R. & Wi. No. 2537

(9914)

AR.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
REPORTS AND MEMORANDA

An Approximate Solution of Two
Flat Plate

i
i
)

Boundary-layer Problems

E. J. WaTson, B.A., and J. H. Preston, B.5c,, Ph.D.,
of the Aerodynamics Division, N.P.L.

Crown Copyright Reserved

LONDON: HIS MAJESTY’S STATIONERY OFFICE
1951

PRICE 35 64 NET




Mﬁ HHNM AR BUTICH

LB RA» == ol SHHENT
An Approximate Solution o%’T wo _Flat Plate

Boundary-layer Problems

By
E. J. WaTson, B.A., and J. H. Presron, B.Sc., Ph.D.,
of the Aerodynamics Division, N.P.L.

Reports and Memoranda No. 2537

August, 1946

1. Summary and Introduction.—The method presented here for obtaining an approximate
solution of the laminar boundary-layer equations is based on the iteration process of Piercy and
Preston'. It leads to a simple analytical approximation of good accuracy for Blasius’ solution
of the boundary-layer flow past a flat plate. The main purpose of this paper is, however, the
application of the method to a generahsatlon of Blasius’ problem, namely the case of a flat platein
a uniform stream when there is a suction velocity normal to the plate proportional to x~'/* where
% is the distance along the plate from its leading edge. This generalisation was first given by
Schlichting and Bussmann? and has also been considered by Thwaites® and Watson*.

For the simpler problem of the flat plate in a uniform stream it is well known that by means
of Blasius’ transformation the solution is obtained from that of a third-order non-linear differential
equation. The iteration method of Piercy and Preston for the solution of this consists in replacing
the velocity where it occursdin the equation by an inferior approximation and solving the resultant
linear equation to obtain a superior approx1mat10n To start the process the velocity was assumed
to be that of the stream, giving Oseen’s solution as the next approximation. Here the start is
made in a different manner. We take as the initial approximation to the velocity one of two
choices—(i) a constant value or (ii) a linear function—and in either case have a parameter at our
disposal. The iteration is performed, giving a second approximation containing this parameter,
which we then determine by substituting the second approximation in the momentum equation.
The necessary integrations can be performed analytically, and the quantities z,, 6%, 6 and H which
characterise the boundary layer are readily determined. The following table shows the results
achieved.

TABLE 1
Ux\/2 U\ 7 UN\W2 5%
Th — (= ==
G G o) ] s
Method (i) 0-363 0-726 1-753 2-414
Method (i1) 0-329 0-658 1-721 2-617
Exact 0-33206 0-66412 1-7208 2-5911

In the case of the more general problem Blasius’ transformation gives the same non-linear
differential equation, but with a different boundary condition.
same method, and since unfortunately the second choice of our initial approximation does not
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We treat this by exactly the
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yield a simple answer, the first choice only is considered here. The results obtained for the
quantities 7,, 6%, 6 and H are given in the tables and graphs. We find that when the suction
velocity is large, the velocity distribution in the boundary layer approximates to the asymptotic
suction profile, a result which has been proved more rigorously in R. & M. 2298*. The present
method has the advantage over the differential analyser and asymptotic solutions of giving a
simple analytical formula of fair accuracy for the whole range 0 < & < o of the suction, and the
solutions can be improved numerically by further applications of the iteration process.

2. Flat Plate Without Suction.—The equations of the laminar boundary layer are, in the usual
notation

ou ou au 0%
fu o ov 92
Baf=0o . L

Equation (2) implies the existence of a stream function y such that

Tor the flat plate in a uniform stream U is constant, and it is well known that the assumption

p = (pUx)Y* f (y) . .. . .. . . . .. (4)

where /

U 1/2
7]:(;}76 h’)‘,.. . .. . . .. .- . .. (5)

satisfies the equation of motion (1) provided that
f'm) 4+ 3fn) f'(n) = 0. . . . . .. .. (8
In this case
u=Uf'(n),

N =

U»r
x

b

o=t e, |

and hence we obtain the boundary conditions for equation (6),

n=0: f=f =0
o - : (8)
N =0 f=1
To apply the iterative method of Piercy and Preston?, equation (6) is replaced by
LA =0, .. . .. Ve . . (9)

where f,_, is the known inferior, and f£, the required superior, approximation to f. The solution
of this equation with the boundary conditions (8) gives

