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Summary.--The vortex-lattice method for simple harmonic motion of general frequency (R. & M. 2961) is used to 
calculate the derivatives for rectangular wings with oscillating constant-chord flaps. The discontinuous chordwise 
boundary condition associated with fulLspan flaps, is replaced by a continuous equivalent downwash which is determined 
on the basis of two-dimensional oscillatory theory. In the particular case when the frequency tends to zero, t h e  
equivalent downwash is obtained on a distinct quasi-steady basis ; stability derivatives are then evaluated by using 
an alternative form of the vortex-lattice method for low frequency (R. & M. 2922). To allow for the spanwise dis- 
continuity due to outboard flaps, a further adjustment is made to the boundary condition by the use of partial-span 
downwash factors. 

Comparison of the stability derivatives with values obtained by the Multhopp-Garner method, indicates that the 
present treatment for low frequency is satisfactory for full-span and outboard flaps oil plan-forms of aspect ratio 2 
and 4. For general frequencies, results for aspect ratio 2 with full-span flaps compare well with the values forlift and 
pitching-moment derivatives obtained by Lawrence and Gerber. 

1. Introduction.--The development of vortex-lattice theory for wings .in simple harmonic 
motion has provided simple routine methods which can be applied to general plan-forms in 
incompressible flow 1, 2. In this report a vortex-lattice treatment for a wing with oscillating flaps 
is investigated, and the method is used to calculate derivatives for a rectangular plan-form with 
symmetrical full-span and outboard flaps. Apart  from the limitations common to any method 
which is based on linearised theory, strict application of lifting-surface methods to the problem 
of deflected control surfaces is precluded by the discontinuities occurring in the boundary 

:condition. 

In the case of steady flow, various devices have been sought to overcome this difficulty. One 
procedure is to replace the discontinuous boundary condition by theoretically determined 
equivalent slopes. Falkner a and Multhopp ~ treat  chordwise discontinuity at t h e h i n g e  on a 
two-dimensional basis : Multhopp 4 then fairs the spanwise discontinuity whereas Falkner 5 and 
DeYoung 6 represent it as an equivalent continuous function with the aid of special spanwise 
loadings. Another method, developed by Brebner and Lemaire 7, is based on an analysis of 
electrolytic tank tests on swept-wings with flaps : this analysis provides three-dimensional data  
for the equivalent incidence and the spanwise loading. 

* Published with the permission of tile Director, National Physical Laboratory. 



Since the vortex-lattice method economizes in collocation points, it can only be expected to 
give values of the overall forces on a wing with flaps. It  would appear that  the treatment should 
be .kept relatively simple. The lif~: distribution is therefore represented by the usual Fourier 
series which is independent of the control-surface geometry, and the discontinuous boundary 
condition is replaced by a continuous one. Consideration is first given to a wing with full-span 
oscillating control (Section 3), and an adjustment is then made to allow for the spanwise 
discontinuity in the case of partial-span flaps. The discontinuities are thus treated independently 
and relate to the chordwise and spanwise disposition of the collocation points. 

For a full-span control oscillating at general frequencies, the chordwise discontinuity in the 
boundary condition is replaced by a continuous function which is determined, on the basis of 
jones,s 8, 9 two-dimensional oscillatory theory, to give the same overall forces as an aerofoil with 
oscillating control (Section 3). The loading used in this analysis involves the oscillatory lift 
function C(o) ; it would therefore be more appropriate to use the corresponding form of the 
vortex-lattice method due to Jones 1° rather than the method of Ref. 1. However, the latter is 
recommended since it leads to a more general routine with simpler computation. This should be 
satisfactory for non-zero up to moderately large frequencies, but  it is thought that  the method 
of Ref. 10 might give better results for the higher values of the frequency parameter , say v ~ 1. 

When the frequency tends to zero, it is not possible to adapt the general treatment of the 
chordwise discontinuity because Of fhe limiting behaviour of the function C(co). Moreover, the 
use of two-dimensional oscillatory theory in conjunction with any chordwise loading (e.g., Ref. 2), 
is found to be unsuitable. A distinct t reatment using a quasi-steady approach is therefore 
suggested for the determination of the equivalent slopes. 

For a rectangular wing with a partial-span constant-chord control surface, the spanwise 
discontinuity is treated on a s teady  theoretical basis. Downwash factors independent of 
frequency, are evaluated from integrated spanwise loadings which can conveniently be determined 
from low-aspect-ratio theoryL It  is important  to note that  identical factors wouldbe  obtained 
by the use of classical lifting-line theory as suggested by GarnerlL 

There is very little information relating to control-surface oscillations at general frequencies. 
Reissner and Stevens TM calculated values of the derivatives for elliptic plan-forms only, although 
their method seems applicable to rectangular wings of moderate aspect ratio. Derivatives for 
low-aspect-ratio rectangular plan-forms with full-span flaps have been calculated by Lawrence 
and GerberlL For low-frequency oscillations, the Multhopp-Garner method ~4 has been applied 
to the control problem by using chordwise and spanwise equivalent slopes based on Refs. 4 and 6 
respectively ; this work has not been published but values obtained by Garner for rectangular 
plan-forms are quoted for comparison. These results for low frequency and those of Ref. 13 for 
general frequency support the present vortex-lattice treatment. 

2. General T h e o r y . - - T h e  lift distribution p V F  e ~p~ over the plan-form is represented by the 
usual finite series (Ref. 1) 

r = v z  z r . G " ` A . ,  . . . . . . . . . . . . . . .  (1) 

in which the distributions /~ are functions of the chordwise parameter  0 and the frequency 
parameter o, and the spanwise distributions A,,~ are defined by 

cA.,  = s ,  " - 1 % / ( 1  -- ~) , m = 1, 2 . . . .  

The downwash W e ~p~ at any point on the plan-form is then 

W = V Z Z W."`C~,~, . . . . . . . . . . . . . .  (2) 

where the downwash V W . . ,  e ~p* corresponds to a lift distribution p V~F,~A., e ~p, and is independent 
of the control-surface geometry. 

2 



For general frequencies, the  vortex-lat t ice me thod  of Ref. 1 can be used to calculate values of 
W.~. In  the  present application to rectangular  wings, the  dis t r ibut ion/~ is l imited to two chord- 
wise distributions 

F0 = 2 cot ½0 ) 

/~1 = (-- 2 sin 0 + cot  ½0) + ico(½ sin 0 + {- sin 20) / ' " . . . . .  (3) 

and to three symmetr ical  spanwise distributions At, A~ and As. The arbi trary coefficients C .... 
i n e q u a t i o n  (1) are then  to be de termined from equat ion (2) by collocation at six points which 
are placed on the  1/2 and 5 / 6 c h o r d  at  spanwise positions v, ---- 0.2, 0-6 and 0.8. 

