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Summary . - -Th i s  paper presents a large-deflection analysis for combined flexure and torsion of solid or hollow 
wings of biconvex section with a parabolic chordwise temperature distribution. The analysis embraces the 
buckled, as well as unbuckled, regimes. 

1. I n t r o d u c t i o n . - - O n e  of the problems arising from the aerodynamic heating of a wing is that 
thermal stresses may reduce the overall stiffness of the wing. Aerodynamic heating of a solid wing 
produces chordwise variations of temperature which give rise to a thermal stress distribution which 
is characterised by spanwise compressive stresses at the leading and trailing edges and equilibrating 
tensile stresses at the mid-chord. If the wing remains perfectly flat these middle-surface stresses 
are completely self-equilibrating; but if the wing is twisted the middle-surface stresses have a 
resultant torque acting in the same sense as the twist and this results in an effective reduction of 
the torsional rigidity. 1,2, 3,4, 5, 6 If the wing is bent its cross-section distorts because of the  anti- 

clastic effect and because of the radial component of the middle-surface stresses. Because of this 

distortion the middle-surface stresses now have a result-ant moment acting in the same sense as 

the applied moment and this results in an effective reduction of the flexural rigidity. 6, ~ 

The present paper gives the large-deflection analysis for combined flexure and torsion of a class 

of heated thin wings of infinite aspect ratio. Thenon-linear character Of this large-deflection analysis 

stems from the fact that the middle-surface forces can result from, or be modified by, changes in 

the spanwise curvature or in the twist per unit length. 
Because of the comparative simplicity of the present analysis it has been possible to extend the 

investigation of the wing behaviour outside the normal practical range. Thus the investigation 

includes a consideration of the following phenomena: 'positive' and 'negative' (e.g., 'heating' and 
'cooling') thermal buckling and post-buckling behaviour, torsional buckling and post-buckling 

behaviour modified by thermal effects, and flexural snap-through buckling of a 'negatively' thermally 

buckled wing. 

* R.A.E. ReportStructures 237, received 2nd September, 1958. 

k _  



2. Method of Anc:lysis.--In order to determine the relationships between bending moment, 

torque, spanwise curvature and twist it is first necessary to determine the chordwise distortion of 
the wing subject to a given (arbitrary) spanwise curvature and twist. The differential equation which 
governs this distortion is determined in Section 2.1. The solution of this differential equation for 
wings of parabolic lenticular section with a parabolic chordwise variation of temperature is given in 
Section 2.2. The strain energy per unit length of wing is then determined in Section 2.3 in terms 
of the spanwise curvature and twist; the bending moment and torque may thus be readily found 
by differentiation of the strain energy with respect to the curvature and twist. 

2.1. Derivation of the Differential Equation.--The chordwise variation of the distortion of the 
wing may be determined most conveniently by variational methods. Consider first a wing with 
arbitrary chordwise thickness variation and arbitrary solidity subjected to a spanwise curvature K 
and twist per unit length 0. The distortion of the wing is then of the form 

w(x,y) = ½Ky2 + Oxy+w(x), (1) 

where the chordwise distortion of the wing w(x), hereafter referred to simply as w, may be determined 
from energy considerations. 

The strain energy due to spanwise strains in the middle surface of the wing will now be deter- 

mined. The first term on the right-hand side of equation (1) represents a developable surface and 

therefore contributes no middle-surface strains. The second term i n  equation (1) gives rise to 
1 A2~2 spanwise strains that vary as ~ ~ .  The final term in equation (1) gives rise to strains that vary 

as -Kw. The spanwise strain (measured from a stress-free datum) is thus given by 

E = g+½0~x~-Kw+A~+A~x,  (2) 

where the constants A 1 and A 2 are such that there is spanwise equilibrium, i.e., 

f a/2 t 
E d d x  = 0 J - a12 

f~/~ x E d d x  = 0 d - -  a/2 

(3) 

