viz., by replacing the expression of the total  reaction 
k(x + (g/co)2} by h e ~ x, i.e., considering g as a phase advance by which the reaction leads the 
displacement. All oscillating quantities are then assumed to be complex, and our equation (2) 
becomes • 

m~ + h eig x = F e ~~'-~-~ . . . . . . . . . . .  (4) 

A similar technique was applied by Kassner 9, with a slight alteration, the total reaction being 
written as k (1 + if) x, so that  Equation (2) became • 

+ (1 + i f ) x  = t7 e ico,+o  . . . . . . . . . . . .  (s) 

The difference between (4) and (5) was considered negligible in flutter work, where g was usually 
quite small so that  the differences between real and imaginary parts of the two expressions 

(e ~g = cos g + i sin g) and (1-t-ig) 

were small of 2nd or 3rd order, respectively. 

In either way (4) or (5), tile frequency co has disappeared from the damping term. In flutter 
equations, where there are no external forcing functions (oscillations being self-excited), the 
frequency is eliminated completely, the penalty being however that  equations with some com]?lex 
coefficients must be dealt with. This proved feasible, and the method became general in flutter 
work as, e.g., in papers by Duncan and Lyon ~°, Theodorsen and Garrick ~2, Scanlan and 
Rosenbaum ~, and many others. The structural damping has been found to have an appreciable 
effect, normally leading to an increase in critical flight speed. 

Tile coefficient of the second term in (4) or (5) has been termed ' complex stiffness ' bv several 
authors~, ~,, t6, ~s, or sometimes, less appropriately, ' complex damping '  (see Myklestad~7)--it is 
really ' stiffness and hysteretic damping combined into one complex expression '. The second 
term itself, e.g., k (1 + ig) x, is aptly called ' complex restoring force ' 

The assumption (3), with all its analytical implications and resulting effects on the character- 
istics of forced and self-excited coupled oscillations, was examined theoretically by KimbalP, 
Schlippe 5, Pugsle S ,  Walker ~ and Coleman ~. The mat ter  seemed quite clear and free from 
doubts until, in 1949, Soroka ~ proposed to apply tile concept of complex stiffness (in the form 
of Equation (5)) to studying free oscillations of elastic structures. He did not neglect higher 
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powers of g and obtained what he considered a striking result that  the frequency would increase 
with increase of struc.tural damping, instead of decreasing as it does with increase of viscous 
damping (the stiffness being constant in both eases). He tabulated the rising frequency ratio, 
up to g = 1.6, in which case this ratio would have increased by 20 per cent. This treatment 
was immediately commented on by Pinsker ~5 who gave a correct interpretation of Soroka's 
surprising formulae without, however, challenging the fundamental approach. Apart from this 
mild criticism, Soroka's theory seems to have been accepted as plausible, and it has been 
repeated, with no modifications or reservations, in the American textbook on flutter by Scanlan 
and 1Rosenbaum (Ref. 16, pp. 86 to 87). 

In the meantime, Myklestad ~7 proposed to apply the concept of complex stiffness (this time 
in the form of equation (4)) to both free and forced oscillations, again retaining higher powers 
of g. As a result, he obtained formulae for magnification factor and phase delay angle in 
forced oscillations differing from the commonly accepted ones (as given by Schlippe ~ and WalkerS). 
Myklestad's solution for the case of free oscillations, however, seemed plausible although not 
quite free from doubts ;  at least, it gave the frequency of damped free oscillations which 
decreased with increase of structural damping. 

The entire problem of structural (hysteretic) damping was taken up again recently by Bishop ~8. 
For forced oscillations, he repeated the well-established solution of Schlippe 5 and Walker 8. 
For free oscillations, he gave Soroka's solution along with another one (suggested by Collar), 
the latter agreeing with that  proposed by Myklestad. 

The present position is thus, that  we have two alternative solutions for the free oscillations, 
and also two for the forced ones. The matter  has been further confused by a frequent use 
by many authors of inaccurate verbal expressions and definitions, resulting from the difficulties 
in describing some physical phenomena and corresponding algebraic technique in terms of the 
existing inadequate vocabulary. Thus, e.g., the hysteretic damping is alternatively described 
as proportional to velocity ~, 8,1~,~3, or to displacement 16,~s, or to restoring force ~, or finally as 
possessing an amplitude proportional to that  of displacement ~4. Also, it  is often not clear 
whether the motion should be described as ' damped '  when there exists a force opposing the 
velocity, or when the amplitude of the oscillation decreases gradual ly;  for instance, steady 
forced oscillations would be damped in the former but not in the latter sense. Many difficulties 
are also encountered because of different notations. 

The purpose of the present paper is to clear the existing confusion, to explain the relationships 
between solutions in real and complex terms, to eliminate clearly erroneous solutions and 
controversies, to establish and justify a proper (although restricted) definition of complex 
stiffness, to delimit the regions of the subject matter  where basic concepts are well-established 
or not, and finally to indicate the kind of further experimental work needed for clearing the 
outstanding questions. To achieve these aims, it has been found indispensable to go through 
the entire linearised theory of forced and free oscillations, discussing the well-known solutions 
along with the new and doubtful ones, in unified nomenclature. Particular care has been 
observed when introducing complex quantities, because most misinterpretations and outright 
errors had previously been committed in doing this. 

I t  may be mentioned that  the many alternative theories, discussed in the present paper, 
give significantly different numerical results only when the damping coefficient is not very small, 
i.e., when its second and possibly higher powers cannot be neglected. It  is not suggested, 
therefore, that  the choice of method would materially affect, e.g., the numerical results of flutter 
calculations, where this coefficient has always been quite small heretofore. The matter  is 
interesting, however, and may become important,  because high values of structural-damping 
coefficients are possible and may be useful, so that  there have been several proposals to increase 
them artificially. Also, the neglect of higher powers would leave some questions unanswered ; 
for instance, the effect of varying structural damping on the frequency of free oscillations 
would appear to be nil, £s its magnitude and its very sign depend critically on second and higher 
order terms. 

3 
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Section 2 of the present paper deals with dissipation of energy by damping, not only in simple 
harmonic but  also in ' decaying harmonic ' oscillations ; this is essential for understanding the 
fundamental  assumptions of the theory. In Section 3, the simpler problem of steady forced 
oscillations is considered, with both viscous and hysteretic damping, in real and complex 
notation, also including Myklestad's theory which is shown to be inadmissible for forced 
oscillations. The less simple problem of free oscillations is examined in Section 4, again 
including alternative cases and notations ; Myklestad's theory is shown to be mathematically 
correct here, and consistent with the orthodox Collar's solution, while Soroka's method is found 
to be fallacious ; some alternative methods of solution are suggested and discussed, and a need 
for further experiments pointed out, without which no final decisions can be reached. 
Conclusions are summarised in Section 5. 

The illustrations have been prepared by Miss F. M. Ward. 

2. D i s s i p a t i o n  o f  E n e r g y  by D a m p i n g . - - T h e  analysis of energy dissipation by damping is 
important  because the results of experimental work on structural damping were given in terms 
of energy losses and, in such form, have served as a starting point in all subsequent theories. 
The restoring force is always assumed proportional and opposed to displacement, and the 
damping force proportional and opposed to velocity, so that  the total force acting in the 
direction of motion is (-- k x  - -  c2). To get the energy loss through damping positive, let us 
consider the opposite force : 

f = k x  + c 2 .  . . . . . .  

The total energy lost per cycle will be : 

. .  (s)  

E =  d x  = ½ + c ~ d x  = ½k(xr ~ - xo ~) 4 - c  :i ~ dt , . .  (7) 
o 

where T is the period and x0, xr are the values of x at the beginning and end of the cycle. The 
first term in (7) is the recoverable energy stored in the spring, while the second one represents 
the loss through damping. 

We are going now to calculate E in two cases, viz., when the oscillation is either simple 
harmonic, or ' exponentially decaying harmonic ' 

2.1.  D i s s i p a t i o n  i n  S i m p l e  H a r m o n i c  O s c i l l a t i o n . - - T h e  equations of motion are : 

x = x* sin (cot -t- 9) , 2 = cox* cos (cot -t- 9) , • . . . . .  (8) 

where ~o is the initial phase angle, x* the amplitude, and the ' circular '  frequency is : 

co = 2 ~ / T  . . . . . . . . . . . . . . . . .  (9) 

The resisting force (6) becomes : 

f = k x  + ccox* c o s  (cot + . . . . . . . . . . . . .  (10)  

The first term in (7) is now always 0, because the values of x at t -= 0 and t = T are always 
equal to each other, for whatever ~. The second term becomes : 

~ nlco 

E ~ 0  = c 0) 2 x . 2  c o s  2 ( co t  - ~  9 )  d t  = ~ c  co x . 2  , . . . . . .  ( 1 1 )  
• J o 

and is also independent of ~o. 

This case is illustrated in Fig. la, where f, and its respective components k x  and c2, are plotted 
against x. The curve of f is an oblique ellipse, and its area represents the loss of energy Ed0. 
This ellipse is often referred to as 'hysteresis  loop '. The first term in (10) is represented by 
the doubly covered diameter A B, and its area is obviously nil. The second (damping) term 
may be represented alone by the (normal-positioned) ellipse in Fig. lb, of the area equal to 
tha t  of Fig. la. 

