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Summary. Numerical methods are given for calculating the double integral

b (o
l. fF(;x)F(x') log | — &' | didx’
J d a
for the three cases:
(1) F(x) is given numerically,
(ii) F(x) is the first derivative of a numerically given function,
(iii) F(x) is the second derivative S”(x) of a numerically given function S(x).

For the third case the method of Eminton?® is extended to functions S(x) for which the first derivative at"
x = b is not zero. For the other cases the functions are approximated by finite Fourier series which have given
values at certain fixed points.

1. Imtroduction. 'The calculation of the wave drag due to volume as well as that due to lift requires.
the evaluation of double integrals of the form

! [ omesy g 15—

Since in many practical cases the function F(x) is not given in analytical form the integration cannot.

dxdx’.

be performed explicitly but numerical methods must be applied.

There occur three different cases:
(i) The function F(x) is given numerically.
(1t) F(x) 1s the first derivative L'(x) of a numerically given function L(x).

(1ii) F(x) is the second derivative S”(x) of 2 numerically given function S(x).

There exist several numerical methods to deal with case (i) (see for example Refs. 1 and 2).
The application of these methods to the third case requires the determination of the second
derivative of the given function. Due to the inevitable inaccuracy of the second derivative when.
determined by numerical or graphical methods, this procedure is often not appropriate.

* Previously issued as R.A.E. Report No. Aero. 2629—A.R.C. 21,890.



In the third case, it seems more advisable to apply the technique of Eminton?. The given function
S(x) is approximated by one which has the given values S(x,) at certain fixed positions x; and which
is chosen so as to make the double integral a minimum. To apply this method S(x;) need be known
less accurately and at a considerably smaller number of positions «x; than for the direct application
of the numerical techniques developed for case (i). Eminton has treated only cases for which the
first derivatives of S(x) at the ends of the range of integration x = @ and x = b are zero. In this
report, we extend the method to cases for which S'(d) + 0; an extension to S'(¢) #+ 0 is not needed
for slender configurations.

In cases (i) and (i) a procedure similar to that in case (iii) is not possible. In case (ii) we approximate

L(x) by a finite Fourier series which has the given values L(x,) at fixed points x, and express the
double integral as a double sum of the products L(x,) L(x,) multiplied by fixed coefﬁmen‘cs Sy

Though in case (i) the method of Ref. 1 is directly applicable, we derive another formula by means
-of a Fourier analysis of F(x) since this seems to be more appropriate in certain cases.

2. The Numerical Calculation of the Zevo-Lift Wave Drag According to Slender-Body Theory.
2.1. The Drag Formula. For slender bodies with a pointed apex, the wave drag due to volume is
given by the relation (see for example Ref. 4):
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The x-axis is taken in the direction of the free stream and the body length is taken as unity.
S(x) is the cross secticnal area in the plane x = const; S'(x) and S”(x) are the first and second
- derivatives of S(x) with respect to x. o

k depends only on the geometry near the trailing edge (see for example Ref. 4). For wings with
sharp unswept trailing edge:

1 41 '
j 1 f elne(y) og |y = o' | dndy

k=log2— U+1 o dn] (2)
‘where '

o) - [Z2] . )

7 = Xs 4)

x,y, % is a rectangular co-ordinate system, with 2 normal to the wing plane. s is the semi- span of the
wing at the trailing edge.

2.2. A Numerical Method for Determining the Double Integral
- ﬁf f S"(x)S"(x") log[x— x' [dxdx
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As mentioned in the introduction Eminton® has derived a method for calculating the double

integral in Equation (1) for area distributions for which the first streamwise derivative is zero at

the two ends: S'(0) = S’(1) = 0. For wings with unswept trailing edge S’'(1) + 0, except for wings

with cusped trailing edge. It is therefore desirable to extend Eminton’s method to area distributions

with S'(l) # 0. It is not necessary to consider the case S’(0) =+ 0, since the assumption S’(e) = 0

is a requirement of slender-body theory which permits only bodies with pointed apex to be treated.
We introduce the co-ordinate © by :

cos = 1 — 2. (5)
The first derivative of S(x) can be written in the form:
S()—S(1)19+ > a,sinnd. ' (6)
n=1 -

