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Summary.--On the assumption that the/tow normal to the external streamlines is small compared with that 
along the external streamlines it is shown that the streamwise momentum equation, the energy equation and the 
equation of continuity reduce to equations identical with those for flow over an axisymmetrical body, whose 
radius is determined from the local external flow. By solving these equations it is possible to obtain approximate 

• values for the skin friction and the displacement surface in the case of wings at small angles of incidence, having 
no separations except at the edges. 

The theory applies directly for laminar compressible or incompressible flow, and the suggestion is made that 
it may apply also for turbulent flow. 

1. Introduction.--The problem of calculating three-dimensional  boundary  layers in general is 

so intractable that additional assumptions over and above the usual assumptions of boundary- layer  

theory need to be made in order to make any progress. One which has been made by Eichelbrenner  

and Oudart  1 and by Zaat ~ is that the flow in the boundary  layer normal to the external streamlines 

is small. After this assumption is made it is possible to devise momen tum equation methods to 

complete a solution. T h e  lack of exact solutions makes it difficult to assess the accuracy of these 

approximate methods, though in the case of laminar boundary layers one comparison is be ingmade ,  

and it appears that the assumptions may lead to acceptable results provided the angle between the 

external streamlines and the limiting streamlines is not  greater than about  15 deg. In  the case of 

turbulent  flow a comparison with experiment  has been made which shows fair agreement in thee 

case of a thin swept wing  at a low angle of incidence 3. 

I t  is necessary to use streamline co-ordinates, and the solution proceeds by following an external 

streamline. The re  is thus a series of differential equations to be solved, three for each streamline. 

T h e  chief result of this paper is that the streamwise momentum equation, the energy equation 

and the equation of continuity reduce to equations identical with those for flow over an axisym- 

metrical body, and so they may be solved by well-known methods or reduced to  two-dimensional 

equations after the Mangler transformation has been made 4. The re  is of course one more equation 

(that for the cross-flow component)  to be solved, which will require a new technique,  but  the 

* R.A.E. Teeh. Note Aero. 2625, received 5th November, 1959. 



solution of the first three may be sufficient to give some idea of the skin friction and the displacement 

thickness of a wing at low lift coefficients. The last equation will certainly be needed to determine 

separation. We do not consider it here. 

The fact that under the present assumption the streamwise equations reduce to axisymmetric 

equations in laminar incompressible flow was noted by Eichelbrenner and Oudart I who indeed 

solved the streamwise equations by means of the Mangler transformation. 

In a recent paper Nickel 5 writes down the incompressible equations of motion in a general 

co-ordinate system, not completely orthogonal. He then obtains the conditions that an 'independence 
principle' exists ; that is, he obtains conditions that two of the equations can be solved independently 

of the third, or as he puts it, the equations 'reduce to 2+  1'. Having done this he uses a generalised 
Mangler transformation to obtain the standard equations of two-dimensional flow. Nickel only deals 
with incompressible flow, and his conditions that the equations of motion reduce approximately 
to 2+ 1, are that certain expressions are small. These expressions reduce to those given below, 
namely, (20) and (22). In this paper the reduction is made in all cases to axisymmetric flow, for 
which calculation methods have been devised for all circumstances of flow, even turbulent and 
compressible, and so can be taken over in the three-dimensional problem. The co-ordinate system 

is more practical than the general one of Nickel. 
2. The Equations of Motion.--We choose a set of orthogonal co-ordinates ~, ~7, ~ in which ~ is 

distance measured along the outward normal to the surface. The line element can then be written 

in the form 
ds 2 = hi ~ d~ 2 + h2 ~ d~ ~ + d~ ~, (1) 

where h 1 and h 2 are supposed to be functions of ~ and ~/only. This implies that in the region con- 

cerned, which is the thin boundary layer close to the surface, the radius of curvature of any normal 
section of the surface is large compared with the boundary-layer thickness. 

