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Summary.—The vortex-lattice method for simple harmonic motion of general frequency (R. & M. 2961) is used to
calculate the derivatives for rectangular wings with oscillating constant-chord flaps. The discontinuous chordwise
boundary condition associated with full-span flaps, is replaced by a continuous equivalent downwash which is determined
on the basis of two-dimensional oscillatory theory. In the particular case when the frequency tends to zero, the
equivalent downwash is obtained on a distinct quasi-steady basis ; stability derivatives are then evaluated by using
an alternative form of the vortex-lattice method for low frequency (R. & M. 2922). To allow for the spanwise dis-
continuity due to outboard flaps, a further adjustment is made to the boundary condition by the use of partial-span
downwash factors.

Comparison of the stability derivatives with values obtained by the Multhopp-Garner method, indicates that the
present treatment for low frequency is satisfactory for full-span and outboard flaps on plan-forms of aspect ratio 2
and 4. For general frequencies, results for aspect ratio 2 with full-span flaps compare well with the values forlift and
pitching-moment derivatives obtained by Lawrence and Gerber.

1. Introduction.—The development of vortex-lattice theory for wings .in simple harmonic
motion has provided simple routine methods which can be applied to general plan-forms in
incompressible flow" . In this report a vortex-lattice treatment for a wing with oscillating flaps
Is investigated, and the method is used to calculate derivatives for a rectangular plan-form with
symmetrical full-span and outboard flaps. Apart from the limitations common to any method
which is based on linearised theory, strict application of lifting-surface methods to the problem
of deflected control surfaces is precluded by the discontinuities occurring in the boundary
“condition.

In the case of steady flow, various devices have been sought to overcome this difficulty. One
procedure is to replace the discontinuous boundary condition by theoretically determined
equivalent slopes. Falkner’ and Multhopp* treat chordwise discontinuity at the hinge on a
two-dimensional basis : Multhopp* then fairs the spanwise discontinuity whereas Falkner® and
DeYoung® represent it as an equivalent continuous function with the aid of special spanwise
loadings. Another method, developed by Brebner and Lemaire’, is based on an analysis of
electrolytic tank tests on swept-wings with flaps : this analysis provides three-dimensional data
for the equivalent incidence and the spanwise loading. '

* Published with the permission of the Director, National Physical Laboratory.



Since the vortex-lattice method economizes in collocation points, it can only be expected to
give values of the overall forces on a wing with flaps. It would appear that the treatment should
be kept relatively simple. The lift distribution is therefore represented by the usual Fourier
series which is independent of the control-surface geometry, and the discontinuous boundary
condition is replaced by a continuous one. Consideration is first given to a wing with full-span
oscillating control (Section 3), and an adjustment is then made to allow for the spanwise
. discontinuity in the case of partial-span flaps. - The discontinuities are thus treated independently
and relate to the chordwise and spanwise disposition of the collocation points.

For a full-span control oscillating at general frequencies, the chordwise discontinuity in the
boundary condition is replaced by a continuous function which is determined, on the basis of
Jones’s®® two-dimensional oscillatory theory, to give the same overall forces as an aerofoil with
oscillating control (Section 3). The loading used in this analysis involves the oscillatory lift
function C(w) ; it would therefore be more appropriate to use the corresponding form of the
vortex-lattice method due to Jones' rather than the method of Ref. 1. However, the latter is
recommended since it leads to a more general routine with simpler computation. This should be
satisfactory for non-zero up to moderately large frequencies, but it is thought that the method
of Ref. 10 might give better results for the higher values of the frequency parameter, say » < 1.

When the frequency tends to zero, it is not possible to adapt the general treatment of the
chordwise discontinuity because of the limiting behaviour of the function C(w). Moreover, the
use of two-dimensional oscillatory theory in conjunction with any chordwise loading (e.g., Ref. 2),
is found to be unsuitable. A distinct treatment using a quasi-steady approach is therefore
suggested for the determination of the equivalent slopes.

For a rectangular wing with a partial-span constant-chord control surface, the spanwise
. discontinuity is treated on a steady theoretical basis. Downwash factors independent of

frequency, are evaluated from integrated spanwise loadings which can conveniently be determined
- from low-aspect-ratio theory®. It isimportant to note that identical factors would be obtained
by the use of classical lifting-line theory as suggested by Garner™.

There is very little information relating to control-surface oscillations at general frequencies.
Reissner and Stevens' calculated values of the derivatives for elliptic plan-forms only, although
their method seems applicable to rectangular wings of moderate aspect ratio. Derivatives for
low-aspect-ratio rectangular plan-forms with full-span flaps have been calculated by Lawrence
and Gerber®. For low-frequency oscillations, the Multhopp-Garner method™ has been applied
to the control problem by using chordwise and spanwise equivalent slopes based on Refs. 4 and 6
respectively ; this work has not been published but values obtained by Garner for rectangular
plan-forms are quoted for comparison.. These results for low frequency and those of Ref. 13 for
general frequency support the present vortex-lattice treatment.

