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Summary. The convergence of numerical solutions of the Navier-Stokes equations for steady two- 
dimensional flow is examined and convergence criteria for both ~ and ~ are obtained for a rectangular mesh. 
The criterion for ~ is shown to be less stringent, in general, than that for ~. A new method of solution, based 
on the process used to obtain the convergence criteria, is derived. This method widens the range over which 
convergence can be obtained and can also be used to accelerate the convergence rate. 

1. Introduction. The  Navier-Stokes equations for the flow of a viscous incompressible fluid 
past a body in two dimensions are considered in the form 

; -Zx ay ay ~x (1) 

w ~  = ~ (2) 

where ~b is the stream function, ~ the vorticity and v the kinematic viscosity. 
For the numerical  solution of these equations the field of flow is replaced by a rectangular mesh 

at the discrete points of which values of ~ and ~b are caIculated by finite difference approximations 
to the Equations (1) and (2). We take the mesh length in the x-direction as being n, and that in the 
y-direction as pn, where p is a constant. The  simplest finite difference approximations to Equations 
(1) and (2) are then 

1 p 
to - 2 ( l + p D { p ~ ( a + c )  + (b+d)} 8 ( l + p ~ ) ~ ( ( A - C ) ( d - b )  - ( a - c ) ( D - B ) }  (3) 

1 n2p ~ 
~o - 2(1 +p~) {p~(A + c)  + (B+D)} 2(1 +p~) t0 (4) 

where  t0 is the value of $ at the centre of a diamond with diagonals 2n and 2pn, the small letters 
representing values of $, and the capitals values of ~h, at the corresponding mesh points as shown 
ill Fig. 1. The  method of solution is one of reiteration. Assumed values of ~h and ~ are placed at each 
mesh point and these are progressively improved at each point in turn by recalculation from the 
surrounding values using Equations (3) and (4). 

* Previously issued as O.U.E.L. No. 135--A.R.C. 22,069. 



The convergence of the numerical process on a square mesh has been.examinec[ by Thom.  aiid 
Apelt 1, who obtained a convergence criterion for ~. The analysis was base~t on a simplified 

representation of the process: a finite disturbance was applied to ~ only at a point 0 in a settled 

field and its effect allowed to spread over the four neighbouring points. From the disturbed values 

at these points the value of ~ at 0 was recalculated. The  process was convergent if the new value was 

nearer the correct value than the original disturbed value. It was assumed that if ~ converged so also 
would ~b, this always having happened in practice. 

In general, when starting from an assumed solution both ~b and ~ are considerably disturbed from 
their correct values. The convergence analysis based solely on a disturbance of ~ only gives a valid 

criterion if ~b is undisturbed; in some cases ~b may be incorrect by a large margin and whilst the 

convergence criterion is satisfied the routine process may still diverge. The ~ criterion gives no 
information on this at all. I t  must  be remembered that the criterion is based on a simple representation 

of the problem and as such cannot be expected to predict accurately when divergence will occur, 
despite this it has been found to give quite a good indication. Having established that divergence 

occurs, the problem remains of finding a method whereby convergence can be obtained. T h o m  and 
Apelt have shown that there is a limiting mesh size beyond which the numerical process is divergent. 

A reduction of the mesh size will frequently effect convergence but this greatly increases the number  

of field points and when using a computer often severely taxes the storage capacity of the machine. 

In any case the process is laborious and the solution on a coarse mesh may be sufficiently accurate. 

The  alternative procedure is to apply only part of the change in the function values in the divergent 

region. This weighting process is largely a matter of trial and error. With a computer a considerable 

amount  of machine time may be wasted in using say a fixed half movement, when conv~ergence 

could be obtained with a larger movement. A technique is demanded which enables the movement 

to be calculated to give an opt imum rate of convergence. Apelt z has developed a device depending 

on the convergence criterion for ~. The  method derived in the present work is similar but  is based 

on a more exact theory dependent on the convergence of both ~b and ~. In the cases where it has 

been used this has given quite a rapid convergence rate but  for hand calculation'the method is not 

really suitable owing to the complicated nature of some of the numerical factors involved. 

2. Derivation of the Convergence Criteria. The effect on the four neighbouring points of a: 

disturbance applied simultaneously to both ~ and ~b at a mesh point 0 will now be considered 
and criteria for the convergence of ~ and ~b derived. 