The ,general equations of motion are 6 

p ~ - -  g x curl gq- ½ grad g 2 = p F -  gradp + ~ grad OzA) + grad (g .  grad/~) - V V 2/~ + 

+ grad/~ x curl V -  A grad/x-  curl curl l~g, 

pcp - ~  + V.  grad = q) + + V. grad p + div (k grad T), 

Op 
St ~- div (pV) = O, 

where V is the vector fluid velocity, p the density, ~ the coefficient of viscosity, p the pressure, 

c D the specific heat at constant pressure, k the thermal conductivity, • the dissipation function, 
T the temperature, F the body force vector and 

A = div V. 

Written out in full the dissipation function is given by 

= + +  3d) + - + -  33) + - el0 }, 

where e~p is a rate of strain component. General expressions for ea/J in curvilinear co-ordinates are 

given by GoldsteinL 
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We assume that the motion is steady and make the usual boundary-layer approximations. Taking 

the three velocity components as u, v, w, assuming F = 0 and using equation (1) we have 

( . ~  ~ 9. ~ ~h~ ~ ~h~t  ~ +  ~ (2) 

{ u 9v v Ov 9v uv Oh~ u z ~htt 1 Op+ ~ , (3) 

o = ~ (¢) ~'  

u~T v~T w-g~. 

1 (~ h + ~ ( p h l v ) + 3 ~ ( p h x h 2 w ) } = O .  hFhl/~ (° ~u) (6) 

We now Suppose that ~ and ~7 are such that the curves of intersection of the surfaces ~ = const. 

with the given surface ~ = 0 are streamlines on the surface, and that the intersections of ~ = const. 

with the surface are their orthogonal trajectories on the surface. For such co-ordinates (usually 

called 'streamline co-ordinates') we have v 1 = 0. 
In equations (2) and (3) we determine ~p /~  and t3p/Dr I from conditions in the main stream, since 

(4) shows that p does not change in passing through the boundary layer. On writing ~ / ~  -- 0, 

u = u t, v = v 1 = 0 in equations (2) and (3) we obtain 

1 ap = px ul aul 1 Op = --/91Ul 2 Oh1 

h l ~ f  hi ~ '  h2 ~ hlh~ ~V" 

A simplification is achieved if the element of length along, a streamline ~ = const.,, namely, hi d~, 

is written ds, so that 
1 ~ 
hi ~ ~s 

We shall also put h~ = r. 
Finally we make the assumption that v and its derivatives are small. We shall consider the nature 

of this assumption later. 
Equations (2), (5) and (6) now become 

ocpU'-a,+w~)+°1""l 9, -o~ ~ +~i~)'  (s) 

-,, ~ (o~u) + ~ (p~) = o. (9) 

These are the standard equations of motion in the boundary layer over an axisymmetric body 6 
of radius r. r has of course a very different meaning here ; it must  also be understood that equations 
(7), (8) and (9) are t o b e  taken along a given external streamline, and that s is the arc along this 

streamline, ~ being measured normal to the surface. 



Once u and w are found from equations (7), (8) and (9) v can be found from equation (3) which 
becomes linear in v and may be written 

P u G + ~ - ~ + 7 ; + ~ .  ) = p ~ u ? +  ~ , (lO) 

1 9h 1 where K - 
hl r a~ 7 " 

3. The Vahte of  r . - - W e  show in Appendix I that r is determined from the equation 

3 /  u ~ r  =\ 2 ( 3 U + 3 F ] ,  
Vi 

where U and P are velocity components  parallel to fixed Cartesian axes, x, y, z and 

g l  ~SS 

8 ~ O 8 O 
8x - ax v Z* Uz' 8y - a y +  Zv Uz ' 

(11) 

(12) 

g = 1 + z x Z + z v 2  , 

the equation of the surface being z = z ( x , y ) ,  and suffixes attached to z denoting partial derivatives. 

