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Summary. A simple method of calculating downwash interference is presented and comparison of
theoretical and flight test trim curves indicates that the method is reasonably accurate.

Since the stability of the tandem-rotor helicopter depends largely on small differences between the thrusts
of the front and rear rotors it is necessary to calculate the rotor thrust derivatives far more accurately than for
the single-rotor helicopter. More accurate expressions than those given in Ref. 8 have therefore been calculated.

 The downwash interference causes a reversal of stick position with speed for part of the speed range with an

associated dlvergence in the dynamic stability. 'This may be eliminated by choosing a suitable value of
swash-plate dihedral angle If, in addition, a suitable differential delta-three hinge angle is applied the tandem-
rotor helicopter appears to be stable over the whole speed range except at hovering and very low speeds.

If the swash-plate dihedral is too small the normal acceleration curve, following a step input of control,
flattens out and then increases again. Thus the tandem-rotor helicopter may satisfy the N.A.C.A. manoeuvr-
ability criterion yet possess unsatisfactory response characteristics. It is suggested that the N.A.C.A. criterion
is unnecessary if stability of the short and long period modes is ensured. Again, a proper choice of swash-plate
dihedral and differential delta-thrée hinge enables satisfactory control response characteristics to be obtained.

1. Introduction. The longitudinal stability of the tandem-rotor helicopter presents an easier
problem to the helicopter designer than that of the single-rotor helicopter. It is well known that the
single-rotor helicopter without tailplane or automatic means is inherently dynamically unstable.
But when the lift of the aircraft is shared by more than one lifting surface, as in most fixed-wing
aircraft or the multi-rotor helicopter, it is possible to arrange that the configuration is stable by
suitably choosing the rates of change of pitching moment of the lifting surfaces, 7.e. of the wing and
tail combination of the fixed wing aircraft and front and rear rotor combination of the tandem-rotor
helicopter. In the fixed-wing aircraft this is achieved by correct choice of the C.G. position. In the
tandem-rotor hehcopter not only is C.G. movement available to control stability but there are also
the powerful effects of varying the angle between the rotor-hub axes (called swash-plate dihedral)
and applying differential 8;-hinges to front and rear rotors to control their lift-slopes.

* Previously issued as R.A.E. Report Naval 3 (A.R.C. 21,943).
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This report examines in detail the effects of varying these parameters on the control to trim,

dynamic stability and control response of a tandem-rotor hehcopter havrng a conﬁguratlon srmllar
to the Bristol 173. '

2. Estimation of Downwash. Effect. 'The longitudinal stability and control of the tandem-rotor
helicopter depends almost entirely on small differences in the thrusts of the front and rear rotors.
Since thrust depends greatly on the rotor inflow it'is evident that a reasonably accurate estimate of
the effect of the downwash of the front rotor on the rear rotor must be made before attempting the
estimation of the stability derivatives. Various forms of the downwash pattern in forward flight
have been considered in the past, the most usual being a uniform cylindrical jet of air, e.g. Ref. 1,
and the distribution due to a cylindrical vortex sheet, e.g. Ref. 2, but neither of these two patterns
represents a precise physical description of the flow.

The idea of a cylindrical wake probably arose from Glauert’s proposal®, that the induced velocity,
assumed constant, at the rotor disc is the same as that of 4 wing of span 2R carrying the same lift
distributed elliptically across its span, z.e. as given by |

T = 2aR* Vo, . 1

This expression is the same as would have been calculated if the thrust had been supposed due to
the increase of momentum. of a- cylindric'al'stream‘ of air whose cross-sectional area on.passing
through the rotor is the same as the rotor area and whose Veloc1ty is increased from V before reaching
the rotor to V + 2V20 in the final wake, where Viois a vector velocity in the opposite direction to
the thrust. Such a physical picture is convenient as it is identical with that of the slipstréam of a
hovering rotor or propeller and provides an easy way of calculating the induced veloc1ty for a given
thrust and forward speed for V' » . ov;, (strictly speaklng, for the momentum c0n81derat10ns we
should take the flow velocity through the rotor disc at all speeds as (V* + ?; 2)1/2 Wh1ch reverts
to V at high speed, as'in equation (1), and v,, at hoverlng)

. An extensive series of wind tunnel tests* have shown, however that the fow behlnd a 11£tmg
rotor at forward speed is very similar to that of a wing of the same span and aspect ratio, i.e. the
well known horse-shoe vortex system, and indeed measurement of the induced velocity behrnd:a
rotor shows very good agreement with the calculated values behind such a wing.

* As shown in Ref. 4, and as predicted-for-a circular wing in Ref. 5, the vortex sheet in the vicinity
of the rotor rolls up very rapidly and is almost completed at the rear edge of the rotor. Thus it can
be said that in forward flight, the rear rotor of a tandem helicopter is completely immersed in the
flow of a horse-shoe vortex system for values of pu at least as low as 0-095 which was the lowest
value of u in the tests of Ref. 4. Obviously, between u = 0 and p = 0-095 there is transition. from
the propeller type slipstream at hovering to the line-vortex flow of forward flight but it is not known
exactly in what manner the change takes place. It is likely that the flow due to the cylindrical vortex
sheet.of Ref. 2 would give satisfactory results for very low u, say up to about 0-04, although,
unfortunately, the lateral variation is given only for the plene through the centre of the (front)
rotor and judgment must be used to estimate the induced velocity at other positions Behind the
rotor, the longitudinal distributions being used as a guide. The line-vortex flow should be satisfactory
for values of n of 0-1 and above but the gap between p = 0- 04 and g = 0:1 will have to be ‘faired
in’ graphically. Ref. 7 gives expressions for the induced velocity behind a rotor based on the idea of
the horse-shoe vortex system and is intended for use at. all speeds by .using-an artificial - expression
for the circulation which reduces to zero in hovering and to a value which corresponds to the lifting
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wing at high speeds. However, a good deal of computation is necessary to find the induced velocity
at enough positions to give a good idea of the flow in the whole region of the rear rotor. What we
require is a suitable mean value of the induced velocity in this region so that it can be included as
"part of the inflow ratio A and used in the familiar expression for thrust coefficient

’

t, = &0 + A ‘ (2)
where ‘
L _@{3B(B - B + 3
G =g BT i
and
aB® B — Ly?

62=T.B72+§.‘u,2'

This mean value can be obtained from the measurements of Ref: 4 where it is seen that, except
in the region near the vortex cores, the induced velocity is fairly uniform laterally across the disc for
given longitudinal and vertical positions. Thus the lateral variation of induced velacity could well be
replaced by its arithmetic mean value. Now one would expect that the distribution of non-
dimensional induced velocity v,/v,, relative to the axes of the vortices would be constant at all
speeds and the mean values of the lateral variation have been plotted relative to axes fixed, following
Ref. 2, so that the origin is at the centre of the rear rotor and the ¢-axis lying parallel to a line
making an angle v,,/V (downwards) relative to the direction of flight, as shown in Fig. 3. This is
different from the orientation of the axes of Ref. 4 where the X/R-axis (corresponding to the £-axis)
lies in the plane of the front rotor disc, that direétion, of course, being arbitrary.

The values thus obtained are shown in Fig. 4 for the three longitudinal positions & = 1-07,
2-07 and 3-14 corresponding roughly to the front edge, centre and rear edge of a rear rotor. The
£-axis is not exactly parallel to the axis of the trailing vortices since in general the latter are curved
slightly and it is for this reason that the curves shown in Fig. 4 are not symmetrical about the
¢ = 0 axis. Thus for any given value of {, which measures the distance of the particular part of the
rear rotor above the trailing vortices, the value of ;/v,, can be read off for the three values of ¢ and
the mean of these three values gives the mean interference velocity due to the front rotor.

The mean induced interference velocity at the rear rotor can now be expressed as

o = kv, | S

kst QR

= 2(;1,20+ X2)IF2 )

or if 9, = v,/QR A
- kst,

9; = 2+ R (5).
where #,  is the thrust coefficient of the front rotor.
. The effective downwash angle is taken as
T © o kst,p . ‘ ©)
Vo 2P + AR
3
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The derivatives of e with respect to #, # and 6, are

de _kadp, ko
& Va VP
ot, '
_ k{ ) sty p de , dA sty } )
7 g2 1+ aay 2(u2 1+ aeyee (” @ d_zi) 2D + Ay
ooy
de _ ﬁ{ W sty ( du A@)} (8)
ah P\ o+ 2+ wye \"an " ao)!
o, -
de =E{ 80 st, g ( dp. N Ad_'\)]‘ 9)
46, . P22 + A 202 4+ X2\ 4o, db, .

In order to check the above method of estimating the downwash. effect wind tunnel tests are needed
of the loss of rear rotor thrist due to.the downwash of the front rotor. Unfortunately, no reliable
tests are available but the pitching moment of the helicopter, in the lower half of the speed range at
least, depends almost entirely on differential thrust changes (since pitching moments due to the
flapping will be comparatively small) so that comparisons of theoretical and measured trim curves
should be a good test of the method. These comparisons are made in the followmg section on the
Sthk position to trim.

3. Control Angle to Trim. 3.1. Derivation of Egzlaiion for Control Angle. The general layout
of the tandem rotor helicopter is shown in Fig. 1 and the force and moment diagram in Fig. 2.
The reference line of the tandem-rotor helicopter is taken as the line which passes through the c.c.
and meets the rotor hub axes at equal angles /2 — $, where 24 is the angle between the rotor
hub axes (positive when the axes meet above the ¢.G.). The angle 2¢ will be referred to as ‘swash-
plate dihedral’,

It is assumed that the movement of the stick applies the same amount of cyclic pitch to both
rotors, i.e. ‘ :
" By=hy )
where &, is the gearing between stick and rotor-hub tilts. We also assume that a forward movement
of the stick, 7, reduces the collective pitch of the front rotor by &,7 and increases the collective pitch
of the rear rotor by &, so that .

, 0p = 0 — ke (11)
and ‘ : '

On = 0y + kyy - (12)
where k&, is the gearing between the changes of stick angle and changes of collective pitch angle.

_ The relative values of %, and %, define what is known as the ‘control mixture’ in tandem-rotor
hehcopters -

Finally a trimmer will be added such that a trimmer movement of £ increases the collective pitch
on the front rotor by k,¢ and decreases the collective pitch on the rear rotor by k,¢. We will then have

Op = O + K*¢ — ko (13)
and :
O = by — ko + Eyn. (14)
4



Resolving forces horizbntally ‘
Tpsin (B, — ayp — 0 — ¢)+ Tpsin(By — ayp — 0 + ¢) — Hpcos (B — a5 — 6 — ¢)
— Hpcos(B; —ayp — 0 + ¢) — D;cosy, = 0. (15)
Resolving vertically ' :
Tpeos(By —ayy — 00— ¢) + Tpeos(By— ang — 0 + ¢) + Hypsin(By — a;p — 0 — ¢)
+ Hpsin (B; —ayp — 0 +¢) — Dysiny, — W=0. (16)

and taking moments about the c.G.,

Ty cos (By — 'alF ~ ) {lpg —hptand) R — Trcos (B, — a1 + &) (I — hgtan ) R
— Tpsin(B; — ay5 — ¢) hpR — Tgsin (By — a3 — ¢) hgR + Hpsin
(By — tiyw — ) (lp — hptan ) R

— Hpsin(B; — a1 + ¢) (lg — hptand) R + Hpcos (B; — a5 — ¢) hpR
+ Hpcos (By — a1 + ¢) hgR + M; = 0. (17)

This report assumes that the tandem-rotor helicopter has rotors of the same diameter, so that
after dividing by psA4(QR)* and approximating for small angles equation (17) becomes

teply — topln — (bophs — terhn) ¢ — tephp (By — @15 — ¢) — tiphp (By — a1 + ¢)
+ hop (By — arp — ) (lp — hpp) — hen (By — arp + &) (g — hipd)

+ b, phy + hophn + 2C,,; = 0. (18)
We will now write
t, = 10y + coA (2)
and
: ay= c3by + A (19)
for each rotor, where
8 Bu
C3 - § B2 + % “2
and
U .
B2 + _‘123_#'2

The functions ¢, ¢, ¢; and ¢, are shown in Fig. 48, plotted for a range of 4 and with B = 0-97.
It will also be assumed that %, = }ud since the contribution of the in-plane rotor forces to the total
pitching moment should be very small in the tandem-rotor helicopter. Substituting in equations
(18) for ¢, and a, and using equations (1), (13) and (14) we obtain

[e1 {6 — ko (n — O} Ip + Lncodp — [e1 {00 — Ry (0 — & by — hpesdpd
~ [e1{80 + R (n — E]Ir — Ipeadr + [ {6y + ko (9 — E)] hpp + hpcadpd
— hp ey {8 — Ra(n — )} + gl [Ryn — ea{fy — R (9 — )} — cidp — ¢]
— hglen {0 + ka(n — O} + gl [k = c3{8s + ko (9 — &)} — cadg + ¢]
+ hog [k — 5 {0 — ke (1 — )} — ey — ] Iy — hudb)
— hr [k — cs {06 + ks (1 — )} — cidg + ¢l (g — hpd)
+ hophy + hoghp + 2Cp = 0. A (20)
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Equation (20) is a quadratic in % but it has been found from numerical calculations that most of

the terms in the coefficients are very small, so that retaining only the important terms equation (20)
can be written

An2+Bn+C=o' | ‘ @)
where 4 = ¢k ik, (hp — hg) + ciesky? (hF + hg)
B = — chy (hphy + hhg) — cxbo (I + L) — ekl (hy + i)
— 2icokaly (y — hg) — 2escsha? (hp + hy) £
C= by (b — Ig) + ¢ (lpdp — IpAg) + 16302 (hp + hR)
+ (€16s + €a65) (hpAp + halg) O + C1kz (p +1Ip) €
+ cieskaly (hp — hy) € + 2C,;.