Integrating this relation, we find that the area distribution is given by:—

S(x) = S(o) + S’(l) {(sin & — & cos z9°) + (19 — sin & cos &)

12 sin(n—l)z?L sin (n+ 1)&
Frzj I:n-l - n+1,]

.S(x) has for x = 1, i.e., & = 7, the value S(1), if

4 S'(1
o= [5(1) ( )} (7)
Therefore: : .
S(x) = S(0) + _S-@_i(") (8 —sin © cos )
S( )(1+cos #) (& —sin &)
12 sin (n—1)% sin (z+1)0
1% [ n—1  n+l } ®
For the double integral the following relation is obtained:
1
L= - 7 f f S"(x)S"(x") log |% — &' | dx dx’
= 0 [S’(l)]2 log 2
f f [S () }_} na,, cos m9=:| [S Q) Z na,, cos nﬁ} log [cos & — cos & | dﬁdz‘}’
n=1
Using the Relations (3) to (5) of the Appendix and the value of g, from Equation (7), we obtain:
_ s Piog2+ T S nay?
T s
- lisapog2e t[sw-so -2 4 Samr 0
w n=2g
3
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We determine the coefficients a,, such that the function S(x), defined by Equation (8), has the
prescribed values at x = 0, # = 1 and at NV positions x;, has the prescribed derivative S'(1) and
is such that the integral I; has a minimum value for the specified conditions. We determine, therefore,

@
the coefficients a,, g, . . . such that ¥, 74,2 has a minimum value and that the equations:
n==2

12 sin (r—1)9; sin (+1)9;]
EE [ n—1  a+l :l_

S(x;) — S(o) — w (9;—sin &; cos 9;) +

+ SZSTI) (1+cos &) (F;—sin &) , (10)

where 9; = cos™ (1 — 2x;), are satisfied for z = 1, 2, . . . N. A necessary condition for this is the
existence of N constant Lagrange multipliers A; such that

1 X sin (n—1)9; sin (n+1)d;
an_%jz‘lh"[ n—1 n+l1 :I (1

The constants A; are determined by inserting the a, from Equation (11) into the system of
Equations (10):

1z 1x sin (r—1)%; sin (n+ 1)) [sin (r—-1)9; sin (r+1)37]
z;‘%z:' [ n—1 n+l ][ n—1 —  m+l :|_

(9) (#;—sin &; cos &)

(s — S(0) - 2=

S ( ) (1 + cos 19‘,&) (19’ —sin 19%) .

Applying Relation (6) of the Appendix (derived in Ref. 3) we obtain the following NV linear equations
for the constants A, Ay, . . . Ayt

1 . cos (%;+ )
Elx[ (cos & cosﬁ)log—l i

+ % sin 9, sin 9 (1— cos ﬁiﬁ,-)] -
() ~ (o) - 2D =50

S'(1) .
+ - A (1+cos &) (&;—sin &)

(¢;—sin &; cos &,) +

or:
%; + % — 2000 + 2 /a1 —2) (1 — )}
g + 005 — 2ogy — 2 /{1 —o0;) (1 — )}

2 (g a5y 25) 4/ gy (1— ) (1 —x,-)}] -

N 1
A [— 3 (20; ;)% log

=2

() = 5(0) = 207 Taost (1-20) - 21 —0) v/t =}
+ 28 (1) [eost (1-25) = 2 v/t )] (12)
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Inserting the a, from Equation (11) into Equation (9) and applying again Relation (6) of the
Appendix, we obtain for the approximate value of I, the equation:

I

71;[:5"(1)]2 log 2 + 7.;4: !:S(l) — S(o) — S’él)]z
1 — cos (§;+8;)

N N 1
A J— . — 32 _—_
Y T AN [ g (cos &; — cos B;) log1 “cos (3,—9,)

i=1j=1

+ % sin &, sin #;(1 —cos &, cos 19]-)]

}T [S"(1)]? log 2 +§ [S(l) — S(o) — Sél)r

N N r xy o+ wy — 2005 + 2 /o (1— ) (1—2,)}

B e ey — 2 (1) (1= )
+ 2(x; + w; — 200,05) \/{xi?c}(l —x)(1- xj)}:| - (13)