For a wing wi th  part ial-span controls describing symmetr ical  oscillations, the  normal  downward  
displacement of any point  on the  lifting surface is 

z = 0 off t h e  controls 

z = (x -- Xh)$ e ip' on the  controls / ' . . . . . . . .  (4) 

where x = xh is the position of the  control hinge-line and $ e ~;~ is the  angular displacement  of 
the  control. The tangent ia l  flo~v condit ion is 

W e ~' --  ~z ~z 
at I -V--  

so tha t  by  equat ion (4), the  downwash distr ibution in (2) is required to satisfy the  boundary  
condit ion 

W = 0 off the  control 

w = + ip( - ) ] . . . . . . .  (5) 
= v ~ [ i  + ½ico (cos ~0 --  cos 0)] j on the  control 

In  order to obtain an adequate  solution for a part ial-span control surface by  collocation, it is 
necessary to replace the  discontinuous boundary  condit ion (5) by a continuous one. The dis- 
continuities in the  chordwise and spanwise directions will be t rea ted  independent ly .  

3. Full-span Control Oscillating at General Frequency.--The boundary  condit ion (5) for a full- 
span control is discontinuous only in the chordwise direction. Fur thermore,  in the  case of a 
constant-chord wing and control the condit ion is identical  for all spanwise positions ; the  same 
is t rue for the  continuous boundary  condit ion which is to replace (S). As already men t ioned  in  
Section 2, the  vortex-lat t ice me thod  is tQ be used with two chordwise terms in the  lift distr ibution 
and therefore two chordwise positions for the collocation points. In  such a solution the  continuous 
boundary  condit ion along each chord may  be wri t ten as 

W = V~W~ . . . . . . . . . . . . . . . . .  (6) 

where WE ---- [a0 + al(½ + cos 0)], 0 ~< 0 ~< ~ .  _ 

The problem of replacing discontinuous chordwise boundary  conditions due to deflected controls 
by. continuous functions, has been considered for s teady flow by Fa lkne#  and MulthoppL In  
bo th  cases, equivalent  slopes were de termined on a two-dimensional  basis to give the  same overall 
characteristics, such as lift and pi tching moment ,  as an aerofoil wi th  deflected control. By an 
analogous t r ea tmen t  based on two-dimensional  oscillatory theory  (Ref. 8), a continuous equivalent  
downwash W~ ma y  be de termined for general frequencies. 

I t  follows from the  two-dimensional  theory  for an oscillating aerofoil, tha t  the  lift distr ibution 
p V,/' e ip' corresponding to the  continuous downwash WE of equat ion (6) is _ 

/~ ---- V[aoro + a f t ] ,  . . . . . . . . . . . . . .  (7) 

where Fo = 2C(~o) cot ½0 + i c o  sin 0 

/'~ = (-- 2 sin 0 + cot ½0) + ioJ(½ sin 0 + ~ sin 20) . 



Then, the lift -- Ze e ~p*, pitching-moment about half-chord Me e ~p* and hinge-moment He e ~p*, 
which correspond to the continuous downwash W e ,  are given by 

Ze 
~ p c V  ~ - . . . . . . . . . .  (8a) 

M~ 
~pc~V ~ - -  . . . . . . . . . .  (8b) 

He 
xpc~V~ - -  [C(co)X~ + icoX~]ao + ½[(XI~ -- 4X~) + ico(X~ - -  4X~)]a~, ..  (8c) 

where the functions X~, X ~ . . .  X~ are defined in Appendix I and depend only on the control 
parameter ~o ; -values of these functions and of the oscillatory lift function C(co) are tabulated 
in Ref. 9. 

[c(co) + lio,]ao + [~ico]a~, . .  

¼[C(co)ao + ½(1 + l i co )a l ] ,  

The aerodynamic forces on a two-dimensional aeroIoil with a flap describing oscillations of 
unit amplitude are determined in Ref. 8, but for preseiat purposes it is more convenient to use 
the following formulae from Ref. 9 : 

Z 
:~ocV= -~ C(co)[X~0 + icoX~]  + i co X ,  - -  co=X1, . . . . . . . .  (9a) 

M 
~pcPg~ - -  - -  }C(co)[Xlo @ icoX11] @ Xs  @ i c o X 5  - -  co~X2 . . . . . . .  (9b) 

' H  
~ p c ~ V  ~ - c ( ~ , ) x ~ [ X ~ o  + i cox ,~]  + x ~  + i ~ o x ~  - ~o~x~ . . . . . . .  (9c) 

where the functions X~, X~, . . . X ~  are defined in Appendix I. 

T h e  unknown coefficients do and a~ of the continuous equivalent downwash We in (6), can be 
determined for particular values of the frequency parameter co and the flap ratio E = ½(1 + cos ~) 
by equating any two of the equations (8) to the corresponding two equations (9). I t  is suggested 
that  the equivalent downwash We obtained by satisfying the lift and pitching-moment equations 
of (8) and (9), should be used in the finite-wing solution i n  order to evaluate the derivatives for 
lift and pitching-moment, while the equivalent downwash We - W~ obtained from the lift 'and 
hinge-moment equations of (8) and (9) should be used to evaluate the hinge-moment derivatives. 
Some sets of values of We and W~ are given in Table 1. 

4. F u l l - s p a n  Control  Osc i l la t ing  at L o w  F r e q u e n c y . - - I n  the case of low-frequency oscillations, 
it is not possible to use equations (8) and (9) of the previous Section because of the co log co term 
inherent in the two-dimensional oscillatory lift function C(~o). However, since only first-order 
terms in frequency are retained in tile finite-wing solution for v i_+ 0, the continuous boundary 
condition (6) may be expressed as 

w = v ~ w e  = V ~ F ~ l e  + i c o ~ e ] ,  . . . . . . . . . . . .  (10) 
= , , I  , O)  l where ~le d 0 -~ 81( ~ Jr- COS 

~ e  d 0 +  ,,,1 0) J 0<-<. 0 ~<~.  I t  a I ~ -J[- COS 

Now, the continuous functions ~le and ~e can be determined on a quasi-steady basis by treating 
the real and imaginary parts of the discontinuous boundary condition (5) as independent condi- 
tions. Thus equation (5) is writ ten as 

W = V~[~, ÷ i~o~] . . . . . . . .  . . . . . . .  (11) 

where ~ = 0  0~< 0 ~< ~ ]  

J (12) 
= 1  ~o~<O ~ : ~  . . . . .  

g 



and -3 = 0 0 < o ~< v, ) 
(13) 

= ½(cos ~ - -  cos 0) ~ ~< 0 ~< ~ / . . . . . .  

The Continuous equivalent downwashes -~E and -~E are determined independently to give the 
same overall characteristics as the discontinuous boundary conditions ,~ and as in two-dimensional 
steady flow. 