We assume that the values of ~ and ~b are held fixed at the settled values at the outer points  

E, L, F, . . . .  K as shown in Fig. 2. Finite disturbances 3 and e are applied to the values of ~ and ~b 

respectively at 0, so that ~o becomes ~0 + 3 and ~b 0 is ~b 0 + e. The' values of ~ and ~bat the mesh 
points A, B, C and D are then recalculated and finally, from these, new values of ~ and ~b are 
obtained at 0. The  order of operation is to recalculate ~ first and then ~b at A, B, C and D. 
• The disturbed values are denoted by a dash and are given by 

p(h-e) ) p~ p( H-  E) 3 +. e 
~-~' = ~-~ + 2(1 +pZ) ,3 8(1 +p~)v 8(1 +p~)v 

1 p ( a -  H) p(g - h) 
~D' = ~v + 2(1 +p~) 3 8(1 +p~)v 3 + 8(1~p2)i ' 

(5) 



with similar expressions for ~B' and iv' respectively; also for ~h 

p~ n2p 2 ) 
~ba' = ~b~ + 2(1 + p ~  e 2(1 +p~) (~a'-. ~'~) 

1 n2p z (6) 
~ "  = 6~ + 2(1 +p~)  e - 2(a +p~)  ( ~ d -  ~.) 

with similar expressions for ~b1~' and ~bv' respectively. Recalculating the values of ~ and ~b at 0 using 
these disturbed values we obtain on reduction: 

(p4+ 1) p(p~- 1) 
~o' = ¢o + 2~  ~-p~z 3 + 16(1 +p~)~u [ ( E - F +  G-H)3  - ( e - f+g-h)e]  - 

128(1 +p~)~ [p~(E- G+ F - H )  ~ + ( L - N ) ( E -  G+ F - H )  + 

+ (E- G- F- H) 2 + p2(K- M) (E- G- F- H)] + 

, .p~e [ P 2 ( e - g + f - h ) ( E - G + F - H ) + ( L - N ) ( e - g + f - h ) +  1 

:+  128(f+-P~)av~ (e - g  - f -  h) ( E -  G -  F -  H) + p~(~L-_/~) (eZ~_f-_-]z)j 
(7) 

G '  = g'o + 

+ 

2(1+p~)2  e 2 ( 1 + P 2 )  3 ~ + 1 6 ( l + P ~ )  3 (~s-F+~--H)~j + 

n2p~ 
256(1 +p~)%2 [P2( E -  G+ F - H )  ~ + ( L - N ) ( E -  G+ F - H )  + 

+ (E - G - F -  H) ~ + p~(K- M) (E - G - F -  H)] - 

nZp4e E P ~ + ( e - g + f - h ) ( E - G + F - H ) + ( L - N ) ( e - g + f - h ) + l  

256(1 -~p~)%~ (e - g  - f -  h) (E - G -  F -  H) + p Z ( . K ~ )  (eS-g - f -  h).J 
(8) 

If the mesh is not too coarse the following approximations can be made: 

( E - F ) + ( G - H )  # 0, ( E - G ) + ( F - H ) -  ( L - N ) ,  ( E - G ) - ( F - H ) -  ( K - M )  

and similarly for the ~ values. Using these approximations in Equations (7) and (8) 

~o' - ~o + (p4+ 1) p~3 [(E_ G)2 + ( F - H )  ~] + 
2(1 +p~)~. ~ 6411 +p2)2v2 

+ 
p2e 

64(1 +p~)2v2 [ (E-  G) (e =g) + ( F - H ) ( f - h ) ]  (9)  

(p4 + 1) 
". 4'0' - ~o + - -  2(1 +p~)2 

n~p4~ n~p2(p4+ 1) 3 + [ (E -G)  2 + (F-H)2[  - 
e 2 (1+p~)3  - 1 2 8 ( 1 + p % , ~  

n2p% 
"].28(1 +p~)%2 [(E-.. G) (e -g)  + ( F -  H ) ( f -  h)]. (10) 



If, initially only ~ had been disturbed, for ~ to converge it is necessary that 

(pa+ 1) p~8 . 
,2(1+p~)=8 64(17-p~)£v2[(E-G)2+(F-H)2 ] < [a[.  