L) = Auf exp{— 4] fialn) dn} dy, o)
where :

;41.:j:exp{—%ﬁfn_l(n)dn}dn.'.. Ly

"
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In Ref. 1 the iteration was started by taking f,'(r) = 1, corresponding to the inviscid case, but
here f;'(n) will be chosen so as to contain a parameter——whlch from (10) will occur also in f,’ (77)
and this parameter will be determined by the momentum equation, which in the present case
has the form

Ty db

;(72 - % s (12)

where

To ¥ . /2 " ,
= g ay)yo (Ux PO . .. a3
and
°° “ 2\ .
o= (1_ ay=["rmya—ranan(y)" . L4
Thus (1'2) reduces to

PO =3[ £y @ —f)dn. N &)

It will appear that a close approximation is produced by the combination of a single iteration
with the momentum equation for either of the two choices of f,’(y) considered.

(i) f1'(n) = K.—For the first choice we take f,’(y) to be an arbitrary constant K instead of 1.
This gives, since f,(0) =0, :
filn) = Kn ,
and
J Siln) dn = 3Ky
Hence from (10)
’ —_ " —1Knt
£ () Aﬁhe L N ¢ ()
2 [ _.
=4 Tg [ eea
where
E=3/Ky. .. . .. .. . .. . .. (17)
Also, by (11),
1 _ 2 =
. VK 27
and therefore
’ 2 : 2 ’
_mmzmj%mmau T

and thus o |
ro=J(EY L
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Also it is easily shown that

® 9 _
[Certeq —erfeyae = Y21 @)

0 f\/n

Hence from (1

” JE) =i mm a =y an.

2 0
:%VTCJD erf & (1 — erf &) de ,

_ V21
V(=)
and so
K=y2—-1. .. .. .. .. .. .. .. .. (21)
Therefore
f'(n) = erf (3n/(v/2 — 1)) . .. .. .. .. .. .. (22
This gives for the characteristics 7,, 6, 6* and H of the boundary layer, the values
T _ K v N /2 —1 o N2 v \'/?
ﬁﬁ‘@iﬁﬁ —@ﬁf‘ﬁﬂ =0%4EQ’ - (23
V2Z—1_ » vy \'2
0=2(YE=2. ) —0-726(5 )" (@

=], (1-g)a,

- \721?(%?)1/2 j: (1 — erf &) de,

1 p2 \1/2 v\
ZQ(WU =1'753<—(7> s o e . ,(25)

5% 1 :
H:?:vz—l‘*‘\/2+1:2'414' .. .. .. .. (26)

These results compare quite well with the accurate values, but an improvement can be made
by taking a different choice of f,’(5).

(i) fi(n) = K»u.—It is the behaviour of f'() when 7 is fairly small that is of greatest importance
for the determination of v,, 6 and &%, and so it is desirable to make fi(n) as close as possible in this
range to the accurate values. This suggests that a linear function of 4 may give a better result
than a constant for the choice of f,’(5), and it will be seen that this is in fact the case. We have

as before
fln) = §K»?,
7
[ dn =} K,
h(n) = Azjn e~ dy
0
12 1/8 p& .
—a,(z) [ewae, .. .. . . @
where
K \1/3
&= ) - .. .. .. .. .. .. (28)



Let F(E)zee‘*’dz .. .. .. .. .. . .. (29

=37 46, (30)
an incomplete gamma function. Then
Flo)=IT () =I(), .. . .. .. .. .. (31)
and therefore .
J'(n) = T'(4/3) F(¢) (32)
Hence
1/8
f"(0) = 4/3 , . .. .. .. .. (33)
and . -
© ) 9\1/3 F(& £
Jore a— oo =(g J?Z(/t)s‘)(l—m/'gﬂdf»
12\
| =(x I 4/3 TaE’ (34)
where
I :j“’ F(&){T(4)3) — F&yde. .. .. .. .. (3

Thus (15) becomes

rm (12) — (&) ramr
and therefore
3/8
(1) = 21“({1/3) - (36)

Now
I =| F(&){r4/3) — F(&)}de,

[F(f) {T(4/3) — F(¢)} s}:’— j :{r(4/3) — 2F (&)} ¢ &de

I

— TI'(4/3) J:o ge~®dE + 2 J’: te v dé ﬁe“’ dz .