4 



In the case of viscous damping, c is a constant for the given oscillator, independent of the
amplitude x*, frequency co, or phase angle 'p (provided x or w is not large), and (11) shows
that the energy loss as then proportional to the square of amplitude and to the first power of frequency.

For structural damping, the existing experimental resultsl° 2 have shown that the energy loss
per cycle in a simple harmonic motion, while still proportional to the amplitude squared, does not
vary markedly with frequency and may be assumed not to depend on it at all, with fair approxi-
mation, at least through a considerable range of moderate frequencies. This means that cw may
be assumed as constant and, for reasons already mentioned in the Introduction, conveniently
expressed by

cw = kg , .. .. .. .. .. .. .. (12)

where g is the ` dimensionless coefficient of hysteretic damping ' . The formula (12) is identical
with (3) , and (11) now becomes :•

Edo = 7 kg x2, .. .. .. .. .. .. (13)

this leading to the form (2) of the equation of forced oscillations.

2.2. Dissipation in ` Exponentially Decaying Harmonic Oscillation '.--In problems of free
oscillations with moderate damping, the motion is no longer simple harmonic but, if the linear
method still applies, the motion is represented by

x = x* e-at sin (wt + c^) , x = x* et {w cos (wt + ^) - a sin (cot + ^)} , (14)

where x* is the ` initial amplitude ' and a the ` damping index '. Such a motion will be termed
an ` exponentially decaying harmonic oscillation ' . It is interesting to find a formula for energy
dissipated per cycle in such an oscillation. The total ` resisting force ' is still expressed by (6),
so it becomes

f =kx+cx*e-at{wcos(wt4-^) -asin(wt+^)}... .. .. .. (15)
The energy loss (7) is now

E _ - 2 k x*2 ( 1 -. e- 4naIw) sine p --E- Ed , .. .. .. .. .. .. (16)
where

Ed = cx *2
f2nw

a-eat {w cos (wt H ^) - a sin (cot + )}2 dt . .. .. .. (17)
0

The integral is worked out in Appendix I, and we obtain :
2w

Ed == cx*2 ( 1 _ e-4^aiw ) _ w sin 2 + 2a sin2^p . .. .. .. .. ( 18)

Compared with (11), this formula is very much more complicated, and the energy dissipated,
while still proportional to the square of initial amplitude x*2 and to the damping coefficient c,
is seen to depend also on frequency co, damping index a, and phase angle p, in a somewhat
involved way. It tends, however, to Edo (as given by (11)) for a --* 0, as could be expected.
We may write, therefore, conveniently

Ed 1 - e -4^a1cc'
a . a2

- _ -- 1 - -sin 2^ H- 2 2 sin2^ .. .. .. .. .. (19)
Edo 4rca/w w w

or, expanded for small values of the ` relative damping ratio ' a/w

Ed a 8 2 2 a2
- 1 - (2^c + sin 2q) - -F- - -}- 2^ sin 2p + 2 sin p 2

Edo _ w 3 w
2(4)s 16 2 . 2 a \ s

s s sin 2^ + 2 sin - -
-I- s - 1)! -( ^-1 s w

.. (19a)

the series converges for any a/w, but is only convenient for quite small values of this ratio, in
view of the large coefficients.



This case is illustrated in Figs. 2a and 2b where f (see (15)), or only its second ' d a m p i n g '  
term are plotted, respectively, against x, in one case q0 = 0 only, i.e., when x -- x* e -~* sin mr, the 
graphs including one full period. The hatched areas represent the energy lost per cycle and, 
for this value of ~o, they are equal, the first term in (16) being zero. This first term represents 
the work done by the restoring force kx (obviously negative and interpretable as loss of potential 
energy stored in the spring), and this work varies with 9, becoming 0 for ~0 = 0 or =. I t  is by  
no means a dissipated energy, the restoring force being conservative. 

As to the truly dissipated energy E,, given by (18) or (19), it is seen to differ little from Edo, 
if a/m is small. The ratio Ea/Eao depends on a/m and 9 only, and is illustrated by Fig. 3, for 
several values of ~0 and continuous variation of a/m. The effect of 9 appears not to be large, 
and the mean values for 0 < 9 < 2z are also plotted, giving the mean curve corresponding to : 

(Ed)j~'dO ..... __ :T~CCOX'2 (Ed) ..... __ 1--47z:a/me--'~a'Im ( I -~- ~2~): "I 

= 1 - 2 ~ +  ~ +  1 ) ~ . . .  + ( s_  1)t s + l  + - 

(20) 

In the case of viscous damping (c constant), E~ or (Ee) . . . .  is still mainly proportional to mx*=, 
like Ea0, being however modified through a/m, according to Fig. 3. In the case of structural 
damping, the law governing c in exponentially decaying harmonic oscillations is unknown. 
For small a/m, the law should differ little from (12), and the energy dissipated should then be 
mainly proportional to x *=, while being still modified according to Fig. 3, for varying a/m. The 
assumption is doubtful for higher values of a/m, and we shall come back to this question in 
Section 4.2.4. 

3. Steady Forced Oscillations with Damping (Amplitude of Exciting Force Constant, or 
Proportional to Frequency Squared).--Let us consider oscillations of a simple system (mass and 
spring with viscous or hysteretic damping), excited by an external periodic force varying 
sinnsoidally with time. If we neglect the initial transient stage in which the forced mode is 
mixed with the natural  damped one, then the motion may be considered as steady and simple 
harmonic, in unison with the exciting force, and the inferences of Section 2 may be applied 
directly and with no doubts. The differential equation is (4), and its solution may be examined 
with either c constant for viscous damping, or with c replaced by (3) for hysteretic damping. 
In the former case the solutions are well known, in the latter somewhat controversial at present. 
We start  by  recapitulating briefly the known results for viscous damping, not only for the 
purpose of having them handy for comparison in unified notation, but also because the case of 
hysteretic damping then only requires the simple t ransformation by (3). Real and complex 
notations, and vectorial representation, are all used in parallel, so as to avoid and explain 
errors which may creep in (as they have actually done) through inconsistent use of the alternative 
methods. 

3.1. Viscous Damping.--3.1.1. Real notation.--We consider the differential Equation (cf. (1)) : 

m21 -/c21 + kxl = F cos (mr + ~) , . .  . . . . . . . . . .  (21) 

where the suffix (1) has been introduced with a view to later needs, and F, the amplitude of the 
exciting force, may be assumed as a constant. If the frequency m were very small, then 21 and 21 
would be also very small compared with xl, the problem would become nearly static, and the 
approximate solution would be : 

xl z xs~cos (mr + ~), . . . . . . . . . . . .  (22) 
where : 

= F / k  . . . . . . . . . . . . . . . .  (23) 
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is t he  ' s t a t i c  d i s p l a c e m e n t '  of t h e  m a s s - s p r i n g  s y s t e m  u n d e r  a c o n s t a n t  force F .  I n  t h e  gene ra l  
case, for  a n y  00, i t  is c o n v e n i e n t  to  d iv ide  (21) b y  m, a n d  wr i t e  i t  in  t h e  f o r m  • 

2 1 + 2 ~ c o ~ 2 ~ + 0 0 , , ~ x ~ = c o ,  ~ x , ~ c o s ( C o t + ~ ) ,  . . . . . . . . . . . .  (24) 

where ,  for  a b b r e v i a t i o n  • 

00,~ = ~ / ( k / m )  (na tu r a l  u n d a m p e d  f r equency)  , . .  . .  (25) 

Z = c / c , . - - - -  c / 2 ~ / ( m k )  = c / 2 m 0 0 ,  ( re la t ive  d a m p i n g  rat io)  , (26) 

c~ = 2~ / (mk)  be ing  t h e  ' c r i t ica l  d a m p i n g  coeff icient  ' 

T h e  r e q u i r e d  s t e a d y  so lu t ion  for  x~ of t he  E q u a t i o n  (21) or (24) m u s t  also be  a s imp le  h a r m o n i c  
f u n c t i o n  of t, s imi la r  to  (22) b u t  w i t h  a m o d i f i e d  a m p l i t u d e  a n d  in i t ia l  p h a s e  angle,  t h u s  • 

x~ = n x , ,  cos (00t + ~ - -  ~ ) ,  . . . . . . . . . .  (27) 

w h e r e  n (magn i f i ca t ion  factor)  a n d  v (phase  d e l a y  angle) m u s t  be  d e t e r m i n e d .  F r o m  (27) we 
h a v e  • 

2 ~  = - -  n x ~ t  00 sin (00t + ~ - -  ~ ) ,  2~ = - -  002 x~ . . . .  (28) 

and ,  s u b s t i t u t i n g  i n to  (24), d i v i d i n g  b y  00~, a n d  i n t r o d u c i n g  t h e  s y m b o l  • 

r = 00/00, ( f r equency  rat io)  . . . . . . . . .  (29) 
we o b t a i n  • 

n{(1 - -  r ~) cos (00t + ~ - -  ~) - -  2~r s in (00t -[- ~ - -  ~)} = cos (rot + ~ ) ,  . .  (30) 

, _1~ a n d  00t + w h i c h  e q u a l i t y  m u s t  be sa t isf ied for  a n y  t. P u t t i n g ,  in  t u rn ,  o~t -4- ~ = 2 , = ~l, 

we get  " 

a n d  hence  • 

(1 - -  # )  s in ~ - -  2~" cos ~ = 0 / 
(31) 

J 
o . ° . . . . 

n ( 1 - - r  ~ ) - - - c o s ~  ' 