A typical solution of (21) gives a very large root, which has no pract1ca1 significance, and a small
root which gives us the control angle we are seeking.
To a good approximation this latter root is given by

7= —C/B

3.2. Calculation of Parameters for use in Trim Equation and Stability Derivatives. The solution
of the trim equations for the single-rotor helicopter corresponding to equations (15), (16) and (17) of
this report is comparatively simple since the horizontal force equation is independent of the other
two. Equations (15), (16) and (17) however are interdependent and require further equations
relating A, oy, and £, and to solve them simultaneously would result in great complication. It is
much simpler to represent ¢, and al in terms of 6, and A and calculate the latter by approximate
means.

Now for small angles and taking the level flight case we can write equation (15) as
Dy + Hy + Hg = — {Ty (2p)r + Tr (2p)r} -
If we assume Hj = Hyp, this equation in non-dimensional form is
pidy + by = — $ {t,p (ep)p + for (p)g} - (22)

The relation between the front and rear thrust coefficients can be expressed approximately as

toplp = Loglp ‘ (23)
and since ‘ .
bep + tog = 28, (24)
. tl
pidy + b, = > —{lg (ap)p + Lp (ap)g} - (25)
Ip + In
Now .
Ap = T7(°‘D)F - (®)r ’ ] . (26)
and '
g = V(g — B)r — k (@z)p - s ' ‘ (27)
6



The values of (3,) and (9,)5 in equations (26) and (27) can be obtained from Fig. 50 using the
approximate values of #,; and ¢, from -

. 2t I
¢cF = ‘ZF + ZR
and
cR — ZF + ZR .
Also
(tnf)r = (p)r + 2¢
and
Oln)e = aD —_ al
therefore :
(ap)r = (ap)r — (@)r + (a)r + 26 . (28)
Writing
‘ (a)r = c30p + cirp
and

(@)r = 30z + clg
and assuming the collective pitch is the same on both rotors

. (a)r — (@)r = ca(Ag — Ag)
i.e. ' :

(@)r — (a)r = Ve {(op)r — (o)} — ca {(B)p — (B — £ (D))}
But % is very close to unity so that approximately
(a)p — (a)r = Ve {(ap)r — (2p)r} + ¢ (P)r

therefore from equation (28) we obtain

2 + ¢4 (9;
(0)n = (o — 21100 9)
, 1=—Te¢
and substituting in equation (25) gives
2 . 4.
(O‘I))F —_ I dO + hc + lF {2¢ TC (vz)R} . . (30)
' (Up + ) (1 = Ve

(xp)z can now be obtained by using equation (29) and then Ay and. Ay from equations (26) and (27).
Finally the mean collective pitch angle 6, can be obtained from

28] = (Ap + Ap)
= . .

o

3.3. Comparison of Theoretical Trim Calculations with Flight Tests Results. Figs. 5(a) and 5(b)
show the comparison between the theoretical level flight trim curves and some flight test measure-
ments for two different helicopters. In Fig. 5(a) the theoretical curve would show much better
agreement if it could be displaced downwards by about % deg. This may mean that the nominal
trimmer setting in the flight tests was not in fact being achieved since there is no such disagreement
in Fig. 5(b). Also, a fuselage pitching moment to account for this disagreement would have to be
extremely large and beyond any reasonable value. Apart from this the agreement in both cases is
quite good although the theoretical curves have, perhaps, too sharp a peak in the neighbourhood of
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p = 0-1. For this case the interference factor & (= v;/v;,) was taken, from Fig. 4, as 1-5 and it
may be that at such a low value of 1, the values of % given by Fig. 4 are a little too large. For lower
values of p, k was estimated from the results of Ref. 2.

Since, as mentioned in Section 2, the trim curves depend very largely on the rotor downwash
effect, especially at the lower values of u, the above comparisons-indicate that the present method
of calculating the downwash is reasonably accurate.

3.4. The Theoretical Trim Curves for the Bristol 173 Configuration. Figs. 6 to 9 show the
effects of ¢.G. position and swash-plate dihedral on the trim curves of a helicopter similar to the
Bristol 173. When ¢ = 0 deg there is a marked reversal of stick position with speed in the range p = 0+1
to u = 0-25 due to the powerful downwash effect. Also, in this range, there is a rapid divergence in
the dynamic stability. Increasing the swash-plate dihedral reduces the severity of the stick reversal
until at ¢ = 3 deg the reversal is almost absent. Again, this is reflected in a marked improvement
of the dynamic stability.

Movement of the centre of gravity seems to have little effect other than that of displacing the
trim curves vertically.

4. Equations of Motion and Stability Derivatives. 4.1. The Equations of Motion. As in Ref. 8
wind axes are chosen for the stability axes and the assumption of no coupling between lateral and
longitudinal motions is also made but we must now include the downwash lag terms M, and M,
which, for the tandem-rotor helicopter, are considerable, as will be shown in later sections. The
derivatives X, X, Z, and Z, have been found to be extremely small and are omitted.

In order to render the equations of motion non-dimensional we use the same scheme as in Ref. 8
but divide the equations by a factor which includes the total disc area, i.e. if 4 is the area of one
rotor we divide the force equations by 2ps4(QR)? and the moment equation by 2ps4(QR)?R and
the non-dimensional form of the equations of motion is

di . R , x, do
7 Xl — 2,0 + £,/0 cosy, — FTZE’; = x,m + %500, (31)
. an o . g\ db
— &+ — 2, D+ t/Osiny, — (V+—q)—=z7]n + 2540 (32)
dr - pe/ dr
dii ap a0 df  pem,  pgm
I R i B d o + v = a1y D270 33
ar T A = R L (33)
where
= M = B = — T
(3] ‘p ip
w= — ’jizy—nﬂ and V= — %
ip ip

Solving the above equations by the usual substitution # = u,e?", etc. and putting

xnzx‘g():z;?:zbo:m”:moo:o

gives the frequency equation for disturbed motion

Il
=]

AX + B+ C2 + DA+ E
. .



~

where

B=N+v+_x(r7+fq—)
o

C=P+Nv+Qx+w<17+%«)SB
2

D=Pv+ Ry + Quw — S# — BT

E=Rw — TH
and )
N = —x, — 2,
P = a3, — %%,
Z . x
0= - (V + ”2) %, — 1, siny, + zu_q
e Mg
R = —t (z,co8y, — %,siny,)
z «,
S =t cosy, — %, (V + —3) + 2y —2
] Mg
T = — t, (2, €08y, — %, siny,).

Usually the terms 2,/p, and x,/u, and products involving them are-negligibly small.

(34)

(35)
(36)
37)

(38)
(39)

(40)
(41)
(42)
(43)

. 4.2. Calculation of Rotor Derivatives. 4.2.1. Derivatives of t, and a, with respect to 4, & and 0.
Since the pitching moment of the tandem-rotor helicopter depends mainly on the difference in

thrust between front and rear rotor it is necessary to calculate very accurately (e.g. to at least four

significant figures) the thrust derivatives of each rotor. The approximate expressions and values

given in the graphs of Ref. 8 for the thrust derivatives are not accurate enough for tandem rotor work.

The derivatives of the basic relations between £,, @, and oy, have therefore been recalculated without

making approximations except, perhaps, in the final form when known to be satisfactory for the

tandem rotor work. These calculations are made in Appendix 1 and the approximate results given

again below. They are

P +
%p R ®

+ (61,00 + CZIIA)
A

Ca

C2 (63’00 + 641)\) —_ C4 (Cllao + Cz’)\)%

1

_ Ast,
2p® + ATy

D
o

»
®

Ast, Co8

pste , ’
€4 aD+2,u2+/\23/2 +(c390+c4/\) 1-—2 2+A23/2+2,u2+/\21/2
Il .

It

|

on A

]
D
P[0

o ' Ast, :
Ot ajl- 2(u® + A2 - (0104 - 5203)
© 99, . A

T (44)

" (45)

-~ (46)

(47)

(48)



11— Ast, N s o
aql ~ 3 22 + AT 2(pr + By \17a T 20 ”
0, 5

where

Ast, o8 ' ' A
A=1- 2(u® + AR + 2’ _ﬁ MR T Caft - (50)

Equations (44), (46) and (48) should be used as they stand for the front rotor only. Expressions
for the rear rotor thrust derivatives must include corrections for the downwash interference which
appears as a change of rotor incidence.

If the suffices » and ; denote the values of the derivatives of front and rear rotors as calculated
from equations (44), (46) and (48) and if the suffix j;, denotes the value of the rear-rotor derivative
corrected for downwash interference, we have :

( ) (51)

(o= (i)~
(6}~ (o)~ 7 (2 )d@

ﬁ)

ot,
= ()| 7 2
since in thlS case the values of ( ) and (%) are almost exactly the same.
ot, oz, at,\ de '
(55) o = (&8), = 7 (56) 5, &9

4.2.2. Rotor derivatives with respect to q. 'The usual method of calculating the rate of pitch
derivatives in previous stability work, e.g. Ref. 8, has been to use the results of Ref, 9. It is claimed
in Ref. 10, however, that these results do not compare well with flight tests and a more detailed
analysis is given there which gives better agreement. A similar analysis, but using the notation and
system of axes of this report and giving also the roll derlvatwes, is presented in Appendix 2. The

result for m, is .
4ah

The x, derivative is. usually negligibly small and %, = 0.

4.2.3. Effect of S5-hinge on rotor thrust derivatives. It will be seen in a later section that the front
rotor downwash causes severe instability with incidence, i.e. m, becomes large and positive.
A method of achieving a negative m,, on the tandem-rotor helicopter is to provide differential
84-hinges for the rotor blades—negative on the front rotor and positive on the rear, where a negative
83-hinge is one in which the blade angle decreases with increase in ﬂappmg angle. This has the
eﬁect of decreasing the lift slope of the front rotor and increasing that of the rear, thereby providing
a powerful nose-down pitching moment with incidence. The calculation of 9t,/8% for a rotor

10



with a 85-hinge is given in Appendix 3 and shows that if 9%,/0% is the value of the lift slope of a
rotor without a 8;-hinge, then the corresponding value with the 8;-hinge (0f,/0%®); 5 is

of\ 0% Ccyy '
()., —%{1 : —(—T)} )
6c, {1 — = A .

8

where the positive sign refers to a positive 8;-hinge and vice-versa.