For simplicity equation (2) is written in the form 

~ = e ' -Kw,  (4) 

where ~' is independent of w. There are no chordwise middle-surface stresses so the strain energy 
per unit length due to the middle-surface strains is given by 

1 ~a12 
g,, = ~- d ( e ' - K w ) 2 d x .  (5) 

d -at2 
The strain energy per unit length due to flexure and torsion s is given by 

b = ~ J_a/D[ {Ww(x,y)p-2(  1 - , ' )  a~w(.,ylax~ a~w(x,y)ay,. - t{a=w(x'Y)~--a~ & 

= ~ J - a / ~ D l l  ~ )  + 2vK-a~g + K= + 2(1 --~)0~/dx (6) 
by virtue of equation (1). 
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.The total strain energy per unit length is the sum of these two and the condition that this is a 
minimum with respect to w requires 9 w to satisfy the following differential equation 

dx ~ D ~/~-+vK -- EKt(e'--Kw) = 0. (7) 

The four boundary conditions appropriate to this equation express the fact that the leading and 
trailing edges are free, whence 

• ( 8 )  

I, 'K . ~ 0 

Zx t \ dx~ ~= ±a12 

2.2. Wings of Parabolic Lenticular Section and Parabolic Temperature Variation.--In this para- 
graph the solution of equation (7) will be derived for wings of solid section and for wings of thin 
walled section with a stabilising filling (so that the wing acts as a 'plate' instead of a hollow tube). 
Throughout it is assumed that Young's modulus E and the coefficient of thermal expansion ~ do 

not vary with temperature. 
2.2.1. Solid wings.--For such wings 

'= 'o{1- 

D = D o  1 - , ( 9 )  

Eto a 
D o - 12(1_v2) 

and if T "  To+ TI(2~) +A T(2---~) 2, (10) 

it follows from equations (2), (3) and (9) that 

" i =  aAT{1-(2--j)2}. (11) 

In a similar manner it can be shown that 

~' = i ~ 3 T - ~ - )  - , (12) 

so that equation (7) becomes 

D0 ~/~-2 [{ld~ -[y)[2x\~/~/d2w/t-d-~+ v,~)] 
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It can be readily verified that the solution of equation (13) which satisfies the boundary conditions 
(8) is 

~ca ~ [ Ea~to(8C~d T -  
~v-~ 960D ° a~O~] ig -~)2  t 

~ ( l  [2x\ ~ 

= ( 1 4 )  
1 -~ Ea4K2t° 

960Do 

and it will be noticed that the chordwise curvature K'(= d2w/dx ~) is constant. 
2.2.2. Thin-walled wing.--The wing is assumed to have an outer skin covering of constant thickness 

h and a stabilising and shear resistant filling (such as a honeycomb). The contribution of this filling 
in resisting straining of the middle surface and overall bending is ignored. 

For such wings 
= 2h 1 j D =  D0{1 - (~)2} ~ (15) 

Ehto 2 
Do 2 (1 -v  2) 

while, from equations (2), (3) and (15), 

Equation (7) therefore becomes 

1 a202\ 
(16) 

d 2 
+ 0 (17) 

It can be readily 
conditions (8) is 

verified that the solution of equation (17) which satisfies the boundary 

Ka~ (v + Ea2h(8c"4 T -  a~O ~) 

w = Ea4~:2 h (18 ) 
1-1- 

192D o 

and it will be noticed that the chordwise curvature •' is constant. 
2.3. Strain Energy in the Wing.--The strain energy per unit length of wing may now be obtained 

by substituting equation (14) or (18) in equations (5) and (6). The strain energy per unit length so 
obtained is a function of the wing structure, the temperature difference AT, and the curvatures 
x and 0. The bending moment M and the torque T may therefore be obtained by differentiating: 

and 

where 

~9V 
T = ~ - ,  

v= v +v j 

(19) 
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At this stage, however, it is convenient to introduce the following non-dimensional parameters: 
(a) Solid wing 