2,tr 
t a n ~ - - l _ r  ~ '  " . . . . . . . . . . . . . . .  (32) 

cos ~ I 
n -  1 - -  r ~ - -  ~ / { ( 1  - -  r2)  2 + 4 ~  2 r 2 }  ' . . . . . . . .  ( 3 3 )  

t h e  s t a n d a r d  t e x t - b o o k  f o r m u l a e  for  p h a s e  d e l a y  a n d  m a g n i f i c a t i o n  fac tor .  T h e y  are i l l u s t r a t e d  
b y  t h e  f ami l i a r  ' r e s o n a n c e  g r a p h s  ' r e p r o d u c e d  in  Figs.  4a a n d  4b. T h e  cu rves  of n all s t a r t  
f r o m  n = 1 a t ' r  = 0, exh ib i t  (if 2 < 1 /~ /2  = 0 .7071)  s ingle  ' r e s o n a n c e  p e a k s  ' : 

1 
~4~max = 2 ~ / ( 1  - -  ;t ~) a t  r = r~ --= ~/(1 - -  2;t~) , . .  (34) 

or (for ~ ) 1/@2) fall m o n o t o n i c N l y  t h r o u g h o u t  t he  r - r ange  ; all cu rves  t e n d  to  0 for  r - -+ oo. 
T h e  angle  v increases  w i t h  r f r o m  0 to  ~, all cu rves  i n t e r s e c t i n g  a t  t h e  v a l u e  ½~ for  r = 1, as 
s h o w n  in Fig.  4b. 

All  t h e  a b o v e  resu l t s  a p p l y  w i t h o u t  r e s t r i c t i on  if F is c o n s t a n t ,  b u t  s o m e  m o d i f i c a t i o n s  are 
n e e d e d  if F var ies  w i t h  00, t h e  i m p o r t a n t  case in  p r a c t i c e  b e i n g  t h a t  in  w h i c h  F var ies  in  
p r o p o r t i o n  to  00~ (this occurs  w h e n  t h e  exc i t i ng  force is p r o v i d e d  as a c o m p o n e n t  of a cen t r i fuga l  
force  of a r o t a t i n g  eccen t r i c  mass) .  I n  th i s  case, i t  is c o n v e n i e n t  to  wr i t e  : 

002 
F=F,~ 2, .. 

('On 

where  F,~ is t he  v a l u e  of F for  00 = 00,. 
also b e c o m e s  va r i ab l e  : 

F n 0.) 2 

X s  t - -  k 00 2 , 

. . . . . . . . . . . . . .  (35) 

The 'static displacement ', as defined by (23), then 

= r 2 ( 3 6 )  or Xs t Xs t , . . . . . . . .  
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but  the  magnification factor must  relate the ampli tude of xl to some constant,  for which purpose 
Y~s, = F , , / k  (static displacement at resonance frequency) is part icularly suitable. The only 
resulting modification is tha t  (33) must  be replaced by : 

r 2 c O S  ~ r e 

g = nr2 = 1 - -  r ~ - -  V{(1 --  r~) ~ + 4;~r~} ' . . . . . .  (37) 

and this is i l lustrated in Fig. 4c. The g-curves all start  from 0, exhibit  (if Z < 1/V'2) single 
resonance peaks : 

1 1 
g . . . .  = 2 z V ( 1  - z )  a t  r = V ( 1  - . . . . . .  ( 3 8 )  

or (for Z ~ 1/%/2) rise monotonical ly  throughout  the r-range, all curves tending to 1 for r - +  ~ .  
The angle V behaves exactly as in the  previous (F ---- const.) case, so tha t  the  graph 4b is 
appropriate  to either of 4a, 4c. 

3.1.2. C o m p l e x  n o t a t i o n  a n d  vec tor ia l  r e p r e s e n t a t i o n . - - L e t  us now suppose tha t  tile same 
oscillator is subject to the  external  force F sin (cot + ~ . )=  F cos (cot + ~ -  1~), ins tead of 
F cos (cot q-c~). The displacement,  different from xl, may  now be denoted  by x~, and tile 
differential equat ion wri t ten  : 

m ~ 2  + c22 -t- kx~  = F sin (cot +- ~) ,  . . . . . . . . . . . .  (39) 

and its solution will be obta ined directly from tile previous section, replacing ~, wherever  it 
appears, by  (~ -- ½~). We obtain, instead of (27) • 

x~ ' -  n xs, sin (cot q- ~ --  ~) ,  . . . . . . . . . .  (40) 

wi th  n, xs,, ~ meaning  exactly the  same values as before. Formulae (23), (32), (33) and (37) 
will hold, as none of t hem depends on ~. 

Let  us now add the equat ion (39) mult ipl ied by i to (21), introducing simultaneously a new 
' complex '  variable : 

x - x l  + i x~, 

whereupon we obtain a new ' complex ' differential equat ion for x : 

m ~  + c2 + k x  = F e ~(~+~ . . . . . . . . . . . . . . .  (41) 

and the  corresponding complex solution will be : 
x = n x,, e ~(~+~-* . . . . . . . . . . . . . .  (42) 

which, resolved into real and imaginary  parts, leads back to (27) and (40), respectively. We 
may  also t reat  (42) as a trial solution of (41) and, on substi tution,  we obtain immedia te ly  (32) 
and (33).  

An impor tan t  formal modification may  now be introduced.  From (42) we deduce immedia te ly  : 

- -  icox , ~, - -  - -  coax . . . . . . . . . .  (43) 

and, using only the  first of these relationships, equat ion (41) can be wri t ten  : 

m 4  ~- (k  ~- icco) x ---- F e ~°~+~ . . . . . . . . . . . . . .  (44) 

or, using (25) and (26) : 

+ (co,~ + 2i,~,co~co) x = co,~ x,~ e ~(~+~) . . . . . . . . . . . . . . .  (44a) 

In  ei ther form, this is still a linear differential equat ion of 2nd order, representing exactly the  
same mot ion as before. However,  the  second (damping) term has formally disappeared in (44), 
while the  constant  h in the  subsequent  te rm has been replaced by  (k  + icco) which may  be 
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called 'complex stiffness'  for the case of viscous damping. An analogous change is seen in 
(44a). Trivial as this small modification may seem, it is essential for most of the following 
arguments. The equation (44) may now be solved by the same trial assumption (42) as before. 
We obtain, using the second of the relationships (43), and dividing by ~,~ : 

n (1 - -  r °" + 2i2r) e- '~ = 1 , . . . . . . . . . . . .  (45) 

and (32), (33) follow immediately. The formula (37) for the case of centrifugal excitation 
also follows. 

The usefulness of the entire manipulation becomes apparent when we remove almost the 
entire sections (3.1.1) and the present one, and only retain equations (44), (45) and (42) and the 
resulting ones (32), (33) and (37). The advantage consists in : 

(i) a convenient way of writing, 

(ii) a particular rapid solution ; and 

(iii) the use of complex quantities leading to vectorial illustration. 

All these benefits become increasingly useful, of course, when dealing with systems of an 
increasing number of degrees of freedom. 

As to the vectorial representation, it is very simple in the given elementary case, and is 
shown as a (known) graph in Fig. 7a. The open polygon OABC illustrates the left-hand part  
of (44), and the closing side 0C the right-hand part, or forcing function. All vectors must be 
considered as rotating anti-clockwise at uniform angular speed m. The velocity vector 2 = io)x 
leads the displacement vector x by  90 deg, and is similarly led by the acceleration vector 2. 
All phase angles are shown. In this representation, x~ and x2 are the horizontal and vertical 
component of x, respectively, and the resolutes of all other vectors have a similarly obvious 
meamng. All vectors may be projected on any other axis, giving analogous motions with 
arbitrary phase shift relative to xl or x~. 

3.2. Hysteretic D a m p i n g . - - T h e  entire theory of Section 3.1 applies here, with the only 
modification that  the damping coefficient c must now be replaced by  kg/r,, cf., (3). There is no 
need to repeat the analysis, and it will suffice to write down the modified main results in the 
same order, and to discuss them. 

o r  

3.2.1. Real  n o t a t i o n . - - T h e  differential equation (21) or (24) becomes • 

rn~l + kg ~ + k x l  = F cos (~t + ~.) 
o) 

~ + g 21 + 2 - ~o2 ~o x l  = ,o,? Xs, cos (~l + ~) ,  
o) 

the relative damping ratio 2 being not used directly in (47). 
however, being related to g in the following way. .  

. . . . . .  (46) 

. . . . . . . .  (47) 

This ratio still has a meaning, 

. . . . . . . . . .  (4S) 

The steady solution still has the form (27) but the formulae (32, 33) become • 

g 
tan ~ = 1 -- r 2 ' . . . .  (49) 

y / ,  m _ _  
cos ~ 1 

1 - r ~ V { . ( 1  - ~ ) ~  + g ~ } '  
(so) 



as der ived  and  discussed a l ready in Refs. 5, 8, 18, and  i l lus t ra ted  in Figs. 5a, 5b. The  resonance  
curves  in Fig. 5a, for va ry ing  g, s t a r t  f rom the  var ious  ini t ial  values  1/~¢/(1 + g2) at  r = 0, 
exhib i t  each a single resonance  peak  • 

1 
~%ax = -  at  r = 1 . . . . . .  (51) • g ' • • 

and  t e n d  to 0 for r - +  co. Angles ~ (Fig. 5b) s ta r t  f rom the  var ious  ini t ial  values  tan-~g at  
r = 0 and  increase wi th  r,  reaching  the  c o m m o n  value ½= for r = 1, and  t end ing  to = for r - +  co. 