The calculation of the double integral 7, is thus reduced to solving a system of N linear Equations,
(12), and computing a double sum of N? terms, Equation (13).
With the notation:

= um) = = [oos™{1 - 22) — 21~ 23) 3/ (1 ~5)] (14)

8
I

Q
Il

= olx) = = (1) [cos™3(1 - 25) — 2 /{1 — 5] (15)
Py = p(xs %) =

X; + &5 — inx,- +2 ’\/{xixj(l _xi)(l _xf)}
X+ x; — inx]- -2 \/{xz’xj(l ——xi) (1 _xj)}

— 3oy log

2ty — 2o) /(1 =) (1)} (16)
& = ofx) = S(x) — S(o) ~ [S(1) — S()Ju; + S' (Vg (an

the integral 7, is given by the relation:

I, = ;1; [S )] log 2 + g [3(1) - S(0) - S 'él)T

N N
+7 N 3 Npy,

T=17=1

where the A; are determined by the linear system of equations:

N .
X NPy = ¢ (18)
i=1
If {f,;} is the inverted matrix of {p,;} the solution of Equation (18) is:
A= % fitse | (19)
i=1
5
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The final result reads:

1 pl .
h= e [ [ S 0gx - | asas
20 Jo Jo

N }T LS'(1)]? log 2 +:—i [S(l) —~ (o) — S’_S)T

N N
7 B Xyt (20)

i=1j=1
The coefficients f;; for x; = #/20 (¢ = 1, 2. .. 19) are tabulated in Ref. 3. The values of f; are
- reproduced from Ref. 3 in Table 1. Table 2 gives the values of #; and v,, which are required for
calculating ¢; from Equation (17). The computation of the double sum is easily done on an automatic

computer such as the DEUCE at the Royal Aircraft Establishment, for which a standard programme
has been written.

. 1 . . ~
2.3. Numerical Calculation of the Integral f S"(x) log (1 —x)dx. Equation (1) for the zero-lift
0

wave drag contains in addition to the double integral I, a single integral:
’ 1 .
=0 f §7(x) log (1— =) d. e
™ 0

One might think of determining I, by means of the Fourier series for S’(x), Equation (6), and
applying the above minimisation procedure to the sum I + I, of the double integral I; and the
single integral I, (i.e., approximate the given area distribution by one which has the given values
S(x,), the given S’(1), and which gives the minimum value of the sum I, + I,). Such a procedure
is however not possible since it leads to non-convergent infinite series in the relations between
A; and S(x;). '

One may further think of using the Fourier series for S’(x), Equation (6), with the coefficients a,,
from Equation (11), and determine 7, from:

I

Il

_ ?T [S(L)]? log 2 -+ ;: (1) [S(l) _ S -3 'él)]

—SO) X (-1,

- 2SO log 2+ S0 [S) - S0) - * 37

N N
— 28 (1) 3 S fuvics (22)

i=14=1

However, the area distribution which approximates to the given area distribution and gives the
minimum value of 7; has infinitely large values of the second derivative at the points x; where the
values of S(x;) are specified. This property of the approximating area distribution does not affect
the accuracy of the approximate value for ; (being the minimum under the given conditions) but
it may impair the accuracy of the approximate value for 7, derived from Equation (22). It is
important that I, should be found with sufficient accuracy since in many cases the value of I, is of
the same order as that of I; but of opposite sign, so that the percentage total error of the drag

%is much larger than the percentage error of I; or I,.
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It seems therefore advisable to determine I, by a different method. It is sufficient to deal with
area distributions for which the first and second derivative at the trailing edge are finite (slender
theory is not applicable to configurations for which the second derivative at the trailing edge is
infinite). Such area distributions can be written in the form:

S(x) = S(0) + [35(1).— 38(0) — S'(1)]*
~ [28(1) — 25(0) — S'(1)]#* + AS(x) S (23)

where the functloil AS(x) and its first derivative A’S(x) are zero at x = 0 and » = 1. As a
consequence of these properties: ‘

1
f A"S(x)log (1=x) dx = | 25 4,
0 o I —x
_ L AS(x) ‘
- - f et | (24)
and
LA
I, = ¥ (1) 35(1) — 35(0) — S (1) — A5 gl (25)
o (1—=)?
The integrand is finite in the whole range of integration. At x = 1: .
AS@) ) (P
T—ap = 38(1) — 35(0) — 25°(1) + ES (1).