The first integral is expressible as a gamma function by writing ¢ = £/, and the second is
evaluated by putting
z=E& .. .. .. .. .. . . .. (37

and inverting the order of integration. We obtain

T——T43).3T (3 +2J:dzj:§2exp{— (14 &) de

_ todt
o sm n+3Jol—l—t3
= % log, 2. (38)
KNA 1 log. 2
therefore (TQ> =oT@43) " .. . . .. . .. (39



Calculating 74, 68, 6* and H as for case (i), we find

s (n) —om(g) s .
e:%%—%&(%‘)mzo-em(’gm; R 73
"3 «/3{10&2?32{r(4/3)}3/2<%’f>m —em () W
H=\73—7]—t0——g2=2-617. O ()

These values differ from the accurate results by 1 per cent. at most.

The velocity distributions (22) and (32) are tabulated in Table 2 and are illustrated in Fig. I,
with the corresponding first approximations f;’(). The approximation by the second method
is good, for the difference in /U between it and the accurate solution is never greater than 0-004.
To make the next step of the iteration by inserting (32) into the equation of motion would require
numerical integration, but the result would be very close to the exact solution, and would involve

much less labour than the direct numerical solution of the differential equation by Adams’
method.

3. Flat Plate with Suction Proportional to x~*/*.—The problem of the flow over a flat plate
when there is a suction flow normal to the plate of strength proportional to #~'/* has been solved
by Schlichting and Bussmann?, and further solutions were given by Thwaites®. An approximate
solution can be found by the methods of this paper in the following manner.

It was shown above (equation (7)) that

Uvr\'/2 '
v=3(3) (o —sm) . . @Y
Consequently, if
f0) = 2%, . .. . . .. .. .. .. (45)
the velocity of suction is
Up\'/2
vo=—o(x,0) =2(5) . R #0)
The momentum equation has the form (for constant U)
ae Ty Ty
Eg—g:_—[—]—!—p_ﬁz’ .. .. .. . .. P .0 (47)
which for the purpose of application is
%Lf’(l—f’)dn:f”(())_k. . .. .. .. . .. .. (48)
The second choice of f';() leads to rather intractable results involving the Airy-Hardy
integral
J’w e-—f‘—Sut dt
0 2
but the first method is easily applicable.
Let ' '
fi'n) =K. .. . .. . . .. . .. (49)



Then fuln) = K + 2k,
[ ) dn = 3Kn* + 2

Hence from (10)
7
Fln) = Aa [ e dy.

Put
§ = —%—\/Kn ’
_ K
,, “=VK
Then

and so, from (11),

erf (¢ +a) —erfa

fuly) = A
Hence
s
-J&) =
Also
[y —pyan = VQK § -—Ierf ap
where C = fert (5 + @) —erfal [1— exf (¢ + )] d&

:J(%)(l — erf a 4/2) — \‘%e—“z(i —erfa),

on integrating by partsin a manner similar to that employed for (20).

Hence we obtain by use of the momentum equation

V2 (1 — erfay/2) — e (1 — erfa)
(1 — erfa) (e — ay/= (1 —erfa))’

Then with K given by (57) we find that

p;}Z — 1 —_:rf a N/ <K) ( Ux)ll2 ’

K =

2 4/2(1 —erfay?) — e (1 — erfa) (

b =& T — erf a)?
N 2 e®—ay/a(l —erfa)/va\'"?
"= V&) ] —erfa (‘U) :

o — (1 —erfa){e® —ay/mn (1 —erfa)} 1
=V2 (1 —erfay/2) —e“ (1 —erfa) K-

7

X

U

1/2
).

(54)

(35)

(56)



When £, the rate of suction, is large, the velocity profile (53) approximates to the asymptotic
suction proﬁle

For when « is large

1——erfﬂ-—\/ (5 — 1 O ()
and consequently we find that K—1. .. .. .. .. .. .. (63
Hence
a
z d 1/2
an 2= k() (65)
1 1/2
0= (7) ()
17 vx\'/2
o =(F)" (67)

For the velocity distribution we have
_erf (3+/Kn - a) —eria

fi = 1 —erfa
2 e, 12 1
VT 2(3vVEKn+a) +n~ 2a
__?i_-—u”-_l ’
f\/ne 2a
=1 — exp (— 1Kn* — a+/Kyn),
a
al_eX1>(_%n2-Wn). O ()

Now when a is large the range of 4 for which f,’ lies between 0 and 1 — & (for a fixed positive &)
O (1/a) and in this range we may write

, a
S =1— exp(~ \—/—277)
Hence, provided that 1 — f£,’ is not small,

P 1)
N P | 4

which is the equation of the asymptotic suction profile. This result has been established by a more

accurate investigation in which an asymptotic series was found for #/U and also series for the
results (65) to (68)%.

