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Summary. An improved method of solving the rotor blade flapping equation is described which avoids 
the laborious computation of those at present available. Successive approximations to the solution are made 
but the rapid convergence makes the second approximation sufficient for all practical purposes. The effect 
of inclining the flapping hinge is considered and an analytical solution including these effects is given in an 
Appendix. The results show good agreement with an exact solution. 

1. Introduction. In this paper a study is made of the transient flapping motion of a rotor blade 

in forward flight. This problem, which is of importance in the determination of the control response 

of a helicopter, is of further interest in that the equation of motion suggests that flapping might be 

unstable at high forward speeds. For this reason there have been many attempts in the past to 

obtain an exact solution of the blade flapping equation. With one or two exceptions these solutions 

indicate that flapping is stable for all practical values of the tip-speed ratio. Therefore, since no 

cases of instability have been reported, and since an exact solution is already available, it would 

seem that there is little point in presenting yet another solution. But in none of the solutions so 
far presented are the physical processes-made clear, nor is the  convergence rapid. As a result, 

the different methods yield differing numerical results and the exact solution can only be obtained 

after laborious calculation. Again, most of the previous analyses were concerned only with the 

stability of the flapping oscillations and little attention has been paid to the problem of calculating 
the actual blade motion. 

Hitherto, apart from the possibility that the blade might strike the droop stops, an exact 

knowledge of the blade motion following a disturbance has been of little importance. But recent 
strain-gauge measurements of the stresses in rotor blades have revealed that these cannot be 

correctly predicted on the basis of simple aerodynamic theory. Therefore, as part of a wider experi- 
mental programme, it is intended in the near future to make measurements of the aerodynamic 

forces on a rotor blade which is in forced oscillation. In order to estimate the influence of frequency 
on the aerodynamic forces it will be necessary to separate the changes in the blade motion which 

are due simply to a change in exciting frequency from those which are caused by variations in 

the aerodynamic forces. In other words, we must be able to calculate the flapping frequency response 
when the aerodynamic forces are given and to do this the complete solution of the flapping equation 

must be known. Thus it will be seen that there are good reasons why flapping should be more fully 

investigated, especial!y if a method of solution can be found which can be extended to deal with 
the motion of elastic blades. 



Since the derivation of the flapping equation is straightforward, the details are omitted here, 
but  are given in Appendix I. For  simplicity, it is assumed that the blade is untwisted, of constant 

chord, and that it is stiff against both bending and twisting. The  flapping hinge is assumed to be 
on the axis of rotation ~ ~/nd perpeixdicular to the spanwise axis of the blade, i.e., S a = 0 (Results 
for the case when 33 ~ 0 are quoted in Appendix II). The  lift curve is assumed to be a straight 

line and the effects of stalling and reversed flow are ignored. Then  the flapping equation is 

where 

dt  2 + 2C(t) + P2(t)13 = E(eot) , (1) 

, 2C(t) = nw [1 + ~ sin ~otl , (2) 

V P2(t) = ~o ~ L 1 + cos + , (3) 

E(cot) = aerodynamic forcing function (independent of fl). ' (4) 

Equation (1) is a linear second-order differential equation with periodic coefficients and therefore 

its solution consists of a complementary function (transient) and a particular integral (steady state). 
At this stage we are concerned only with the transient motion, i.e., with the solution of 

d213 d13 p2(t) 0 (5) 
dt ~ + 2 C ( t ) - d / +  /3 = " 

The  first attempt at a solution to (5) was given by Glauert and ShonO, who neglected the second 
derivative and concluded that flapping is unstable for large values of ft. Bennett ~ later showed that 
this approximation was invalid and obtained a numerical solution to (5) for the particular values 
n = 1.5, ff = 1.0, 3 a = 0. F rom his results he concluded that flapping ,is stable for all /~ < 1. 