The quantities ZE, M~, Hg corresponding to the continuous downwash ~IE in (10) are obtained 
by  subst i tut ing a0 and a'~ for a0 and al in equations (8) and putt ing co = 0. Hence 

Z ~  = - -  z~pcV~Ea(~], . . . . . . . . . . . . . . . .  (141) 

M r  = -~pc2V~[a~ + ½ a ; ] ,  . . . . . . . . . . . . . .  (14b) 

g ~  ---- - -  ~pc2V~[X~2a[~ + ½(X12 -- 4 2 1 ) a ; ]  . . . . . . . . .  (14c) 

Equation (12) expresses the boundary condition ,~ for an aerofoil with deflected flap in steady 
flow. The corresponding aerodynamic forces, obtained by substituting ~o ---- 0 in equations (9), 
are 

Z = - -  z epcV~[Xlo] ,  . . . . . . . . . . . . . . . .  (151) 

M = - } u p c ~ V * [ X ~ o  - -  4 X 8 ] ,  . . . . . . . . . . . . . .  (15b) 

H = - ~ p c ~ V ~ [ X ~ o X ~  + x ~ ]  . . . . . . . . . . . . .  (15c) 

Then the equivalent downwash ,~E;obtained by satisfying the lift and pitching-moment equations 
of (14) and (15) is 

~ = x l0  - s x d ½  + cos 0) . . . . . . . . . . . . .  (1~) 

while satisfying the lift and hinge-moment equations of (14) and (15) gives 

. { 2 x ,  
~ , ,  = X l o  ÷ \X~2 - 4 X d  (½ ÷ cos 0) . . . . . . . . . . .  (17) 

The values of -1~ and -;E evaluated from (16) and (17) for any particular value of the control 
ratio E, will be the same as the values of the equivalent slopes which are given in Ref. 3 for two 
chordwise terms. 

The continuous downwash -~E defined in (10) is of the same form as -1E ; therefore the corre- 
sponding quantities ZE,  M r  and H e  are given by equations (14) with ag = ao' and a;  = aT. 
The lift distribution o V I "  which corresponds to the discontinuous boundary condition -2 of 
equation (13) is determined in Appendix II  by  two-dimensional steady theory ; then integration of 
equation (39) gives the aerodynamic forces 

z = - , ~ p c v I x l d , .  . . . . . . . . . . . . . . .  (as~) 

M ---- ~ : ~ p c ~ V 2 E X n -  ½ X ~ -  2X5], . . . . . . . . . . . .  (18b) 

H = - -  ~ p c ~ V ~ [ X ~  X l ~  + X ~  . . . . . . .  • . . . . . .  (lSc) 

I t  follows from equations (14) and (18) that  the equivalent downwash 

~2~ = X~l -- (X~ + 4X5)(½ + cos 0) . . . . . . . . . . . .  (19) 

gives the same lift and pitching moment, as -3, whereas the equivalent downwash 

.2E ---- X n  + \ X , ,  - -  4 2 1 ]  (½ + cos O) . . . . . . .  . .  (20) 

gives the same lift and h ingemoment  as ~=. 
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The equivalent downwashes for c0 --+ 0 as defined by equations (16), (17), (19) and (20) can be 
evaluated by using the values of the functions X ,  X~ . . . X~ which are tabulated in Ref. 9. 
However, when the flap ratio E = ½(1 + cos ~0) is small, there may not be enough significant 
figures and it is then better to work with the formulae given in Appendix I. Some sets o-f ~1~, 
~2E and ~ ,  ~;E are given in Table 2. Their application is discussed in detail in Section 7. 

For low frequency, the vortex-lattice method of Ref. 2 may be applied but the choice of 
chordwise distributions/7o and/~1, as in equation (3), is not consistent with the quasi-steady basis 
on which W~ of equation (10) has been determined. Therefore the alternative method described 
in Appendix I I I  is used, so that  all the chordwise lift distr ibutions/~ are independent of frequency. 
This alternate distribution facilitates the application of the method to hinge-moment derivatives 
(Section 7). Thus, in the present application to rectangular wings, the chordwise distributions 
/7o = 2 cot 10 and/~1 = (-- 2 sin 0 + cot ½0) are used in the solutions for v --+ 0 ; the spanwise 
loading and the position of the collocation points are the same as those given in Section 2 for the 
general frequency solutions. 

5. Partial-span Controls .~The spanwise discontinuity in the boundary condition for a partial- 
span control is treated by steady-flow theory so as to give a continuous spanwise function which 
produces the same overall forces such as lift and rolling moment. The chordwise discontinuity 
has already been dealt with, by  either Sections 3 or 4, so that  in the spanwise direction 

W = O 0 <~1~[ <~ ~1 
(21) 

Provided tha t  both the plan-form and the control are of constant chord, the equivalent downwash 
W~(O) is independent of the spanwise parameter V. Then the continuous boundary condition 
will be of the form 

W = V~We(O)F(~]) , .  . . . . . . . . . . .  . . . .  (22) 

where the downwash factor F(~]) will now be determined for symmetrically oscillating partial-span 
controls. 

Since only three collocation positions ~1 are to be used in the present finite-wing solutions, the 
factor F is taken as 

F(V) = (b0 + b2v 2 + b4v 4) . . . . . . . . . . . . . . .  ( 2 3 )  

The arbitrary coefficients b0, b~, b~ are to be chosen so that  three selected integrals are numerically 
exact. Gamed ~ has shown that  the application of either classical lifting-line theory or DeYoung's 
low-aspect-ratio theory 6 will lead to identical downwash factors. For convenience the latter 
method will be used in the following analysis. 

The spanwise load distribution due to the downwash F(V) of equation (23) can be expressed 
as 2pV~sy(~), where 

7(v) = 2nEd0 + d~v ~ + d~v '] ~/(1 -- v 2) . . . . . . . . . . .  (24) 

By Ref. 6, the downwash is 

= = - 1  d , '  . . . . . . . . . . .  ( 2 S )  

so tha t  the downwash corresponding to (24) is 

F(V) = ~[2do + d2(6~ ~ -- 1) + d~(10~" -- 3v 2 -- 2)] . . . . . . .  (26) 
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The lift, f i rst-moment,  second-moment  and par t ia l -span integrals  corresponding to (24) are 
respectively 

fl° ~21 1 l d ]  . . . .  I o =  y d r  = - ~  d o + ~ d ~ + ~  ~ , . . . . . .  (27a) 

I 1 =  y r d r =  d 0 + g G + ~ d ~  , . .  
0 

. .  (27b) 

and 

where 

fl 1 5 ] G =  7 , ? d r = g  d o + g G + l g  & ' 
0 

I ,  = y dr = 2n[doJo + GJ= + dJ4], 

f 
l 

J ,  = r ' ~ / ( 1  - r =) & .  
7/a 

. .  (27c) 

. .  (27d) 

I t  remains to evaluate  the  integrals,  as defined in (27), which correspond to the  exact  solution 
for the  discontinuous bounda ry  condition 

/ . . . . .  
- -  v ,  r~ < 1 ~ 1 <  

B y  Ref. 6, the  load dis tr ibut ion corresponding to (28) is given by  

y = f ( ¢ ,  ¢~) + / ( ~  - ¢, ¢o) ,  . .  . .  
where 

. . . . . . . .  (28) 

• o 

/ ( ¢ ' 4 ° )  ~L!FC~sin¢ + ( c ° s¢ -c° s¢° ) ln~½1¢-¢~ l  ' 

V = cos¢ and r~ = cosec .  