In Fig. 2 some of the velocity profiles are shown plotted against y/6*. Table 3 gives values of
K, &, 7, 0, 6% and H for a wide range of @. For small values of a these were obtained from tables
of the error function and for large values from its asymptotic expansion. The variation of z,.
0, 6*, and H with % is shown in Figs. 3 and 4, which are derived from Table 3, and the accurate
results are shown also for comparison.




No.

Author

1 N.A. V. Piercy and J. H. Preston

2 H. Schlichting und K. Bussmann

3 B. Thwaites

4 E. J. Watson
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TABLE 2
Method (i) Method (ii)
& erf & & 1 Fe—‘“dt
K rapm) ), !

0 0 0 0 0 0
0-1 0-11246 0-31075 0-1 0-11196 0-34051
0-2 0-22270 0-62151 0-2 0-22352 0-68102
0-3 0-32863 0-93226 0-3 0-33370 1-02153
0-4 0-42839 1-24302 0-4 0-44090 1-36204
0-5 0-52050 1-55377 05 0-54303 1-70255
0-6 0-60386 1-86453 0-6 063776 204306
0-7 0-67780 217528 0-7 0-72277 238357
0-8 0-74210 248604 0-8 0-79616 272408
0-9 0-79691 279679 0-9 0-85674 3-06459

1 0-84270 3-10755 1 0-90429 3-40509
1-1 0-88021 3-41830 1-1 0-93955 374560
1-2 0-91031 3-72906 1-2 0-96411 4-08611
1-3 0-93401 4-03981 1-3 0-98008 4-42662
1-4 095229 4-35057 14 0-98074 4-76713
1-5 0-96611 4-66132 1'5 0-99511 5-10764
16 0-97635 4-97208 1-6 0-99787 5-44815
1-7 0-98379 5-28283 1-7 0-99915 5-78866
1-8 0-98909 559359 1-8 0-99969 6-12917
19 0-99279 5-90434 1-9 0-99990 6-46968
2 0-99532 621510 2 0-99997 6-81019




TABLE 3
Method (i)

112 1/2 1/2
o e e e [
pU v VX »x

0 0-41421 0 0-36311 0-72622 1-75325 2-41421
0-5 0-44385 0-33311 0-61049 0-55476 1-24988 2-25301
1 0-46249 0-68007 0-89734 0-43453 0-93954 2-16221
1-5 0-47409 1-03281 1-20797 0-35033 0-73895 2-10930
2 0-48146 1-38775 1-53282 0-29015 0-60264 2-07702
2-5 0-48628 1-74334 1-86631 0-24595 0-50577 2-05643
3 0-48953 2-09899 2-20526 0-21253 0-43414 2-04278
35 0-49180 2-45451 2-54781 0-18661 0-37944 2-03333
4 0:49343 2-80980 2-89282 0-16604 0-33650 2-02661
4-5 0-49465 3-16490 3-23959 0-14938 0-30200 2-02164
5 0-49555 3-51978 3-58761 0-13565 0-27374 2-01794
6 0-49681 4-22907 4-28628 0-11442 0-23030 2-01285
7 049760 4-93787 4-98728 0-09881 0-19858 2-00963
8 0-49814 5-64632 5-68977 0-08690 0-17444 2-00747
9 049852 6-35451 639326 0-07751 0-15548 2-00585
10 0-49879 7-06250 7-09747 006994 0-14021 2-00486
15 0-49945 10-60079 10-62424 0-04691 0-09392 2-00219
20 0-49969 14-13775 14-15538 0-03526 0-07056 2-00124
25 0-49980 17-67415 17-68827 0-02823 0-05649 2-00080
30 0-49986 2121027 21-23381 0-02354 0-04709 2-00055
40 0-49992 2828207 2829090 0-01767 0:03534 2-00031
50 0-49995 3535357 3536064 0-01414 0-02827 2-00020
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