[ 21a~ 
= \64Eto5] V 

aZ~A T 
10to 2 

~ =  tc 

0=( 
(214s) a\ 
- ~-6~o4 ) M 

2? = {!2145)a] 
k 64Gto 4 ] T 

as 

(445) t~o] K 

~ =  

~ ,  = 

(b) Thin-walled wing 

(20) 

( 5a3 '~ 
(7 = \128Ehto ~] V 

aZ~xA T 
12to 2 

4 x/6) t o 

= 0 (21) 

{(546)a] 
= [ ~ l  M 

~__ { (S46)a_] T 
\128Ghto 3] 

Hereafter, only non-dimensional symbols, all of which have circumflexes, are employed and all 
the remaining equations are applicable t o  both solid and thin-walled wings. 

2.3.1. Solid and thin-walled wings.--The strain energy per unit length is now given by 

p ½~z 02 ( O - 0 2 - v ~ )  2 (22) 
= + f ~ + 2 { 1 + ( 1 - ~ , ~ ) ~ }  

and the chordwise curvature by 

U = -  --- ^ 
\ 1+(1_v~)~2 ]K. 
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All the remaining equations are deduced from these two relations. The  bending moment  and 
torque, from equations (19), (20) or (21), are given by 

(24) 

and it will be noted that on small deflection theory, Mth  ~ zero 

Nr=  

3. General Relations Between ~, 8, 2~r, 5~.--The bending moment  and torque may be expressed 
in terms of the longitudinal curvature and the twist per unit length by virtue of equations .(22) 
and (24). Thus,  

37I = ~c{1 - (1 + v) ( ~ -  ~3 _ 03)} {1 + (1 - v) (~ + ~'c 3 - 03)} 
{1 + (1 - v 3) k3}~ (25) 

A ^ 3  = 0{1 - (1 +v) ( ¢ -  K - 03)} 
{ 1 + ( 1 - v 3) ~3} (26) 

Further,  by virtue of these relations, it can be shown that 

which is independent of " 17, 

It  is clear from these relations and from the physical aspects of the problem, that for given values 
of ~ and 0 there exist unique values for 2~/and 2P, but  the converse is not necessarily true (i.e., 
given values of _M and T may be possible with more than one pair of values for ~ and 8). This is 
demonstrated in Figs. 2 to 17 where curves of constant ~ and constant 0 have been plotted against 

and T for various values of & 
Fig. 18 shows the regions in the M, T plane in which ~ and 0 do not have unique values. For 

values oi: 0 less than - 1/(1 - v )  there is one region in which ~ and 0 do not have unique values and 
two regions in which ~ and 0 have unique values. For values of ~ greater than - 1/(1 - v )  but  less 
than 1/(1 +v)  there are two regions in which ~ and 0 do not have unique values and one region in 
which ~ and 0 have unique values. For values of ~ greater than 1/(1 +v) there are three regions in 
which ~ and 0 do not have unique values and one region in which ~ and 0 have unique values. In 

all cases increasing the value of I M I has a stabilising effect. 
4. Special Cases.--4.1. Condition of Zero Moment and Zero Torque.--The problem here is to 

determine the distortion of an unloaded wing due to thermal buckling. The  condition of zero ~r  
and zero 2r is obtained from equations (25) and (26) and determines certain relationships between 

and 0: 

~{1 - (1 + v) (0 - ~3 _ 03)} {1 + (1 - v) (~ + ~3 _ 03)} = 0 } .  (28) 

8{1 - ( 1 +  v) ( ~ -  ~3 _ 03)} = 0 

6 



There  are thus three possible states, namely: 

= 0 } (29) 
(i) 0 = 0 ' 

^ ~ -  = (30) or (ii) 1 - (1 + v) ( ~ -  K 02) 0, 

1 + ( 1 - v ) ( 9 + ~  2) = 0"~ 
o r  (iii) 0 0 (31) 