4.3. Complete Helicopter Derivatives. 'The expressions for the force derivatives are
%, = (®)p + (xu)R + (xu)f

ot 2a. oh o
- _ 1 e e e e
= ZWaﬁ”‘D)F* (’*” aﬁ)F+ (au)p (aﬁ“D)RD
' da, oh,
= (), + ()] - 24 00

d, —41)0 d 0he\  _ (%% —8a roximatel
0= Toaps24 " (%)F = (%)R ~ g ApprovImAEy:

Koy = (xw)F + (xw)R
oL, ; oa,
+ (%‘ND)RD + (ca_fb)ze

= =4[} o)+ (+5)
: 2 o P)y \ ),

the A, terms being very small

where

] 57)

ot ot
= .. 1 _c _¢
o= -1 (5) (), )
ot of ’ :
- -1 ¢t _¢
A 5(6@% * (a@)m ’ 9

The total derivatives of rotor force with respect to rate of pitch are very small and are not worth
including but the separate components must be found in order to calculate the moment derivatives.

Thus

. % = (%r + %)z = {®l)r — ®A)5} + {(%h)r — ®A)a} - (60)
an

, Z, = (r + (FJr = {(&S)r — (2ul)r} + {(szI)R - (=)rj - - (61)

The moment derivatives are then o : o

my = — () — @h)p + (AR — (M) (62)

My = = o)y — (ki + (Bb)r — (k) G!

my = — (h)p — (hdr + (sh)r ~ (3gh)a + (m), (64)

where (m,), is the moment due to rotor tilt given by equation (54) and .

| hyp = hpcos (o, + ¢) + lpsino, ~ by + lpoy (65

hip = hpcos (o — ¢) — Ipsino, ~ hg = lpo, ‘ (66)

Lip=1gcosay — hgsin (o + ¢) 2 Ip ~ b (o + ¢) - (67)

he=lpcosa, + hpsin (e ~ #) = lp — hp (s — ) (68)
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4.4. Derivatives due to Downwash Lag. 4.4.1. Lag in change of incidence. Let ¢ be the mean
downwash angle at the rear rotor and « the change of helicopter incidence. The distance between
the rotor centres is (! + Ip)R and we will treat this as the significant distance between the rotors
" although the downwash pattern in this region is by no means well defined. The time taken to traverse
this distance is (I -+ lz)R/V and the downwash angle at the rear rotor is therefore

o= - G (69)
The incidence qc’ ét the rear rotor is .
ey e del‘_da(lF+lR)R‘-‘~
o = o ——oc—-%l-oc 7 j|
| .441—5) e e (70)
. dou
NOW E == v
therefore
;L ! de de @ (Ip + Ip)R
R e
or i :
S . de de @, -
g ,w_m@—£+£vw+@R
and -~
, de de o
- : dM=@ww%R=4,m“—zﬂ+%7%+%)%R
so that ‘ ‘
_ ow' de (lp + I}l R?
M, = (Zw)r i (Zwr P
ie. . I
= G)n U + L)l 71
my = (Bw)z (Ir R)R% : {7

The derivatives x, and z, can, of course, be calculated but they are negligibly small.

4.4.2. Lag due to change of forward speed. “"The change of downwash due to change of forward
speed is ‘

_ de du (ly + Iz)R -
G_EP_E_Wfﬂ.ﬂ - (72)
and e - -
. de T du (ly + [R)R
w__VEL[u_Et4V ]
Thus, in a similar manner to that of 4.4.1
' de ' '
my = (Eo)n e + L)le g - S (73)

Again the force derivatives with respect to 1 are negligible. It is interestifig to note that derivative
m,, does not appear in fixed-wing aircraft calculations as de/dit is zero. . -
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5. Discussion of Derivatives. 5.1. Force Derivatives. 'The force derivatives are shown in Figs.
12 to 15. The variations of the total derivatives due to changes of ¢ and c.G. position are negligible
since the changes of front rotor derivatives are cancelled by opposite changes on the rear rotor.
The variations of the derivatives with tip-speed ratio u are thus very similar to those of the
single-rotor helicopter. These variations have been fully discussed in Ref. 8 and so will not be

repeated here.

5.2. Moment Derivatives.
m
5.2.1. V(E - .—Q-)
;]

The variation of » with p is shown in Fig. 16. The contribution due to precession of the rotor
discs (which is the only source of rotor damping in the single rotor helicopter) is also shown and
is seen to be small and, except in hovering, may even be considered negligible. The large damping
in pitch of the tandem-rotor helicopter is due, of course, to the fact that a steady rate of pitch
increases the rear rotor incidence and decreases the front rotor incidence thus providing a large

nose-down pitching moment.

5.2.2. yf(s _ ”'2—7"“)

ip

The variation of 5 with p is shown in Fig. 17. It will be seen that there are three effects:
(a) large variations with u due to downwash changes
(b) large variations with ¢

(¢) mainly small variations with c.G. position.

In considering (&), we assume that the downwash effect is zero at hovering and rises to a maximum
at about p = 0-1. The downwash effect with forward speed above u = 0-1 is determined from
equation (7) of Section 2. The three terms of equation (7) can be recognised as (i) the change of
induced velocity due to change of thrust and (ii) and (iii) as the change in downwash angle due to
change of induced velocity at constant forward speed and change of forward speed with constant
induced velocity. The first term (i) is usually small. The last two terms can be shown to be of equal
sign and magnitude for 1 > M and represent a decrease of downwash angle with forward speed.
Thus when p < A the downwash always causes a nose-down pitching moment with increase of
forward speed, the effect being most severe at about . = 0-1.

In (b), variations of ¢ alter the incidences of front and rear rotors and it can be seen from equation
(44) of Section 4.2.1 that in general the derivatives of thrust with respect to forward speed of front
and rear rotors will be different. If ¢ is positive the front rotor will have a larger thrust derivative
than the rear one and this will provide a nose-up pitching moment with speed. A given value of
¢ will provide a contribution to # which is roughly constant over the lower part of the speed range
(see Fig. 17), whereas the destabilizing effect of the downwash varies considerably in this range:
The value of ¢ required to eliminate the downwash effect is probably about 5 deg for the type chosen
and with central C.G. position. However, this value may then be too large for the hovering case, where
the downwash effect is absent, and would lead to a rapidly divergent oscillation similar to that of
the single-rotor helicopter. The same effect may also appear at high speeds where the downwash

effect is small. .
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It would be desirable, therefore, to have means of varying ¢ in flight in order to have the optimum,
or at least a suitable, value of S at any given speed. This could be achieved, for example, by a
. trimmer which moves the front and rear swash-plates in opposite directions. The trimmer could be
calibrated in terms of forward speed so that the pilot could select the appropriate value of 5 for
the speed at which he wished to cruise. ,

Whether or not it is worth providing such a trimmer depends on the designer’s opinions as to
the seriousness of the instability and the complexity of the other flying controls.

5.2.3. w(s-—“ﬂ%)

ip

Fig. 18 shows the variation of w with p for zero 85-hinge for different values of ¢ and C.G. position.
It will be seen that the effect of ¢ on w is smaller. For the tandem-rotor helicopter the longitudinal
cyclic pitch B; does not cancel the backward flapping 4y, in fact at high speeds 4, may be several
times larger than B;, and the rotor force vectors are then tilted backwards in trimmed flight and
cause a destabilizing nose-up pitching moment when the incidence is increased. This effect gets
worse with increase of speed as shown in the case of ¢ = 0. Increasing ¢ changes the moment arms
of the force vectors in the stabilizing sense as shown by the case ¢ = 3 deg.

The effect of C.G. position on w is very marked. The downwash effect reduces the thrust derivative
on the rear rotor tending to result in a destabilizing nose-up moment with incidence. This destabiliz-
ing moment can be reduced, of course, by setting the C.G. forward, the moment being directly
proportional to C.G. position. The downwash effect can be seen in the peaks of the curves in the
region of p = 0-1.

Fig. 19 shows how a 3;-hinge affects the case ¢ = 0 and C.G. position central. It is seen that w,
even for this ‘worst case’ ,can be completely shifted into the stable region for a reasonable value of C.

5M.M=—%%m4__@)

ip

"The variations with p of the downwash lag derivatives 8 and y are shown in Figs. 20 and 21.
The curves were calculated from equations (7), (8), (71) and (73) for p = 0-1to u = 0-4 and faired
in for the region p = 0 to = 0-1 on the assumption that the derivatives are zero at . = 0. The
slight variations with ¢.6. position are due to the variations in length of moment arm and strength
of downwash from the front rotor.

6. Discussion of Stick-Fixed Dynamic Stability. 6.1. Eﬁ‘ect of C.G. Position and Swash-Plate
Dihedral. 6.1.1. Stability in hovering.

The dynamlc stability in hovering of the tandem-rotor helicopter, as can be seen from Figs. 22(b)
and 22(c), is independent of C.G. position and varies only with the ‘dihedral’ angle of the rotor-hub
axes, 2¢. In fact, as with the single-rotor helicopter, stability of the tandem helicopter in hovering
depends almost entirely on ,, and m,; both m, and m, are unaffected in hovering by C.G. position
but m,, is directly proportional to ¢. If m, is positive there is a divergent oscillation, which becomes
more divergent and whose period becomes shorter as m,, is increased.

On the tandem helicopter it is possible to reduce , to zero by tilting the rotor-hub axes outwards
(i.e. ¢ becomes negative) so that the positive contribution to m, from the rotor tilt derivatives is

14
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balanced by 2 negative contribution from the thrust derivatives. This can be expressed by

Oa, oa, ot, AN
i (), + et (i) ()~ () = &
In hovering : ‘ ,
it et ) gt_) a9
only A *\of A
Insertirig typical values for the Bristol 173 into equation (74) gives ¢ = — 1-3 deg, Z.e. when the

rotor-hub axes are tilted outwards and make an angle of 2-6 deg to one another ,, is zero and the
helicopter is neutrally stable. If m, is negative there is a pure divergence and, as with the single-rotor
helicopter, it is impossible to obtain dynamic stability with s, and #, alone.

6.1.2. Stability at p = 0-1. It will be seen from Figs. 23(a) and 23(b) that at about & = 0-1 the
stick-fixed motion of the tandem helicopter is rapidly divergent for all the cases considered, the
motion doubling its amplitude in about 2} seconds. In these cases the constant term £, which is
proportional to m,2, — m,%,, is negative since the m, term is positive because of the powerful
downwash effect, as explained in Section 5.2.2. The rotor-hub dihedral necessary to make the m,
term negative would be about 16 deg (¢ = 8 deg) and this may be an excessive value in practice.
The m,, term, which is much smaller, also acts in the destabilizing sense due to the downwash effect
and it can be seen from Fig. 23(b) that the variations in m,, due to C.G. movement are too small to
have much effect. -

It appears, then, that at speeds in the region of u = 0-1 the tandem-rotor helicopter, except

- perhaps with 8;-hinges, will suffer from a purely divergent instability.

. 6.1.3. Stability above u = 0-1. As the trimmed speed increases above u = 0-1 the downwash
effect on the stability diminishes rapidly and it can be seen_from Figs. 24(b), 25(b) and 26(b) that
the purely divergent motion occurs only for ¢ < 2degat u = 0-2 and for ¢ < 1 deg for p = 0-3
and 0-4. Forward movement of the C.G. also becomes more effective in improving the stability and
it can be seen that with the correct combination of ¢ and C.G. position it is possible to make the
helicopter dynamically stable.

6.2. Effect of 85-hinge. It will be recalled from Section 4.1.3 that the fitting of ;-hinges enables
the derivative m,, to be varied over a wide range and the effect on the dynamic stability of varying
the 8;-hinge angle is shown in Figs. 27 to 30. In hovering there is no coupling between the vertical
motion and the fore-and-aft and pitching motion so that the 8;-hinge has no effect on the stability.

At p = 0-1, as can be seen from Fig. 27, the 8;-hinge effect alleviates the strong divergence
although increasing the value of C beyond 0-15 has no further effect. However, it appears that a
much smaller value of $—about 4 deg instead of 8§ deg without 8;-hinges—can now be used to
obtain positive stability and this value may be acceptable.

For p = 0-2 and above Figs. 28 to 30 (C.G. back) show that the 8;-hinge greatly i 1mproves the
stability but again there is little further improvement when C exceeds 0-15.