The  second term on the left hand side of this inequality is always positive and the inequality is 
satisfied if 

( ) v~[ (E-G)  2 + ( F - H )  2] < 32 3p 2 + 4 +  3 (11) 

For a square mesh, p = 1, and the criterion given by Thom and Apelt 1 is obtained: 

1 
vq [ ( E - G )  z + ( F - H )  21 < 320. (12) 

If only ~ had initially been disturbed, for the convergence of ~b we require 

(p4 + 1) n~p% ( F -  H) ( f  - h)] 
2 7 ] ~  e 128(1 +p2)avZ [ (E -  G) ( e -g )  + < I e l" 

This inequality is satisfied if 

64(  ; ) ( ; )  ; 64 (  
nz p Z + 4 +  1 +  < [ ( E - G ) ( e - g ) + ( U - H ) ( f - h ) ] <  ~ 3p ~ + 4  

With p = 1 this is 

768 1 1280 
- n~- < 7 [ ( E - G ) ( e - g  ) + ( f - H ) ( f - h ) ]  < n-- w -  (14) 

In terms of the velocity components u and v at the point 0, the Equations (12) and (14) become 
respectively 

n 2 
0 < ~ (u2+v ~) < 40 (15) 

and 
n 2 n g 

n 2  1/2 
If the mesh size is small, then the terms ~ V2u and ~ V2v will be small compared to u and v and it 

follows that the convergence criterion for q, is less stringent than that for ~. This fact has already 
been remarked by Thom and Apelt 1 in the particular cases of plane Poiseuille flow and plane 
shear flow. 

With a simultaneous disturbance applied to both ~b and ~ at 0, it has not proved possible to find 
any simple convergence criteria independent of 3 and e, based on the Equations (9) and (10). 
However, as has been pointed out earlier, it has been found that the Equation (11) predicts fairly 
closely the regions where the numerical process fails to converge. 
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3. Convergence Criteria in the Transformed Plane. When a problem is being worked in the 
transformed plane, say the (%/3) plane, the Navier-Stokes equations take the form 

Vo~ ¢ = ~/M 2 

where M is the modulus of transformation. On obtaining the convergence criterion for ~ it is 
found to be identical with the inequality (11) for the physical plane. If it is assumed that the modulus 

of transformation at the points A, B, C, D, and 0 is approximately constant and equal to M0, then 
the ~b criterion in the transformed plane is identical with (13) provided that the 'n' of (13) is replaced 
by m/Mo, where m is the mesh length in the transformed plane. 

4. The New Method of Combating Divergence. The measures to be taken when the process is 
divergent will now be considered. The method used by Apelt in his study of the viscous flow past 
a circular cylinder at a Reynolds number of 40 (Ref. 2) was to apply only part of the change in the 
value of ~ at each point in the field. Using the convergence criterion for  ~ he showed that if the 
new value of ~ at 0 was taken as intermediate between the original disturbed value and the recalculated 
value, i.e., 

CO new : ~0 reealoulated q- b~0 original 
l + b  

then the optimum convergence rate was obtained when 

1 1 
b - 256v z [(E - G )  2 + ( F s H ) e  ] = 7~ (17) 

using the square mesh. The method was found to be quite effective, one of the provisos being that if 

n C ~  + "v ~ 
was too great then the rate of convergence was so slow as to be impracticable. In the 

v 
case of the circular cylinder this method was found to break down at about five radii from the cylinder 

and beyond this a relaxational technique had to be used. This technique was unsuitable for use 

with an electronic computer. In the light of the present work on convergence the breakdown of 
Apelt's method can be explained: the maximum value of ¢ increases greatly with distance from the 

cylinder in a direction normal to the stream and the magnitude of the error is also liable to increase 
--unless one has been extremely fortunate in choosing starting values for ~b and ~--and even assuming 

that the value at only one point is in error, if this error is great enough then the right-hand sides of 

Equations (9) and (10) will exceed ~0 + 3 and ~b 0 + e respectively and divergence will occur. To 
provide a more effective means of obtaining convergence it is necessary to take into account the 
variations of the ¢ values as well as those of ~. 

A new method is now suggested for overcoming the problem of convergence which at the same 
time gives an optimum convergence rate. Using the same configuration as in obtaining the 
convergence criteria (11) and (13), we set the differences between the original disturbed values and 
the recalculated values of ~ and 4 ~ such that 

/ G . i ~ i ~ l -  ~o' = ~ = (~o+ 3) ~o' 
(18) 

~or~g~n~l 4'0' r ( G + e )  ~0'-J 

5 
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The values of A and V are known, and on substituting from Equations (18) in Equations (9) and 

(10) we obtain a pair of simultaneous equations in 3 and e. Solving these for 3 and e 

= (19) 
2p~(p+@~+l)X (p+@~+l)~ (3p+@~+3)pn~Y 

+ + 
(1 +p~)~ 4(1 +p~)~ (1 +p~)3 

where 

I + @~x r + 2 p x  P~(P + I) n~A 
2 (1 +p2) (20) 

6----- 
2f2(p+4p~+l)X (p+@~+l)~ (3p+@~+3)pn2Y ' + + - -  

(1 +pZ)2 4(1 +pZ)2 (1 +p~)8 

X _ 
1 1 

256v z [ ( E -  G) ~ + ( F -  H) 2] - 128v ~ [(d - C) ~ + ( D -  B)Z], 

y -  
1 1 

256v ~ [ ( E -  G) ( e -g )  + ( F -  H ) ( f -  h)] - 128v ~ 
_ _ _  [(A - C ) ( a -  c) + ( D  - B )  ( d -  b)].  