In many cases z x and z v are small and in this case the equations (11) and (12) simplify to 

,,1 ~ (log u, r) = >7 + a7 
a ~a+~ ~- - )"  (13) 

-1~ ay 

The  geodesic curvature of the curve ~ -- const., namely, 

1 Oh 2 _ 1 & 

hl h2 O~ r & '  ' 

is a measure of the amount  that the streamlines converge or diverge. Thus  if r increases downstream, 

two neighbouring streamlines have moved fur ther  apart, and so if the streamlines diverge & / &  is 
positive. Conversely, if the streamlines converge 3r/3s is negative (see Fig. 1). 

The  form of equation (11) shows that r is not completely determinate. I t  may in fact be multiplied 

by any function of 7. Changing r will also change 7. It  is convenient to choose r and ~7 in such a way 
that r is non-dimensional;  ~ will then have the dimensions of a length. 

4. The Mang ler  Trans forrna t ion . - -We make the following substitutions in laminar compressible 
or incompressible flow: 

¢ 
s t = J r  2 ds, 

1 ! 

Y I 
(14) 



We find that equations (7), (8), (9) and (10) take the form 

,/ ,au' ,aU'\ aul' a [ ,au'~. 

, / ,~T ,~T\  , , ,au 1' a / ~T\ ,/3u'\ ~ 
p %~u ~s ,+W-~z , )+p luu l  ~s' -Oz'tk-~zT)+tZt~ZTZ '} (16) 

~ ( o ' u ' ) +  a, ' w '  ! ~z' (P ) = 0, ' (17) 

~Ts ' + az'] = ~'(el' u ~ ' 2 - P ' u ' ~ ) + ~  FF~']" (18) 

The first three of these equations are standard two-dimensional equations, but the fourth is new. 
5. Examination of theApproximations Made.--It  will be seen that if v and its derivatives are to be 

small equation (10) implies that K must be small. NOW K is the geodesic curvature of the external 
streamlines ~7 = const. 17, and so we deduce that in order that the basic assumption may hold the 

external streamlines must have small geodesic curvature. 
The geodesic curvature at a point P of a curve S in the surface is the curvature of the orthogonal 

projection of S on the tangent plane at P. Thus  we may say loosely that the external streamlines 

must not bend 'sideways' very much, though 'up-and-down'  motion is permitted. 

It will be noted from equation (10) that it is possible tO have identically zero cross-flow if K is 

zero, that is, if the streamlines are geodesics in the surface. This was proved by Squire 18. 

We write 
l a  3 
7 a~ = N;  (19) 

the operator a/au thus denotes differentiation normal to the external streamlines. 

I t  is not possible to make a complete examination of the approximations made, except a posteriori. 
However, we may note that the terms missed out in equations (7), (8), (9) and (10) are 

a.  ~ a.~ v arl, (2o) 
• pv ~ u~an 7&J 

aT auQ lav~ 

Z (pv], , (22) 
I/'1 an ~ ul] 

av p ~ .  (23) 

We assume first that v is small compared with u. In addition we suppose that av/au is small 
compared with :u/a,. Unless au/a , au,/a  and aT~an are large this will be in general sufficient for 
the rejection of the expressions (20), (21), (22) and (23). I t  seems that these conditions are likely 
to hold for thin wings at low incidences, but  there is more doubt in the case of slender wings. This  
is because derivatives with respect to n may in some places become large if the wing is slender; in 
fact, they may be multiplied by a factor of order :  ~oot oho~a ..... im ..... . .  i-~v= as compared with their non-slender 

values: 
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It is unfortunately not possible to be more specific about the errors introduced by the present 

procedure. One may say that in general the boundary-layer flow direction does not depart greatly 

from that in the external flow except near separation, and so the method may be applied so long as 
separation is not approached too closely. 

6. Some Solutions.--6.1. Laminar Incompressible Flow.--One method of a t tackon equations (14) 

and (16) is that of Thwaites 9. In particular if we denote by 0tl' the momentum thickness in the 

variables of Section 4 

011' Jo ul' 

then according to Thwaites in laminar flow 

011, ~ 0.4D' (" ' (01(u~'")0 
- -  Ul t6  j.%, Ul '5 ds' -} /21.t6 , 

where the suffix 0 refers to some starting position. 