The problem, which occurs with the single-rotor helicopter, of introducing a pure divergence by
having too great a value of m,, at the higher speeds (where z,, is positive) need not arise with the
tandem-rotor helicopter since the static stability can always be made positive by choosing a suitable
value of m, by varying ¢. '
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6.3. Effect of Downwash Lag on the Stability. The effect of downwash lag on the stability has
been calculated for two cases at p = 0-1 (where the derivatives are largest) and the results given
below.

¢ = 0° C.G. Central ¢ = 3° €.G. Forward

yand Bincluded | 7 = 0-332 sec? r = 0-233 sect
x omitted 7 = 0-343 sec™? r = 0-252 sec?
8 omitted r = 0-418 sec™* r = 0-311 sec™?
x and B omitted r = 0-431 sec™! 7 = 0-342 sec™?

It will be seen that both derivatives improve the stability, the lag due to forward acceleration having
the greater effect.

7. Discussion of Control Response. Figs. 31 to 46 show the time histories of the response of the
tandem-rotor helicopter to a sudden 1 deg backward displacement of the stick. A peculiarity of
tandem-rotor helicopter response can be seen in many of the normal acceleration-time curves.
In Fig. 31, for example, the slope of the curve increases up to about ¢ = 1 sec, then decreases slightly
up to about ¢ = 3 secs and then increases again. This cannot be regarded as a satisfactory response
because the normal acceleration never ‘settles down’; nevertheless the curve satisfies the N.A.C.A.
manoeuvrability criterion®, since d?z/df> < 0 before £ = 2 secs. The reason for this shape of curve
is that there is large damping in pitch (large m,) which damps the motion in its early stages, but as
speed increases the divergent m,, effect predominates and causes the acceleration to ‘run away’.
Thus, satisfaction of the N.A.C.A. criterion does not necessarily indicate acceptable manoeuvrability
for the tandem-rotor helicopter. The N.A.C.A. criterion was devised from measurements of the
normal acceleration of the single-rotor helicopter where 2, usually has a small positive value and
where there is no purely divergent mode. In this case (and also for the subsonic fixed-wing aircraft
case) the condition d2r/d#? < 0 is all that is required to ensure that the normal acceleration curve is
satisfactory. A typical curve for the latter case is shown in Fig. 47 together with the desirable
response curve and a typical curve for the tandem-rotor helicopter. It is clear that the N.A.C.A.
criterion, which is intended to déscribe an acceptable response curve, is not detailed enough to
cater for the case of the tandem-rotor helicopter. It is difficult to express a satisfactory response
curve in words but since the response is determined by the dynamic stability satisfactory response
will certainly occur if there is good damping of the short period mode and if the long period mode
is no worse than slowly divergent. Thus for the single-rotor helicopter a tailplane strongly damps the

short period mode and improves the long period mode so that even if the latter is still unstable

the manoeuvre will have been completed before its amplitude begins to increase rapidly. The
tandem-rotor helicopter has adequate damping in pitch but if the swash-plate dihedral is too small
the latter part of the manoeuvre will be divergent. To ensure satisfactory response requires that the
stability associated with speed changes must not be rapidly divergent. A slow divergence or slowly
divergent oscillation is permissible since the effect of the speed changes will not be felt much before
the manoeuvre is over. .
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Another peculiarity of helicopter control response, described in Ref. 13, is the sudden change of
" normal acceleration with sudden stick movements. On the single-rotor helicopter this is followed
by an unpleasant pause in the increase of acceleration in a pull-out and its severity is determined by
the ratio of rotor thrust change to rotor pitching moment with stick movement. In this case, the
ratio can be varied only between narrow limits but on the tandem-rotor helicopter it can be varied
arbitrarily through the control ‘mixture’ (Section 3.1) since differential collective pitch supplies
a moment without a change of total thrust. For typical control mixtures the force-moment ratio is
much smaller than values for the single-rotor helicopter and the pause in normal acceleration,
although clearly seen in Figs. 31 to 46, should barely be noticeable in practice.

Forward movement of the c.g. improves the response but is more effective when associated
with values of ¢ > 0.

The effect on the control response of fitting 8;-hinges is shown in Figs. 39 to 46. It can be seen
that although the response is considerably improved for the case ¢ = 0 deg it is seldom satisfactory
at any speed even for the largest 8;-hinge angles. However, when qS = 3 deg the response is well
damped in nearly every case.

8. Conclusions. 8.1, Reasonably accurate estimatés of the front rotor’s downwash effect can
be made from the wind-tunnel measurements of Ref. 4 for 4 > 0-1 and from Ref. 2 for p < 0-05.
The relevant measurements from Ref. 4 are represented in Fig. 4 of this report. These estimates can
be checked by comparing theoretical trim curves with those measured in flight. Agreement is
quite good. ‘

8.2. The trim curves show a stick reversal with speed between p = 0-1 and p = 0-25 for
¢ = 0 deg. Increasing ¢ reduces the stick reversal and eliminates it when ¢ is about 5 deg.

8.3. In hovering the tandem-rotor helicoptef has a divergent long period oscillation whose rate of
divergence and frequency of oscillation increases with ¢. When ¢ is about —1-3 deg (for a helicopter
similar to the Bristol 173) ,, is zero and the motion is neutrally stable but it is impossible to make
the helicopter positively stable.

8.4. At about u = 0-1 and for a certain rénge above this value (depending on ¢) there is a rapidly

. divergent stability mode associated with the stick reversal of 8-2, i.e. negative m,. Increasing ¢

improves the stability and when ¢ = 5 deg m,, is positive at all speeds but there may then be a
divergent oscillation if the c.G. is not fully forward {({z ~ Iz)/(lz + Iy) = 0-1}.

8.5. Differential 8;-hinges greatly improve the stability and by a correct choice of swash-plate
dihedral and §;-hinge angle the helicopter may be made positively stable at all speeds except
hovering. It appears that there is little further improvement when C exceeds about 0-15.

8.6. The control response is unsatisfactory if there is a pure divergence, unless it is fairly slow,
since although there is large damping in pitch the normal acceleration ‘runs away’ before the
manoeuvre is over. In fact it is possible for the helicopter to satisfy the N.A.C.A. divergenée
requirement yet still possess unsatisfactory response. Again, a suitable choice of 8;-hinge angle and
swash-plate dihedral can be made to provide satisfactory control response.

17



" B B W

- HUJ

-0

LIST OF SYMBOLS

Lift slope of blade section. (T aken in this report as 5:- 6)
Coning angle of rotor blades

Angle between tip-path plane and plane perpendlcular to no-feathermg
axis. Positive for backward tilt of disc

I3

Angle between tip-path plane and plane perpendlcular to rotor hub axis.
Positive for backward tilt of disc

Ared of one rotor disc

Coefficient of n? in trim quadratic
Angular velocity vector of blade
Lateral cyclic pitch application
Number of blades

Lateral tilt of rotor disc relative to no-feathering axis. Positive when disc
tilts towards advancing blade

Lateral tilt of rotor disc relative to rotor hub axis. Positive when disc
tilts towards advancing blade

Tip-loss factor. (Taken in this report as 0-97)
Coefficient of A in stability quartic
Moment of inertia of helicopter about lateral axis, slugs ft2

Coefficient of 7 in trim equation

. Longitudinal cyclic pitch application

Blade chord ft

Rate of change of blade pitch with flapping (see equation (131) of
~ Appendix 3 on 8-hinge)

See equ“ation (2)

See eqﬁation (19)

ac, ac,

T dw

Constant term in trim quadratic

Coefficient of A% in stability quartic

——————L rolling-moment coefficient
2psAQRR 018

m side-force coefficient
P
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M, , M, etc.

uw w

m,, m, ctc.

LIST OF SYMBOLS—continued
M
2psA(QR)*R
Coeflicient of ) in stability quartic
Drag of fuselage Ib o
Drag of fuselage at 100 ft/sec

D,
1050524

Constant term in stability quartic
See Fig. 1
See Fig. 2

Component of rotor force pérallei to tip-path plane lb
H

s AQRY

~ Angular momentum vector of blade

Set of perpendicular unit vectors; i lies in the plane of blade flapping
and k is parallel to the rotor hub axis

B Sy —
R dimensionless form’ of pitching moment of inertia
Moment of inertia of blade about flapping hinge, slugs ft?

v;/v; ¢y ratio of induced velocity at a point in the induced velocity field to
the momentum velocity

Ratio of longitudihal, cyclic pitch-angle to stick angle, see equation (10)

Ratjo of differential collective pitch angle to stick angle. See equations

(11) and (12)
Lift of a blade, 1b

Rolling moment,’ Ib ft. Positive when it tends to roll helicopter to
starboard

Pitching moment, 1b ft. Positive in nose up sense

Moment derivatives 0M/[ou, 0M/[ow etc.
Dimensionless moment derivatives

Fuselage ﬁitching moment Ib ft

Increment of normal acceleration in g-units

Rate of roll, angular velocity about longitudinal axis, positive when to
starboard

Rate of pitch, angular velocity about lateral axis, positive in nose-up sense
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Vi 0

D

X X, ete.

Koy %y €LC,

z, Z,

us

2y Ry €1C

LIST OF SYMBOLS—continued

Distance of blade element from axis of rotation, ft
Real part of root of stability quartic

Rotor radius, ft
be solidity of rotor
7R

Rotor-force component perpendicular to tip-path plane

T
psA(QR)

w
205 A(QR)?

Increment of velocity along flight path, ft/sec

u . .
— , dimensionless form of u

QR

Component of relative wind perpendicular to blade, ft/sec
Component of relative wind parallel to blade chord, ft/sec

Trimmed speed of helicopter, ft/sec

i , dimensionless form of ¥V

QR
Induced velocity, ft/sec

Induced velocity at rotor disc as calculated from momentum theory,
ft/sec

Uy . .
Q__}% , dimensionless form of v;

Increment of velocity perpendicular to flight path, ft/sec, positive
downwards

%{ , dimensionless form of @

7/ R, fraction of blade radius

Component of force parallel to x-axis (wind axes)
Force derivatives 0.X/0u, 0.X/ow etc. |
Dimensionless form of X,, X,, etc.

Component of force parallel to y-axis (wind axes)
Component of force parallel to z-axis (wind axes)
Force derivatives 0Z/0u, 0Z/ow etc.

Dimensionless form of Z,, Z,, etc.
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LIST OF SYMBOLS—continued
Incidence of rotor disc, angle between relative wind and tip-path plane,
positive for backward tilt of disc ’

Incidence of no-feathering axis, angle between plane perpendicular to
no-feathering axis and relative wind. Positive for backward tilt

Incidence of helicopter, angle between flight path and reference line of
helicopter. Reference line defined in Section 3.1. Positive when
nose up

Incremental change of o,
Change of incidence of rear rotor
Blade flapping angle relative to plane perpendicular to no-feathering axis

Blade flapping angle relative to plane perpendicular to rotor-hub axis

pacR*
1y

Angle between horizon and trimmed flight path. Positive when aircraft

Lock’s inertia number,

climbing .
Blade profile drag coeflicient. (Taken in this report as 0-016)
Defined in equation (50)
Downwash angle

System of perpendicular axes used for describing induced velocity
distribution. The {-axis passes through the centre of the rotor and
lies in the plane of symmetry at an angle ¢ (= tan™ v;,/V") pointing
downwards. The 7-axis is positive to starboard and { positive upwards

Differential application of collective pitch due to trimmer movement.
Positive when collective pitch of front rotor is increased

Angular displacement of stick. Positive when forward

Angle of displacement in pitch of helicopter from. flight path. Positive
when nose up

Collective pitch angle at 0-75R

Vsinap — o;
QR

Positive for upward flow through disc

, coefficient of airflow perpendicular to tip-path plane. -

Vsin o, — v;
QR
Positive for upward flow through disc

, coefficient of airflow parallel to no-feathering axis.

V cos ap

OR coeflicient of airflow parallel to tip-path plane

21



)

(
¢
( e
( Jrp

LIST OF SYMBOLS—continued

—W relative densitv arameter
ZepsAR Y P
Air density, slugs ft—3

Non-dimensional measure of time

Half swash-plate dihedral. Semi-angle between rotor-hub axes. Positive
when axes meet above helicopter

Angle between relative velocity at blade and tip-path plane

Azimuth angle of blade, angle between blade and rearward longitudinal
axis

Angular velocity of rotor-hub axis rad/sec

Suffices

Fuselage

Front rotor

Rotor contribution (to be distinguished from fuselage contribution)
Rear rotor

Rear rotor corrected for downwash
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APPENDIX I
Calculation of Rotor Derivatives

The equations for Z,, a;, x and A are
8, = 10y + coA
a, = ¢30) + c4A

H= VCOSOCD

st

C

A:‘ Vsinap—m.