2. General Theory.—The lift distribution pV I e** over the plan-form is represented by the
usual finite series (Ref. 1)

r=vssrc,A,, .. .. . . .. .. )

n m

in which the distributions I', are functions of the chordwise parameter 8 and the frequency
parameter o, and the spanwise distributions 4,, are defined by

cA, = st /(1 — 5%, m=1,2....
The downwash W e’ at any point on the plan-form is then
W=VZZW,C., .. .. . .. . e (2)

n m

where the downwash VW, e’ corresponds to a lift distribution pV2I',4,, ¢"* and is independent
of the control-surface geometry. ‘
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For general frequencies, the vortex-lattice method of Ref. 1 can be used to calculate values of
W, In the present application to rectangular wings, the distribution I" is limited to two chord-
wise distributions

I'y =2 cot 10 ] ‘)
I'' = (— 2sin 6 + cot 38) + to(} sin 6 + 1 sin 26)
and to three symmetrical spanwise distributions 4,, 4, and 4,. The arbitrary coefficients C,,,

in-equation (1) are then to be determined from equation (2) by collocation at six points which
are placed on the 1/2 and 5/6 chord at spanwise positions #, = 0-2, 0-6 and 0-8.

For a wing with partial-span controls describing symmetrical oscillations, the normal downward

dlsplacement of any point on the lifting surface is
z=0 ' off the controls ]
2= (x — x,)& e’ on the controls

(4)

where ¥ = %, is the position of the control hinge-line and & e'#* is the angular displacement of
- the control. The tangentlal flow condition is

i[)t___ -~
We —az+»Vax’

so that by equation (4), the downwash distribution in (2) is required to satisfy the boundary
condition , '
W=0 : off the control

W = ¢V + (% — x3)]
= V[l 4 Yiw(cos y — cos §)]

In order to obtain an adequate solution for a partial-span control surface by collocation, it is
necessary to replace the discontinuous boundary condition (5) by a continuous one. The dis-
continuities in the chordwise and spanwise directions will be treated independently.

(5)

on the control

3. Full-span Control Oscillating at General Freguency.—The boundary condition (5) for a full-
span control is discontinuous only in the chordwise direction. Furthermore, in the case of a -
constant-chord wing and control the condition is identical for all spanwise positions ; the same
is true for the continuous boundary condition which is to replace (5). As already mentioned in
Section 2, the vortex-lattice method is to be used with two chordwise terms in the lift distribution
and therefore two chordwise positions for the collocation points. In such a solution the continuous
boundary condition along each chord may be written as

| W= VW, N
where We = [a, + ay(} -+ cos 0)], 0<6<=m. .

The problem of replacing discontinuous chordwise boundary conditions due to deflected controls
by. continuous functions, has been considered for steady flow by Falkner® and Multhopp*. In
both cases, equivalent slopes were determined on a two-dimensional basis to give the same overall
characterlstlcs such as lift and pitching moment, as an aerofoil with deflected control. By an
analogous treatment based on two-dimensional osc111atory theory (Ref. 8), a continuous equivalent
downwash W, may be determined for general frequencies.

It follows from the two-dimensional theory for an oscillating aerofoil, that the lift distribution
pV I e corresponding to the continuous downwash WE of equation (6) is

I' = V[ayTy + a r, .. . .. .. .. .. .. (7)
where Iy = 2C(w) cot 30 + 4o sin 6 ‘ '
' Iy = (— 2sin 0 + cot 46) + sw (4 sin 6 + 1 sin 26) .
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Then, the lift — Z; e*?*, pitching-moment about half-chord M e?* and hinge-moment H e*,
which correspond to the continuous downwash W, are given by

Zs

by [Clo) + Ywla, + [Ywla,, .. . .. . .. .. (8a)

ME - LrC 1(1 1.‘ T 8b
—W_—_I[ (0)ay + 3(1 + Fo)a,], .. .. .. ‘e . ( )
_ n—/ﬁ’},—z = [C(0) X1 + toXi]ay -+ (X — 4X4) + d0(Xy — 4X)]a, .. (80)

where the functions X;, X, ... X,; are defined in Appendix I and depend only on the control

parameter y ; -values of these functions and of the oscillatory lift function C(») are tabulated
in Ref. 9.

The aerodynamic forces on a two-dimensional aerofoil with a flap describing oscillations of
unit amplitude are determined in Ref. 8, but for present purposes it is more convenient to use
the following formulae from Ref. 9:

YA . .
— ,—npcVz - C(a))[Xlo —|— inn] —I— MOX4 —_ werl , .. . .. e (90!)
TS 7 S -L}:C(w)l:Xlﬂ + ’“(’Xu] + X+ 10X, — w?X, , - - .. (95)
TpC V
- W = C(W)Xm X + ’LCUXn] + Xy + 10X, — w?X;, .. .. .. (90)
Whefe the functions X, Xz, ... X, are defined in Appendix I.

' The unknown coefficients a, and a, of the continuous equivalent downwash W in (6), can be
determined for particular values of the frequency parameter o and the flap ratio £ = (1 + cos »)
by equating any two of the equations (8) to the corresponding two equations (9). Tt is suggested
that the equivalent downwash W obtained by satisfying the lift and pitching-moment equations -
of (8) and (9), should be used in the finite-wing solution in order to evaluate the derivatives for
lift and pitching-moment, while the equivalent downwash W = W’ obtained from the lift and
hinge-moment equations of (8) and (9) should be used to evaluate the hinge-moment derivatives.
Some sets of values of W and W7 are given in Table 1.

4. Full-span Control Oscillating at Low Frequency.—In the case of low-frequency oscillations,
it is not possible to use equations (8) and (9) of the previous Section because of the  log » term
inherent in the two-dimensional oscillatory lift function C(w). However, since only first-order

terms in frequency are retained in the finite-wing solution for » — 0, the continuous boundary
condition (6) may be expressed as

W: VEWE: VE[“]E‘[‘Z‘CUOCgE], B o .. .. . .. (10)
where ' a g = ay + ai(3 + cos 0)
war = ay + a(+ + cos 6)

Now, the continuous functions «,, and «,; can be determined on a quasi-steady basis by treating

the real and imaginary parts of the discontinuous boundary condition (5) as independent condi-
tions. Thus equation (5) is written as

} 0<o<m.