For the square mesh, with p = 1, Equations (19) and (20) are 

= 4Yr+(3+n~Y)a  (21) 
3 X +  1.25n 2 Y + 2 " 2 5  

(3 + 4x)r + ( x -  o. 5)n~A (22) 
3X+1"25n2Y+2"25 

3 and e can now be subtracted from the assumed original values of ~ and ~ to give the correct values. 
The technique to be used in working over a field is as follows: at a point 0 (as in Fig. 1) the value 

of ~ is calculated from the surrounding points using Equation (3), this value of ~ is then used to 
recalculate the value of ~ from Equation (4). The values of A and 17' can then be obtained and 

and e can be calculated from Equations (19) and (20). The new values of ~ and ~ are now the 
original values minus 3 and ¢ respectively. Reiteration is then used over the whole field until the 

function values are settled to the required degree of accuracy. 
Since steady flow has been postulated the divergence of the numerical process is not related 

to any problem of hydrodynamic stability, it may be that no solution of the problem being considered 
can exist, in which case divergence persists whatever preventative measures are taken. Because of 
the simplified representation used in formulating the problem whereby the new method has been 
derived, it must be realised that when working over a field containing a large number of mesh points 
it is still possible for divergence to occur; when this happens the mesh size has to be reduced and 
the method reapplied, the process being continued until convergence is obtained (provided that 

a solution does exist). 

5. Use of the Method for Accelerating Convergence. When the straightforward iterative procedure 
using Equations (3) and (4) is convergent, the method derived in the previous section is still applicable 

and can be used to accelerate the convergence of the process. 



As an example of the comparative rates of convergence of  the several ways of attacking a numerical 

solution of the Navier-Stokes equations, a small field was settled using three methods: 

(i) Reiteration using Equations (3) and (4) only. 

(ii) The method used by Apelt. 

(iii) The present '5, e' method. 

The problem was worked on a computer, the modulus of the maximum change in function values 

after each iteration was recorded (here termed the residual) and the computation stopped when 
the residuals of both ~b and ~ were below unity. Both methods (i) and (ii) took approximately the 
same machine time and method (iii) a little over half this time. The results are shown in Figs. 3 and 4. 

It is seen that the first method required 21 iterations on ~ and 17 on ~b to reduce the residuals to 
unity, the second method required 20 on ~ and 21 on ~b, and the third only 12 on ~ and 11 on ~b. 
A significant improvement has thus been obtained in using the new method. The second method 

has not improved the convergence rate at all in this case, but it should be remembered that its 

major object was to make the  process converge and not to provide an accelerating factor. 

6. Precautions to be Observed. Some cautionary words are necessary at this stage. One of the 

main problems, and a matter of which little is known, is the convergence of ~ on a solid boundary. 

Only in a few cases is the vorticity ~ known at the boundary, when it is unknown an approximate 

value has to be calculated from the neighbouring values of ~b and ~, using a formula such as that 

of Woods 3. This process may also diverge, for some discussion on the problem the reader is referred 

to Thom ~ and Thom and Apelt 1. The present new method is not strictly applicable on the line of 

mesh points nearest to the boundary and since the movement it gives is often quite large, a violent 

oscillation leading to divergence can under certain circumstances be set up in the values of successive 

approximations to ~ on the boundary. In particular, this form of divergence is liable to occur if a very 

small mesh size is being used and the initial assumed values are not very good. It is recommended 

that the Equations (3) and (4) in conjunction with either Woods' formula or Thom's  two-point 

formula 5 be used on the first two or three mesh lines off the boundary and the new method employed 

out in the field. The effect of this is to limit the changes of ~ on the boundaries; an alternative method 

is to apply only part of the movement given by the boundary formula and is usually a matter of 

trim and error, this is not too difficult when working by hand but can be a complicated and time 

consuming operation on a computer. If the boundary values of ~ are given then the present method 

can be used immediately with considerable advantage. 

Acknowledgement. The author wishes to thank Professor Thom for his valuable advice and 

criticism. 
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