The integral can, therefore, be evaluated by the usual numerical methods.

It may be pointed out that for numerically given values of S(x) reliable values of the wave drag
can be obtained by determining the first derivative S'(x) by graphical or numerical means and
applying Equations (39) and (45) of the follovvmg Section with L(x) replaced by S’(x).

« 3. The Numerical Calculation of the szt-Dependent Wave Drag According to the Not-So-Slender-
Wing Theory of Adams and Sears®. 3.1. The Drag Formula. Applying the so-called ‘not-so-slender’
wing theory, Adams and Sears® derived the following formula for the lift-dependent wave drag:

22525

q f f L'(x)L'(x") log |% — & | dwdx’

/+———f L'(x) log (1 —x)dx

-__ f f )7’y log [n — o' | dydy’

[L(mz[ g2 - log ;3;“ . | -
where y . .
L) = [t 3)ay . (27)
is the cross load, .
A% y) = — AC,(x, y) (28)

is the local load coefficient,
) = I = 1, ) ! (29)
is the load coefficient at the trailing edge, s(x) the local semi-span and s theh span at the trailing edge.
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In those cases where the distribution of the local total chord load

L(x) = f: L(x)dx (30)

is known, Equations (20) and (25) can be applied, if S(x) is replaced by L(x). (Such a case arises
when slender-thin-wing theory is applied to design cambered wings with the attachment line along
the leading edge. In Ref. 6 it was suggested that an estimate for the lift-dependent wave drag of
the wings designed by slender-thin-wing theory might be obtained by inserting the load distribution
resulting from slender-thin-wing theory into Equation (26). Within slender theory L(x) depends
only on the downwash distribution at the station x = const and can thus be determined by a
simpler relation than the one for L(x).)

3.2. A Numerical Method for Determining the Double Integral

1 ! 1 ? ’ ' /’ !
—ZJOJOL(x)L(x)long—x | doeda’.

In some cases L(x) is a numerically given function and the task is to determine numerically the
value of

1 1l
L= -1 J f L/(x)L'(x') log | — ' | duda’. (31)
2 )0 )

We consider L(x) distributions with L(0) = 0 and L(1) # 0. L(x) can be expressed in the same
form as S’(x) in Equation (6): :

L(x) = L(Tl) 9+ ﬁ:}l a, sin (32)

where ¢ is again defined by Equation (5) and

0

0 — ;72. f ’ [L(x) — (1) ;ﬂ sin n9dd. (33)

By Equatibn (32) and Relations (3) to (5) of the Appendix we obtain the relation

1 ® . ;
I = ~[L()PFlog2+3 3 na,? SR N €
n=1 ' T

which corresponds to Equation (9).

It is not possible to apply a similar procedure as in Section 2.2 and determine an L(x) distribution
which has specified values L(x;) at given points x; and which gives a minimum value of the integral
I, since a non-convergent infinite series does occur if one tries such a procedure.

We refrain therefore from using the infinite Fourier series, Equation (32), for determining the
value of ;. Instead we approximate L(x) by a finite Fourier series of degree NV — 1 (IV being an even
integer) which has the specified values : '

L, = L(x,) (35)
at the positions :
1 — cos &
5, =~ with 8, = L0 (36)

8



This series is given by the relation (see for example Ref. 7):—

L1
L =Xy
N-19 N-1 L(1)
+ — —ﬁ)smnﬁ' sin zd.
nle,u 1(« w £ ¥

By Equations (34) and (37) we obtain as an approximate value of J5:—

= 1 [L(1)]2 log 2
w
pre N-1 N~—-1 L(l) . 2
+ sz n§1 n ﬂgl (L'u - —77-— ﬁ/‘) sin nl?“u
1
— [L(1)]* log 2
77
L(1 L(1
() (- 200)'
® v
Now
N1 _ (N—1)cos N} — N cos (N—1)0 + 1
n§=]1 # cos nd = 2cos §—1)
and ‘

cos N(¢#,+%,) = cos N(#,~38,) = (=1~

sin N(#,+9,) = sin N(@,—9,) = 0,
so that for p = »