= ~ '  

A comparison of strain energies shows which of these three states is the correct one. First, however, 
it must  be noticed that, because ~2 and 02 are essentially positive, state (ii) is possible only if 

1 9 > - - - -  (32) 
l + v  

and state (iii) is possible only if 
- 1  

9 < 1 -~"  (33) 

The  strain energies corresponding to these three possible states are found from equation (22) and 

are given by 
V(i) J ½a 2 

V(ii) = ~c~ - ~  9 -  (34)  

= ~o - ~  a + / c T _  ~ 

and it follows from equations (32), (33) and (34) that state (ii) exists when condition (32) holds, 
state (iii) exists when condition (33) holds, otherwise state (i) exists and the wing does not buckle. 

It  is to be noticed that equation (30) permits an infinite variety of distorted shapes, but this is a 
special case (in an actual wing the end effects will tend to put a premium on the purely twisted 
shape). Generally, if there is more than one possible configuration, it will be found that there are 
two stable states and one unstable state. For example, if 9 < - 1 / ( 1 -  v) the two stable states corre- 
spond to the positive and negative roots of equation (31), and the unstable state corresponds to 

condition (29). 
The  chordwise curvature corresponding to the buckled states (ii) and (iii) is given by equations 

(23), (30) and (31). In terms of the spanwise curvature ~, it is found that 

" " (35) K ( i i )  ~ - -  K ,  

-"' " (36) 
K ( i i i  ) = ÷ K .  

4.2. Pure Moment . - -The condition that T is zero and _M non-zero implies that 0 is zero. 
Equation (25) then yields 

. ~ = L{1 - (1_+ v ) ( a -  ~2)} {1 + (1 - v) (a + ~ ) }  
{1 + (1 - v 2) ~}2 

., . (37)  

\ 1 . + ( 1 _ ~ 2 ) ~ 2 !  j 



This bending moment-curvature relationship has been plotted in Fig. 19 for various values of 8. 
A number of special cases warrant attention. If there are no thermal stresses 

(l_--v~) I -  l+(l_v2)p{ 2 , 

which is the ordinary large-deflection solution. 
If 

- - p  

(38) 

which corresponds to the solution on 'inextensional' plate theory. 1° The reason for this is that the 
radial component of the middle-surface stresses exactly counteracts the anti-clastic effect, so that 
~' is zero. In general, as ~ increases the bending moment-curvature relationship tends towards 
equation (39), for all values of 9. 

4.2.1. Snap-through flexural buchling.--If the wing was originally in state (iii) so that 

- 1  } 

1 ~1/2 ' (40) 
and ~o = + - "~- TZ~_ v) 

a violent flexural instability will occur at a critical value of ]~ if ]~r and Pc o are of opposite sign (the 
mechanism of this instability is similar to that in a toy metal 'clicker'). For purposes of argument ~o 
will be assumed negative and ]~r positive. As _/17/increases ~ increases so that, because of the negative 
sign of ~o, I~1 decreases. But 2~ is zero when ~ is zero and therefore there is a critical negative 
value ~* at which the positive moment .g/* is a maximum. A further increase in the value of 37I 
causes the wing to snap through to a positive value of ~. It can be shown by differentiating equation 
(37) that 

where /z = {v + ( 1 - v ~) 9} 9 f (41 ) 

and hence/14" can be determined. 