W = Vo, + twa,], .. .. .. .. .. o (1)
where oy = 0 0<o<<wy)
' (12)
=1 p <6<
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and &y

(13)

Il
<o
s O
A
@ D
NN
QA €

= }(cos y — cos 6)

The continuous equivalent downwashes «,; and a,; are determined independently to give the
same overall characteristics as the discontinuous boundary conditions «, and «, in two-dimensional
steady flow.

The quantities Z;, M 2 H; correspondmg to the continuous downwash «,; in (10) are obtalned
by substltutmg a; and a; for a, and @, in equations (8) and putting w = 0. Hence

Zy = —mpcV¥aj], .. .. . . .. .. .. .. (14a)
My = tnpc®V¥a, + ta/], .. . .. .. .. .. .. (14%)
Hy = — np®V? [ Xppa; + 3( X — 4X))a]] . .. .. . .. (14¢)

Equation (12) expresses the boundary condition «, for an aerofoil with deflected flap in steady
flow. The corresponding aerodynamic forces, obtained by substituting « = 0 in equations (9),
are :

Z = —mpcV¥Xy], .. .. .. .. .. .. .. .. (15a)
M = InpPViX,, — 4X4], .. .. . .. .. . .. (150)
H = — apc VX X1 + X - .. . . .. .. .. (15¢)

Then the equivalent downwash «,; obtained by satisfying the lift and p1tch1ng -moment equations
of (14) and (15) is

mlE:Xlo—SXg(%—I—COSG), .. .. .. .. .. .. (16)
while satisfying the lift and hinge-moment equations of (14) and (15) gives »
2X
=X t—iﬁp« o). .. .. .. .. ..oz
%iE 10+ X, — 4X, (2 -+ cos ) ( )

The values of «;; and «j; evaluated from (16) and (17) for any particular value of the control
ratio E, will be the same as the values of the equivalent slopes which are given in Ref. 3 for two
chordw1se terms.

The continuous downwash «,; defined in (10) is of the same form as «;; ; therefore the corre-
sponding quantities Zz, M and -H; are given by equations (14) with a; = a¢ and a; = af.
The lift distribution p VI Wthh corresponds to the discontinuous boundary condition «, of
equation (13) is determined in Appendix II by two-dimensional steady theory ; then 1ntegrat1on of
equatlon (39) gives the aerodynamic forces

Z = — apcViXy], O 6 1=
M = fnpcV? Xy — §X4 — 2X5], .. .. .. .. .. .. (18b)
H = —apc®V*¥X, X:n + X3]. .. . . e e e (189
It follows from equations (14) and (18) that the equivalent downwash
e = Xu — (X, +4X) (G +cos0).. .. ... .. . (19)
gives the same 11ft and pitching moment as «,, whereas the equivalent downwash
aM_Xﬁ+(m%iX)&+aB® )

gives the same lift and hinge moment as a,.

(79481) Ax



The equivalent downwashes for w — 0 as defined by equations (16), (17), (19) and (20) can be
evaluated by using the values of the functions X;, X, . . . X,, which are tabulated in Ref. 9.
However, when the flap ratio £ = §(1 + cos y) is small, there may not be enough significant
figures and it is then better to work with the formulae given in Appendix I. Some sets of a,y,
ayp and ajg, sz are given in Table 2. Their application is discussed in detail in Section 7.

For low frequency, the vortex-lattice method of Ref. 2 may be applied but the choice of
chordwise distributions I'y and I, as in equation (3), is not consistent with the quasi-steady basis
on which W of equation (10) has been determined. Therefore the alternative method described
in Appendix III is used, so that all the chordwise lift distributions I, are independent of frequency.
This alternate distribution facilitates the application of the method to hinge-moment derivatives
(Section 7). Thus, in the present application to rectangular wings, the chordwise distributions
Iy =2cot 36 and I'; = (— 2sin 6 + cot 40) are used in the solutions for » — 0 ; the spanwise
loading and the position of the collocation points are the same as those given in Section 2 for the
general frequency solutions. '

5. Partial-span Controls.—The spanwise discontinuity in the boundary condition for a partial-
span control is treated by steady-flow theory so as to give a continuous spanwise function which
produces the same overall forces such as lift and rolling moment. The chordwise discontinuity
has already been dealt with, by either Sections 3 or 4, so that in the spanwise direction

W =20 0<1_77VI<77¢¢

21
=ViWy  n.<|n|<1 21)
Provided that both the plan-form and the control are of constant chord, the equivalent downwash

W g(0) is independent of the spanwise parameter 4. Then the continuous boundary condition
will be of the form

W VEWLOFG) .. .. .. . L (29

where the downwash factor F() will now be determined for symmetrically oscillating partial-span
controls. '

Since only three collocation positions #, are to be used in the present finite-wing solutions, the
factor F is taken as

Flp) = (b + b + bar®) . .. .. .. .. .. .. .. (@)

The arbitrary coefficients b, by, b, are to be chosen so that three selected integrals are numerically
exact. Garner' has shown that the application of either classical lifting-line theory or DeYoung’s

low-aspect-ratio theory® will lead to identical downwash factors. For convenience the latter
method will be used in the following analysis.