I n  the  case of cent r i fugal  exci ta t ion,  the re  is no change in behav iour  of ~7, b u t  ~ m u s t  be 
rep laced  by  g, expressed  by  the  fo rmula  (37) modif ied  to  • 

g = 1/~r~ = ~/{(1 - -  r~) 2 -l- g 2 } ,  . . . . . . . .  (52) 

as i l lus t ra ted  in Fig. 5c. 

and  t e n d  to 1 for r - +  co. 

All curves  of g now s ta r t  f rom 0, exhibi t  single resonance  p e a k s "  

g . . . . .  = ~/(1 + g~) at  r = L --  ~/(1 + g2) . .  (53) 
• g 

I t  m a y  be m e n t i o n e d  tha t ,  f o r  s m a l l  v a l u e s  o f  g,  curves  of Fig. 5 differ ve ry  l i t t le f rom those  
in Figs. 4 cor responding  to 2 ----- ½g, and  the  peaks  of b o t h  n and  g are a p p r o x i m a t e l y  • 

1 1 
--  for r ~ 1 . . . . . . . . . .  (54) 

~/b . . . .  ~ ~ .. . . .  ~'~ 2 2  g '  

t h e  second powers  of 2 or g being neglected.  As g increases,  t he  differences become gradua l ly  
bigger. If g does no t  exceed 1, t hen  the  peak  values of ~z (but no t  of g) for hys te re t i c  d a m p i n g  
m a y  be m a d e  equal  to those  for viscous damping ,  if 

Jt '  ,(' I (equivalent  to g = 22 ~/(1 --  2~)) , (55) 

and  an example  is g iven in Figs. 8a, b for r a the r  large values  2 --  0 .6 ,  g --  0 .96 .  Similarly,  
if we chose • 

2 = 1 1 (1 -~- g2) equ iva len t  to g = 1 --  22 ~ ' 

t h e n  the  peaks  of ~ (but no t  of ~) become equal  for viscous and  hys te re t i c  damping ,  respect ively,  
and  an example  is g iven in Fig. 9a, b for 2 = 0. 352, g --  0. 876. Here,  g m a y  have  any  value,  
b u t  2 mus t ,  of course, no t  exceed 1/~¢/2. 

3.2.2. C o m p l e x  r ~ o t a t i o r a . - - T h e  complex  n o t a t i o n  m a y  be i n t roduced  in exac t ly  the  same  way  
as in Sect ion 3.1.2, and  it  will suffice to wri te  here  the  differential  equat ion ,  in t he  forms 
analogous  to (44) and  (44a) • 

o r  

m# + k (1 + i g )  x = F e ~(°~+~ . . . . . . . . . . . . . .  (57) 

£ -t- co,, ~ (1 + ig )  x ---- o ~  2 x ,~  e ~l~+~) . . . . . . . . . . . . .  (57a) 

10 



By substituting (42), the solutions (49, 50) follow immediately. The vector diagram of Fig. 7 
applies, with the only alteration that  the vector AB now denotes i k g x  (instead of ic~ox). In the 
previous case, the ratio AB • OA had the value coo/k and hence increased with frequency, but in 
the present case the ratio is simply g and thus independent of frequency. 

3.2.3. M y k l e s t a d ' s  m e t h o d . - - I n  Ref. 17, Myklestad introduced the hysteretic damping in a 
way rather different from that  described above. Denoting the (supposedly small) damping 
force by k A x ,  and taking small differences in the equation of simple harmonic oscillations, 
written in the complex form • 

x = x *  e ' ~ '  , . . . . . . . . . .  ' . . . .  ( 5 8 )  

he obtains • 
/ =  k (x + Ax) = k . . . . . . . .  (S9) 

and, assuming tha t  • 
co A t  = const. = 2/3, . . . . . . . . . . . .  (60) 

he gets • 
f = k (x + A x )  = k . e  ~ x . . . . . . . . .  (61) 

The procedure does not seem to be entirely justified, because A x  is not clearly a function of 
time (and may really be assumed in various ways to suit experimental results), so the process 
of differencing is doubtful, as is also the assumption (60). But, whatever the method of 
derivation, the formula (61) agrees with ours • 

f = k ( 1  + i g )  x ,  . . . . . . . . . . . .  (62) 

if we put  g = sin 2/~ or g = 213, up to the terms of 1st order in g or/3, but not in terms of higher 
order. In fact, the differencing could be done in an alternative way • 

A x  = ico x*  e i~t A t  = ico x A t ,  . . . . . . . .  (63) 

equally justified within 1st order of At ,  and this, combined with the assumption (60), would 
lead to (62). 

The important  fact is that  Myklestad has used the expression (61) for the complex restoring 
force in working out formulae for forced oscillations involving higher powers of/3 (or g-), and 
we may therefore expect differences between his results and those commonly accepted (form 
(49) and (50)). His equation (61) may be written • 

f = k ( c o s 2 / 3  q - i s i n 2 p )  x = k { ( 1 - - 2 / 3 2 + . . . )  + i ( 2 / 3 - - . ~ / 3 3 . . . ) } x ,  / 
or ' (64) 

J f = k {V'(1 - -  g~) q- ig} x ,  if g -- sin 2/3, 

and it is seen tha t  he admits tacit ly of a decrease of the simple static stiffness with an increase 
of the hysteretic damping coefficient g. The decrease is of the 2nd order in g, thus only admissible 
if all 2nd order terms are finally neglected, but  not otherwise. There is no justification 
whatsoever at present to assume such a decrease. Let us see, however, what are the results. 
The equation of forced oscillations, instead of (57) or (57a), becomes • 

m ~  + h e ~ x = F e i~°''+~ . . . . . . . . . . . .  ( 6 5 )  

or 
:~ _~_ co~e2~x = co,~ x , ,  e i ~ , t  ~) . . . . . . . . .  . . . .  (65a) 

Assuming again the trial solution, analogous to ( 4 2 )  • 

X,  = ~4 t X ,  s t e i ( ~ ° t + ~ - ~ ' )  • • (66) 
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and subs t i tu t ing  it into (65a), we get : 

n '  (~o , ,  ~ e 2i~ - -  co 2) e - i ~ '  - -  co,~ ~" 

or, separat ing the real and imaginary  par ts  : 

cos 2/3 --  r ~ - - -  cos ~ ' / n ' ,  

sin 2/3 = sin ~7'/n' , t . . . . . .  • . . . . .  (67) 
whence : 

, _ sin 2/3 
t an  v cos 2/3 - -  r ~ . . . . . . . . . . . . .  ( 6 8 )  

n' -- cos 7]' _ 1 1 
cos 2// --  r ~ -- ~/{1 --  2r" cos 2/3 -5 r 4} = ~/{(1 --  r~) ~ + 4r" sin~/3} ' (69) 

and similarly, for the case of centrifugal  excit ing force (proportional to ,o ") : 

~2 ?.3 

W/{1 --  2r ~ cos 2/3 -5 #} W/{( 1 _ r~)~ -5 4r ~ sinP/3 } . (70) 

The formulae (68, 69, 70) are analogous to (49, 50, 51), bu t  far from ident ica l - -especia l ly  for 
larger values of g, as m a y  be seen from Figs. 6a, b, c which should be compared with  ha, b, c. 
I t  should be noticed tha t  Mykles tad 's  formulae have sense only for g ~ 1, while the  s t andard  
ones are applicable for any  g. A remarkable  point  is t ha t  1Kyklestad's resonance formula (69) 
and curves (Fig. 6a) are identical  with those (form. (33) and Fig. 4a) for viscous damping  and, 
0I course, exhibi t  the  same resonance peaks for r~ < 1 (cf., form. (34)) ; the  equivalent  sets of 
curves correspond exact ly  one by  one, if we make Z = sin/3 (this has not  been done in our 
plots, where we chose the correspondence g = sin 25). The same remark applies to resonance 
curves for variable excitation.  The formula (68) and graph in Fig. 6b, for the  phase delay, 
differ from both  ((32) and Fig. 4b) and ((50) and Fig. 5b). All three sets are hard ly  dist inguishable 
in the  case of low relat ive damping  (Z ~ l_g ~ /3 all small), but  the differences increase con- 
s iderably with  relat ive damping.  Two str iking cases are i l lustrated in Figs. 8 and 9, a l ready 
ment ioned before, where Mykles tad 's  curves have also been traced for comparison. 