Transforming back to our original variables this becomes 

0"45v (* (%e r e u16)0 
0112 - -  ;,2 Ul 6 ,)So u15 r2 d s  + re  u l  6 

If, following Zaat e we write r e = 1/fiul e, this equation becomes, 

0112 0.45t5, / 'Sua /0 eu4 \  a 
- i  ds+t ) 

u l  ~ J~°-> \ p / o  i 

Zaat e gives an equation which can be reduced to this one, but with 0.45 replaced by 0.436. 
Alternatively the method of Blasius v or G6rtler *° could be used on equations (15) and (17). 

6.2. Turbulent F low. - -We may integrate equation (7) with respect to ~ bet~veen the limits 0 and 
o% and make use of (9) in integrating by parts the second term of equation (7). We obtain, as may 
easily be verified, though the algebra is tedious, the momentum integral equation 

U t t t't 
01t' + 0,1 (H + 2) ~* + r__ +-P-~ _ r0i (24) 

U 1 r p J  PlUi e' 

primes denoting differentiation with respect to s. 

In this equation 

01 = 

H 811 [ ~u~ 

It  is usual in two dimensions, though considerable justification is required for this, to take the 

momentum integral equation over into turbulent  flow, replacing %1 by an empirical formula for 
skin friction. I f  we may also do this for three-dimensional flow then our governing equation for 
streamwise flow is equation (24) which is exactly that for flow past an axisymmetric body of radius r. 

I t  does not necessarily follow that the empirical formula for %1 will be the same. Nevertheless, 
Cooke a took the same formula as in two-dimensional flow and this led to results giving fair agreement 
with experiment. Even if the same formula cannot be used this does not invalidate the axially 
symmetric analogy for the turbulent  case. 



The momentum equation (24) could be the starting point in streamwise calculations for the 

general case similar to those of Young 11 for the axisymmetric case, using for r the value determined 
in this paper. 

If, as is done by Spence 12 in two-dimensional incompressible turbulent  flow, we may take in 
solving equation (23) 

/u 0 \-i/5 
r°t - 0 . 0 0 8 8 5 1 ~  ) , H = const. = 1.5, pul 2 

which is due to Young 1t, that equation reduces to 

" ~ ((~)Ul 41 "6/5) = 0"0106Ul 41"6/5, 
r ~  

where 0= 0.11(U1~011) 1/5 . 

I f  we write r ~ = 1/fiui 2 we obtain 

~_ (@u114/5/5-a/5) = 0.0106u114/s t5-a/5, 
~s 

as given by Cooke a. 

Other versions such as those of Truckenbrodt  la for axially symmetric flow may also be used. 

7. Information Obtainable f rom the Streamwise Solution.--7.1. Shin-Friction Drag . - -The  limiting 

streamlines are by definition lines making an angle ~ with the streamlines, where 

tan/? = lim (v/u) 
C=0 

~v au 
: 

These lines are in the direction of the resultant skin' friction. Our assumption is that fi is small 

so that the resultant skin friction does not differ much in direction from that of the external stream- 

lines, and its magnitude is approximately equal to the streamwise component of skin friction. Hence 
for a wing at a small angle of incidence, whose streamlines are nearly parallel to the velocity at 
infinity, an approximation to the skin-friction drag may be found by integrating the local streamwise 
skin friction over the wing. This will be an upper limit to the skin-friction drag, but should give an 
improvement on the usual method of considering an equivalent flat plate at zero incidence. 

7.2. Displacement Sur face . - - I f  the equation of the given surface is ~ = 0, then there is a displace- 
ment  surface ~ = 3". I f  one wishes to know the flow outside the boundary layer of the given body, 

one m u s t  replace the body by this displacement surface and calculate the inviscid flow about the 
body so deformed. 