The spanwise load distribution due to the downwash F(y) of equation (23) can be expressed
as 2pV3y(n), where

7’(77) = Zn[do -+ d2772 + dﬂ?ﬂ '\/(1 — 772) . .. .. .. .. .. (24)
By Ref. 6, the downwash is . |
w Lt dy(n') ( 1 ) :
= = F(n) == . .. .. . .. ..
V (77) %J‘—l dnl n — ?71 (/A (25)

so that the downwash corresponding to (24) is .
F(n) = a[2d, 4 dy(6n* — 1) + d,(109* — 34* — 1)]. .. .. .. (26)
_ 6 ‘



The lift, first-moment, second-moment and partial-span integrals corresponding to (24) are
respectively

_ l:d—}— dy - = dgl, .. (2%
_ [d+ d+35 } L (2
_ [d+ d+16 } e (27
and .
VL,:LﬂydnA=2n[d0]0—[—d2]2—[—d4]4], R O 0.2
where

Jo= [ wvia—aa

It remains to evaluate the integrals, as defined in (27), which correspond to the exact solution
for the discontinuous boundary condition

W:O: \l"?l\ u} i (28)
=V, 7. < || < 1

By Ref. 6, the load distribution corresponding to (28) is given by
y =fb,4d) +flw — 4,4, , P %)

where

n = cos ¢ and 5, = cos ¢, .

Substitution of y from (29) into the integrals (27) gives

oy = [hs — Si by COSAal, «v oo e e e ... (30
8l, — [275“ _ sind, cos¢, — Lcosd,In (i‘i“%ﬂ , .. (30D)
I, = [¢, — tsiné, cos (1 + 2cos?4,)], .. .. .. .. (80c)
= [$.2 — 2¢,5in ¢, cos ¢, — 2 cos®, In cos ¢,] . .. .. .. (304)

The downwash factor F(n) as defined by (26) can therefore be determined for any value of
7., by equating three of the integrals which are given in equations (27) to the corresponding
integrals of equation (30). For the particular values 5, = 0-342020, 0-5 and 0-766044, the
arbitrary coefficients d,, d,, 4, in Table 3 (a) and d;, 4;, d; in Table 3(b) are obtained by
satisfying respectively

(@) the equations for I, I,, I,
(b) the equations for 1y, I, I,.

The use of the three equations (8) leads to a singular matrix and no solution for the particular
value 5, == 0-535, and gives ill-conditioned solutions in the neighbourhood of this value ; the
solution (b) for 5, = 0-5 tends to be ill-conditioned. It seems advisable to avoid this limitation

7
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by using the three equations (#) which are independent of 5,. The solution 6f equations (a) can
be expressed generally in matrix notation as

s 48 — 35  3.21 2,
hy= 5376 420 —a64allser), .. . . . @
i, 448 —56.0 67-2)| s,

where { } denotes a column matrix and I, I; and I, are obtained from equations (30).

The downwash factors are required in the finite-wing solution at the collocation positions
7, =10-2, 0-6 and 0-8. The values F(y,) and F*(y,) corresponding to solutions (@) and (b) are
evaluated not from equation (26), but from the formulae given in Table 3 which are obtained
from a 21 X 1 vortex-lattice integration of equation (25). Thus the downwash factors in Tables
3(a) and 3(b) incorporate a correction which is consistent with the use of vortex-lattice theory

for the finite-wing solution. The values F(x,) and F'(y,) will be referred to as partial-span
factors. . ‘

6. Results.—The treatment described in Sections 2 to 5 is applied to rectangular plan-forms
of aspect ratio 4 = 4 and 4 = 2 with oscillating full-span and outboard flaps. Values of the
derivatives for lift, pitching moment about the leading edge and hinge-moment are given in
Tables 4 and 5. These derivatives are calculated by the vortex-lattice method with a 21 X 6
lattice and six collocation points as defined in Section 2. The solutions for particular values
of the frequency parameter » are obtained by using the equivalent downwashes W(6,) and
W(61) given in Table 1 for flap-chord ratios £ = 0-08 and 0-25. To obtain solutions for low
frequency » — 0, the quantities «,;, o,z and «;, «iz from Table 2 are used as discussed in

Section 7. For all frequencies, partial-span flaps are represented by partial-span factors F(y,)
which are tabulated in Table 3(a).

The rectangular wing 4 = 4 is considered with full-span flaps (E = 0-08 and 0-25) oscillating
at low frequency and » = 0-2 and 0-6. Derivatives are also obtained for this wing with out-
board flaps (£ = 0-25, 5, = 0-5) oscillating at the same frequencies. These results are given
in Table 4 together with derivatives for the rectangular wing 4 = 2 with full-span flaps (E = 0-25)
oscillating at low frequency and » = 0-2 and 1-2. Derivatives for 4 = 4 at low frequency are
also tabulated for different values of 5, in Table 5. ‘

The lift, pitching moment and hinge-moment derivatives for the flap-chord ratio E = 0-25
are plotted against » in Figs. 1 and 2. No general conclusions can be drawn from so few results.
Nevertheless, the effect of frequency is not large and appears to diminish with decreasing flap-span
(Fig. 1) and with decreasing aspect ratio (Fig. 2). For low frequency » — 0, the derivatives for

the wing 4 = 4 with outboard flaps are plotted against #, in Fig. 3 ; similar curves are obtained
for the flap-cliord ratios £ = 0-08 and £ = 0-25.