Mz

n sin nd, sin nd,
1

-%; [cos #(®,—8,) — cos n(d, + ﬁ,):l

n

(=1 1 1

Z # sin #d, sin mﬁ‘
n=1

4 [cos ®,—%)—1" cos (@, +8,)— 1

1 - (=1 sind,sind,
2 (cos &,~cos 4,)?

and for p = »

N—1
> nsin nd, sin nd,
n=1

I:l — Cos n(219-,,):l

Z
n= 1
—4‘

(37)

(38)



Thus ‘ :

I3=~——JIL(x)L logtx—m‘dovdx

- [L(l)]2 log 2

N-1N-1 (1 L
+r 3 3 (L= "00) (1,- ") (39)
pu=1 r=1 w T
with
11— (-1 sind,sind,
fw == 2N?  (cos #,—cos &) for p v (40)
and

fo=7 (1)

The coefficients f,, are tabulated in Table 3 for V = 36.

- ‘ 1
3.3. Numerical Calculation of the Integral f L'(x) log (1 —x) de. Equation (26) for the lift-

0
dependent wave drag contains in addition to the integral J; the term
1) 1
7, = XU f /(%) log (1—x) dx. 42)
™ 0

Since we are only concerned with load distributions for which L’(1) is finite, the integral

1
f L'(x) log (1 —x) dx can be written in the form
0

J‘:L/(X)log(l—’x)dx: fl_(l_l’il)

o 1—x

(43)

The integrand {L(x) — L(1)}/(1 —x) is finite in the interval 0 < » < 1;at # = 1 the integrand is
equal to — L'(1). Therefore, the usual numerical methods for evaluating the integral can be applied.
These require however the knowledge of the function L(x) at positions x; = #/N at equal distances.
For the.evaluation of the double integral 7,, we are liowever using the values of L(x) at the positions
%, (which are not at equal intervals). It is possible to use the same L(x,) for determining /,.

By means of Equation (32) and Equations (1) and (2) of the Appendix, we obtain for I, the
relation:

L=~ 2[LOPlog2— L) 3 (~1)a,. (44)

n=1

With the approximate series, Equation (37), for L(x):
2
I, = — —[L(1)]? log 2
T

—L(1)3N 1( ﬂ—_@ ) S (~ 1) sin .

,ul n=1

10



Since

N-1 sin (N —1)8 — sin N& + sin &
F =
B s 2(1—cos &) ’

and N is even

N-1
> (—1)sinnd, = X sinn (w+9,)

n=1
1—(—1) sind,
2 1+ cos ﬁﬂ'

Therefore:
) 2 N—1 L(1
I, = — - [L(1)]2 log 2 + L(1) 21 &y (Lﬂ - ”ST—) ﬁﬂ) (43)
P

where
[ =(=1)sind,
e = T N{1 +cos &)

The coefficients g, and the positions x, are tabulated in Table 4 for N = 36. §

(46)

+1 L ‘
4, A Numerical Method for Determining the Double Integral f f Ff(y') log | —x' | dndy'.
-1J 1

When calculating the zero-lift wave drag by Equations (1) and-(2) and the lift-dependent wave
drag by Equation (26), we require the value of the double integral

41 pHL ‘
L= [ [ fofCytog|n — o' | dmar' (+)

where f(z) is a given function. Though in this case, the numerical methods of Refs. 1 and 2 can be
applied, we consider here also the calculation of I; by means of a Fourier series. We consider here
only cases for which

Ay = f=), (48)

and for which f{(7) is finite (only finite values of (%) in Equation (2) are permissible since Equation (1)
is derived from a small-perturbation theory; on lifting wings with attached flow the load at the leading
edge must be zero).