Another approximate solution was developed by Sissingh a, who assumed that 13 could be expressed 

in the form 

fi = ~, A~ cos root + ~ B~ sin root, (6) 

where the A) and Br are functions of time. Substitution of (6) in (5) leads to a set of simultaneous 
second-order differential equations with constant coefficients. For the cases considered it was 

found that flapping is heavily damped for small values of ft. The  principle disadvantage of this 

method is the heavy labour required, even for the first approximation. 
By far the most rigorous and precise solution was given by Horvay ~, who expressed the coefficients 

of (5) in complex form and then made use of the substitution 
+ c o  

13 = e '~' ~ Ck e ~k~' , (7) 
- -co  

in which y and the C~ were unknown. This led to an infinite set of simultaneous differential 
equations in the Q ,  and y was determined from the condition that these equations should be 

consistent. The  disadvantages of this method are: 

(i) The  number  of equations to be solved is very large and therefore it is necessary to expand 

a determinant of very high order 

* The case of offset hinges presents no difficulty but is omitted here for the sake O f convenience. 



(ii) After expanding the determinant, y must be determined from the roots of a complex 
transcendental equation. 

The labour involved in these computations, whilst not prohibitive, is considerable and the method 
does not lend itself to routine calculation, especially if '3 3 ' effects are taken into account. 

In a later paper, Horvay and Yuan 5 described an approximate method of solving (5) based on the 

assumption that the periodic coefficients could be replaced by constant time averages throughout 

each of the four quadrants of a revolution. Once again this technique suffers from the disadvantage 

that a determinant of large order has to be expanded. It is very difficult to justify the expenditure 
of a great deal of effort on a solution which can be only approximate. 

Parkus 6 solved (5) by means of a substitution of the type 

= 80  + + + . . .  + + . . .  ( 8 )  

in which the ]3~ are functions of time. This method, which is a standard technique for dealing with 

both linear and non-linear equations, is very well suited to this problem, but Parlms did not use 

it to the best advantage. The convergence of his solutions was poor and the numerical results 
did not agree with those of Horvay. 

A much simplified approach has been suggested by Owen 7. The procedure is to assume that, 

at any azimuth position, the periodic coefficients are constants corresponding to that azimuth 

position. This suggests that the blade first tends to become unstable on the advancing side and 

it is shown that /z must be less than a certain value to prevent the onset of instability. Because it 

is so simple this method has much to recommend it, especially since it may be used for blades 

with more than one degree of freedom, but detailed comparison with an exact solution will be 
necessary before its wider use can be justified. 

In the present paper an alternative method is described which avoids many of the difficulties 

of the previous solutions, particularly the expansion of determinants of high order. A method of 

successive approximations is used but in the early stages of the analysis it is necessary t ° make 
certain substitutions which, if one is not familiar with the theory of differential equations with 

periodic coefficients, may appear to be quite without purpose. Therefore, in order to demonstrate 
the necessity for these substitutions it has been decided to discuss the more salient features of the 

results before setting out the theory, imrom these results it will appear that the solution of the 

flapping equation may take one of several forms and it follows that the convergence of the process 
of successive approximations will be most rapid if a solution of the correct type is chosen for the 
first approximation. In general it is found that this cannot be done without introducing two 
additional parameters into the flapping equation. It is their presence which may lead to some doubt 

and confusion, but it is possible to avoid this if it is clearly understood from the outset that the 
sole purpose of these parameters is to improve the convergence of the solution. In particular, no 
attempt should be made to endow them with physical significance. 

2. Preliminary Discussion of the Results. To avoid the complication of too many variables 

attention will at first be confined to the case where 3 3 = 0; there is no loss of generality in this 

but a more complete discussion including the effects of 3 3 is given in Appendix II and Section 6. 
In hovering (i.e., /x = 0) the flapping equation reduces to 

p" + ny  +/3 = 0, (9) 

(79196) A* 



where dashes represent differentiation with respect to ¢ ( =  cot) and ¢ = cot has been substituted 
into (5). The  solution is 

fi(¢) = e -~ /2  I C  cos ( 1 -  ~)1/~ ¢ + D sin (1 - ~)1/~ ¢1 . (10) 

The  oscillations following a disturbance are therefore damped and the rate of decay and the period 
of oscillation increase with the inertia number,  n (In practice, 0 < n < 2 usually, but  if n > 2 
the motion is, of course, a subsidence). 