Molyneux and Ruddlesden® have measured the forces on a rectangular wing 4 = 4-05 with
full-span control £ = 0-2; over the frequency-parameter range 0-2 < » < 1-3, Fig. 16 of
Ref. 15 gives the hinge-moment derivative values — s, = 0-22t and — h; = 0-12. These are
respectively 40 per cent and 12 per cent below the values obtained by interpolation from the

vortex-lattice results for » — 0 in Table 5. Such differences may be expected due to wing thick-
ness and effects of Reynolds number. ) '

7. Accuracy and Application of the Method.—As an initial investigation it seemed advisable to
compare the result of using partial-span factors F(y,) based on lLft, first and second moment
instead of the factors F’(y;) based on lift, first moment and hinge-moment. Of the derivatives
thus evaluated for the plan-form A = 4 with outboard flaps in steady flow, the lift and pitching-
moment values are in good agreement, but the hinge-moment values show progressively larger

t This value does not include the aerodynamic inertia term.
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differences as 7, increases. These two sets of results are given in Table 6 together with values
calculated by an extension of the Multhopp-Garner theory™ with 15 spanwise and 2 chordwise
terms. Comparison with the latter results indicates that the solutions using the factors F (1)
are more reliable. Thus the discrepancies in %, in Fig. 3, for outboard flaps of 5, = 0-766, are
halved if F"(5,) is used in place of F'(5),. This is to be expected, since substitution of the values
of the coefficients 4,, d,, 4, into the hinge-moment equation (274), does not give a good approxima-
tion to the exact hinge-moment equation (30d) for the larger values of #,. For most practical
values of n,, however, the partial-span factors F(y,) are preferable since the factors F *(n,) cannot
be obtained in the neighbourhood of 5, = 0-535 (Section 5). In view of this initial investigation
the factors F(y,) were used for all the solutions given in Tables 4 and 5.

The accuracy of the derivatives for non-zero values of the frequency parameter » cannot be
fully assessed. The only results available for comparison are the lift and pitching-moment
derivatives obtained by Lawrence and Gerber® for the wing 4 = 2 with full-span flaps. However,
Fig. 2 shows good agreement between these values and the present vortex-lattice results.

+ The application of the method for low frequency » — 0 is now considered in some detail.
Initially, the lift and pitching-moment derivatives were obtained by using the equivalent slopes
ayp and «,; based on lift and moment, whilst the hinge-moment derivatives were calculated by
using throughout the slopes «;, and «;; based on lift and hinge-moment. As a check, the latter
solution was also used to calculate the lift derivatives for the wing 4 = 4 with full-span flaps.
Although satisfactory values were obtained for the chord ratio E = 0- 25, in the case of E — 0-08
the two values for — z differed by a factor of 28. Furthermore, for E = 0-08 the hinge-moment
derivative — h; = 0-016 was appreciably different from the value — %; = 0-051, obtained by
means of Ref. 14. However, the hinge-moment derivative — %, = 0-385 compared satisfactorily
with the Multhopp-Garner value — 4, = 0-390. Solutions for the wing 4 — 4 with half-span
outboard flaps showed similar differences for £ = 0-08, but were again satisfactory for E = 0-25.

It is useful here to state the form which the » — 0 solution takes in the case of a constant-chord
wing and control. The lift distribution is given by equation (1) with distributions I", as defined
in Appendix III, and the arbitrary coefficients C,,, are determined by solving the matrix equation

[A + 7:7’B:| {Cnm} = {(“113 + i”“zE)F(ﬁl)} y

where [A 4 4vB] is the matrix of downwash values W,,, at the collocation points, and the right-
hand column matrix corresponds to the general case of partial-span flaps. Then, a solution to
first order in frequency is given by .

{Cmn} = A*I{MIEF(nl) + i”(“zEF(ﬁl) - 0‘3)} s . .. .. . (32)
where 4~ is the inverse matrix of 4, and .
{og} = BA Yoy, F(ny)} . .. .. .. .. .. . o (33)

The use of equivalent chordwise downwashes «,, and «, 5 as defined by equations (16) and (19),

in the solution for the lift and pitching-moment derivatives is supported by the Multhopp-Garner
results in Table 5.

The solutions for the hinge-moment derivatives which are discussed above, were obtained by using
the values«;zand «;; from (17) and (20) in equations (32) and (33). Inview of the large discrepancies
in the damping derivatives for E = 0- 08, some modification to the imaginary part of the solution
was then considered. Even though, «, is discontinuous, the column matrix AHa,} represents
a continuous loading ; it can therefore be argued that {«,} in equations (32) and (33) should be
independent of the forces and moments to be evaluated. It is relevant to note that for ‘the
particular value £ == 0-25, of, is numerically equal to «,; and the hinge-moment solutions are
satisfactory. Therefore, in the hinge-moment solutions for 4 = 4 with full-span flaps £ = 0-08,
the equivalent downwash «;, was used in -equation (33) instead of «i,. Thus modified, the
solution both checks the accepted value of — z; and gives — %; = 0-054 which is in satisfactory

9



agreement with the Multhopp-Garner value — %; = 0-051;. Similar improvements are obtained
in the case of half-span flaps. Hence, the solution

{Con} = Ao F () + iv(eapF (1) — )}
{og} = BA Yoy F(n4)}

is adopted for the calculation of all the hinge-moment derivatives for low frequency in Tables
4 and 5. ,