Differentiating with respect to # (4.e. with respect to 7 also)

at, , o A
%=(6100+62A)5§+62%
da, ) T
—51{=(5390+C4)\)é}£+04‘35
alu' A aal
%_coso@—usmo@%
o,
o _ 4 2 cos da, on N st, au+ L
F R “DEn T 2w + Ay %ﬂ+mw4“% éﬁ'

The results of solving these four simultaneous equations are

) @ COS oipst, p : Ast
Cy {SIN Xp -+ -zmg + cos Op (C]_ 00 + Co A) %1 — 2([1,2—4—0)\2,)3’—2%
E{g _ + V{Cz (c3'0y + €' A) — calel'8y + ')}
- on ’ A
. U €08 opSt, , ., Ast
C4 sSin Ay + m—gl—z 4+ Ccos op (C3 00 + 64 )\) ;1 had m%
iy 19 /)\ _ ’0 ?
ay + T O {ea (s’ + c4'A) — 4 (e 0y + &'N)}
on A
where
Ast Cof ’ ’
A=p“mmﬁhm+w“mw4ﬂ+wm%%%+%m—

stan « t, , ,
— pey 2 |: £ —(Cleo’l‘czA)]E-

1 - 2(p® + ,\2)1/2 uE + A
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Differentiating equations (75) and (78) with respect to @ gives

at, , ryy W A
8_22; = (¢ + 2’A) = % T 255
da , oA
a»} (630 +C4A)6A+ 4aA
0 0 .
% = %{Vcos (o + @)} = — sinay — Psin “D%—‘;
ot,
oA _ cos ap + Vsin oo o + o e o
o = o+ Vsinen = s + g (6 + V)
These equations give
. CopiSt, , ; A
o, € COS ap — sin oy m + (6185 + ¢5'A) 1:1 —Z(JLLTC)F)WE:H
D ‘ A
sin apust, . ' : Ast,
€y {COS ap — W)@)—Smg — sin ay (63'0p + ¢,'A) 51 - 2—(#2'}‘—/\2)3[23
ssin « , . / ’
da, B m))i/—z {cq (c3'6y + ‘54 A) = ca (e by + e A}
e A

Differentiating equations (75) . ..

. (78) with respect to 6, gives

g—;io=(61190+6‘2 )880 +c1+62§;,
. Z_‘;t = (c5'0y + ¢4'A) aag + ¢+ ¢y 889
s—go= — Vsinapg;%
ot, ‘
= Pl s o )

These equations give

Ast ) , , , ,
— 2(#_2_[-_0}\_2)%; icl — Vsinap [6; (¢3'6p + ¢a'A) — ¢3(c'0p + ¢, /\)]E

' V sin apust,

a, — (6164 — €o¢3) |V cos apy — ZW‘

00 A »

s Ast,
aal _ 2(,,,,2 + A2)1/2 (6‘164 - 6263) — (3 1 - 2_( F’z +)\2)3/2E
00, A '

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

The above derivatives, equations (83), (84), (91), (92), (96) and 97, can also be used for steep descent,
except in the vortex ring region where the momentum theory, on which equation (82) is based,

breaks down. However, even in this region these derivatives seem to give reasonable values.
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For level flight good approximations to the derivatives are

St ! ! 7 ’
Gy O‘D+2(/“L2/J’—+c)\2)3_/2 + pica(ey’8y + c/d) — cy(er/y + ')} +
(c/0, + e |1 = =
o, + by T G 2(u? + A2 0
E}L - A ( )
ust, , , Ast, : o8
aal B cy {Cp + 2———(H2 n /\2)3/2§ + (6'3 90 + ¢y )\) 51 — 2((.1,2 n )\2)3/2 + 2(;1,2 n )\2)1,2 %
% - A ( )
0f, ¢y
PN (100)
da; ¢
%= A (101)
Ast, :
o, ¢ {1 = m — (€16 — €o63)
9, = A (102)
Ast . §
day g {1 — 2002 +c)\2)3/2‘ + 2> + Ay (c164 — Cats) 103
where the approximation to A is
A= Ast, o) (104)

1- 2(‘“2 + )\2)3I2 + 2(,112 + AZ)l/Z — Caft-
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APPENDIX II
Calculation of Rate-of-Roll and Rate-of-Pitch Derivatives

Consider the system of axes in Fig. 6. In the mutually perpendicular set of unit vectors i, j, k,
k is parallel to the rotor-hub axis and i lies in the plane of flapping. Relative to the helicopter this.
system rotates about k with angular velocity Q. In the other mutually perpendicular set of unit
vectors X, Y, Z, X always is fixed in the blade and y always coincides with j. The x, y, z system
therefore rotates relative to the i, j, k system with angular velocity — 8 about j. Finally since the heli-
copter is rolling and pitching about its longitudinal and lateral axes with rates p and ¢ respectively
the angular velocity of the blade can be represented by the vector "

A={QsinB — pcosycos B + gsinpcos B} x + {psiny + gcos iy — B}y
+ {Qcosp — pcospsinf — gsingsinfyz=A4A,x + Ay + 4.z. (105)

The moments of inertia about X, y, z can be taken as 0, I;, I;. Therefore the angular momentum
of the blade is '

H=14y+ LAz (106)
and the rate of change of angular momentum is
dH ©oH '
= +A . 10
i (1079

Expanding equation (107), and equating the component about j to the aerodynamic moment M ,,
gives the flapping equation

My=1 (B + Q2B — 2pQ cos p + 2¢Q sin i} (108)
The total pitching moment on the helicopter of the rotor forces is ‘
Cp = b {t,(a;, — By). + k) (109)
and the rolling moment .
C; = h{t,(by + 4)) + Cyp. : (110)

We have now to calculate ¢, %, @, and 4, in terms of p and ¢.
The pitch angle in the tip-path plane is A
@ = 6, — aysinyg + by cos . (111)

The relative wind perpendicular to the blade span (in the sense of increasing incidence) for a
blade element distance ¥R from the hub is

_ Up = QR (X — pagcos i + xpsin g + x§ cos ) (112)
where p = p/Q and § = ¢/Q
and along the chord
Up = QR (psin g + x). ' (113)

The blade incidence is
A — pagcos g + xpsin g + x§ cos
psind + x
therefore the elementary lift is .
dL = }pacQ?R? (psin g + x)* (8 + ¢) dr. ’ (115)
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Expanding equatibn (115), taking the mean value round the disc, Z.e. with respect to i}, and integrating
between x = 0 and x» = B results finally in a thrust coefficient

I, =

C

B

{$B0, (B* + 3u2) + B\ = pa, B* + }Bup) (116)

. N

or in terms of A, (A referred to the no-feathering axis which does not change incidence with ¢)

B ,
o= T (360 (B + ) + Bh, + 3up) (117)
since '
}lnf = A - fLal.
Also, from Fig. 11, ‘
dH = — dL aycos y — (dLé — dD)sin if. (118)

Proceeding as above we obtain for the in-plane force coefficient

aB (B2

ho = 408 = S0 1 aby ~ 1Budy + §Bah — YBAay + BAp + pO) —

— §Bupay + §Bugd, + §B*,p;  (119)

and therefore, in terms of Anps

Bh . N B
n = 4Bl + T 180,(B2 + ) 4y — By) + §BAyay — - doby +

+ }Byay — 1B%qq — BAyB, + }Buay? — BAp —

2 -

— ey — p20yay — 3Bpayp — }Bugh, —

= §B%0,p — dup . (120)

Calling the lateral force ¥ and its coefficient Cy (positive in the direction of the retreating blade), we
have | ‘

dY = — dLaysin + (dLp — dD) cos (121)
and in a similar manner to the calculation of C,, we have

Bk ‘
Ci= T3 800 (B + 369 (4, + by) + BA, (dy + by) + }Budyp —

B 5. B By
- %P«ao?o - geagt & Bub,p 3 980 + 2 Aabr +

B B e o . :
T3 paaghy — 7 %Pt 5 Gt — [ZI (122)

The moment of lift of a blade element about the flapping hinge is ,
dM , = dLxR. : , : , (123)
Equation (123) is integrated by using equation (115) and M, together with the relation

B = ay — a; cos i — by sin i, : : B o (124)
is substituted in equation (108). -
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Equating coefficients of sin ¢ gives

_ 2u(5B6 + Ay) 16§ B%

= - . 125
CETE- G BPE - B (12
Equating coefficients of cos ¢ gives
4 A %A ’
b = DK 16 B (126)

CBE R yBE ) B

Now C,, and C; depend on @, and b; which in turn depend on §, therefore the derivatives with
respect to § must be written ‘

oC,, oC,, oC,, Bal) (acm> (8])1)
4 ¢ ( oq >a,w ( o9 )al,bl ( 0a, )bl,j(aq 0by /41, \ 04 (127)
an
oC oC oC, oa oC ob
(9 (9,5 (5,0
pv p /s P /ar,01 0ay/p1,5 \ 0P 0by/ g1, 5 \ 0P (128)

where the suffices indicate those variables kept constant during differentiation.

We find on differenfiating equations (120), (122), (1,\25) and (126) and substituting in (127) and
(128) that the first and third terms on the right-hand sides of (127) and (128) cancel almost exactly,
provided also that the term u (4; + b;) in (128) is very small, which it should be in trimmed flight.
Thus we have ' '

4ah '
(mg), = — AB = i) {8Bb, + §A — dpa} : (129)
and
| tah 2 2 1 8,2) 4 3 7
(Ip)e = — m{ﬁgo (B* + 342 + $BA — Bua} (130)

Similar expressions, if required, can be obtained for x, and y, but these are usually negligii)ly
small. '

It is interesting to note that although the disc incidence changes due to precession when the
helicopter is steadily pitching the incidence of the no-feathering axis does not change so that there
is a corresponding variation of cyclic pitch angle in the tip-path plane which keeps the thrust
constant, i.e. 2, = 0. This can be inferred from equations (116) and (117).
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APPENDIX III
Calculation of 01,/]0® for a Rotor Fitted with 85-hinges
The relation between feathering antél flapping for a blade attached to a 8,-hinge is
. (6)s3 = 8, + CBs ' (131)
Be = ag — Gy, co8h — by sin ' (132)
the feathering in the tip-path plane is
0 =0y+ Cay — Cajscosyp — Chygsing — aysiny + by cosyp (133)

and the incidence at a blade element is

A — upa, cos
e Y (134
therefore
. A — pag cos
= LoacO2R3 2 .
AT = 3pacQPRS (usin  + x) (a e )dx (135)

Expanding (109), taking the mean value with respect to ¢ and integrating between x = 0 and
x = B gives a thrust coefficient

(Z)sz = 1 (Bp + Cag) + coA (136)

assuming Cb, . is small compared with a,.
By considering the flapping moment equation we obtain

a; = ¢3 (8 + Cay) + cA (137)
and
C
a1l = 0+ )] = |11+ )+ 10 o) (138)
From (136), (137) and (138) and neglecting some small terms in u? we get
AN Ceyy :
(8_@)83 - a_@{l + (139)
6c, (1 - ?)

where g—z;; <= €y aa—g) is the thrust derivative without §;-hinge effect.
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TABLE 1

Particulars of example helicopter (basically Bristol 173)

Weight : 13,000 1b

| Rotor radius 25 ft
Rotor speed ' 26 rad/sec
Solidity - 0-04
hg 0-22
by 0-424
I+ Ip ‘ 1-62

C.G. range from Ip = I (fully back) to [ — Ip = 0-1 (I + Ig) (fully forward)

ky A 0-286
ky 0-143 ,
Fuselage drag 300 Ib at 100 ft/sec
Moment of inertia in pitch 85,000 slugs ft?
Lock’s inertia number for rotor blade 8

8 ' 0-016
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Fic. 1. Nomenclature diagram,

F1c. 3. Reference axes for downwash pattern.
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Part 11

The Lateral Stability and Control of the
Tandem-Rotor Helicopter

By A. R. S. BRAMWELL

Summary. The lateral stability and control of the tandem-rotor helicopter with a basic configuration
similar to that of the Bristol 173 has been investigated. A method of calculating the derivatives is given. Values
calculated for the HUP-1 helicopter show fairly good agreement with those obtained from flight measurements.