We introduce the angular co-ordinate ¢ by

7 = Ccosp. (49)
The function ‘ ,
g(m) = fln) sin (50)
can be written as a cosine series: -
g(n) = X b, cosvp. (51)
=0
" Due to the symmetry of g(n), Equation (48), only terms with even values of » occur. It follows from
» gn=1) =0
that
by=— 35, (52)
v=32

1



With Equations (49) to (51) and Equations (3) to (5) of the Appendix, the integral reads:

I =f 2 b, cos vp Z b, cos pg’ 10g|cos<;o—coszp | dop dg'
0 J 0 y=0 w=0

I

by? f f log |cos @ — cos ¢’ | dp dp’
0Jo
+ 2b, 2 b, f f cos vop log | cos @ — cos ¢’ | dp dg’

aC [e0] T T
+3X b %5, f cos v ¢os g’ log |cos ¢ — cos ¢’ | dpdy’
=2 = 0J0

i

— b?n?log 2 — > N 2. (53)
A comparison of this equation with the corresponding relations for I, and I, Equations (9) and (34,
shows that for 7; one can expect a more rapid convergence of the infinite sum than for I and I,

Instead of using the infinite Fourier series of Equation (51), it is again appropriate to use an
approximate finite Fourier series. (The spanwise load distribution at the trailing edge, () in
Equation (26), behaves near n = + 1 as 4/(1—%?) multiplied by a polynomial in ». It seems
appropriate to approximate such a function by a finite Fourier series.)

A finite Fourier series which has given values of an even function

8, = &(n,) | (54)
at the V + 1 positions

ar
m=c0sg,  g=ht, 0<p<N (55)

(N being an even integer) is given by the relation (see for example Ref. 8):

Nt N1 . 1 + cos No, cos N
go) = N 2 & { 3, cos vp, cos v + 29”/4 s 99:|
p=1
3 1 + cos N
+3 [ Z cosvp+——5 ﬂ
év [ i COS vir COS v -+ ]LCZ(—)S—]V'(PJ E . ) (56)
In the present case - |
g =gnv=70 (57)
and by Equation (48)
gﬂ = gN—‘u' (58)
Thus an approximation to g(n) is given by:
N
glp) = X b, cos vp, v even | (59)

=0

12



where

1N1 2 W2)-t
Zgﬂ N Z &ut Ng(n—O)

2 N-1
b, = 2 £, COS v,
[.L 1
2 ( WE2)-1
= 2127S g cos v+ (<1pmeln = 0|
. p=1
v even, + 0, + N
1 ¥-1
by =W 2;11 (=1)#g,
1 (. W2-1
-2 5 o (-0 =0
An approximate value of Iy is thus:
a2 N b2
= — by%r 2log2—— P
y=2 VY
with b, from Equations (60)-(62).
N-2p2
The sum 3! -~ could be written as a double sum:
v=2 V
N2b2 4 N_1N—1 N—=2 ¢cos v, COS v,
Z T wE 2 2 8ufm X 2 P o
p=1 m=1 =2 v
N-1N-1
= X p Eu8mCum s
p=1 m=1

but since there is no short formula for the sum

N—-2 cos nd

=2 n

(60)

- (61)

(62)

(63)

the coefficients ¢, cannot be eXpressed by explicit formulae. We have therefore not determined

numerical values of the coefficients ¢,

We can draw an interesting consequence of Equations (49) to (51). It follows from Equatlons

(49) to (51) that

+1 T
fen)dn = [ fo)sin gy = by
-1 0
For the value of

+1 p+L
f_l f  f)ft')log|n — o' | dn dy

T 2
, U lf(n)dn]
we obtain by Equations (53) and (64):—

k=210g2+[2 b”]/zw
2 v

y=

k=log2—

2 log 2 is therefore a lower bound for k.

13
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APPENDIX

List of Formulae Used

' f log |cos & — cos &' | d = —wlog2 6))
0
J. n cos n" log |cos & — cos & | d9' = — = cos nd 2
0 :
f" f”log|cos&;cosﬁ'1dﬁdﬁ' — —alog2 3)
0Jo .
fﬂf 1 cos nd’ log |cos & — cos & | d9d9’ = 0 @
0Jo

‘ 0form + n
f f am cos nd cos md’ log |cos & — cos &' | d9dY = - (5)
0Jo — Tfor m=n ‘

2 % [sin (—1)9; sin(n+ l)ﬁ@-] |:sin (n—1)%, _sin(n+ 1)3,.]