However  neat  and alluring Mykles tad 's  formulae and graphs m a y  seem, they  must  be rejected 
because t hey  are based, as shown, on the taci t  assumption tha t ,  as g increases, the stiffness 
decreases in proport ion to ~/(1 - -  g~) (c[., form. (64)). There is no reason whatsoever  to accept 
this assumption,  which is at  variance with  the usual way  of examining the effect o f  i m r e a s i n g  
d a m p i n g  at cons tan t  s t i f fness .  I t  is perhaps t rue tha t  such a var ia t ion cannot  be s imply produced 
by  an exper imenta l  appara tus  and, from this point  of view, the experiments  wi th  s t ructura l  
damping must  differ considerably from those wi th  viscous damping.  In  the  la t ter  case, the  
damping m a y  be produced by  a dashpot  wi th  vary ing  constant ,  a uni t  ac tual ly  separated from 
the  stiffness-producing spring (which itself m a y  pract ical ly  involve only negligible s t ructura l  
damping),  as shown d iagrammat ica l ly  in Fig. 10a. In  the  former case, the  s t ructural  damping is 
na tu ra l ly  and unavoidab ly  supplied by  the same spring (or other elastic structure) which pro- 
duces stiffness ; therefore the  pictorial  scheme (Fig. 10b) proposed by  Bishop 'S--wi th  a seemingly 
independent  damping  source h - - shou ld  ra ther  be replaced by  a different scheme (Fig. 10c), 
where stiffness and damping  clearly originate in a common source. I t  seems unavoidable ,  in 
order to change hysteret ic  damping wi thin  wide limits, either to use a number  of spring models, 
so t ha t  both  stiffness and damping m a y  be chosen at wi l l ;  or possibly to have one elastic 
s tructure,  of more elaborate nature,  involving one or more controls permi t t ing  a continuous 
var ia t ion  of bo th  parameters .  Wha teve r  the  exper imental  technique,  however,  it seems in- 
admissible to present  results, relat ing to hysteret ic  damping,  for stiffness and damping bo th  
vary ing  in an artificial way  (@, 64) to suit  a rb i t ra ry  algebra, while we should ra ther  t r y  to use 
algebra to suit  fundamenta l  concepts. 

12 



I t  may be mentioned tha t  we may come back to the usual (real) form of the differential 
equation, by  using tile first of tile relationships (43) backwards, so as to eliminate the imaginary 
part  of the complex stiffness term in Myklestad's Equation (65), which then takes the form 

m# + kg ~ + kx~/(1 --  g2) = F e i(~°t+°:) , . . . . . . . .  (71) 

where it is clearly seen that  the stiffness is assumed to decrease when g increases (cf., equation 
(46)). I t  seems clear that  such a decrease was not actually intended by ~ykles tad,  and merely 
resulted from calculating 2nd order effects on the basis of an assumption which was only 
correct to the 1st order. Myklestad himself hinted that  the common way of writing the 
complex stiffness as k (1 + ig) led to peak amplitudes at the natural  frequency itself (rather 
than at the smaller frequency r, = ~/cos 2¢?), and claimed tha t  this was at variance with 
observation. He failed to quote any concrete experimental data, however, and conclusive 
results could not possibly be obtained for the small values of g he considered, and which have 
been actually encountered in practice h i ther to--not  necessarily so in the future. Myklestad 
also claimed tha t  his way of writing removed some clearly erroneous conclusions in the case of 
free oscillations (presumably referring to Sorokal~), but  this mat ter  is dealt with in Section 4 
of this paper. 

The theory of Section 3.2.2 is therefore the only one to be recommended, for the time being, 
for dealing with hysteretic damping in steady forced oscillations, and also in other oscillations 
which are simple harmonic, e.g., in established flutter at critical speed. However, even this 
theory must be understood as based on the existing meagre experimental evidence, and may be 
modified in the light of future experiments, especially for the case of artificially increased 
structural damping. 

3.3. Summary  of Formulae . - -The  table overleaf summarises all relevant formulae for forced 
oscillations, derived and discussed above, which are usually all that  is needed in practice. 
Myklestad's formulae are included for completeness. Formulae for phase delay angle at 
resonance peaks are added. 

4. Free Oscillations with Damping i - -As  already observed by Bishop 18, the case of free oscilla- 
tions with hysteretic damping is more difficult than that  of forced oscillations, and no satisfactory 
solution has been given. There are really two causes for this. The.first one is of a mathematical  
nature, and becomes apparent through the fact tha t  two different solutions have been obtained, 
and used on the basis of the same assumption as to the damping law, depending on whether 
real or complex notation was used. This discrepancy has been only par t ly  explained by Bishop. 
The second cause is of more profound nature : tile law of hysteretic damping, originating from 
KimbalP and BeckeP, was based on experiments involving simple harmonic oscillations only, 
while damped free oscillations are never simple harmonic but  decaying. I t  is impossible to 
guess what the damping law is in such cases, without further experiments. The two solutions 
mentioned above are both based on the assumption tha t  the law is the same as for simple 
harmonic oscillations, and it should at least be possible to decide which of these is correct 
on that  assumption. We shall, however, discuss also some alternative plausible ways in which 
the damping law may be tentat ively generalized. 

We start  again by recapitulating briefly the known theory for the case of viscous damping. 

4.1. Viscous Damping.--4 .1 .1 .  Real notat ion.--The differential equation is now : 

mE + c~ + kx  ---- 0 . . . . . . . .  

or, using the notation of Section 3.1.1 (form. (25) and (26)) : 

2 + 2,~co,,2 + ~o,,~ x =- 0 . . . . . . . . .  
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A s s u m i n g  a t r ia l  so lu t i on  in  t he  f o r m  : 

x l  = x* e -~' cos (cot + 9) , . . . . . . . . . . . .  [74) 

w h e r e  x* a n d  9 are a r b i t r a r y  c o n s t a n t s ,  we h a v e  : 

~ = - - x *  e -~  {a cos (cot + 9) + co sin (cot + ~)},  / 
(75) 

Xz - -  x* e -~t {(a ~ - -  co~) cos (cot + 9) + 2aco sin (cot + ~)},  J 
Q I 

and ,  s u b s t i t u t i n g  i n to  (73), we see t h a t  t h e  fo l lowing  e q u a l i t y  m u s t  be  i d e n t i c a l l y  sat isf ied,  
for  a n y  t : 

(a ~ - -  co~ - -  22aco,, 4.- co,~) cos (cot + ~o) 4.- 2co (a - -  2co,,) s in (cot + 9) = 0 .  (76) 

Th i s  will  be  so o n l y  if t h e  coeff icients  of cos (cot 4- 9) a n d  sin (cot + ~o) are b o t h  zero, w h i c h  
gives  : 

a = Zco,~, co = co,~/(1 - -  22), . . . . . . . . . .  (77) 
h e n c e :  

a 2 
co - -  ~/(1 - -  Z~)' ' . . . . . . . . . . . . . . .  (78) 

t he  r a t io  of a m p l i t u d e s  a t  t h e  b e g i n n i n g  a n d  e n d  of a c o m p l e t e  cycle  : 

- R  = e ~ " / ~  = e 2 " ~ / v ' ( 1 - z 2 )  , . . . . . . . . . . . . . .  (79) 

a n d  t h e  l o g a r i t h m i c  d e c r e m e n t  : 

= I n  R = 2 ~  ; / ( 1  - -  Z ~) . . . . . . . . . . . . . .  ( 8 0 )  

I t  is Seen t h a t  (74) is a gene ra l  so lu t i on  p r o v i d e d  a a n d  co h a v e  t h e  va lues  (77), t h e  c o n d i t i o n  
be ing,  h o w e v e r  : 

z < 1 ,  o r  c < 2 a / ( m k ) ,  . . . . . . . . . .  (81) 

i.e., t h a t  t h e r e  is no  o v e r d a m p i n g .  I f  2 > 1, t h e  so lu t i on  (74) is inva l id ,  a n d  t h e  a l t e r n a t i v e  
ape r iod i c  s o l u t i o n  e x i s t s :  

x~ = A e-"" + B e -~'t  , . . . . . . . . . . . .  ( 8 2 )  

w h e r e  : 
a ' =  co,,{~ + V ( ~  ~ - 1 ) } ,  a" = ~ { ~  - V ( z  ~ -  ~)} . . . .  (83)  

If ,  f inal ly,  X = 1, t h e n  a '  = a" = co,,, a n d  t h e  so lu t ion  is : 

x~ = e -~,~' (A q- Bt) . . . . . . . . . .  . . . . . .  (84) 

T h e  a b o v e  resu l t s  are i l l u s t r a t e d  in  Fig.  11, w h e r e  co/co,, a/co,, a/co, d/co,, a n d  a"/co,, are p l o t t e d  
aga ins t  2. T h e  i m p o r t a n t  p o i n t  to  r e m e m b e r  is t h a t  t h e  cr i t ica l  cond i t ion ,  w h e r e  t he  s o l u t i o n  
ceases  to  be  per iodic ,  occurs  w h e n  2 = 1, co = 0. 