When /~  ~ 0 it can be shown that s 

fi(¢) = q eVl'P P1(¢) + C2 e'~V P.~(¢), (11) 

where C1, Ca, are arbitrary constants, P1(¢), P2(¢) are periodic functions, and 71, 79 are real constants. 
For certain values of /~ and n it is found that forward flight tends to make the flapping less 
stable, i.e., 

yl(say) = - ~ + ~,  (12) 

where ~ is positive. When presenting the results it is convenient to express this reduced rate of 
decay as an apparent reduction in the value of n, i.e., we put 

napp 

~1= 2 ' 

where 

(13) 

(14) -napp = - n + 27t. 

The  degree of instability is then given by the ratio napp/n, where 

naPP-  1 - --2~ (15) 
n n 

If  n~pp/n = 1, ;k = 0 and forward flight has no effect on the stability, and if n~pp/n = 0, the 
disturbed flapping motion is an oscillation of constant amplitude. If  n~pp/n < 0 the flapping is 
unstable. The  actual values of napp/n for the case 83 = 0, 0 < n < 2, 0 < /z < 0 .4  are shown 

in Fig. 1. It will be seen that A > 0 in only two regions of the/z,  n plane. Elsewhere, outside these 
regions, ~ is zero and forward speed has no effect on the stability. For a blade with n = ~¢/3, 

/z = 0"5, the amplitude of the transient reduces by 93 per cent per revolution so we conclude 

that flapping is stable under most practical conditions. For the same blade, when /z = 0.75, 
the transient reduces by 87 per cent per revolution, so that the motion is still stable although the 
damping coefficient of equation (1) becomes zero at some azimuthal position (~b = 3~r/2). Although 
these results are of considerable importance in themselves, from the point of view of the method 
of solution, there are others of even greater value. 

The  most important result is that within the regions of reduced stability the period of the functions 
P1(¢), P2(~ b) is a constant, whatever the values of /~ and n. In the lower region, i.e., for small 
values of n, this period is one revolution and in the upper  region (n ~ ~/3) the period is two 
revolutions (frequencies of one and one half cycle per revolution respectively). Between these two 
regions the period varies continuously. 

With the exception of the periods of oscillation, the numerical values in Fig. 1 apply only to 
this problem, but  the fact that the period of oscillation is constant in the less stable regions applies 

4 



to any blade configuration. Indeed, this result appears to hold for any linear differential equation 

with periodic coefficients. The  above results provide the starting point for the method of solution 
described in Section 3. 

Because the period remains constant for )t > 0, the solution is more easily obtained in the less 

stable regions of the /~, n plane. We shall therefore demonstrate the procedure by looking for 
solutions which have periods of one and two revolutions of the rotor. 

3. Determination of the Solution when A > O, 8 a = O. 3.1. General. The first step in the analysis 

is to reduce the flapping equation to a more convenient form. When 3 a = 0, the left-hand side of 
the flapping equation becomes 

If  we put  

/?" + n(1 + ~/, sin ~b)/3' + (1 + ~n/, cos ~b + n/, 2 sin 2~)fi = O. 

then (16) reduces to 

fi(~b) = exp - ~ ~b + ~-n/, cos ~b v(~b), 

(16) 

(17) 

n ~ 2 2 2 2 ) 
u" + 1 4 9 n~/*2 + ~ n / x c o s ¢ -  ~n~ /zs in¢  + n/z2sin2¢ + ~n~/,2cos2~b v = 0 .  (18) 

This equation for v(¢) contains no first derivative (v'). Now (18) itself is a linear differential 
equation with periodic coefficients and therefore its solution is of the form 

v(~b) = e ;~'p ¢(~b), (19) 

where ~(@) is periodic and 2L is a constant. The substitution of (19) in (18) now yields 

q~" + 2AqV + . . .  

n z 2 ;~z 2 2 
• . .  + 1 4 9 n2t*2 + + ~ n/, cos ~b - ] n2/x sin ~b + n/x 2 sin 2~b 

+ § n t, cos 4 = 0 .  ( 2 0 )  

At first sight this may seem to be a retrograde step since the first derivative has reappeared, but if 
we p u t / ,  = 0 then (18) reduces to 

(1  (21, 
the solution of which is periodic for n < 2. Hence, when /~ = 0, ;~ = 0, and v(~b) = 4(~b). Thus 

i f  the exponent )t does exist it can only do so in forward flight (/x > 0) and this is the case in which 
we are interested. Therefore, if we solve (20) for ~ and ;~ the effect of forward flight on stability 
will be immediately evident. 