E n—1 n4+1 n—1 n+1

1 — cos (&;+)

1
[ pap— )2 T 7a  a\
7 (cos Bs—cos 9y log 15 =5

+ sin &; sin &; (1 —cos &; cos ) (6)
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"TABLE 1

Coefficients f;; in Equation (20) for x; = i/20 ( from Ref. 3)

fij = f ji = f 20—7%, 20—3

1 2 3 4 5 6 7 8 9 10
1 | 373-95407
2 |—232-67229 | 349-20580
3 | 59-11797 |-228-71539 | 348-59266
4 |— 621210 | 58-56236 |—228-68881 | 348-65889
5 171557 |— 6-12524 |  58-54661 |—228-65259 | 348-53644
6 |— 0-05310 | 1-64837 |— 6-01561 | 58-41615 |—228-51462 | 348-44872
7 0-13417 | 0-04282 |  1-52228 |— 5.93491 | 5837679 |—228-53114 | 348-54097
8 0-08192 |  0-06019 |  0-10337 |  1-52384 |— 5-96591 | 58-45101 |—228-63818 | 348-59256
9 0-04876 |  0-05356 |  0-06568 |  0-10350 |  1-52772 |— 6-01177 | 58-49852 |—228-62191 | 348-58151
10 |— 0-09495 | 0-11674 | 0-06586 |  0-02471 | 0-10020 | 1-55578 |— 6-01087 | 58-47954 |—228-66922 | 34865563
11 0-10798 |— 0-07223 |  0-03153 |  0-11296 |  0-07566 |  0-04202 1-57587 |- 6-03869 | 58-53355
12 |~ 0-01183 |  0-06499 |— 0-01238 |  0-01928 |  0-05718 |  0-10362 |  0-04774 1-59750
13 0-03950 |— 007615 |  0-10275 |— 0-01667 |— 0-00419 |  0-13977 |  0-03849
14 |— 0-06627 | 0-11247 |— 0-11227 |  0-08243 |  0-05096 |— 0-08652
15 0-03265 |— 0-04182 |  0-00922 |— 0-08761 |  0-04439
16 0-01205 |  0-00956 [— 0-06664 | 0-11193
17 0-04012 |— 004716 |  0-06888
18 |— 0-09825 | 0-10347
19 0-09212




TABLE 2

Coefficients u; and v; in Eqovation (17) for x; = if20

1| 0-018693 | 0-004577
2 | 0-052044 | 0-012462
3 | 0-094060 | 0-021985
4 | 0-142378 | 0-032415
5 | 0-195501 | 0-043251
6 | 0-252316 | 0-054092
7 | 0-311919 | 0-064587
8 | 0373530 | 0-074416
9 | 0-436444 | 0-083271

10 | 0-500000 | 0-090845

11 | 0-563556 | 0-096826

12 | 0-626470 | 0-100886

13 | 0-688081 | 0-102668

14 | 0-74768% | 0-101776

15 | 0-804499 | 0-097751

16 | 0-857622 | 0-090037

17 | 0-905940 | 0-077925

18 | 0-947956 | 0-060418

19 0-981307 0-035884
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TABLE 3

Coefficients N* f,, in Equation (39) for N = 36 Jw = Fou = fy—p, 5>

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 | 324-000000 o

2 | —116%21748 |  324-000000

3 0 —126-058997 |  324-000000

4 | — 9337247 0 —128-630866 |  324-000000

5 0 —~ 11-909117 | 0 —129-688512 | 324-000000

6 | — 2571869 0 | — 12966763 0 _130-223076 |  324-000000

7 0 — 3629517 0 — 13-501327 0 —130-529641 | 324-000000

8 | — 1-057647 0 — 4-164080 0 — 13-807892 0 | —130-721020 |  324-000000

9 0 — 1-502210 0 — 4-470645 0 — 13-999271 0 —130-847881 | 324-000000

10 | — 0-534565 0 — 1-898775 0 | — 4662024 0 — 14-126132 0 —130-935703 | 324000000

11 0. — 0-841129 0 — 2-000146 | 0 —  4.788884 0 — 14213954 0 —130-998422 |  324-000000

12 | — 0-306565 0 — 1-032508 0 —  2-217015 0 — 4876707 0 | = 14-276672 0 —131-044154 | 324-000000