(29) 

Subst i tu t ion  of y from (29) into the  integrals (27) gives 

2Io = [¢o --  sin Ca cos G] , • . . . . . . . . . . . . .  (30a) 

3 ~ I 1 =  I 2 ¢ ~ - - s i n ¢ ~  c o s C a - - ½ c o s 3 ¢ a l n  (~ + s i n G ) l  (30b) 
- -  s i n g  ' " "  " "  

8l~ = [¢, --  ½ sin 4~ cos G(1 + 2 cos ~ 4o)] , . . . . . . . .  (30c) 

n I ,  = [4~ =- 2G sin ¢~ cos 4, --  2 cos ~ 4~ In cos G] . . . . . . .  (30d) 

The downwash factor F(n) as defined by  (26) can therefore be determined for any  value of 
~a, b y  equat ing three of the  integrals which are given in equations (27) to the  corresponding 
integrals  of equat ion (30). For  the par t icular  values r~ = 0. 342020, 0 .5  and 0-766044, the  
a rb i t ra ry  coefficients do, d~, d4 in Table 3 (a) and do, d~, d* in Table 3(b) are obtained by  . 4 

sat isfying respectively 

(a) the  equations for /0 ,  11, I2, 

(b) the  equations for I0, 11,/~. 

The use of the  three equations (b) leads to a singular ma t r ix  and no solution for the  par t icular  
value ~ ----- 0. 535, and gives i l l-conditioned solutions in the  neighbourhood of this  Value ; the  
solution (b) for ~ = 0 .5  tends to be ill-conditioned. I t  seems advisable to avoid this  l imi ta t ion 

7 
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by using the three equations (a) which are indeperident of ~. The solution 0f equations (a) can 
be expressed generally in matrix notation as 

= -37.  4 2 . 0  -4 .4 . . . . . . . . .  (31) 

d~ 1_ 44.8 --56- 0 67.2_11 8I~) 
where { } denotes a column matrix and I0, I~ and I~ are obtained from equations (30). 

The downwash factors are required in the finite-wing solution at the collocation positions 
~ ---- 0-2, 0.6 and 0-8. The values F(~) and F*(~) corresponding to solutions (a) and (b) are 
evaluated not from equation (26), but from the formulae given in Table 3 which are obta ined 
from a 21 × 1 Vortex-lattice integration of equation (25). Thus the downwash factors in Tables 
3(a) and 3(b) incorporate a correction which is consistent with the use of vortex-lattice theory 
for the finite-wing solution. The values F(~) and F*(~,) will be referred to as partial-span 
factors. 

6. Results.--The . treatment described in Sections 2 to 5 is applied to rectangular plan-forms 
of aspect ratio A = 4 and A = 2 with oscillating full-span and outboard flaps. Values of the 
derivatives for lift, pitching moment  about the leading edge and hinge-moment are given in 
Tables 4 and 5. These derivatives are calculated by t h e  vortex-lattice method with a 21 × 6 
lattice and six collocation points as defined in Section 2. The solutions for particular values 
of the frequency parameter v are obtained by using the equivalent downwashes W~(01) and 
W*~(ol) given in Table 1 for flap-chord ratios E = 0.08 and 0-25. To obtain solutions for low 
frequency v -+  0, the quantities c~, ~2~ and c~, ~E from Table 2 are used as discussed in 
Section 7. For all frequencies, partial-span flaps are represented by partial-span factors F(~) 
which are tabulated in Table 3(a). 

The rectangular wing A = 4 is considered with full-span flaps (E ---- 0.08 and 0.25) oscillating 
at low frequency and v = 0.2 and 0.6. Derivatives are also obtained for this wing with out- 
board flaps (E = 0.25, ~ = 0.5) oscillating at the same frequencies. These results are given 
in Table 4 together with derivatives for the rectangular wing A = 2 with full-span flaps (E = 0.25) 
oscillating at low frequency and ~ = 0.2 and 1.2. Derivatives for A = 4 at low frequency are 
also tabulated for different values of ~ in Table 5. 

The lift, pitching moment  and hinge-moment derivatives for the flap-chord ratio E = 0.25 
are plotted against v in Figs. 1 and 2. No general conclusions can be drawn from so few results. 
Nevertheless, the effect of frequency is not large and appears to diminish with decreasing flap-span 
(Fig. 1) and with decreasing aspect ratio (Fig. 2). For low frequency v --+ 0, the derivatives for 
the wing A ---- 4 with outboard flaps are plotted against ~ in Fig. 3 ; similar curves are obtained 
for the flap-chord ratios E = 0.08 and E = 0.25. 

Molyneux and Ruddlesden ~5 have measured the forces on a rectangular wing A = 4.05 with 
full-span control E = 0.2 ; over the frequency-parameter range 0.2 < v < 1.3, Fig. 16 of 
Ref. 15 gives the hinge-moment derivative values -- h e = 0.22 t and -- h~ = 0.12. These are 
respectively 40 per cent and 12 per cent below the values obtained by interpolation from the 
vortex-lattice results for v -+  0 in Table 5. Such differences may be expected due to wing thick- 
ness and effects of Reynolds number. 

7. Accuracy and Application of the Method.--As an initial investigation it seemed advisable to 
compare tile result of using partial-span factors F(~)  based on lift, first and second moment  
instead of the factors F*(~) based on lift, first moment and hinge-momeflt. Of the derivatives 
thus evaluated for the plan-form A = 4 with outboard flaps in steady flow, tile lift and pitching- 
moment  values are in good agreement, but the hinge-moment values show progressively larger 

This value does not include tile aerodynamic inertia term. 
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differences as ~ increases. These two sets of results are given in Table 6 together with values 
calculated by an extension of the Multhopp-Garner theory t4 with 15 spanwise and 2 chordwise 
terms. Co/nparison with the latter results indicates that  the solutions using the factors F*(~ d 
are more reliable. Thus the discrepancies in h~ in Fig. 3, for outboard flaps of ~ = 0.766, are 
halved if F*(~I) is used in place of F(~)~. This is to be expected, since substitution of the values 
of the coefficients do, d~, d~ into the hinge-moment equation (27d), does not give a good approxima- 
tion to the exact hinge-moment equation (30d) for the larger values of ~ .  For most practical 
values of ~ ,  however, the partial-span factors F(~)  are preferable since the factors F*(~) cannot 
be obtained in the neighbourhood of ~ = 0.535 (Section 5). In view of this initial investigation 
the factors F(~I) were used for all the solutions given in Tables 4 and 5. 

The accuracy of the derivatives for non-zero values of the frequency parameter v cannot be 
fully assessed. The only results available for comparison are the lift and pitching-moment 
derivatives obtained by Lawrence and Gerbe? ~ for the wing A = 2 with full-span flaps. However, 
Fig. 2 shows good agreement between these values and the present vortex-lattice results. 