4.2.2. Flexural rigidity.--A non-dimensional measure of the flexural rigidity is afforded by the 

symbol SM where 

\ 0,~ JT=const, 

and for the special case of pure moment considered in this paragraph it is obtained by differentiating 
equation (37). The initial value of the flexural rigidity (i.e., at ]~r = 0) is determined from this relation 
using the results of Section 4.1. The stiffness depends markedly on whether the wing is in state (i), 
(ii) or (iii). In the unbuckled state (i) for which 

1 - 1 < 9 < 1 t v  ) .  (43) 

it can be shown that SM, o = {1 - (1  +v)0}{1 +(1 -v)9} 

9 _ 

1 --13 ~ 

it follows that ]~r - 1 - ~ '  (39) 



In the buckled state (ii) for which 

it can be shown that 

and in the buckled state (iii) for which 

l + v  

= 

or 0 

(44) 

4(0 + 
it can be Shown that Slu o • , 

• (The reason for the zero value for S1}z, 0 in the buckled state (ii) is a result of the infinite variety of 
possible equilibrium shapes under  zero load. The  stiffness will clearly be zero until any 'slack', 
represented by the 0 term in equation (30), is taken up.) 

Equations (43), (44) and (45) have been plotted in Fig. 20, where it is seen that in the buckled 
states the rigidity first increases sharply as 18[ increases and then approaches an asymptotic value 
of 4/(1-u~). Such high values for the rigidity result from the induced chordwise curvature, given 

by 
,,, [., 1 'l 1/2 ] 

! 
[ ,, 1 ~x/2 k I (46) 

and will normally be outside any practical range. 
4.3. Pure Torque.--The condition that M is zero and /~ non-zero implies that either 

= o ,  ] 
(47) 

in which case T = 0(1 - ( 1  + v ) ( 8 -  02)}, 

or l + ( 1 - v ) ( ~ + K  - 02 ) = O, 

in which case T = ( l ~ u )  
(48) o 

A comparison of strain energies shows which of these two states is the correct one. I t  is then found 
that if 

- 1  
8~<-- - -  

l - - i ]  ) 

equation (48) is applicable for all values of 2r. But if 

- 1  
8 > - -  

l - - l ]  ~ 



equation (47) is applicable for values of I a>l up to a critical value 15% ~" l, where 

~ , _  20* ~] 
1 - v  } (49) 

2 ~+ 
1 - v  

and equation (48) is applicable for values of[ ~[ greater than [ T* [. As the torque increases through 
the critical value of T* the wing buckles and there is a sudden drop in torsional rigidity. This 
instability is not a type of thermal buckling, although modified by thermal effects ; it is simply due 
to the fact that as the wing twists the middle-surface forces play an increasing part in resisting the 
torque and there comes a time when the wing will deform into a surface which approximates to a 
developable surface for then the middle-surface forces will remain constant. The buckled mode of 
deformation can be determined using the results of equations (23), (48) and (49): 

~ = 0~- (0.)~ ] 
(so) 

It is seen from equation (50) that ~ can be either positive or negative, values which correspond to 
two distinct modes of buckling; from symmetry there is no preference for either of these modes. 
The curvatures ~ and ~' increase rapidly immediately after buckling for we have 

= _+ {(0- 0.)(0+ 0.)}*/~ ] 
, ( 5 1 )  + ( ~  {(:~_ ~,) (~+ ~,,,)}1,~ 

which varies as ( T -  T*') 1/2 immediately after buckling. 
When T is large compared with 5F* 

~,~'-+ _+ 0 

and these relations correspond to modes of deformation which are developable surfaces *° with 
generators at _+ 45 deg to thespanwise axis. It is to be noticed that such a developable surface is the 
precise mode of deformation for all values of T if ~ = - 1/(1 -v) .  Some typical torque-twist relation- 
ships are shown in Fig. 21. 