4.1.2. Compl ex  notat ion a~d vectorial represee4tatio~¢.--If ~ < 1, t h e  e q u a t i o n  (72) or  (73) ha s  
also a s o l u t i o n :  

x~ = x* e -~' s in  (cot + y )  , . . . . . . . . . . . .  (85) 

1~ a n d  a h a v e  t h e  s a m e  va lues  as w h i c h  is o b t a i n e d  f r o m  (74) b y  r ep l ac ing  9 b y  (9 - -  ~ ), a n d  co 
before .  I n t r o d u c i n g  t he  c o m p l e x  va r i ab l e  x ----- x l  + x2, we f ind  t h a t  

x = x *  ~-°~ { c o s  (cot + 9)  + i s i n  (cot + ~ ) } ,  . . . . . .  (8~)  
o r  

x = x *  e - ~ ' + ~ ' + ~  . . . . . . . . . . . . . .  (87)  

is also a so lu t i on  of (73). W e  m a y  also t r e a t  (87) as a t r ia l  so lu t ion ,  a n d  t h e n  we h a v e  : 

= (ico - ~) x ,  ~ = (ico - a) ~ x ,  . . . . . . . .  ( 8 s )  

w h i c h  s u b s t i t u t e d  i n to  (73), l ead  i m m e d i a t e l y  to  (77). 
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We may  now perform a similar formal t ransformat ion as in Section 3.1.2, viz., eliminate 2 
from the differential equation. By using only the first of the  relationships (88), we write (72) 
and (73) in the following forms, respectively : 

m2 + {(k --  ac) + icO)} x = 0 . . . . . . . . . . . .  (89) 
and 

2 + {(O),2 _ 22a co,) + 2i~ co, co} x = 0 . . . . . . . . .  (89a) 

In either form, this is still a linear differential equat ion of 2nd order, representing exactly the  
same motion as before. The damping te rm has formally disappeared, and the  constant  k in the 
subsequent  te rm has been replaced by 

(k -  ac) + ico), . . . . . . . . . .  (90) 

which may  again be t e rmed  'complex s t i f fness ' for  the case of free oscillatior~s with viscous 
damping. There are two impor tan t  differences in comparison with the  case of forced oscillations 
considered in Section 3.1.2. Firstly, the  complex stiffness (90) now differs from tha t  (k + ico)) 
previously obta ined ; it  appears tha t  the  real part  k has now been formally decreased by  ac, 
and this is obviously due to the  mot ion  being now not a simple harmonic  but  a decaying harmonic  
oscillation. The expression (90) is more general and reduces t o  the previous form when a = 0. 
Secondly, the  equations (89) are now peculiar inasmuch as the  constant  coefficients of x contain 
both  a and O) which are unknown until  the equat ion is solved.* This peculiari ty might  become 
very troublesome if it occurred in a more complex system of several degrees of freedom. In  the  
present case, however,  we ma y  solve (89a) quite easily, by  using the second of relationships (88), 
whereupon we obtain : 

(a ~ - -  O)~ + O),,~ - -  2Xao), ,)  + - 2 i o )  (20),, - -  a)  = 0 . . . . .  (91)  
and hence directly (77). 

The advantages  of complex nota t ion for free oscillations are the  same as for the  forced ones 
and, as known 19, the  vectorial representat ion may  still be applied for a combinat ion of oscillatory 
functions with ampli tudes decaying exponential ly wi th  t ime (such as those represented by form 
(74) or (87)), provided the  frequency O) and the  damping  index a are the  same for all functions. 
The il lustration is given in Fig. 14, where the  closed triangle OAB represents the  three terms of 
equat ion (72). All vectors are considered as rota t ing anticlockwise at uniform angular speed co, 
while decreasing exponent ial ly  at uniform rate. The velocity vector 2 leads tha t  of displacement  x 
by  (90 ° + ~), and is similarly lead by the  acceleration vector 2, where the  ' damping  angle ' e 
is defined by : 

tan  ~ = alo) . . . . . . . . . . . . .  (92) 

I t  is obvious tha t  OA = OB, i.e., the triangle is isosceles, and the angle AOB = 2e. The 
modified equat ion (89) is i l lustrated by the  inset diagram in Fig. 14, where the  triangle OEB 
replaces OAB. 

4.2. Hysteretic Damping.--4.2.1. Collar's method, real ,~otation.--The method  suggested by  
Collar and described by Bishop Is is based on the  assumption tha t  the  relationship (12) still holds 
in Lhe case of free oscillations, in spite of the  mot ion being now not simple harmonic. The 
differential equat ion  (72) or (73) becomes : 

m2 + kg 2 + kx = 0 . . . . . . . . . . . .  . .  (93) 
O) 

o r  

so tha t  • 

+ gO),2 ~ + co,," x = 0 . . . . . . . . . . . . .  (94) 
O) 

_ _  g O )  ~ 

2O) . . . . . . . . . . . . .  (95) 

* I t  was not  so in the case of forced oscillation where the complex stiffness did contain o) (not a which was 0), 
bu t  o) was known as imposed by the excit ing force. 
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Thes01ution_(74) still holds, as als9 do the Conditions (77)which; howeVer, assume the following 
form • 

a - -  2co ' - o ) = c o  . 4 c o 2 ]  . . . . . . .  

In this case, the coefficient of 2 in (93, 94) depends on ~o which is itself unknown,  therefore (96) 
are not final answers ; they may, however, be treated as a system of equations for determining 
a and ~o. The solution is • 

Z (97) ~o,~ 2 ' w ,; • 2 ' 

where the signs of ~/(1 -- g') are the only ones consistent with conditions at g = O, and hence • 

a 1 ---g') • g 
g 7 1 + C(1 

and the logarithmic decrement • 

d = l n R = 2 ~ - - a  = 2~g 
o) 1 + ~ / ( 1  - -  g~)-'  "" 

(98) 

. . . .  (99) 

All quantities determined b y  (97 to  99) have a meaning only if g ~< 1, therefore the oscillatory 
solution (74) seems to apply for, and only for, such values of g. If g > 1, we might expect  an 
aperiodic solution but since the law of structural damping for aperiodic motions is completely 
unknown at present, it would be futile to at tempt  to find the corresponding solution. 

Formulae (97 and 98) are illustrated in Fig. 12 which shows that  the frequency ~ decreases 
an d ,the damping index a increases with increasing g, and so does, of course, the relative damping 
ratio ~. This behaviour is as might be expected. However, there is one striking difference 
from the case of viscous damping (Fig. 11). In that  case, the limit of validity of the oscil!atory 
solution (74) coincided with the frequency co falling to zero, ~ becoming 1, and a/o) reaching infinity, 
so-that ,  in the limiting iconditions, the solution becomes just aperiodic (84). ~Zhe complex 
stability root (--a + ioJ) afterwards splits into two real roots (--a') and (--a"), cf., (82). In the 
present case, the limit of validity seemsto  be ~ = ~o/~o,, = a/o),~ - :  a/~/2 = 0.707!, ,so that  the 
solution is still fully oscillatory i n  these limiting conditions. This i s  a v e r y  unusual result, 
We Come back to this question in Section 4.2:4.. 

4.2.2. Collar's method in complex notation, leading to Myklestad's formulae . - -The  complex 
notation may be again introduced, in exactly the Same way as in Section 4.1.2, and the 
differential equation will be obtained, on substituting the first of the relationships (88) into 
(93; 94),~ in the forms • 

+ k - + - -  0 , .  (lOO) 
\ o) / 

o r  

, . 2  -}-o~ ~ (1 ----ag + ig I x 0 . . . . . . .  . . .  . .  (100a) 
\ fo / 

The damping term has f~ormally disappeared, and the constant k in the subsequent . term has 
been replaced by 

k ( 1 - -  ag + ig) ' C o  . . . . . . . . . .  (101) 

which is now t h e '  complex stiffness' for  the case or free oscillations' with hysteretic damping. I t  must 
be stressed that,  although the real part of this complex stiffness is now less than k, it does not 
mean that  the true stiffness has been modified. This is still k, as seen from equation (93) which 
is exactly equivalent with (100). The modification of the real Constant has taken place merely 
because the motion is now an exponentially decaying osci!]at!on, :and not just simple harmonic, 
, . . . . .  t 
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so tha t  the  complex ratio ~ • x is now ( - -a  + ico), instead of ico. The complex stiffness (101) 
is more general, bu t  it becomes again equal to k(1 + ig) when a : 0 as, for instance, in the  case 
of s teady forced oscillations (Section 3.2). 

The equat ion (100a) can, of course, be solved directly, by  using the  second of the  relationships 
(88), and then we obtain again the  solution (96). 

The vector diagram of Fig. 14 applies in the  present case, with the  only al terat ion tha t  the 
vector  AB now denotes kg~/co (instead of c~). The inset  diagram again illustrates the complex 
restoring term, consisting of components  OE and EB. 

I t  may  be ment ioned  that ,  in equat ion (100), a l though the  imaginary  part  in the second te rm 
is now known, the  real par t  does depend on a and co which are unknown until  we find the solution. 
We may,  however,  use this solution, e.g., form (98), to get rid of them. We find • 

1 g a  _ % / ( 1  - -  g 2 ) ,  . . . . . . . . . .  (102) 
co 

and hence the  differential equat ion m a y  be wri t ten  in yet  another  form • 

+ k { % / ( 1  - + i g ) x  = o ,  . . . . . . . . . . . .  ( l O 3 )  

where the complex stiffness has the form identical  with (64), which we encountered when 
discussing Myklestad's  theory. I t  is seen to be applicable in the  present case and, if we put  
again • 

g ----- sin 2/~, 
then  the  differential equat ion becomes • 

m #  + k e ~i'  x : 0 . . . . . . . . . . . . .  (104) 

and the  formulae (97 to 99) assume very simple forms • 

co a a 
- -  ---- cos fl ,  - -  ---- ~ ---- sin/~, - ---- tan  fl, ~ : 2~ tan  fl . . . . . . .  (105) 
co ,~ co n co 

Myhlestad's concept of  complex stiffness has thus been vindicated for the case of  free oscillations 
with hysteretic damping, of  a single degree of freedom. I t  is not  general, however, as it fails, 
e.g., in the  case of forced oscillations. I t  should, therefore, never  be used in any other  case 
although, if g is small, the  errors involved may  only be small of 2nd order. 