The application of the method for low frequency v--+0 is now considered in some detail. 
In!tially,  the lift and pitching-moment derivatives were obtained by using the equivalent slopes 
, ~  and , ~  based on lift and moment, whilst the hinge=moment derivatives were calculated by  
using throughout the slopes , ~  and -~E based on lift and hinge-moment. As a check, the lat ter  
solution was also used to calculate the lift derivatives for the wing A = 4 with full-span flaps. 
Although satisfactory values were obtained for the chord ratio E = 0.25, in the case of E = 0- 08 
the two values for -- z, differed by a factor of 2½. Furthermore, for E = 0.08 the hinge-moment 
derivative - - h ,  = 0-016 was appreciably different from the value --h~ = 0"0515 obtained b y  
means of Ref. 14. However, the hinge-moment derivative -- h~ = 0-385 compared satisfactorily 
with the Multhopp-Garner value -- h e = 0.390. Solutions for the wing A = 4 with half-span 
outboard flaps showed similar differences for E = 0.08, but Were again satisfactory for E = 0.25. 

I t  is useful here to state the form which the v --+ 0 solution takes in the case of a constant-chord 
wing and control. The lift distribution is given by equation (1) with distributions P,~ as defined 
in Appendix III ,  and the arbitrary coefficients C ..... are determined by solving the matr ix equation 

where [A + i~,BJ is the matrix of downwash values W .... at the collocation points, and the right- 
hand column matrix corresponds to the general case of partial-span flaps. Then, a solution to 
first order in frequency is given by 

{C~,.} = A-t{~EF(v~) + iv(.~F(vl) --.~)} . . . . . . . . .  (32) 

where A-1 is the inverse matrix of A, and 

{~} = B A - % ~ F ( ~ d }  . . . . . . . . . . . . . . .  (33) 

The use of equivalent chordwise downwashes -16 and -~E, as defined by equations (16) and (19), 
in the solution for the lift and pitching-moment derivatives is supported by the Multhopp-Garner 
results in Table 5. 

The solutions for the hinge-moment derivatives which are discussed above, were obtained by using 
the values ,  ~ and "~E from (17) and (20) in equations (32) and (33). In view of the large discrepancies 
in the damping derivatives for E = 0.08, some modification to the imaginary part of the solution 
was then considered. Even though, ~1 is discontinuous, the column matr ix A-1{~1} represents 
a continuous loading ; it can therefore be argued that  {-3} in equations (32) and (33) should be 
independent of the forces and moments to be evaluated. It  is relevant to note tha t  for the 
particular value E = 0.25, "~E is numerically equal to -1E and the hinge-moment solutions a re  
satisfactory. Therefore, in the hinge-moment solutions for A ---- 4 with full-span flaps E = 0.08, 
the equivalent downwash -1E was used in equat ion (33) instead of ,~e. Thus modified, the 
solution both checks the accepted value of -- z~ and gives -- h~ = 0. 054 which is in satisfactory 
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agreement with the Multhopp-Garner value -- h, = 0.0515. Similar improvements are obtained 
in the case of half-span flaps. Hence, the solution 

- I  * " * 
{Cnm } = A {glE/P(~l)  ~-  ~ ) ( g 2 E ~ ( , 1 ) -  g3)} . . . . . .  , .  (34)  

= B A  

is adopted for the calculation of all the hinge-moment derivatives for low frequency in Tables 
4 and 5. 

In conclusion, the present application of the vortex-lattice treatment to rectangular wings with 
symmetrically oscillating constant-chord flaps appears satisfactory for general frequencies and 
gives results for low frequency in reasonable agreement with the Multhopp-Garner values. T h e  
method can be applied directly to constant-chord swept wings with flaps of constant E. Extension 
to the general case of a swept tapered wing with controls of arbitrary shape oscillating at any 
frequency, would present considerable difficulty. For low frequency, however, the treatment 
can be extended readily to a swept tapered wing with flaps of constant E ; by further modifica- 
tions to the partial-span factors, it should be possible to treat the case of E variable along the 
span. I t  would generally be advisable to use three chordwise and extra spanwise collocation 
points, and the equivalent downwashes WE(O) and the partial-span factors F(~l) may easily be 
determined for an arbitrary number of collocation positions by an extension of the procedures 
used in Sections 3, 4 and 5. Compressibility effects for oscillations of general frequency cannot 
be determined by the vortex-lattice method (Ref. 16), but it would be possible to obtain deriva- 
tives for low frequency at subsonic Mach number by applying the present treatment to a wing 
and control surface of reduced plan-form. 

Acknowledgements.--The numerical results given in this report were calculated by Mrs. S. Lucas 
and Miss B. Burnham of the Aerodynamics Division. 
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A 

C 

c(o~) 
E 

F(~,), F*(~,) 
p/2~ 

S 

V 

W e q't " 

w~(o), w;(o) 

X, y, Z 

X I ,  X ~  . . . X ~  

Y~ 

O~IE ~ O~2E 

O~IE , O~2E 

!7" e ip~ 

o 

v 

~: e iP  t 

¢ 

~o Value of 0 at the control hinge 

co Local frequency parameter [---- ])c/V] 

Definitions used in the two-dimensional analysis for W~(O) • 

Lift = - - Z e  ~p~=½PVc F e  ~p~sin0d0 
0 

Pitching moment = M e  ~p~=}pVc ~ / ' e  ~p~cos0sin0d0 
0 

Hinge moment 

NOTATION 

Aspect ratio E= 2s/c] 

Chord of rectangular plan-form 

Two-dimensional oscillatory lift function (Ref. 9) 

Control chord/chord c, [=  ½(1 + cos ~o)l 

Partial-span downwash factors (Section 5) 

Frequency of oscillation of control-surface 

Semi-span of plan-form 

Velocity of undisturbed flow 

Downward velocity at the plan-form 

Continuous equivalent downwashes (Section 3) 

Rectangular co-ordinates: x in the stream direction with 
x = 0 at leading edge ; y in the spanwise direction, positive 
to starboard ; z positive downwards 

Value of x at the control hinge 

Functions of ~o (Appendix I) 

Value of y at inboard edge of partial-span control 

Defined by WE(O) = ~IE + io~E, for co --+ 0 (Section 4) 

Defined by W*~(O) ='~*~E + io~c,~E, for co --+ 0 (Section 4) 

Lift distribution/o V 

Spanwise parameter [ =  y/s] 

Value of ~ at inboard edge of partial-span control 

Local chordwise parameter defined as x = ½c(1 -- cos 0), 
(0 ~< 0 ~< ~) 

Frequency parameter of plan-form [=  pc/V] 

Angular displacement of control in a plane y = const 

Spanwise parameter [ =  cos -1 ~] 

H e ipt z - -  

,v V, 

11 

(about mid-chord) 

r e~p ~ (cos ~o -- cos 0) sirl 0 dO 



N OT A T I O N~con t inued  

Definitions used in the spanwise analysis for F(nl) " 

Load distr ibut ion = 2p V~s7 

l Lift  integral  = I0 = ~ d~ 
0 

integral  = I1 = f l  o ~  d,/ F i r s t -moment  

Second-moment  integral  = Is = ~,/2 d~ 
0 

i "1 Part ia l -span integral  = I~ = ~, d~ 

F*(~) replaces F(~I) when I~ is used instead of I2. 