Lighthil114 shows that the displacement thickness S* at any point is given by 

~* = (~11 1 ~ f ]  Pi ui r 3~1 Pi ui 832 ds, 

2o =- j /  where 311 _ 1 (Pl u l -  pu) d~, 822 1 pv d~. 
Pl Ul - pl Ul 

I f  we continue to suppose that w is small then we may say that the displacement thickness 8" is 

approximately equal to the strcamwise displacement thickness 311. Thus  streamwise calculations 
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will be sufficient to give a first approximation to the value of the displacement thickness. This may 
be sufficient to determine the effect of boundary-layer thickness on drag. 

8. Separation.--In two dimensions and in axially symmetric flow separation is determined by 
the vanishing of the skin friction, and one is tempted to use the vanishing of the streamwise skin 
friction as the criterion here, as has sometimes been done by other workers in the field. This is 
incorrect. A full discussion of the matter is given by Maskell and Weber 15 and by Maskel116. 

Separation depends closely upon the direction of the limiting streamlines, and for this it is necessary 
to solve the cross-flow equation. However, separation usually involves considerable divergence 
of the limiting streamline direction from that of the external streamlines, so that ~ is not small and 
our fundamental assumption is violated, except perhaps in the case of very slender wings at low 
incidences. 

At any rate separation cannot be found without solving the cross-flow equation, and little informa- 
tion about separation is obtainable from the streamwise solution. 

9. Conclusions.--If the main assumption of small cross-flow can be justified, it will provide great 
simplification in the calcul6tion of three-dimensional boundary-layer flow, because at least i n  
laminar flow, the streamwise equation of motion, the energy equation and the equation of con- 
tinuity reduce to standard equations in axially symmetric flow. 

This result applies to compressible flow as well as incompressible. It seems also that the stream- 
wise momentum integral equation in turbulent flow may reduce to that of axially symmetric turbu- 
lent flow. 

No details of the equations for the cross-flow are given here, though the main assumption does 
simplify them somewhat. 

Nevertheless, useful information may be gained from the streamwise solution, since skin friction 
and displacement thickness may be determined approximately from the streamwise equations. 

It is necessary to solve the cross-flow equation in order to obtain information about separation; 
although the basic assumption will become less valid as separation is approached, sometimes the 
onset of separation is so rapid that there may be little error in determining separation using the 
basic assumption. 
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APPENDIX I 

The Determinat ion o f  r 

I f  the surface is defined in a Cartesian co-ordinate system, x , y ,  "z by the equation z = z ( x , y ) ,  

with components U, V, W, we shall have 
W = UZx+ Fz~,, (25) 

suffixes denoting partial derivatives, since the surface is supposed impermeable. 

We have 
Ul 2 = Uz+ F 2 +  W2, 

and the direction cosines of the velocity vector, V, are 

U F W 
~t I U 1 It I 

Hence we have 

~s - zq 3x t- ul-- By + ul 3z 

and so, using equation (25) we have 

t t l  ~ ---- 

3 0 ~-zx~'Yzz ~ - ~ where 3x 0x ~y ~y ~- zv ~z" 

In order to find r, we evaluate div V in two ways, supposing that we are confining ourselves to 

the surface z = z ( x , y ) .  

According to Weatherburn 17, for a vector which is everywhere tangential to the surface, as V 

is here 

div V = ~/(g) div (~g), (26) 

where div represents the ' two-parameter'  divergence in the co-ordinate system s, ~, and 

g = 1 + zx 2 + zv2. 

In the surface system the components of V are ui, O, and so 

4(g) 
\ ~ , b l  

In the Cartesian system we have 

d ivV = ~-x +~-y ~ az " 

Bearing in mind that we are confining ourselves to the surface, for which equation (25) holds 

everywhere, we have 
~U 5F 

- d iv  V = ~ x  -t S y ,  (27)  

and so the equation for r by (26) and (27) is 

- ~s = ~ - x  + ~ y '  
o r  

0 . [r 2 ui~\ 2[$U + 

\ 
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