The stability investigation shows that a tall fin may provide an effective dihedral several times larger than
that of the rotors and lead to an unstable Dutch-roll oscillation which becomes progressively worse with increase
of speed. The corresponding spiral mode is stable. If the rotors provide the only contribution, the Dutch-roll
oscillation is stable but the spiral mode may become unstable..

Simple approximations are given for the estimation of the damping and period of the stability modes and
show quite close approximation to the more exact calculations.

1. Introduction. 'This Report is the second part of a study of the stability and control of the
tandem-rotor helicopter and deals with the lateral motion. As in Ref, 2 which dealt with the longi-
tudinal behaviour, a configuration similar to that of the Bristol 173 is used as an example.

The equations of motion used in the main part of the Report are referred to wind axes in the
usual manner but it is shown that, for the tandem-rotor helicopter, it may be advantageous to refer
the equations to the principal inertia axes for lateral stability studies. When these axes are used the
derivatives are easier to calculate and, since product of inertia terms are absent, the terms in the
stability quartic are easier to interpret. .

The fuselage derivatives have been given special attention since they appear to be at least as
important as the rotor derivatives especially in the case of /, where the fin contribution may be
several times that from the rotors. ‘

As in fixed-wing aircraft stability studies, it is possible to obtain simple approximations to the
damping and periods of the modes of motion.

2. The Equations of Motion. As usual, wind axes are used, the axes being fixed in the body with
the x-axis directed initially parallel to the trimmed flight path, the y-axis directed to starboard and
the z-axis pointing downwards. The equations of motion for small disturbances are then

Tgu—/'z} - Y- Y,p+ g Vyr — Yor — Wécosy, — Wz/léinye = Y £ + Y, { 1
— Ly + Ap — L,p — B¢ — Ly = L + L (@
— Ny — Ep — Nyp+ C¢ — Ny = N + NL. 3)

Previously issued as R.A.E. Report Naval 4 (A.R.C. 21,918).
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* Dividing equation (1) by 2ps4Q2*R* and equations (2) and (3) by 2psAQ?R® and moments of
inertia 4 and C respectively the non-dimensional forms of the equations of motion become

@ _ o v dh ”\ b

y P,0 — ‘72 7 i, ¢ cosy, -+ (17 ) o — t/fsiny, = y€ + vl “4)
ol o P8 Ldb _ipd%_Lap B ey,
TN T Lt T ©)
iy il _mdb 4 mdy _t

B~ Rl Sl xRl i = ot Pl (©)

The scheme for the conversion of the force and moment derivatives and moments of inertia of
equations (1), (2) and (3) to the non-dimensional derivatives and coeflicients of inertia of equations
(4), (5) and (6) is given in the table of Section 2 of Ref. 1 except that, as in Ref. 2, 4 is replaced
by 24.

Solution of equations (4), (5) and (6), when the control terms on the right-hand side are zero, by
the usual substitution § = 9y, etc. gives the frequency equation

CTMNAM+ BB+ CON+DA+EY=0 (7)
where ,
;2
A=1-2%
, i lz7 #, i iEnp
B=—yv( —f)—<.—+.—+flr+‘.‘—.‘) (8)
i 1400 iy ig lgg iy lg
) L L o T ) l
c'=yv($+7_r+f—ﬂ;+?£@) +<.—pﬁ—._”i)
) Z_A_ zCr 1CZA 1A ZC ZAZC' Z.A lC
4 2 ”2 ZE (17 yr) yp /’LG (V _ &) _ ZEJ& (9)
L4 e 22 tq Mo
l
vkl
iy zc' ZA C
+ ‘u,z (17 y’) + TETJQ — 1,/ cosy, + Z,Etc’ sin v,
T4 : g pg - g
I, - .
_ et ) g (f/ - &) + &y—p — t/siny, + l»_gtc’ cos'ye§ (10)
Zc' 4 Mo la Mo ta

A 7, (1 . /A
B =P ( Pt/ sinvy, g T, cos 'ye) i (-.—p ¢ siny, + ,i ¢, cos 'ye) . (11)
iy \ig % o \ty ]

The zero root given by equation (7) implies that the aircraft has no preference for a partlcular
heading.

3. The Lateral Stability Derivatives. 3.1. The Rotor Derivaiives. When a rotor is placed in a
stream of air of velocity I the rotor disc, relative to the no-feathering axis, will tilt backwards with
angle a,, and sideways towards the advancing side with angle &,. The resultant tilt will be of amount
(2> + 5,%)%2 and at angle ¢, = tan™! b,/a, towards the advancing blade, i, being measured from
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the rear-most position of the blade. If a small side-wind of velocity v blows from the retreating side
of the disc the relative wind will appear to come from a new direction at angle ¢ = tan' o/V cos oy
in the plane of the disc relative to the original direction. The new sideways flapping compoflent
b, + 8by, will be given by

1;1 + 8by = (a)® + b)Y sin (fy + €)
= (@ + b,%)"2 {sin ¢}, cos € + sin ¢ cos P}

= b, + a,¢, for small ¢
therefore
: a0
8b, = a.¢ = e
. t V cos ap
therefore

ob, a  24BO + X))

00 w B+ 3R

(12)

using the familiar expression for a,.

It should be noted that the sign of b, for a given direction of tilt depends on the sense of rotation
of the rotor and that 2b,/09 will be of opposite sign if the side-wind blows from the advancing side.
However, there will be no confusion if it is remembered that the disc always tilts away from the
side-wind.

In addition, a side-wind will also cause a sideways component of the in-plane H-force. This
component will be '

ho
het = ¥ cos oy
therefore
0 ho _
En) (T/ cos ocD) T u
== 15, : (13)

The front and rear rotor contributions to the side-force will then be

a1y
O = — 4 (1r 2E + 39| | (14)
1 4R 1
Wdr= — 3% (tcRT + 18) . . (15)
These side forces will result in contributions to the moment derivatives
A )y = Oo)rup + V)r 'tz (16)
and
() = Po)v e — (Po)r b me (17)
From Ref. 2 we find that the side-force contributions due to roll are
B2ar,\ 16
= — 1 — F
= = (o - ) s (18)
B?a)g, 16
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The total rotor contributions to the moment due to roll derivatives are therefore
(p)r = Wu)r h_lF + Vp)rtir ' (20
(np)r = (y;n)F llF - (yp)R llR' ) . ‘ (21)

" When the tandem-rotor helicopter rotates in yaw side-winds (of opposite signs) will be imposed on
the front and rear rotors and we find that

Wp = — ¥erhy arplp (22)

(3)m = + ¥.rligaig/p (23)

The total rotor contributions to the moment due to yaw are then
(L = Wdrlar + (e Mg (24)
)y = e bir — e hig . (25)

It is useful to note that (y,), = (n,),.

(It is unfortunate that the standard symbols for rate of yaw and suffix for rotor contribution are
the same, namely . However, when r appears outside a bracket throughout this Report it refers to
the contribution of both rotors.) '

3.2, Fuselage Derivatives.

321 ()
It is difficult to make a theoretical estimate of (¥»); but the wind-tunnel tests of Refs. 3 and 9

should give a reasonably accurate value for a typical fuselage. An analysis of these results shows that
the fuselage contribution can be represented by

= 0-3u8p A
() = — A ) (26)

322 (L)

The calculation of /, due to a fin is usually of secondaty importance for the fixed-wing aircraft
but for the helicopter without a wing the fin contribution to /, may be far greater than that of the
rotors and is therefore of great importance.

If the fin effect is calculated in the manner of Ref. 4 we have

(L) = — ViaF (V (27)

where the interference factor, xzy, of Ref. 4 is taken to be unity.
In the notation of this Report (see Fig. 2) V; becomes

Af
Vi= 44
and
F(a) = hycos oy — I sin o,
a; can be calculated from Ref. 4 but a more accurate value can probably be obtained from Ref. 5.
No tandem-rotor helicopter flying at present has a wing but wings may be fitted to future designs.
The calculation of /, due to a wing may be calculated from Refs. 4 and 6. '
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Again, we are in difficulty with notation. We would like to use the symbols f or F to denote the fin
contribution to the derivatives but they have already been used to denote-fuselage and front rotor
respectively.

However, in lateral stability work, the term ‘fin effect’ is meant to include all those fuselage
effects which act like a fin and so there will be no ambiguity throughout this Report if the suffix fis
used to denote the fin contribution.

3.23. (n),

The method of Ref. 7 has been used for estimating (»,); but care must be taken to convert the non-
dimensional values given there to those which correspond to the tandem-rotor helicopter. Thus the
values of 7, ; of Ref. 7 must be multiplied by VSg I5/4sAR and the values of #,, by V.Sb/4sAR.
For the fin itself Ref. 7 uses the results of Ref. 5, 7.e. the fin contribution, in the notation of this

"Report, will be a; 4; I; V]4sA. :

3.2.4. The moment derivatives due to vate of roll and rate of yaw. These derivatives, like (1,),,
may be considerable for the helicopter and have been calculated by strip theory, as follows.

Let x be the distance above the centre of area of an elementary strip, parallel to the flight path,
of chord C and width dx. A rate of roll p will change the incidence of the strip by p{F(a) + x}/V
and the rolling moment of the fin will then be

(Cp)y = — :%—paprz fxzc{F(oc) + %) dx

Vv -
giving
44V {F o) + Ry ‘
(lp)f - 454 (28)

where £, is the radius of gyration of the fin about an axis through its centroid parallel to the flight
path or, approximately, parallel to the aircraft datum line.
Similarly we derive

PALFG)
(ny) = A @9)
VAILF(«
(y = A )y, (30)
)y = — A | 61

3.2.5.  Control moment derivatives. Adopting the notation for fixed-wing aircraft, an angular
displacement of the cyclic stick to port, £, produces equal changes of cyclic pitch, %€, on front and
rear rotors such that both tilt to port. A displacement, {, of the rudder bar, with the left foot
forward, produces tilts, 25, of both rotors, the front rotor tilting to port and the rear rotor to
starboard. The control angle notation has been used for stick and rudder displacements rather
than the rotor disc displacement because of the possible confusion arising from the signs of the
lateral tilt and cyclic pitch application for counter rotating rotors, as mentioned in Section 3.1.
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In non-dimensional form the control force and moment derivatives will then be

Yo = — kit (32)
Vo= = kyilter.— t.g) (33)
L= — ki (fphap + tomhsp) (34)
Iy = — Ry (t,phip — t. gl ) : : (35)
e = ~ by (bl p — torh ) | (36
ne = — ky(t,ph 5 + L 5h g)- (37)

3.3. Comparison of Theo}'etical Derivatives with Estimates from Flight Tests. The trim equations
in level flight for a given steady sideslip angle B(==%/u) are obtained from equations (4), (5) and (6)
of Section 2 by omitting the acceleration and rate terms and putting y, = 0, giving

BBy, + L'd = — (¥e€ + 3.0) _ (38)
pBL, = — (k£ + D) (39)
P, = — (m€ +nl). ‘ (40)

Thus by measuring the control angles (assuming the control derivatives are known from
equations (32) to (37)) and the angle of bank for a given sideslip angle the derivatives y,, [, and n,
can be obtained. A number of such measurements for the Vertol HUP-1 tandem-rotor helicopter is
given in Ref. 8. From these measurements the derivatives were calculated and the results for v,
and /,; together with the theoretical values are shown in Figs. 3 and 4 where it is seen that the
agreement is quite good. On the other hand 7, has not been shown as agreement was extremely poor;
it was unfortunate that the fuselage of the HUP-1 is very short and ‘stubby’ whilst the fin section
has a thickness/chord ratio of 35 per cent and a trailing edge angle of about 45 deg. Thus the
fuselage and fin contributions to z, were both difficult to estimate accurately and since the total
n, is the difference between these comparatively large quantities it is not surprising that the
theoretical estimate should be so poor. The estimation of », for a comparatively slender fuselage,
such as that of the Bristol 192 which closely resembles fixed-wing aircraft practice, should be far
more reliable. '

4. Discussion of Derivatives. 'The estimated derivatives for the Bristol 173 helicopter are shown
in Figs. 5(a) to 5(g). The force-rate derivatives y, and y, have been omitted as they are negligibly
small. '

4.1. vy,

The rotor contribution is roughly proportional to @,/ which is almost constant throughout the
speed range. The fuselage contribution which varies linearly with speed is very much larger at all
but the lower speeds so that for most of the speed range the rotor contribution can be neglected.