Definition of derivatives for rectangular plan-form with symmetrical constant-chord outboard controls • 

Z 
p V2S 

M 
p V2Sc 

H 
pV"Sjcj (h~ + i~h~)~ 

S Area of plan-form [ =  2sc] 

Cf Chord of control [ =  Ec] 

S f  

- -  Z e ip* 

M e ip* 

H e ip* 

Area of one control [ =  ci(1 ~ ~)s]  

Sf Lift  = p VI '  e ~p~ dx dy 
- - S  0 

Pitching moment  about  leading edge 

--  p V_r e ~p' x dx dy 
- -S  0 

Hinge moment  on one control 

- -  pV1 ~ e ~pt (x --  xh) dx dy 
Ya xh 
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A P P E N D I X  I 

Trigonometrical Relations for X,(~) 

T h e  f u n c t i o n s  X , ,  n = 1, 2 . . .  5 ; 7, 8 . . .  12, w h i c h  a r e  u s e d  in  S e c t i o n s  3 a n d  4, a r e  d e f i n e d  
i n  R e f .  9 a n d  c a n  b e  e x p r e s s e d  as  f o l l o w s  i n  t e r m s  o f  t h e  c o n t r o l  p a r a m e t e r  ~ : 

24:~X1 

3 8 4 = X ~  

1 2 8 ~ X ~  

4 a X ~  

4 8 a X ~  

4 ~ X 7  

4 a X s  

4 ~ X .  

~'~Xlo 

4 = X ~  

4 = X ~  

= 3 ( a  - -  ~o + s in  ~o cos  ~,) co s  ~o + 2 s in  3 ~o 

= 3 ( a  - -  ~p + s in  ~o cos  ~) + 2 s in  ~ ~o cos  ~o 

= 9(=  - -  ~, + s in  ~o cos  ~o) 2 - -  4 s in  2 ~012(= - -  ~o) 2 + (~ - -  ~o) s in  ~ cos  ~o - -  s in  2 ~o 1 

= ~ - -  ~ + s i n  ~ cos  vJ 

= 3(=  - -  ~v + s in  ~o cos  ~v) + 4 s i n  3 ~o 

= (= - -  ~o + s i n  ~o cos  ~o)X~ 

= s in  ~o(1 - -  cos  ~o) 

= s i n  ~0(1 , - -  co s  ~o)(= - -  ~ - -  s i n  ~o) 

= ~ - -  ~ + s i n ~ o  

= (~ - -  ~ + s i n  ~o)(1 + 2 cos  ~,) + s in  ~o(1 - -  cos  ~o) 

---- (= - -  ~, + s i n  ~ ) ( 2  cos  ~ - -  1) + 3 s in  ~(1  - -  co s  ~o) 
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APPENDIX II 

L i f t  D i s t r i b u t i o n  correspond ing  to ~ 

The discontinuous boundary  condit ion ~ of equat ion (13) may  be satisfied in two-dimensional  
s t e a d y  flow by. a lift dis tr ibut ion p V/ '  wi th 

/ '  = V I2C0 cot ½0 q- C1(-- 2 sin 0 + cot ½0) --  

Since the downwash corresponding to (35) is 

W = V  C o + C l ( ½ + c o s 0 ) +  z C. cosn0 , 
;*t, = 2  

Z 2C,~ sin nO . . . . .  (35) 
~ ~ 2  

. . . . . . . . . .  (36) 

it follows tha t  

, W / V  = o,~ 

when 

f 
~ 

~C,~ = 2 cos nO c~ dO , 
0 

n > ~  l 

. . . . . . . . . .  (37) 

Then, for ~2 given by  equat ion (13); 

4~Co = (~ -- ~)(1 + 2  cos ~) + sin ~(2 + cos ~)~ 

2~C1 = --  ~ + W -- sin ~ cos ~ / . . . . . . . . .  (38) 

_ s i n ( n - -  1 ) ~ o _ s i n ( n +  1)~o, n >~2 
2~C. 

- -  n ( n  - -  1) n ( n  q -  1) 

Therefore the required lift dis tr ibut ion is given by  (35) and (38) and this may  be expressed as 

= ~ I ~ ( ~  - ~ / c o ,  ~ + ~ ~ ~o~ 10 + (~ - ~/ F s in0  

--  (cos 0 --  cos V) In \sin ½10 --  . . . . . . . . .  
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A P P E N D I X  I I I  

A l t e r n a t i v e  L i f t  D i s t r i b u t i o n  f o r  L o w - F r e q u e n c y  M e t h o d  " 

As ind ica ted  in Sect ion 4, it  is appropr i a t e  t h a t  t he  chordwise  lift d i s t r ibut ions  F,~ should  be 
i n d e p e n d e n t  of f requency.  Accordingly ,  t he  lift d i s t r ibu t ion  over the  p lan - fo rm is r ep resen ted  by  

I ~ = V Z Y, F.C,, , , ,A.,  

where  /~0 = 2 cot ½0 

/~1 = --  2 sin 0 + cot ½0 . . . . . . . . . . . . . .  (40) 

p . = - - 2 s i n n 0 ,  n ~>2 

and  cA.~ = s~ "~-1 @(1 --  ~ )  

The  cor responding  doub le t  d i s t r ibu t ion  over  the  wing and  wake  is 

K =  V E X  K . C , . . A , . ,  . . . . . . . .  
r~ m 

. . . . . . . .  ( 4a )  

a nd  it  follows f rom Ref. 2 t h a t  for low frequency,  ~o ~ 0, the  chordwise d i s t r ibu t ion  K .  can be 
expressed as 

K .  = K "  

where  K :  ---- K.(0) = c[P,~(O) + icoQ,,(o) + 0(co~)] 

= Ko( ) 

K" = 0 

= P.(~)E--  i~o(x - -  x,)] + 0(o~ ~) 

on the  wing, 0 ~< 0 ~< ~ ,  

over the  wake,  x ~> xt 

on t h e  wing, 0 ~< 0 ~< ~ ,  

over  the  wake,  x >~ xt 

(42) 

The  downwash  W induced  at  any  po in t  on the  p lan- form by  the  d i s t r ibu t ion  K is t hen  ob t a ined  
for low f requency  as 

W ---- V Z  X (W',,, + W,';,,)C . . . .  . . . . . . . . .  , . . . .  (43) 

where  W,'~,,~ and  W',',,,~ are the  downwashes  cor responding  to t he  d is t r ibut ions  K, ' ,A, ,  and  K,"~A,~ 
respect ively,  wi th  only  f irst-order t e rms  in f requency  reta ined.  