Considering the  inset diagram in Fig. 14, we observe that ,  in the  present case • 

= . . . . . . . . . . . . .  ( 1 0 6 )  

4.2.3. Soroka's method.--Soroka 1~ wrote the  differential equat ion of free oscillations with 
s tructural  damping  in the  following complex form : 

m# + k (1 2_ ig) x ---- O, . . . . . . . . . . . .  (107) 

which differs from (100) by  having a simpler complex stiffness k(1 + ig), just  as in the equat ion 
(57) which related to s teady forced oscillations. Soroka quoted  Theodorsen and Garrick 1~ 
as t h e  source of his equation, a l though these authors applied this sort of complex stiffness only 
in the  problem of critical flutter, i.e., when the  oscillation was simple harmonic.  

Dividing by  m, we ma y  write (107) as follows : 

X + ~ o , ~ ( l + i g )  x = O  . . . . .  

I t  still admits  of the solution (87) and, using (88), we obtain : 

(ico --  a) 2 + co2 (1 + ig) ----- 0 . . . . .  
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Equat ing to zero the real and imaginary parts • 

we find " 

and hence • 

0)2 _ _  a 2  = 000~ 2 , 2 a 0 )  = g co,,  2 , 

000 ~ / , V ' ( 1  + g2) + 1 
0).  2 ' 

a g 
000 + + 1' 

_ = a  j V ( 1  1 .. 
COn 2 ' 

= In R ---- 2~g 
V ( l + g ~ ) +  1" 

(lO9) 

(11o) 

(111) 

This is Soroka's solution whick, if we put • 

g = sinh 2),, 

may also be written • 

..  (112) 

000 _ c o s h r ,  2 _  a __s inhT ,  ~ = 2 ~ - a = 2 ~ t a n h T .  . .  (113) 
(.O n (D~ 000 

This solution, illustrated in Fig. 13, is paradoxical in the extreme. The formulae have a meaning 
for any g, up to infinity, so it seems that  the oscillatory motion would take place for any amount 
of damping. The frequency increases with damping coefficient g, instead of falling. 

The explanation of the error was part ly given by Pinsker 15. Soroka's solution corresponds 
(unintentionally) to the case when stiffness is not constant but increases itself with g. This can 
be shown easily by  transforming the differential equation (107) back to the real form, by  
using the first of the relationships (88), whereupon we obtain • 

m£:+gk2000 + k ( 1  + ~ ) x = 0 ,  . .  ( 1 1 4 )  

instead of the correct equation (93), where the stiffness is constant (k). Soroka's stiffness is • 

thus increases indefinitely with g. 
damping) would be expressed by • 

or k' = k~/(1 + g~), . . . . . . . .  (115) 

With  such a stiffness, the natural  frequency (with no 

+ , . . . . . .  . . . . . . . . . .  (116) 
so tha t  : 

000 2 . . . . . . . .  _ 0)~  = ½(0) ,2 _ 0),2) . . . . . . . . .  (117) 

I t  is Seen t ha t  the square of frequency has increased by a certain amount owing to the rise 
of stiffness, and then lost half of this increment due to damping. 

The above calculation is illustrated in Fig. 15, where the triangle OAB of Fig. 12 is replaced 
by OA'B'. The increased stiffness k' is shown, and the resulting damping angle e' is less than e. 

I t  is remarkable that  Soroka's assumption is completely analogous to that  made by Myklestad 
in the case of forced~oscillations. In the latter case, the complex stiffness k e 2~, applicable to 
free oscillations, was used for the steady forced ones. In  the present case, the complex stiffness 
k (1 q.- ig), applicable only to simple harmonic oscillations, was used for the free, i.e., decaying, 
oscillations. The procedure cannot be accepted because the concept of stiffness increasing 
with g ~n an artificial manner (cf.,: (115)), to which the theory really applies, has no theoretical 
or practical meaning. 
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4.2.4. A n  alternative solut ion based on a plausible  a s sumpt ion  on energy d i s s ipa t ion . - - -We have 
seen in Section 4.2.2 tha t  the  simple solution based on equat ion (93) and i l lustrated in Fig. 12, 
is somewhat  doubtful  for large values of g. T h e  reason for tha t  is tha t  the  law of hysteret ic  
damping  for decaying oscillations is not  known, and therefore it was not  quite a legi t imat  e 
generalization to ex tend  the val idi ty  of the  assumption (12) : 

co) = kg 

into the  field where it has never  been proved experimentally.  The only reliable answer, can be 
supplied by further  exper iments  whose difficulties should not  be underest imated.  I t  may  be 
permissible, however,  to t ry  to speculate about  the  possible al ternat ive generalizations of the 
law of hysteret ic  damping. 

In  the  case of sinusoidal oscillations, it was found tha t  the energy dissipated per period through 
hysteret ic  damping  did not  depend on frequency co and was proport ional  to the square of 
ampli tude x* (which was constant  th roughout  the  motion).  A plausible generalization for 
decaying oscillations will be t ha t  the  mean  energy diss ipated per period will not  depend on 
ei ther  co or a, but  will be proport ional  to the  square of some mean  ampl i tude  x,,~ (provisionally 
unspecified), because it seems unreasonable to make  it proport ional  to the  square of x* which 
now denotes the  in i t ia l  ampl i tude .  Referring to (20), this will be wri t ten  : 

and  hence • 

where " 

a S) 1 - -  e -a~ lo  
~cmx *~ 1 q- - j  T ~ / ~  --  ukgx,, 2 , . . . . . . . .  (118) 

c~o = k g N  , • . . . . . . . . . . . . .  (119) 

N -  x , )  4~ao) 
x (a  2 + ,o 2) (1 - e  ": " . . . . . . .  ( 1 2 0 )  

N is a certain function of a /o ,  becoming obviously = 1 for a = O. 
then  takes the  form • 

m 2  + kg N d; + kx  = 0 . . . .  
(.o 

o r  

£ q_ co,~( 1 gNaco q- i g N )  x = 0 .  

Using (88), this leads to ' 

(ico --  a) ~ + co,) (1 

or, separat ing the real and imaginary  parts  • 

gNao, ~- i g N )  = 0 

Eliminat ing  g N ,  we obtain 

2a~o = gNo~. ~ , a 2 _ (D 2 ~ -  o),~ 2 

The differential equat ion 

. . . . . .  (121) 

. .  (121a) 

gNao),)  _ 0 . . . . .  (122) 
co 

and hence • 

02 2 - ~  a 2 : ( .0 ,2  

2aco 
o) ~ + a~ - -  g N .  Q 0 

. .  ( 1 2 3 )  

. .  (124) 

Comparing (120) and (124), we obtain finally • 

g _ m x *~  1 - -  e -4~"/~  

Xm 2 27C 

2O 

( 1 2 5 )  



The last three equat ions wil l  solve the  problem, once we decide on the  definition of x~. The last 
word depends on experiment ,  but  we m a y  a t t emp t  some trial definition. The simplest and 
most  plausible seems to be tha t  x,. ~ is the arithmetical mean of the squares of amplitudes at the 
begimdrag and end of a cycle, i.e. • 

x,,? = ½ x *~ (1 + e- '~° /° ) .  . .  (126) 

We then  obtain from (125) • 

o r  

~g = tanh  2~ - a 
(D 

a 1 tanh_ l u g =  1 1 + ~ g  
o) 2~ ~ In 1 --  ~ . . . . . . . . . . . . .  (127) 

and from (123) and (124) • 

a n d  

co 4z 

o),  16  ~2 + In 2 1 - -  

In 1 + j  

a _ Z  1 - - ~ g  (128) 

J (  , + o~ 16~2 + In ~ 1 --  

8 z l n l  + z g  
2~ao~ _ g 1 - -  ~g 

N = (cos + a~ ) t anh  2~a/o~ --  16 z~ + in ~ 1 + z____gg . . . . . . . . .  (129) 
1 - -  ~ g  

All the  above formulae have a meaning  only if 

1 
g < - = 0.3183 . . . . . . . . . . . .  (130) 

and, i f g  tends to this limit, we have N - +  0, co --+ 0, 2 -+  1, as it should be. For greater  values 
of g, the  mot ion  should be aperiodic. This solution is i l lustrated in Fig. 16, where co/o9,, 2 and g N  
are p lo t ted  against g. I t  is seen tha t  co decreases slowly with increasing g, to fall very  rapidly 
to 0 near  the l imit ing value, while 2 rises first nearly in proport ion to g and then  shoots up to 1 
near  *he limit. As to gN, i t  at tains its m a x i m u m  value 1 at g very  little less t han  the  l imit ing 
value, and then  drops very  rapidly to 0. 

I t  m a y  be men t ioned  that ,  for small values of g, the  above solution agrees wi th  tha t  obta ined 
in Section 4.2.1, up to terms of second order in g. Expanding  (128), we get • 

= 1 - ~ g ~ . . . ,  _ a  _- z - -  ½g + o g~ . . . ,  . .  . . . . . .  (131) 
CO n (5) n 

and identical  expansions, to  this order, will be obta ined from (97). The first of Soroka's 
formulae (110), however,  leads to co/o), = 1 + g~/8 . . . .  