In conclusion, the present application of the vortex-lattice treatment to rectangular wings with
symmetrically oscillating constant-chord flaps appears satisfactory for general frequencies and
gives results for low frequency in reasonable agreement with the Multhopp-Garner values. The.
method can be applied directly to constant-chord swept wings with flaps of constant £. Extension
to the general case of a swept tapered wing with controls of arbitrary shape oscillating at any
frequency, would present considerable difficulty. For low frequency, however, the treatment
can be extended readily to a swept tapered wing with flaps of constant E ; by further modifica-
tions to the partial-span factors, it should be possible to treat the case of E variable along the .
span. It would generally be advisable to use three chordwise and extra spanwise collocation
points, and the equivalent downwashes W ,(6) and the partial-span factors F(»,) may easily be
determined for an arbitrary number of collocation positions by an extension of the procedures
used in Sections 8, 4 and 5. Compressibility effects for oscillations of general frequency cannot
be determined by the vortex-lattice method (Ref. 16), but it would be possible to obtain deriva-
tives for low frequency at subsonic Mach number by applying the present treatment to a wing
and control surface of reduced plan-form.

(34)

Acknowledgements—The numerical results given in this report were calculated by Mrs. S. Lucas
and Miss B. Burnham of the Aerodynamics Division.
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NOTATION

Aspect ratio [= 2s/c]

Chord of rectangular plan-form

Two-dimensional oscillatory lift function (Ref. 9)
Control chord/chord ¢, [= %(1 + cos )]
Partial-span downwash factors (Section 5)
Frequency of oscillation of control-surface
Semi-span of plan-form

Velocity of undisturbed flow

Downward velocity at the plan-form

Continuous equivalent downwashes (Section 3)

Rectangular co-ordinates : x in the stream direction with
% = 0 at leading edge ; y in the spanwise direction, positive
to starboard ; z positive downwards

Value of x at the control hinge

Functions of » (Appendix I)

Value of y at inboard edge of partial-span control
Defined by Wg(0) = o,z + twoyg; for o —> 0 (Section 4)
Defined by Wi(8) = o}y + iwals, for o — 0 (Section 4)

- Lift distribution/pV’

Spanwise parameter [= y/s]
Value of # at inboard edge of partial-span control

Local chordwise parameter defined as x = %¢(1 — cos 6),
(0 < b < n)

Frequency parameter of plan-form [= p¢/V]

Angular displacement of control in a plane y = const
Spanwise parameter [= cos™! %]

Value of 6 at the control hinge

Local frequency parameter [= pc/V]

Definitions used in the two-dimensional analysis for Wg(6) :

Lift
Pitching moment

Hinge moment

— Z et = —-‘ngcf I'e?" sin 6 do
0
Me? = LpVc? f I' e cos 6 sin 0 d6 (about mid-chord)
0

He? = — %chzf I'e?* (cos y — cos 6) sin 6 d6
¥

11



NOTATION—continued

Definitions used in the spanwise analysis for F(n,) :

Load distribution = 2p72%sy
Lift integral — I, — f : v dn
- First-moment integral = I, = f: yn dy
Second-moment integral = I, = f : yn? dn
Partial-span integral = I, = f: y dn

F'(n,) replaces F(n,) when I, is used instead of I,.

Defimition of derivatives for rectangular plan-form with symmetrical constant-chord outboard controls :

Z o
VS T (2 + tvzg)é
M .
TS = e mgs
H .
VS — etk
S Area of plan-form [= 2s¢]
Cy Chord of control [= Ec]
S; Area of one control [= ¢,(1 — 7,)s]
— Z e Lift:‘f fchFe”" dx dy
. —s 0
M e#*  Pitching moment about leading edge
- f fchl’e”"xdxdy
—sJ 0
H e Hinge moment on one control

= — f fc pVI e (x — x;) dx dy
Ya J *n ’

12
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APPENDIX I
Trigonometrical Relations for X, (v)

The functions X, n =1,2...5; 7,8 ... 12, which are used in Sections 3 and 4, are deﬁned
in Ref. 9 and can be expressed as follows in terms of the control parameter y :

247X, = 3(w — v + sin y cos p) cos p + 2sin® y
384n X, = 3(x — v -+ sin y cos y) + 2sin® p cos »
1287°Xy = 9w — v - sin p cos y)* — 4sin® p[2(x — 9)* + (v — ) sin y cos y — sin® y]
dnX, =n — p + sin p cos p
487X, = 3(m — v -} sin yp cos p) + 4sin® p
4nX, = (w — v + sin y cos p) Xy
47Xy = sin p(1 — cos p)
47° Xy = sin (1 — cos y)(mw — » — sin y)
aXyy=mn — p -+ sin yp
4a Xy = (m — v + sin )(1 + 2 cos p) + sin p(1 — cos y)

4n X1y = (m — p + sin p)(2 cos y — 1) + 3 sin (1 — cos y)
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APPENDIX II
Lift Distribution corvesponding to «,

The discontinuous boundary condition «, of eqliation (13) may be satisfied in two-dimensional
'steady flow by a lift distribution pVI" with :

r=v [2(:0 cot 10 + Cy(— 2sin 6 + cot 38) — 3 2C, sin %O:I R = )
n=2
Since the downwash corresponding to (35) is
W= V[CO+C1(%—+COSG) 1o C,Lcosne}, O o)

n=2

. it follows that

WV = ey

when nCy = r (1 — cos 8)a, a9 »
° . .. . . .. .. (37)

azC,bzf 2cosnl a,df, n =1
0

Then, for «, given by equaﬁon (18),
4nCy = (mw — p)(1 42 cos ) + sin y(2 + cos p)