For  the  ca lcula t ion  of W,',,, b y  the  vor tex- la t t i ce  m e t h o d ,  each chordwise  d i s t r ibu t ion  K,'~ is 
replaced b y  N discrete vor t ices  of s t r eng th  cL, ' , (k) ,  k = 1, 2 . . . N ,  which  are chosen on the  
usua l  two-d imens iona l  basis to  give t he  exac t  downwash  W'~ at selected po in t s  on the  chord.  
Since K,', is cons t an t  in the  wake,  W~' is g iven by  

1 .fc 1 OK" d x  
W ' o ( x l )  - o X -  X l  a x  ' 

and  this  can be expressed  as 

' 0 1 .I ~ I t .  - -  i~P,~  + 0 ( ~ ) ]  
W,,(1) = ~ _ 0  (cos 0 --  cos 01) sin 0 dO , 

where  Po = 0 + sin 0 

• P1 = ½(sin 0 -4- ½ sin 20) 

sin (n + 1) 0 sin (n --  1) 0 
2(n + 1) 2(n --  1) 

- - ,  n > ~ 2 , .  

16 
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Therefore,  to first order in f requency 

W~ = 1 + i ~ [  l c o s 0 1 + { l n ( 2 + 2 c o s 0 , ) ]  

W ;  = 1 ._]_ COS 0 ,  -~- i O ) [  1 COS 01  ~ -  1 COS 2 0 1 ]  

• . F c o s ( n +  1)0, cos(n- 0q 
W:', cos nO,+~o~ L ~ - ~ 1 )  - -  4 ( n - -  _, . '  

N 

Fur thermore ,  the  vortices are chosen so t ha t  E 
order  in f requency ~ = 1 

Kg = c~E1 - ~ic5] 

1 • ) o v e r  

K~' 0 ,  n>~ 3 )  

i} 
n > ~ 2  

(4s) 

cL,',(k) is equal  to K,', over the  wake ; to first 

the  wake . . . . . . . . . . . . .  (46) 

Values of L'(k) /z ,  k = 1, 2 . . . N  = 6, are given below for n = 0 and  n = 1, together  wi th  the  
values for N = 2 which are required for the reduced lat t ice • 

Z0(k)/  

0 " 4 5 1 1 7 - - i m  0 " 0 5 7 1 4  
0 " 2 0 5 0 8 - - i ~  0 " 1 0 1 2 4  
0 " 1 3 6 7 2 - - i m  0 " 1 2 6 8 3  
0 " 0 9 7 6 5 - - i m  0 " 1 4 4 7 7  
0 " 0 6 8 3 6 - - i m  0 " 1 5 7 4 7  
0 " 0 4 1 0 2 - - i ~  0 " 1 6 2 5 5  

0 " 7 5 0 0 0 - - i m  0 " 2 8 8 3 6  
0 " 2 5 0 0 0 - - i m  0 " 4 6 1 6 4  

1 
2 

z;(k)/,, 

t 

O" 17090  - -  i m  0 " 0 2 5 0 7  
0 " 0 1 1 3 9  - -  io) 0 " 0 3 4 1 8  

- -  O" 0 3 5 8 1  - -  io) O" 0 3 0 3 8  
- -  O" 0 5 5 3 4  - -  io) O" 0 2 1 7 0  
- - 0 " 0 5 6 9 6  - -  i~o 0 " 0 1 1 3 9  
- - 0 " 0 3 4 1 8  - -  io) 0 " 0 0 2 2 8  

O" 12500  - -  io) 0 " 0 9 3 7 5  
- - 0 "  12500  - -  i~o 0 " 0 3 1 2 5  

P o s i t i o n  
x/c 

1. 
12 . 
3 

12 
5 

12 
7 

I N  
9 

12 
11 
1B 

The calculat ion of Wo 'L, is fully t rea ted  in Ref. 2: f rom the  definition of K',' given by  (42) and  
(44), it  follows tha t  to first order  in f requency the  downwash  W ~  is zero for n ~> 1. 
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T A B L E  1 

Values of the Equivalent Downwash We(O) = ao + al(} + cos 0) 

E 

0" 08 0.2 

Correct lift and moment Correct lift and hinge moment 

cos 0 

w~(o) 

0 - 0 3 7 6 0 + i 0 . 0 0 6 5 7  
0 . 4 6 1 6 4 + i 0 . 0 0 2 9 8  

w'~( o) 

--0.52547 + i 0 . 0 2 6 1 0  
0.64187 + i 0 . 0 4 0 0 5  

0-08 0-6 0 0 . 0 3 9 5 3 + i 0 . 0 2 0 6 5  --0.54935 + i 0 . 1 0 6 4 9  
--~ 0 . 4 6 6 2 5 + i 0 . 0 0 9 2 9  0.64209 + i  0-15227 3 

0-25 0"2 0 0 " 1 9 5 3 5 + i  0"00750 0-19415 - - i 0 -01332  
0"74714+ i0 -02513  0"74592 + i 0 " 0 3 1 8 3  - - g  

0"25 0"6 0 0"19458+i0"02330  0"18037 - - i0"04098  
2 0"75023+i0"07604  0"73587 + i  0"09659 

0"25 1"2 0.12079 - - i 0 . 0 6 8 6 3  
0.69949 + i 0 . 2 2 2 7 1  

0 - 1 9 4 3 7 + i 0 . 0 5 0 0 3  
0 . 7 6 4 0 2 + i 0 - 1 5 3 5 0  

T A B L E  2 

Equivalent Downwash We(O) - oqs + i~o~2~, for ~o -+ 0 

E 

0" 08 

0-25 

cos 0 

Correct lift and moment 

0"037478 
0"461195 

0-195501 
0-746830 

6¢2~, 

0.001208 
0.025000 

0.020041 
0"131152 

Correct lift and hinge moment 

--0--518430 
0-646498 

0"195501 
0"746830 

~2E 

--0.079018 
0.051742 

--0" 062316 
O" 158604 
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T A B L E  3 

Values of do, d2 and d4 [equations (27) and (30)], and Partial-Span Factors F(~71) 

For  vo r t ex - l a t t i ce  theory ,  

F(Vl = 0 .2)  = 2~[1" 00155d0 - -  0.37572d~ - -  0" 17526d,] 

F(~I  ---- 0 .6)  ---- 2~[1-00359do + 0.58694d2 - -  0.00406d~1 

F(~I  = 0 .8)  = 2~[1.00377do + 1.43118d~ + 0.99073d~] 

3(a)"  Correct Io, I1, I2 

O. 342020 
0.5 
O. 766044 

do 

+0-063216 
0"037243 

+0-011822 

d2 

+0.182726 
+0.124354 
--0.001663 

d4 

--0.141395 
--0.048813 
+0.075510 

v~ F(0.2) F(0.6) F(0.8) 

0.342020 +0.1222 +1.0761 +1-1617 
0 . 5  --0.0054 0.6947 1-0493 

0-766044 --0.0048 +0-0665 +0-5297 

3(b) " Correct Io, I1, Io 

~a 

O. 342020 
0.5 
O. 766044 

do d ,  '2 d~ 

+0"061323 
0"022356 

+0.012870 

+0.210180 
+0.340215 
--0.016873 

--0.181156 
--0.361438 
+0.097539 

~o F(o.2) F(o. 6) F(o. s) 

0.342020 +0.0892 +1-1664 +1.1491 
0.5 --0.2644 1.4049 0-9504 
0.766044 +0.0134 +0.0164 +0.5366 
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T A B L E  4 