I t  must  be clearly s ta ted  tha t  the  assumption (126) and formulae (128) are not  proposed as a 
proved solution. They  are merely  given as an example,  to show tha t  it is possible to make  the  
frequency fall to 0 at the  l imit ing value of g, on making  an assumption at. least equally plausible 
as t ha t  made  in Section 4.2.1. I t  is impossible to obtain a reliable solution wi thout  fur ther  
exper imental  work. 
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4.3. Summary of Formulae.--The following table summarizes all relevant formulae for free 
oscillations, derived and discussed above. Soroka's formulae are included for completeness. 

bJO 

~J 

(D 

Viscous 
damping  

After  
Collar- 

Bishop, or 
Mykles tad  

After 
Soroka 

Solut ion of 
Section 4.2.4 

V (  1 _ ~2) 

• / 1  + ~/(1 --g2) 
2 

= C O S  fl 

N/C0  + g~) + 1 _ 

2 

= c o s h  y 

4~ 

J ( 1 6 a ~  , , ~ l + a g ~  -t- m y ~ - - ~ }  

t~/rD n 

J 1 - -  ~/(1 - -  g2) 
2 

= sin 

2 

= sinh y 

l n l  + zrg 
1 - - : z g  

2 2~ ~/(1 -- ~.2) 

2~ g 1 + V(1 --g2) 

= 2~ t an  fi 

2~ g 
~ / ( l + g ~ ) +  1 

= 2~ tanh  y 

{ l n l +  ag 
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Figures  

Section 4.1.1 
F igure  11 

Section 4.2.1 
Figure  12 

Section 4.2.3 
Figure  13 

Section 4.2.4 
Figure  16 

5. Conclusions.--The main conclusions of the present Paper are as follows : 

A. Simple harmonic oscillations, single degree or freedom. 

(1) The equation (1) of steady forced oscillations may be transformed to the complex form (44), 
so that  the damping and stiffness terms are combined into a single 'complex-stiffness term ', 
the complex stiffness being 

k + i c c o  . . . . . . . . . .  (a) 

(2) The expression (a) is convenient in the case of viscous damping when the damping coefficient 
c is constant (independent of frequency co). In the case of hysteretic damping, however, when c 
is inversely proportional to frequency according to (3), the complex stiffness assumes the 
appropriate form : 

h(1 + i g ) ,  . . . . . . . . . .  (b) 

and the equation of forced oscillations become (57). 

(3) The alternative expressions of the complex stiffness 

ke'  or  k e  . . . . . . . . . .  (c) 

are only admissible if g (or/~) is very small, and second order effects can be neglected. Using 
these expressions for larger values of g and deducing effects involving higher orders, as suggested 
by Myklestad, leads to erroneous results because it implies an artificial assumption that  the 
real stiffness k is replaced by k v ' ( 1 -  g~), varying with g (see (71)). Myklestad's formulae 
(68 to 70) for the amplitude and phase delay angle are misleading and should not be used. 

B. Decaying oscillations, single degree or freedom. 

(4) The equation (72) of free oscillations may again be transformed to the complex form (89), 
but the complex stiffness then becomes different from (a), viz. : 

( k - a c )  + icco . . . . . . . .  . .  : . .  (d) 
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(5) The expression (d) applies directly in the case of viscous damping but offers no advantage 
in practice, as it contains a and m, both quantities being originally unknown in the typical 
problem of free oscillations. 

(6) The law of hysteretic damping in decaying oscillations is unknown, because all experiments 
have hitherto been restricted to simple harmonic oscillations. Assuming, however, that the 
previous law (3) still applies, the complex stiffness becomes : 

which differs from (b). On this assumption, the solution of tile problem of free oscillations 
is given by the formulae (97). The solution is plausible for small values of g, but is doubtful 
for larger values. 

(7) Myklestad's expression for complex stiffness in the case of hysteretic damping: 

k e . . . . . . . . . . . . . .  ( f )  

leads to the same solution as (e), provided g = sin 2/~. This expression is therefore admissible 
in the problem of free oscillations. 

(8) Using the complex stiffness in the form (b) in the problem of free oscillations, as proposed 
by Sor0ka, leads to erroneous results, because it implies an artificial assumption that the real 
stiffness k is replaced by kV'(1 + g~), increasing with g. Soroka's formulae (110) are misleading 
and should not be used. 

(9) A tentative alternative solution of the problem of free oscillations with hysteretic damping, 
based on a plausible assumption on energy dissipation, is given in Section 4.2.4. Its validity 
depends on experimental confirmation. 

C. Damped oscillations with many degrees or freedom. 

(10) The complex stiffness in tile form (a) or (b), in the cases of viscous or hysteretic damping, 
respectively, may also be used for systems of many degrees of freedom, provided only all 
oscillation in a single simple harmonic mode is considered, i.e. : 

(i) either for steady forced oscillations, where all exciting forces are simple harmonic of the 
same frequency, 

(ii) or for steady self-excited oscillations, e.g., flutter in critical conditions. 
In both cases, the form (c) for complex stiffness should be avoided, unless only first order effects 
of damping are considered. 

(11) Whenever the oscillation consists of severM modes, whether simple harmonic or decaying, 
the law of hysteretic damping is unknown. The law applying for a single simple harmonic 
mode cannot be used, simply because it involves the frequency, and becomes senseless where 
there are several frequencies. Any attempts to use the concept of complex stiffness in such 
problems would lead to meaningless solutions. 

(12) Tile general law of structural damping can only be found by new experiments. Such a 
law should be applicable to any motion, periodic or aperiodic. The difficulties of tile experimental 
technique are very serious, especially as it cannot be anticipated in advance that the law will be 
linear. The problem will have to be faced if higtl (artificially augmented) structural damping 
is to be widely introduced. 

D. Remarks on definitions and nomenclature. 

(13) To avoid misunderstandings, it is suggested that an oscillation should be termed 
' d a m p e d '  whenever there are damping forces in the system, i.e., dissipative forces opposed 
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to velocity,-irrespective of whether the  amplitude decreases or remains ,constant. The terms 
' s teady '  or 'decaying '  oscillation should~ be used to indicate that the amplitude is constant 
or decreases as time increases. 

(1.4) In a simple harmonic oscillation with viscous damping the' amplitude of the damping 
force (cmx*) is proportional to that of velocity (~ox*), the coefficient c being constant. In the 
case of hysteretic damping, however, c is assumed to be inversely proportional to frequency 
(see form. (3)), and hence the amplitude of tile damping force (kgx*) is proportional to that of 
displacement (x*), k and g being constant. This has led some authors to describe the hysteretic 
damping force as 'proportional to displacement but in (COUllter) phase with velocity '. The 
expression is wrong, but its use seems plausible when one considers the equation of motion in 
complex form (e.g., equation (57), where the term igkx represents the damping force). It must 
be understood that the damping force varies in proportion to the velocity throughout the motion 
(see equation (46)), and only its amplitude is proportional to that of the displacement. 
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LIST OF SYMBOLS 

Damping index of a decaying oscillation, see (74) 

Damping indices of an aperiodic motion, see (82) 

Damping coefficient, see (1) 

Critical damping coefficient, see (26) 

Energy lost per cycle of an oscillation 

Energy dissipated by damping in a decaying oscillation, per cycle 

Energy dissipated by damping in a simple harmonic oscillation, per cycle 

Amplitude of applied external force 

Resisting force, resultant of restoring and damping forces 

Dimensionless coefficient of hysteretic damping 

Stiffness (spring constant) 

Mass 

Coefficient, see (119) 

Magnification factor for constant amplitude of exciting force 

Magnification factor for amplitude of exciting force proportional to frequency 
squared (centrifugal excitation) 

Ratio of amplitudes at beginning and end of a cycle 

Frequency ratio, see (°9) 

Time 

Period 

Displacement 

Displacement amplitude in simple harmonic osciilation, or initial amplitude 
in decaying oscillation 

Velocity 

Acceleration 

Initial phase angle of the exciting force 

Myklestad's angle for hysteretic damping 

Auxiliary parameter, see (112) 

Logarithmic decrement 

Damping angle 

Phase delay angle in forced oscillation 

Relative damping ratio 

Actual frequency in free or forced oscillation 

Natural frequency 
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A P P E N D I X  (to Section 2.2) 

Details of Calculating the Energy Dissipation in an Exponentially 

Decaying Harmonic Oscillation 

To evaluate  the integral in (17), we t ransform " 

l,m cos (mr + ~ ) -  a sin (rot.+ ~o) --  m2 +2 a2 + m~--2 a2 cos 2 (mt + ~o) --  am sin 2 (mr q- 9) 

) = -  + ~ cos 2~0 -- am sin 29 c o s 2 m t - -  

_ _  a 2 

( c°~ 2 

The formula (17) then becomes • 

= 1 , 2  2 = -  Ed -2cx [(m + a ~ ) l ~  + { ( m ~ - - a 2 ) c o s 2 ~  2 a m s i n 2 ~ } I ~ - -  

- -  {(m ~ --  a 2) sin 2~ + 2a(o cos 2~} 13], 

where the three integrals are • 

- -  sin 2~o + am cos 29) sin 2rot (A.1)  

(A.2) 

f 2~1~ I1 = e -2~'  d t  = ( 1  - -  e - ~ / ° ' )  , 
d O  

. .  (A.3) 

d O  

e-2V t cos 2~ot dt --  2(a~ + m2 ) a + (m sin 2 r o t -  

a (1 - -  e - ~ I ~ )  
- - . 2 ( a  ~ + m~) 

a cos 2,t). e -~~t i ~fo 

(A.4) 

I~ = .-o e -~'  sin 2mr dt --  2(a~ + co~) m --  (o~ cos 2~ot q- a sin 2rot).e - ~  
2~r](o 

0 

(D 

_ 2(a~ + m~) (1 - e - ~ ° ) .  . .  

Subst i tut ing (A.3, 4, 5) i.nto (A.2), and simplifying, w e  obtain (18). 

(A.S) 
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