4.3.1. Torsional rigidity.--A non-dimensional measure of the torsional rigidity is afforded by the 
symbol S:, where 

s~,= aO s~,= aO 1"~= COIIS~5 

and for the special case of pure torque considered in this paragraph it is obtained by differentiating 
equations (47) or (48). The initial value of the torsional rigidity (i.e., at 2~ = 0) is determined from 
this relation using the results of Section 4. As in the flexural case the stiffness depends markedly 
on whether the wing is in state (i), (ii) or (iii). In the unbuckled state (i) for which 

it can be shown that S:,,0 = 1 - (1  +~)O 
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In the buckled state (ii) for which 

it can be shown that 

and in the buckled state (iii) for which 

it can be shown that 

1 t a > f + ~  

Ss-.0 = 2{~(1 + v ) -  1} ' , 

or 0 _1] 
2 

ST, o -  1--v 

(54) 

(55) 

(The reason for the zero value for S~,, 0 in the buckled state (ii) is a result of the infinite variety of 
possible equilibrium shapes under zero load. The stiffness is zero until any 'slack', represented by 

the ~ term in equation (30), is taken up.) 
Equations (53), (54) and (55) have been plotted in Fig. 20. 
4.4. Bending Moment and Torque Increasing in Fixed Ratio.--Consider the case in which M and 

increase from zero in such a way that 

~ = ~ ,  

n? 2~ 
l + v  

i.e. (from equations (20) or (21)) 

The relationship between T and 0 is found by eliminating ~ from equations (26) and (27): 

02= { ( l+v)O- l+T/O}{2- (1-v)T /O}  2 
(1 + v) [4¢2{1 - (1 - v) 2r/0) + {2 - (1 - v) T/0} 2] 

(56) 

(57) 

and the variation of ~ and U with T (or 37I) follows immediately from equations (27) and (23). The 
relationships between 2r and 0, 2kr and ~, and 2~r and U are shown in Figs. 22 to 27 for various values 
of ¢, assuming ~ = 0 or 0.5. It will be noticed that for sufficiently large values of the applied moments 
the ratios 7"/0, if-Ilk and ]l~/k' tend to constant values, values moreover which are independent of ~. 
The asymptotic value of 7'/0, for example, is determined by the vanishing of the factor in square 

brackets in equation (57), and is given by 

- \ ~ + 4 ( 1  +¢~)] 

-2 \(~ + 4(1 + ~2)}9 ' 

Similarly it can be shown that 

2~/ 4 ~ / ( 1 + ¢  2) 
U - +  1 - v  ~ 
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It will be seen from these asymptotic expressions that 

" " '  ~ 0  K K  - -  

which represents a developable surface. The angle that the generators of this developable surface 
make with the chordwise axis is given by 

½c° t - l \  20 ] = ½c°t-14 

= t nl( l J 
which is in agreement with inextensional theory. 1° It can similarly be shown that the stiffness, as 

well as the deflected shape, tends to the value predicted by inextensional theory as ]1~ and T increase, 
whatever the value of 0. 

5. Examples.--The purpose of the'following three examples is to indicate the order of magnitude 
of some of the effects considered here. A more detailed discussion of some of the aero-elastic effects 

resulting from the change in camber (i.e., ~') under aerodynamic loading and from the loss of 
stiffness due to aerodynamic heating is given by Broadbent 11,12. 

(i) A 2 per cent thin Duralumin wing of lenticular parabolic section is subjected to a chordwise 
parabolic temperature distribution. Assuming v = 0"3 and ~ = 2.3 x 10 -5, determine the range of 
the temperature difference A T for which the wing is stable under zero load. 

If the wing is solid, it follows from equation (20) that 

AT 
174 

so that from Section 4.1 the range of ~IT is 

- 174 174 
- - . < / I T < - -  

1 - v  1+~'  

i.e., - 249°C <AT< 134°C. 

Similarly it can be shown from equation (21) that for a thin-walled wing the range is 

- 2 9 9 ° C < / I T <  161°C. 

(ii) A 2 per cent thin solid steel wing of lenticular parabolic section is required to withstand 
a temperature difference/I T of 300 deg C. Assuming 

=0.25,  a = l . 2 x 1 0  .5 and E = 3 0 x 1 0 6 1 b / s q i n . ,  

determine the behaviour of such a wing with and without initial pre-stressing. 
With no initial pre-stressing, ~ is given directly by equation (20) whence 

a =  0.9. 