Rectangular Wings of Aspect Ratio A with Outboard Flaps (E, %) 
Oscillating at a Frequency Parameter Value v 

A E 

0" 08 

0.25 

0.25 

2 0.25 

0 

0"5 

-+0 
0-2 
0"6 

->0 
0"2 
0"6 

->0 
0 '2  
0"6 

-+0 
0.2 
1.2 

0-677 
0-659 
0.599 

1- 144 
1-114 
1.019 

0.483 
0.471 
0.435 

0.830 
0.823 
0.748 

--0-296 
--0.190 
--0.089 

--0.  259 
-- 0. 097 
+ 0. 060 

--0.086 
--0.018 
+0 .042  

+0 .062  
0.117 

+0 .172  

- -  m 8 

0"389 
0"385 
0"372 

0.567 
0.560 
0.537 

0.249 
0"246 
0'237 

0,456 
0.455 
0.433 

- -  m ~  

--0.0106 
--0.0177 
+0.0065 

+0 .086  
0.099 

+0.137 

+0"047 
0.052 

+0 .067  

+0" 148 
O. 140 

+ 0 .  154 

- -  h ~  

0"385 
0"384 
0"378 

0.363 
0.359 
0"344 

0-251 
0-250 
0-242 

0-304 
0-303 
0.266 

- -  h ~  

0.054 
0"068 
0-074 

O. 172 
0-214 
0-225 

0-149 
0"177 
0"180 

0.180 
0.212 
0.211 

T A B L E  5 

Rectangular Wing A = 4 with Outboard Flaps (E, %) 
Oscillating at Low Frequency v -+ 0 

E 

f - -  

0"08 

0" 08 

0"25 

0"25 

0-25 

0"25 

0.5 

0.342 

0.500 

0.766 

- -  z ~  

0.677 
0.678 

0.288 
0-290 

1. 144 
1- 142 

0-689 
0.687 

0.483 
0.484 

0.170 
0.174 

- -  m ~  

--0-296 
--0-260 

--0.113 
--0-098 

--0'.259 
--0.214 

--0.135 
--0.108 

--0.086 
--0.067 

--0.025 
--0.016 

0.389 
0-391 

0.173 
0.174 

0.567 
0.566 

0.350 
0.347 

0.249 
0.248 

0.090 
0.093 

- 4  

--0.0106 
- -0 .0110  

--0.0008 
+0.0003 

+0 .086  
+0 .086  

+0 .062  
+0 .060  

+0 .047  
+0 .047  

+0 .019  
+0-020 

- -  h ~  

0.385 
0.390 

0.295 
0.315 

O" 363 
0.361 

0.291 
0.292 

0-251 
0-264 

0- 159 
0. 180 

Solution 

0.054 
0.051 

O- 049 
O- 049 

O. 172 
O. 166 

0.162 
0" 157 

O. 149 
O. 152 

O. 104 
0.115 

(1) 
(2) 

(1) 
(2) 

(1) 
(2) 

(1) 
(2) 

(1) 
(2) 

(1) 
(2) 

(1) Vortex-lattice solutions are calculated as discussed in Section 7. 
(2) Multhopp-Garner solution with 15 spanwise and 2 chordwise terms. 

O 



T A B L E  6 -  

Rectangular Wing A = 4 with Outboard Flaps (E, v~) in Steady Flow 

(I) (2) (3) (1) (2) (3) (1) (2) (3) 

O. 08 

0.25 

0.342 
0.500 
0.766 

0 
0.342 
0.500 
0.766 

0.677 
0.410 
0.288 
0.102 

1.144 
0-689 
0.483 
0.170 

0.677 
0.410 
0.287 
0-102 

1.144 
0.689 
0.482 
0.170 

0.678 
0.410 
0.290 
0.106 

1.142 
0.687 
0.484 
0.174 

0.389 
0.242 
9.173 
0.063 

0.567 
0.350 
0.249 
0.090 

.0.389 
0.242 
0.171 
0"063 

0-567 
0-350 
0.247 
0-090 

0.391 
0-242 
0-174 
0 - 0 6 6  

0-566 
0-347 
0-248 
0.093 

0.385 
0-332 
0.295 
0-197 

0.363 
0-291 
0-251 
0-159 

0-385 
.0-337 
0-306 
0-209 

0"363 
0.295 
0.260 
0.168 

0-390 
0-336 
0"315 
0.229 

0"361 
O. 292 
0"264 
O. 180 

(1) Vortex-lattice solution using partial-spa n factors F(@I 
(2) Vortex-lattice solution using partial-span factors F*(Vl). 
(3) Mul~fhopp-Garner solution with 15 spanwise and 2 chordwise terms. 
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l'O 
O0 

I.* Ca) Va/ue~ of lif~ dedv~Uiws ac;ainds v.  

1'2 

. ' 7"- ' -"- -""-- .  1"0 ~ ~ -  -- 

: : ...... . ' ,,, 

O'G 

O'4 

0"2 

0 

L 

J 

i /  

Mebhod 

Vor~ex-J~ice, Table 4 
Mulbhopp- G~rneq y--, o 
L&wren&' ~, 5erbeG R~f. 15 

o 
~ . . . , . = - = - -  

-O'/ 
0 0"J o.2 

FIG. 2a. 

A = '4" A=2 

J 

L... 

J f 

)'3 0"4- 0'5 

 --mlv 
Rectangular  wings A = 2 and A = 4 with full-span flaps, 

E = 0.25. 

(b% V&tues of piBohing-momenb deriwBives ag~;nsB 7;. 

I. m /  
0 

0"1 0"2 0"3 V 0'4 0"5 0"G 

(c) 

0'1:1 

O'~ ?: 

0"i 

V~lu~ of hinge-momenV, deriwBiv~ ag~insV, v. 

O ' G  0 0-1 0"2 0'3 V 0"4 0"S ~G 

FIGS. 2b and 2c. Rectangular  wings A - -  2 and A ---- 4 with full-span 
flaps, E = 0.25.  
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x 

0"5 

0'4 
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0 
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f 
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0 

FIG. 3a. 

E=o.25 

I"1 

E = 0"06 
i 

x 

x 
\ 

\ 
x \ 

0"2 0"4 ~= 0"6 0"8 I'0 

Rec tangula r  wing A = 4 wi th  flaps (E, ~o) 
oscil lat ing at  low frequency v ~ 0. 

o.~(.b) Value5 of pi~hincj-momenb cl~rivaLiw~ ~ElainsL 77~ 

0"2 

o = • X 

-0"2 
0 0"2 0"4 m 0"6 0"5 I'0 "/& 

0'4 ( c )  

0"3 

0"2 

0-I 

Value~ o f  hincj~-momenb deHvakive5 againsF~ ~ 

K 

7 
\ 

D 0"2 0"4 0"6 0"6 i'0 

FIGS. 3b and 3¢. Rectangular  w ing  A ---- 4 w i t h  flaps (E, n=) 
. . . .  osci l lat ing at l ow f requency v -+ 0. 
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