13 0 — 0-497944 0 ~ 1-159368 0 — 2:304838 0 —  4-939425 0 . | — 14322405 0 " | —131-077871 |  324-000000

14 | — 0-191379 0 . 0-624804 0 — 1247191 0 — 2367556 0 — 4-985158 0 — 14-356123 0 131102726 | 324000000

15 0 — 0-318239 0 ~ 0-712627 0 — 1-309909 0 — 2413289 0 —  5-018875 0 — 14-380977 0 —131-120766 |  324-000000

16 | — 0-126860 0 — 0-406063 0 —  0-775345 0 —  1-355642 0 —  2-447006 0 — 5-043730 0 — 14-390017 0 —131-133324 | 324-000000

17 0 — 0-214683 0 — 0-468781 0 — 0-821078 0 — 1389366 0 — 2-471851 0 —  5-061769 0 — 14-411583 0 —131-141286 |  324-000000
18 | — 0-087823 0 — 0°277401 0. — 0-514514 0 —  0-854796 0 — 1-414214 0 — 2-489900 0 — 5074336 0 — 14419537 | 0 —131-145143 | 324-000000
19 o | — o-150541 0 ~ 0328135 | 0 —  0-548231 0 —  0-879650 0 — 1-432258 0 — 2-502466 0 — 5-082290 0 | — 14-423394 0
20 | — 0-062718 0 ~ 019274 | 0 — 0356852 0 — 0-573085 | - 0 ~ 0-897691 0 — 1-444820 0 — 2.510420 0 — 5.086146 0

21 0o |- o-108451 0 — " 0-229991 0 —  0-381706 0 — 0-591125 0 — 0-910256 0 — 1-452774 0 | - 2514277 0

22 | — 0-045733 0 — 0-142168 0 — 0-254846 0 — 0-399746 0 — 0-603691 0 — 0-918210 0 — 1-456630,| ©

23 0 . 0-079450 0 —. 0-167023 0 — 0-272886 0 —  0-412313 0 — 0-611645 0 —  0-922067 0 |

24 | — 0-033717 0 — 0-104304 0 ~  0-185063 0 — 0285451 0 —  0-420267 0 — 0-615502.| 0

25 0 — 0-058571 0 ~ 0122344 | 0 — 0-197629 0 — 0-203406 0 — 0424123 | 0

26 | — 0-024854 0 — 0-076611 o | = o-134911 0 —  0-205583 0 —  0-297263 0

27 | o — 0042894 0 ~ 0-089177 0 —  0-142865 0 — 0209440 0

28 | — 0-018040 0 — 0-055461 0 — 0-097132 0 — 0-146721 0

29 0 —  0-030606 0 — 0-063414 0 —  0-100988 0

30 | — 0-012566 0 — 0-038560 0 — 0-067271 0 ’

31 0 —  0-020520 0 — 0-042417 0

32 | — 0-007954 0 — 0-024377 0

33 0 — 0-011811 0

34 | — 0-003857 0

35 0
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TABLE 4

Coefficients g, in Equation (45) and Positions x, for N = 36

K *u Ep

1 | 0-00190 0-002426
2 | 0-00760 0

3 | 0-01704 | 0-007314
4 | 0-03015 0

5 | 0-04685 0-012316
6 | 0-06699 0

7 | 0-09042- | 0-017517
8 | 0-11698 0

9 | 0-14645 0-023012
10 | 0-17861 0

11 | 0-21560 0-028920
12 | 0-25000 0

13 | 0-28869 0-035393
14 | 0-32899 0

15 | 0-37059 0-042629
16 | 0-41318 0

17 | 0-45642 0-050907
18 | 0-50000 0

19 | 0-54358 0-060628
20 | 0-58682 0
21 | 062941 0-072401
22 | 0-67101 0
" 23 | 0-71131 0-087205
24 | 0-75000 0

25 | 0-78440 0-106721
26 | 0-82139 0

27 | 0-85355 0-134123
28 | 0-88302 0

29 | 0-90958 0-176200
30 | 0-93301 0

31 | 0-95315 0-250595
32 | 0-96985 0

33 | 0-9829 0-421986
34 | 0-99240 0

35 | 0-99810 1-272431

| .
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