42. 1,

"The rotor contribution is again roughly constant with speed for the reason given above in 4.1.
The fin contribution increases rapidly with speed and above u = 0-2 is already larger than the rotor
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contribution. Thus it will be seen that the fin-has a powerful dihedral effect compared with that of
the rotors but without a corresponding effect on the damping in roll (Section 4.4). It will be shown
later that this may lead to a very unstable Dutch-roll oscillation at the higher speeds.

It should be noted that, although the force derivative on the fin is linear, the moment derivative
rises more rapidly than this since the fin height relative to the wind-axis increases with the increasing
nose-down attitude in pitch.

4.3, n,

The rotor contribution is usually negligible and the total z, depends almost entirely on the
fuselage and fin contributions. However, it is interesting to note that setting the c.c. forward
increases the front rotor thrust and tilt and decreases the rear rotor thrust and tilt thus causing
the rotor contribution to be unstable. : C

44. 1

D

The rotor provides nearly all the damping in roll, a small contribution arising from the fin at
higher speeds. It will be seen later that it would be desirable to be able to increase /, considerably
ut presumably this could only be done by fitting a small wing.

45. =n

2
This derivative hardly warrants discussion as it is usually unimportant and, in any case, appears
in combination with other derivatives in such a way that its effect can always be eliminated by slight

changes in the others.

4.6. l.and =,

These derivatives will be discussed together as their most important effect is their appearance
in the constant term, E, of the stability quartic. In level flight E is proportional to [n, — #,l,.
Now #, is negative and so is /,, usually, so that the first term contributes to the stability of the
spiral mode. On the other hand /, is positive and #, must be positive for positive weathercock stability
so that the second term represents spiral instability. However, as can be seen from Figs. 5(f) and
5(g) both 7, and #, increase with speed, although not necessarily in the same ratio, and the effect of
one tends to cancel the effect of the other. Therefore the spiral stability depends mainly on the
choice of /, and #, being, in any case, easier to control than /. and #, which depend mainly on fin and
rotor heights. ‘

5. Discussion of Stick-Fixed Stability. 5.1. Approximate Roots of Stability Quartic. Before
discussing the stability in detail, it is worth while obtaining approximations to the roots of equation (7)
to see more clearly the dependence of the motions on certain derivatives or combinations of derivatives.

Dividing equation (7) through by A" we obtain '

M4+ BB 4+ CX¥ 4+ DX+ E=0. (41)
Now the coefficient D is always several times larger than E so that to a good approximation one
root of equation (41) is A, = — E/D. This is the spiral root, familiar also to fixed-wing aircraft

practice, and since D is usually positive a stable mode requires that E is also positive Z.e. [z, — n,0, > 0.
Comparisons between this approximation and more exact calculations are shown in Fig. 8 where
agreement is seen to be extremely good.

76



Dividing equation (41) by (A + E/D) leaves a cubic which can be written approximately as
" A 4+ BA 4+ (C— BEDyA+ D =0. ' (42)

" In fixed-wing aircraft practice the coefficient B is large enough (compared with the other
coefficients) to take as a good approximation A, = — B but this is not always true for the helicopter -
as‘is shown at the higher values of x in Fig. 9. Also, Newton’s process of approximation which is
often used to obtain a better value of ), is slowly convergent or may even be divergent at the higher
values of u. However, another iterative process, which seems to work quite well, consists of writing

equation (42) as \
B = — {B/\2 +(C - BE/D) A + D} . (43)

and substituting A = — B (or a better approximation, if known) into the right-hand side of
equation (43) and taking the cube-root, this latter value being used as the next approximation and
the process repeated until the desired accuracy is obtained. This process can be carried out quickly
on a slide-rule. Since this root is roughly equal to — B and since B consists very largely of the term
~ 1,/i 4, this root can be regarded roughly as representmg the damping of the rolling motion. Let & be

the value of the root obtained from the above process. Dividing equatlon (42) by (A + «) leaves a
quadratic (A* + BA + y) so that to a good approximation

A+ED)X+ o)A+ BA+y) s_.N‘?-{- BN + CA%* + DA + E.
Equating the constant terms and the terms in A% gives

B = Cla — Djo* — E[D. (neglectihg E/D comparea- with «) (44)
and

sy:= Dla. .. : . (45

If we take « = B, which is a good appfoxiﬁiétion forp < 0-3,theny = D/B, an approximation
used in fixed-wing aircraft work giving for the time of oscillation

T, = 2at4/(B/D) . (46)
assuming B is fairly small. :

5.2. Lateral (Dutch Roll) Oscillation. 5.2.1. Damping of oscillation. The damping of the
lateral oscillation of the complete helicopter is shown in Fig. 6 where it can be seen that the
oscillation becomes rapidly unstable with speed. That this is due to excessive dihedral effect is
shown by the lower curves in which the value of I, used in the calculations is that from the rotors
only: The beneficial effect of increasing ,, is shown in Fig. 10 where doubhng the existing 1, greatly
improves the stability. Unfortunately it does not appear possible to increase 1, cons1derably except
by fitting a wing and the only other way of obtaining a damped oscillation is to prevent the fin and
tailplane contributing too much to /,. ‘This might be done by fitting a tailplane which has anhedral
or possibly by a retractable fin which, in the extended position, is placed below the aircraft centre
line. -

- We can examine the effect of , and /, on the damping of the oscillation by referring to the
expression for B, equation (44). Since o, D and E are almost always positive a damped oscillation
can only be achieved if C is positive and the term C/x (or approximately C/B) is larger than the sum
of the other two. : V : :
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Now numerical calculations show that the coefficients 4, B’, C’, D’ and E’ of equations (8) to (11)
can be written approximately :

Poq 8

A = e (47)
I

B=_2 , (48)
i, .

ol (y,, + .—’) +7 (“21 viz | “?"”), (49)

iy ig iy g Ig :

D= ey by | (50)
iy iy iy

E =20 —nl). (51)

The separate terms in 8 are approximately

— _(‘Z’UTI'T '—' nvlr) ] i (54)
It 1o + nﬁlpV :

C n VZA f"'zlv 7‘E l"“zhv /

= ry _ Lt (B lE : 2
B (y” io) 7, (z'A it z'o) (2)
D paly . Moty T4

o (e e ) (1 ) - ®
E

o

Taking the effect of [, first, all other derivatives remaining constant, the terms in B all decrease

with increasing , except the constant positive term — (yv + ,—’) and the term 5 Thus as [,
. i

increases 8 tends to the value — (yv + 21—7> -5 which except, perhaps, at hovering and very low
- :

speeds is positive and increases with speed, i.e. the stability improves.

Turning now to the effect of /,, the most important terms are D/B? and the second term of C/B.
When /, and ,, are negative and #, positive, .. when they represent positive static stability, D/B? is
positive and contributes to instability of the Dutch roll. This term increases with increase of /, and
usually increases rapidly with speed also. The second term of C/B also contributes to instability

l, 1 . . o
2w . 'Z which becomes negative, as the longitudinal
i o

increasing rapidly with speed due to the term

o2y
io )
Since iz, is determined by the mass and fuselage attitude and cannot be varied easily it follows that

principal axis assumes a nose-down attitude, and overwhelms the weathercock stability term

too large a value of /,, especially at high speeds again leads to instability. These effects can be seen
clearly in Fig. 6. Thus as far as the Dutch roll damping is concerned we wish to make #, as large as
possible and keep [, and iy as small as possible, assuming iy is positive as is almost certain for a
helicopter at all but the lower speeds.

The reduction of damping with increase of iy is often described as a destabilizing ‘product of
inertia effect’. This effect is not easy to see physically, compared with those from aerodynamic
terms, and in any case the magnitudes of the product of inertia terms depend on the axes chosen.
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Another interpretation of the term involving iy can be obtained by writing down the equations of
motion of the helicopter referred to its principal axes. ‘These are given in Appendix 1 where the term
. I, ¢ 7 ! .
corresponding to (E/32 CE lﬁ—”) has become ( Moo gin o + 222 cos 19) . The latter term is
gy ¢ e : tao Zoo

! 7
Fo’ and B2
t40 co
system and therefore represents a kind of weathercock stability—it is not a true weathercock
moment since both terms are divided by their corresponding inertias. Nevertheless, it can be seen
that when the fuselage takes up a nose-down attitude (negative #) a negative /, (the usual dihedral

! .
ol is usually several times larger
iy

seen to be the sum of the terms — resolved about the yawing axis of the wind-axes

sense) acts partly like a negative weathercock stability and since ——

than ¥ it is quite easy for the whole term to become negative. Thus the deterioration of stability
ig

which is often regarded as a ‘product of inertia effect’ can be interpreted simply as a transformation
of the dihedral effect into negative weathercock stability. This interpretation is especially appropriate
to a helicopter since the moment derivatives (except those from a wing) are directly related to the
fuselage geometry (and therefore to the principal axes) so that when referred to these axes will be
almost independent of attitude. Since helicopter moment derivatives are simpler to calculate when
referred to these axes their use in the study of helicopter lateral stability may be an advantage.

5.2.2. Period of oscillation. The approximate expression for the period of lateral oscillation is
T, = 2wt 4/(B/D). This approximation gives good agreement with more exact calculations, except
perhaps at the highest values of y, as Fig. 7 shows. Using the approximations for B’ and D’ in
equations (48) and (50) gives

B_ 1 (55)
D l-“ilfv P Bty
I * ig

The two terms in the denominator are usually of the same order and since both increase with p the
period decreases as p increases. If a wing is fitted [, will be much larger and /, possibly smaller and
the time of oscillation would depend almost entirely on #,. The approximation to the time of

an expression corresponding to one derived for fixed-wing aircraft, Ref. 10.

oscillation would then be

5.2.3. Dutch Roll-yaw ratio. If ,, I, and n, are varied to improve the damping of the lateral
oscillation or perhaps the spiral mode the ratio of amplitudes of roll to yaw in disturbed flight varies

also. A simple approximate expression for this ratio is derived from equations (5) and (6) of
Section 2, for zero control movement and neglecting 7,

] U T .
-—%’@+¢—.—1’¢—Z£¢—i¢;=0 (57)
A ty 14 24
el PR R . Y} (58)
o T4 o]
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Nowd = p = p(;e"T and ¢ = 7 = rye™ where p, and 7, are the (complex) amplitudes of the roll and
yaw oscillations respectively and A is complex in general: Substituting for ¢ and i in equations (57)
and (58) gives '

kb P Lo _imy ko, (59)
1, 7 o tgty Iy 1y

% _Tmalo = (60)

o o g ¥ o]

Eliminating ¥,/r, gives
e (Za .Zf‘) bl (r-2) .
Po _ o \ia ig 4 lo . (61)
o ”?n”(A—{—I’)Jrﬁ?ﬁ’i@A

to T4 ts o

If the coefficient § of the Dutch-roll quadratic is small compared with y then X2 = — y or A = 4§,

say, equation-(61) becomes

”i"‘-’<£’?z‘8+.l—r)+’il"(z‘8~@) :

Po_ to \ig L4 L4 iy (62)
"o Halty (iS — ffl) 4 Hablin ;o
o L] iy ﬁ,lc

- Inserting typical values into equation (62) shows that many terms can be neglected when the
modulus of py/r, is calculated and we have as quite a good approximation

l
Sy —
po| i | (63)
ol pa L | |
iC' iA

It can be seen from Fig. 11 that the time of oscillation, and therefore 8, does not vary greatly
with changes of /,, and /, so that the Dutch-roll ratio can be said to be .roughly proportional to [, and
inversely proportional to 7, and /,. For the Bristol 173 the value of |p,fr,| from equation (63) is
3-75 at p = 0-2 and agrees well with more exact calculations from an analogue computer.