This value for ~ is greater than 1/(1+p) (i.e., 0"8) and it therefore follows from Section 4.1 that 
the wing is in the buckled state (ii). The distortion of the wing in this state is given by equation (30), 

1 ~ + 02 = O -  
l + v  

=0.1 .  
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Now from equation (20) 

so that in terms of  K and 0 we have 

K 0 0.18 ' 
a ' 

Thus, if the curvature K is zero there will be a twist of 3.3 deg over a length equal to the chord ; if 
the twist per unit length 0 is zero the curvature over a length equal to the chord will produce a 
relative deflection of 1.4t o. 

By pre-stressing the wing the values of ~ may be reduced by a fixed amount, so that instead of 
increasing from zero to 0.9 it may start at -0 .6 ,  say, and increase to 0"3 (a suitable range can be 

estimated quickly from Fig. 20). The amount and distribution of pre-stressing necessary for this 
is given by equations (11) and (20). In units of lb/sq in. these equations give 

10OE(~)2{1-(~)~} = -  72,000{1- (~)2},  

so that the pre-stressing varies parabolically from a compressive stress of 14,400 lb/sq in. at the mid- 

chord to a tensile stress of 56,600 lb/sq in. at the leading and trailing edges. Such pre-stressing 
increases the initial value of the torsional rigidity considerably; from equation (53), with 0 = -0 .6 ,  

ST,0 = 1.75 

and as 0 increases to 0.3 the rigidity falls off linearly to the value 0.625. The corresponding values 

for the flexural rigidity are found from equation (43) to be 1.01 and 0.75. 

(iii) At what value of the twist per unit length will torsional instability of an unheated 1 per cent 
thin solid steel wing occur? From equation (49) 

0* = 1.154, 

which corresponds to a twist of 5-9 deg over a length equal to the chord. 

6. Conclusions.--A large deflection analysis has been presented for solid and thin-walled wings 
of biconvex section with a parabolic chordwise temperature distribution. A feature of this class of 
wing is that under any combination of moment and torque the chordwise curvature is independent 
of position. This results in a considerable simplification in the analysis and also enables the post- 
buckling behaviour of the wing to be fully investigated. 

Formulae and graphs are presented which enable the distortion of a wing under given moments, 
torques and thermal stresses to be determined. 

Achnowledgment.--The author is indebted to Miss Carol Hollingdale for the extensive compu- 
tations and for the preparation of the graphs. 
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T 
K 

0 
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V 
A1, A~ 
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/z 

Index * refers to critical 

LIST OF SYMBOLS (See Fig. 1) 

Cartesian axes,'Oy measured spanwise, Ox measured chordwise from the 
mid-chord of the wing 
Young's modulus, shear modulus (assumed constant) 
Poisson's ratio (assumed constant) 
Coefficient of thermal expansion (assumed constant) 
Wing chord 
Wing thickness 
Total thickness of spanwise stress-bearing material 
Skin thickness in thin-walled wing 
Flexural rigidity per unit width (assumed the same for spanwise and 
chordwise bending) 
Chordwise temperature distribution 
Defined by equation (10), in particular 
Difference between 'the average temperature of the leading and trailing 
edges' and the mid-chord temperature 
Spanwise middle-surface strain, measured from a stress-free datum 
Value of e when the wing is flat 
Defined by equation (4) 
Distorted middle surface of wing 
Chordwise variation of wing distortion defined by equation (1) 
Applied moment 
Applied torque 
Spanwise curvature 
Twist per unit length 
Chordwise durvature (constant for the class of wings considered) 
Strain energy per unit length due to middle-surface strains 
Strain energy per unit length due to flexure and torsion 
Total strain energy per unit length 
Constants 
Non-dimensional symbols defined by equation (20) or (21) 
Non-dimensional stiffnesses defined by equations (42) and (52) 
Defined by equation (41) 
M/T 
buckling conditions. 
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FIG. 1. Figure showing wing sections considered and notation. 
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FIG. 2. Variation of curvature ~ wi th  torque T and mo men t  ~ i  (Tempera ture-s t ress  parameter  ~ = - 2). 