2nC, = — @ 4 p — sin y COs y o
_sin(n—1)p sin(m4+ 1y : ‘e . .. -
ZRCn - 7/1,(1/[, — 1) - %(% + 1) , = 2

Therefore the required lift distribution is given by (35) and (38) and this may be expressed as
Ir= l:—l:{(n — ) cos p + sin g} cot 16 + (# — ) sin 6

1
_(cosﬁ—cosw)ln(g—;%—;—%—o{—%ﬂ. . .. e (39

15



APPENDIX III
Alternative Lift Distribution for Low-Frequency Method

As indicated in Section 4, it is appropriate that the chordwise lift distributions I', should be
independent of frequency. Accordingly, the lift distribution over the plan-form is represented by

r=vssr,C,A,

nom

where I'y=2cot 10 :
I''=—2sin6 4 cotif . .. . . .. .. . .. (40)
= —2sinnd, n>2

and ¢y = sy A1 — 9%

The corresponding doublet distribution over the wing and wake is
KzVEZK,,CnmAm, .. .. .. .. .- .. .. .. (41)

and it follows from Ref. 2 that for low frequency, w — 0, the chordwise distribution K, can be
expressed as

K, =K} +K],
where K, = K,(0) = c[P,(0) + 10Q,(0) + 0(w?)] onthewing, 0<6 ,
= K, (n) 7 over the wake, x > x, e (42)
K,=0 : on the wing, 0<6 <=,
P (n)[— 10(x — x,)] + 0(w?) over the wake, x > x,

The downwash W induced at any point on the plan-form by the distribution K is then obtained
for low frequency as
W=Vzz (W, + W,)C.., .. . . . . . .. (438)

~Where W, and W, are the downwashes corresponding to the distributions K;4, and K4,
respectively, with only first-order terms in frequency retained. ‘

For the calculation of W, by the vortex-lattice method, each chordwise distribution K, is
replaced by N discrete vortices of strength ¢L, (%), 2 =1, 2 ... N, which are chosen on the
usual two-dimensional basis to give the exact downwash W, at selected points on the chord.
Since K, is constant in the wake, W, is given by

, . 1 1 BK,’,
Waln) = — Z—nfox — x, 0%
andrthis can be expressed as

(L — 0P, 4 0(w?)] .
J‘ (cos @ — cos 6,) sin 0 46, .. . .. . .. (44)

" where Py,=10 4 sinb

P, = {(sin 0 + } sin 26)

sin (n + 1)6  sin (w — 1)8
2(n + 1) 2m — 1) °

P, = n=2.
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Therefore, to first order in frequency

Wi =1+ tow[}cos 6, + 1n (2 4 2 cos 6,)]
W{ =} + cos 6, + tw[} cos 6, + § cos 26,] (45)
, . [cos (n + 1)8; - cos (n — 1)61:| s
W,,—cosn(il—l—zw[ 2 1 1) pT— , n=2
. :
Furthermore, the vortices are chosen so that = c¢L; (k) is equal to K, over the wake ; to first
order in frequency k=1 ’
K{ = ca[l — 3]
K| =cn[— L _
y ol . e over the wake. e v . . .. (46)
K; = ca[{to]
K. =0, nw =3

Values of L,(R)=, B =1,2...N =6, are given below for # = 0 and # = 1, together with the
values for N = 2 which are required for the reduced lattice : _

' ' ; A Position
P Li(R)f | Lik)f= i
1 0-45117 — i 0-05714 0-17090 — 1w 0-02507 ol
2 0-20508 — 7w 0- 10124 0-01189 — 70 0-03418 2
3 013672 — 70 0- 12683 "—0-03581 — i 0-03038 Pz
4 0-09765 — 10 0-14477 - —0-:05534 — 1w 0-02170 i
5 0-06836 — 70 015747 —0-05696 — 1w 0-01139 2
6 0:04102 — 7w 016255 —0-03418 — 7w 0-00228 i1
1 0-75000 — 70 0-28836 0-12500 — 7 0-09375 1
2 025000 — 70 0-46164 —0-12500 — 7w 0-03125 3

The calculation of Wy, is fully treated in Ref. 2: from the definition of K given by (42) and -
(44), it follows that to first order in frequency the downwash W;, is zero for #» > 1.

17



TABLE 1
Values of the Equivalent Downwash W x(0) = ay, + a.(§ + cos 0)

Correct lift and moment | Correct lift and hingé moment
E @ cos 0
W(6) Wi(0)
0-08 02 0 0-03760 + 7 0-00657 —0-52547 4 ¢ 0-02610
—2 0-46164 + 2 0-00298 0-64187 -7 0-04005
0-08 0-6 0 0-03953 - 7 0-02065 —0-54935 + 7 0-10649
—2 0-46625 -+ ¢ 0-00929 0-64209 + i 0-15227
0-25 0-2 0 0-19535 + ¢ 0-00750 0-19415 — ¢0-01332
—2 0-74714 4 ¢ 0-02513 0-74592 4 70-03183
0-25 0-6 0 0-19458 - 7 0-02330 - 0-18037 —0-04098
—2 0-75023 + 7 0-07604 0-73587 -+ ¢ 0-09659
0-25 1-2 0 0-19437 + 2 0-05003 0-12079 — ¢ 0-06863
—2 0-76402 - ¢ 0-15350 0-69949 -1 0-22271
TABLE 2
Equivalent Downwash W y(0) = ayp + twogg, for w —0
Correct lift and moment Correct lift and hinge moment
E cos 0 :
%1z Gog : g tap
0-08 0 0-037478 0-001208 —0-518430 —0-079018
—% 0-461195 0-025000 0-646498 0-051742
0-25 0 0-195501 0-020041 0-195501 —0-062316
— 0-746830 - 0-131152 0-746830 0- 158604