In fixed-wing aircraft practice a large ratio of roll in yaw is regarded as objectionable. From
equation (63) this requires that, for a given 7, /, should not be too large compared with #,, a
combination required also for satisfactory damping of the Dutch-roll oscillation.

5.3. The Spiral Mode. Fig. 8 shows the damping of the spiral mode with u for two cohﬁgurations.
Fig. 12 shows the effect of varying 1, and /, on this mode. Since, approximately, A, = — E/D we
can infer from the expression for %, what is shown in the Figures, that the larger the value of , the
better the damping of the mode whilst increasing #, tends to make the motion divergent. These
derivatives have been shown to have the opposite effect on the Dutch-roll damping and, as for
fixed-wing aircraft, the choiceof J, and 7, must often be a compromise hetween accepting some degree
of instability of one or other, or even both, modes. Divergence of the spiral mode does not become
very severe even for quite large changes in /, and #, and it is usual, in fixed-wing aircraft practice,
to accept some spiral instability in order to achieve satisfactory damping of the Dutch roll.
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6. Control Response. Fig. 14 shows the response of the helicopter to a sudden 1 deg lateral tilt
of the rotor discs at u = 0-2 for three values of I,. In the original configuration the helicopter is
about neutrally stable and reaches maximum bank angle in about 4 seconds and maximum rate of
roll in about 1 second. If the stick were held in the displaced position for long enough the helicopter
would roll from side to side with a period of about 8 seconds.

- If 1, is increased the oscillation becomes stable and the angle of bank reaches a steady value but
the maximum bank angle decreases and the time to reach it increases so that too much damping
in roll for a given /, may cause the aircraft to appear sluggish.

If I, is increased for a given value of /,, Fig. 15, we see that the maximum rate of roll is roughly
* the same for each case but that the maximum angle of bank is reduced and the time taken to reach
it is also reduced. However, if I, is increased too much the lateral oscillation becomes unstable
and a steady bank angle is not reached. In these cases the rapid reversal of rate of roll is regarded
as undesirable as it may prevent the pilot from banking the aircraft accurately. This effect becomes
more pronounced at higher speeds where J, increases and Z, falls off slightly.

7. Conclusions. 7.1. A method of calculating the aerodynamic derivatives of a tandem-rotor
helicopter is given and shows fairly good agreement with values obtained from a series of flight
tests.

7.2. The sideslip derivative, /,, is greatly affected by a tall fin which may provide a contribution
several times larger than that of the rotors. Since there is no corresponding increase of 7, this leads
~ to an unstable Dutch-roll oscillation at the higher speeds which becomes progressively worse as
the speed increases. The corresponding spiral mode is stable.

7.3. If the rotors provide the only contribution to /,, the Dutch roll is stable and the stability’
improves with speed. The spiral mode becomes unstable at the higher speeds.

7.4. The Dutch-roll characteristics could be improved by fitting a small wing or large tailplane.
This would improve the damping in roll considerably and provide a control over /,. Further, it has
been shown that the Dutch-roll stability decreases as the fuselage attitude increases (in the nose~down
sense) so that a clean fuselage, resulting in a small attitude, is beneficial. Considering, also, the
remarks made in 7.2 it is evident that great care must be taken with the design of the fuselage.

-It may be that not all of these requirements can be satisfied together in which case auto-stabilization
may be necessary.

7.5. Simple approximate expressions for the damping and period of the lateral modes can be
derived from the coefficients of this quartic and give adequate agreement with more accurate
calculations.

7.6, It may be an advantage to use equations of motion which are referred to the principal inertia
axes of the helicopter rather than the wind axes. The coeflicients of the stability quartic are no
simpler but the derivatives are more closely related to the body axes than the wind axes and generally:
should be easier to calculate. Also, the product of inertia terms disappéar and are replaced by
aerodynamic terms which are easier to interpret physically.
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Yawing-moment coefficient,

LIST OF SYMBOLS

Moment of inertia about longitudinal wind axis, slugs ft2
Moment of inertia about longitudinal principal axis, slugs ft2
Area of one rotor disc

Coefficient of A* in stability quartic

Fin area, ft?

Longitudinal backward flapping of rotor disc

Lift slope of fin

Coefficient of A% in stability quartic

B[4’

Tip-loss factor (taken as 0-97)

Sideways flapping of rotor disc, positive when tilted to advancing side
Number of rotor blades

Moment of inertia about normal wind axis, slugs ft?
Moment of inertia about normal principal axis, slugs ft2
Coefficient of A? in stability quartic

c'l|a’

Rolling-moment coefficient, 20 AGERS

yawing moment
2ps AQ%R?
Blade chord, ft

Coefficient of A in stability quartic

DA

Product of inertia with respect to X and Z axes
Constant term in stability quartic

E'[A4

hycos g — I sin o

Height of front rotor above line through c.c. parallel to flight path
(see Fig. 1)

Height of rear rotor above line through c.c. parallel to flight path (see
Fig. 1)

Coeflicient of longitudinal rotor force parallel to tip-path plane
Radius of gyration of fin about axis through c.c. parallel to flight path

Inertia coefficients 4, / — R2, etc.
&
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LIST OF SYMBOLS—continued

ky Ratio between lateral stick displacement and cyclic pitch change
ky Ratio between rudder bar displacement and differential cyclic pitch
. change
L Rolling moment, 1b ft
L,L,L, Rolling-moment derivatives, BL/ dv, oL[op, OL[or
by Ly & Dimensionless rdlling-moment derivatives, 0C;/09 0C;/0p 0C,/of
LR Distance of front rotor from c.c. ft (see Fig. 1)
l'1 rR  Distance of rear rotor from c.G. ft (see Fig. 1)
bR Distance between rotors, ft
- IzR Length of fuselage, ft
N Yawing moment, b ft
N,, N,, N, Yawing-moment derivatives 0N/ov, ON/op, oN/or
Ty Mgy Ty Dimensionless yaWing-moment derivatives ¢C, /09, 0C,[0p, 0C, [0
P Rate of roll, rad/sec
» p/Q
R Rotor radius, ft
7 Rate of yaw, rad/sec
P o= 70 |
Sp Projected side area of fuselage, ft2
s Rotor solidity, be
aR
T, Period of oscillation of Dutch roll
o
¢ 2psAQ2R?
14 Trimmed flight velocity, ft/sec
14 V/QOR N
V; = Fin area ratio, 4,/4s4
v Lateral velocity of aircraft, ft/sec
) 2/QR
W | Weight of aircraft, 1b
Y Lateral force, 1b
Y, Y, Y, Lateral force derivatives, 8Y/[¢v, 0Y/op, 0Y [or
Vor Vp» Vo Dimensionless force derivatives
o Value of a root of the stability quartic
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LIST OF SYMBOLS—continued

~ Incidence of rotor disc, angle betweéen relative wind and tip-path plane

Incidence of helicopter, angle between relative wind and datum line
Coefficient of X in Dutch roll quadratic ~ -

Constant term in Dutch roll quaaratic

Angle of climb, radians

Drag coefficient of rotor blade '

Displacémen’c of rudder bar, positive for negative yawing moment

Angle ‘between trimmed flight path and undisturbed position of
longitudinal principal axis

Angle bétween horizon and undisturbed position of longitudinal principal
axis

.. Collective pitch angle of rotor blades, radians

Root of stability quartic

Coeflicient of flow normal to rotor disc

Tip speed ratid, V cos ap/QR

Relative density parameter, W/2gpsAR
Lateral displacement of stick, positive to port
Air density, slugs/ft®

Time in aerodynamic units

Angle of bank, positive to starboard

Angle of yaw, positive to starboard

Angular velocity of rotor -

Suffices
fﬁselage or fin contribution
front rotor
rear rotor

rotor contribution
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1. Equations of Motion Referred to Principal Axes.

APPENDIX

Equations of Motion Referred to Principal Axes

principal inertia axes are (see e.g. Ref. 10)

%V(ﬂ — pVsind + vV cos &) =

Agp = AL
Cy = AN

The equations of motion referred to the

(64)
(65)
(66)

where # is the angle between the longitudinal principal axis and the direction of the trimmed flight
path (positive when the axis is nose-up), and

AY = W(pcos® + sin®) + Yo+ Yp+ Yy + V£ + YL (67)
AL =L + L,p + Ly + L + L, (68)
AN = N + Nyp + Ny + N + Ni& - (69)

where © is the angle between the longitudinal principal axis and the horizon (positive when axis
is nose-up). ‘
In non-dimensional form the equations (64) to (66) become

@ ] Iy 44 — Vsin & d—sb——y—rd—l'b+T7cos i d

Y —yp —ZE_ T L ¢’
T v p,dr ? dr % cos ©
: — t,Psin® = y.£ + v, L (70)
pely , A L, dd LA p,
Tl &R T A dadr m%+u@ 7
e s O L B )
P b il xRl sl Ml St i T " il (72)

The frequency equation is the quintic

AAM+ B+ CXN4+DA+EYy=0

where .
A =1
) V)
B = —~ Yy — 2 _ _L
40 ‘oo ‘
cehﬁwﬁyqﬁﬁ-iﬁ)
tdao oo tao%co 40 P¢o
I
—“zv(Vsinﬁ‘-}—&) (Vcosﬁ J’r)
tao J2% Zco o
I = I 1
. _y,,(._p._r_u-)
taolce 400
7, ) .
4 B (Vcosﬁ‘—»—) +,_T(I7$1n19 +'X§) — 1, cos ©
t40 Z00 _ o oo Mo . .
! I ] .
b (Vcosﬁ — &) + = <T7s1n19 +&) — %,/ sin O
oo (t40 e Z40 22
I, | n, ) 7, {1, ) ) :
E =F " yrcos @ — ptc’sm® _ —t cos® — 2 ¢ sin @},
240 loo oo oo (240 T
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2. The Aerodynamic Derivatives with Respect to Principal Axes. 'The forms of the rotor-moment -
and fuselage-moment derivatives of Section 3.2 remain the same except that the terms %, 5, #; p,
I, 7 and [ 5 are replaced by the constant values (k,)z, (A,)n ()r and Ur respectively in the
rotor-moment derivatives and F(«), ; and %, are replaced by the constant values (%,); ({p); and
(hp)fg‘in the fuselage derivatives, the suffix , denoting measurements from or along the longitudinal

principal axis.
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TABLE 1

Particulars of the helicopter, similar to the Bristol 173, used in. the stability calculations

Weight 13,000 Ib
Rotor radius 25 ft
Solidity ' 0-04
* Rotor speed ' 26 rad/sec
. ' 0-22.
hy 0-424
g+ In : | | 1-62
ky 0-286
ky k 0-143
d, 0-08
4, (principal moment of inertia in roll) 4,260 slugs ft?
B, (principal moment of inertia in pitch) 92,500 slqgs ft>
C, (principal moment of inertia in yaw) 89,000 slugs ft>

' Longitundial principal axis perpendicular to rotor hub axes when ¢ = 0

Lock’s inertia number - ' 8

I ' | 0-72
Ry, 0-126
A 122 ft2
a; 1-6
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Fic. 1. Rotor force diagram for lateral sfability.

F1e. 2. Diagram defining fin dimensions.
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Fic, 3. Comparison of theo;etical estimates of y, with values
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F1e. 4. Comparison of theoretical estimates of /, with values
obtained from flight tests of Ref, 8.
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ROTOR AND FUSELAGE
—— — — ROTOR ONLY
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Fi1g. 5(c). Variation of #, with .

91



+0-04

+0:02

ROTOR AND FUSELAGE
ROTOR ONLY

o2 u [o}

3 o4

Variation of /,, with p.

-0-02

-0-04

0«-2\\ P 0-3 Q-4
N
~
\\
[~
~
~
~
~
~
~.
~
~

92

F16. 5(¢). Variation of #,, with .




ROTOR AND FUSELAGE
_————— ROTOR ONLY
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EXACT CALCULATION
————— SIMPLE APPROX . (SEE SECT.5.I)
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Fic. 6. Damping of lateral (Dutch roll) oscillation.
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F16. 7. Period of lateral (Dutch roll) oscillation.
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