,¢ 

6 

FIG. 3. Variation of curvature ~ wi th  torque T and m o m e n t  2t~ (Tempera ture-s t ress  parameter  d = - 1"43). 
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FIG. 4. Variation of curvature ~ with torque ~" and moment  1¢/(Temperature-stress  parameter ~ = - 1). 

\ 

Fro. 5. Variation of curvature g with torque ~ and momen t  M (Temperature-stress  parameter ~ = -0"5) .  
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FIG. 6. Var ia t ion  of curva ture  g wi th  to rque  T and  m o m e n t  2V/(Tempera ture -s t ress  pa rame te r  d = 0). 

FIQ. 7. Var ia t ion  of curva ture  ~ wi th  to rque  7 ~ and  m o m e n t  iV / (Tempera tu re - s t r e s s  pa r ame te r  d = 0"5). 
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FIG. 8. Variation of curvature ~ with torque T and moment  ~ / (Tempera tu r e - s t r e s s  parameter  6 = 0"77). 
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FIG. 9. Variation of curvature ~ with torque  ~ and momen t  ]¢ / (Tempera ture-s t ress  parameter  8 = 1). 
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FIc.  10. Variation of twist per  uni t  length /~ with torque T and moment  ~ (Temperature-stress  parameter  
d = - 2 ) .  

FIG. 11. 
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/ 

Variation of twist per uni t  length ~ with torque T and m o m e n t  ]~r (Temperature-s t ress  parameter  
= - 1"43). 
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~ = -O.Zl. 
g=-a,8 

~ = -  ~..0 

FIG. 12. Variation of twist per unit length t~ with torque ~" and moment 2Y/ (Temperature-stress parameter 
~" = - 1 ) .  
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g - - i . ~  
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e:O.4 
6--O.8 
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FIG. 13. Variation of twist p e r  unit length 0 with torque ~" and moment ~ / (Tempera ture-s t ress  parameter 
6 = - 0 . 5 ) .  
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~ : - 0 ' 8  ~ : 0 . 8  

FIG. 14. Variation o£ twist per unit length O with torque fi and moment ]~/ (Temperature-stress parameter 
= 0). 

FIa.  1S. Variation of twist per unit length ~ with torque ~ and moment 2~/(Temperature-stress parameter 
= 0.5). 
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FIG. 16. Variation of twist per unit length 0 with torque T and moment ~/(Temperature-stress parameter 
= 0-77). 
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FIG. 17. Variation of twist per unit length ~ with torque T and moment ~/  (Temperature-stress parameter 
~ =  1). 
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FIG. 18. Regions in the 217/, fi plane in which ~ and ~ do not have unique values. 
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FIG. 19. Bending moment-curvature relationships for various values of temperature-stress parame}er d. 
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FIG. 20. Initial values of the flexural and torsional rigidities SM, o and ,-?,'1',o (Variation with temperature-stress 
parameter d). 
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FIG. i l .  Torque-twist  relationships for various values of temperature-stress parameter 6. 
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Fie .  22. Variation of twist per  uni t  length 0 wi th  to rque  2# 
(Temperature-stress parameter  d = 0). 
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Fro. 23. Variation of twist per  uni t  length 0 with torque  2# 
(Temperature-stress parameter  d = 0'5). 
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(Tempera tu re -s t ress  pa ramete r  ~ = 0). 
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FIG. 25. Variation of  longitudinal  curvature  ~ with  m o m e n t  ~ /  
(Temperature-s t ress  parameter  c5 = 0"5). 
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FiG. 26. Variation of  ehordwise curvature k' with  m o m e n t  d~/ 
(Temperature-stress parameter 8 = 0). 
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FIO. 27. Variation of chordwise curvature ~' with  m o m e n t  
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