18



, TABLE 3
Values of dy, dy and d, [equations (27) and (30)], and Partial-Span Factors F(n,)

For vortex-lattice theory,
F(n, = 0-2) = 2=[1-001554, — 0-37572d, — 0-175264,]
F(n, = 0-8) = 22[1-003594, 4 0586944, — 0-004064,]
F(n, = 0-8) = 22[1-00377d, + 1-43118d, + 0-990734,]

3(a) : Correct I, 1, I,

Ma dy dy dy
0-342020 +0-063216 A +0-182726 —0-141395
0-5 0-037243 -+0+124354 —0-048813
0766044 +0-011822 —0-001663 -+0-075510

N F(0-2) F(0-8) F(0-8)
0-342020 —+0-1222 -+-1-0761 +1-1617

- 0-5 : —0-0054 0-6947 1-0493
0-766044 —0-0048 —+0-0665 -+0-5297

3(d) : Correct I, I, 1,

N d dy - dy
0-342020 +0-061323 +0-210180 —0-181156 .
0-5 0-022356 40-340215 —0-361438
0-766044 +0-012870 —0-016873 +0-097539

e ‘ F'(0-2) F'(0-6) - F'(0-8)
0-842020 +0-0892 +1-1664 +1-1491
0-5 —0-2644 1-4049 0-9504
0-766044 +0-0134 +0-0164 +0-5366

19



TABLE 4

Rectangular Wings of Aspect Ratio A with Outboard Flaps (E, n,)

Oscillating at a Frequency Pavameter Value v

4 E N - — 2 — - W — m — he — he
4 0-08 0 -0 0-677 ~0-296 0-389 —0-0106 0-385 0-054
‘ 0-2 0-659 —0-190 0-385 —0-0177 0-384 0-068

0-6 0-599 —0-089 0-872 +0-0065 0-378 0-074
4 0-25 0 —+0 1-144 —0-259 0-567 +0-086 0-363 0-172
0-2 1-114 —0-097 0-560 0-099 0-359 0-214
0-6 1-019 +0-060 0-837 +0-137 0-344 0-225
4 0-25 0-5 -0 (0-483 —0-086 0-249 +0-047 0-251 0-149
0-2 0-471 —0-018 0-246 0-052 0-250 0-177
06 0-435 +0-042 0-237 | 4+0-067 0-242 0-180
2 0-25 0 —-0 0-830 -0-062 0-456 +0-148 0-304 0-180
0-2 0-823 0-117 0-455 0-140 0-303 0-212
1-2 0-748 +0-172 0-433 +0-154 0-266 0-211
TABLE 5 »
Rectangular Wing A = 4 with Outboard Flaps (E, n,)
Oscillating at Low Frequency v —> 0
E N — % — z; — Mg — mE — he — hi Solution
0-08 0 0-677 | —0-296 0-389 | —0-0106 0-385 0-054 (1)
0-678 —0-260 0-391 —0-0110 0-390 0-051 (2)
0-08 0-5 0-288 —0-113 0-173 —0-0008 0-295 0-049 (1)
0-290 —0-098 0-174 -+0-0003 0-315 0-049 . (2)
0-25 0 1-144 —0-259 0-567 ~+0-086 0-363 0-172 (1)
1-142 —0-214 0-566 ~+-0-086 0-361 0-166 2)
0-25 0-342 0-689 —0-185 0-350 ~+0-062 0-291 0-162 (1)
0-687 —0-108 0-347 +0-060 0-292 0-157 2)
0-25 0-500 0-483 —0-086 0-249 +0-047 0-251 0-149 (1)
0-484 —0-087 0-248 +0-047 0-264 0-152 2)
0-25 0-766 0-170 —0-025 | 0-090 -+0-019 0-159 0-104 (1)
0-174 —0-016 0-093 +0-020 0-180 0-115 2)

(1) Vortex-lattice solutions are calculated as discussed in Section 7.
(2) Multhopp-Garner solution with 15 spanwise and 2 chordwise terms.
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Rectangular Wing A = 4 with Outboard FZagbs (E, ﬁu) wn Steady Flow

"TABLE 6 -

— Zg — Mg - - h§
E N :
(1) @) (3) (1) 2) ) (1) (2) (3)
0-08 . 0 0-677 0-677 0-678 0-389 .0-389 0-391 0-385 0-385 0-390
0-342 0-410 0-410 0-410 0-242 0-242 0-242 0-332 -0-337 0-336
0-500 0-288 0-287 0-290 0-173 0-171 0-174 0-295 0-306 0-315
0-766 0-102 0-102 0-106 0-063 0-063 0-066" 0-197 0-209 0-229
0-25 0 1-144 1-144 1-142 0-567 0-567 0-566 0-363 0-363 0-361
0-342 0-689 0-689 0-687 0-350 0-350 0-347 0-291 0-295 0-292
0-500 0-483 0-482 0-484 0-249 0-247 0-248 0-251 0-260 0-264
0-766 0-170 0-170 0-174 0-090 0-090 0-093 0-159 0-168 0-180

(1) Vortex-lattice solution using partial-span factors F (171);
(2) Vortex-lattice solution using partial-span factors. F*(z,).
(8) Multhopp-Garner solution with 15 spanwise and 2 chordwise terms.
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