In principle the me thod  of solution of (20) is straightforward. At this stage only solutions whose 
period is one or two revolutions are sought and therefore we require ~(~b) to have one or other of 
these periods. Also the equation for q~(~b) must reduce to (21) when /~ = 0. ~ is to be positive and 
must vanish when/~ = 0. 

, 
(79196) A* 2 



Now /z is small, therefore a possible approach is to expand ¢(¢) and 2~ in ascending powers of 

/x, i.e., we put  

¢ = ¢0 + ~¢1 + ~ ¢ ~  + . ' - ,  (22) 

= ~z~ + / z ~  + . . . ,  (23) 

where the ¢~ are periodic functions of ¢ and the A~ are constants. This  substitution satisfies the 

conditions that A vanishes when /z = 0 and that ¢ = ¢0 when tz = O. I f  ¢(¢) is to have the 

necessary period then either 

¢0 = E~ cos~  + F,  sin¢~ 

o r  
(24) 

¢0 = E e c o s ¢  + F ~ s i n ¢  

But equation (21) shows that this is only possible when n = 0 or n = ~/3. We shall consider the 

case n -- ~/3 first, since the results are of greater practical interest and the less stable region is 

wider and more easily determined. 

3.2. Sohttion when p/o~ = {-. When  ix = 0, the period of oscillation is determined by the 

constant part (1 - n2/4) of the periodic coefficient in (20). In  this case n = ~/3 when /~ = 0 

and 1 - n2/4 = ¼. 
When /z > 0 the constant part becomes 1 - ¼n ~ - ~n2/x z and for a given value of /x there is 

only one positive value of n for which 1 - ~-n 2 - ~nZ/z 2 = ~. Because /z is small the period must 

still be dependent  upon this constant part but  the form of the dependence is as yet unknown. 

Therefore  the constant te rm in (20) will be replaced by 

n ~ 2 1 
n~t,~ (25) 1 4 9 = 4 + /~a~ + t~=a~ + . . .  

where the a¢ are constants to the determined. When  /~ = 0, equation (25) is satisfied by n = ~/3. 

In  other words, whatever the values of /~ and n, the constants ai must  be adjusted in such a way 

that (25) is always satisfied. (25) is the first of the substitutions discussed in the Introduction.  

In  order to solve (20) we substitute (22), (23) and (25) in (20) and obtain 

¢0" + ~¢1" + ~ ¢ . ; '  + - . -  + 2(~A1 + ~ %  + . . .  )(¢0' + ~¢1' + ~ ¢ ~ '  + - - .  ) + . . .  

. . .  + [k + /~al + /~Za2 + . . .  + /~2A1~ + 2/~3A1A2 + . . .  + ~n~ cos ¢ - ,]n2/~ sin ¢ + 

+ n/~ z sin 2~b + ~n~'t~ 2 cos 2~] (¢0 + ~¢* + t~2¢2 + - "  ) = 0 .  (26) 

T h e  terms may be regrouped as coefficients of the ascending powers of/~:  

+o" + + +1" + + 2Alq~O' + al+o + 3 n cos @q~o- , nz sin q~+o /~ + . . .  

. . . +  ¢ (  + + 2;~¢o' + 2a~¢~' + a~¢~ + a~¢o + a~¢o + n C O S ¢ ¢ l - ~ n  s i n ¢ ¢ ~ + . . .  

. . . .  + n sin 2¢¢ o + ~-n ~ cos 2¢q~o~ /~ + . . . .  0 .  (27) 
2 



If  this equation is to be satisfied for all values of ~, then t h e  coefficients of individual powers of /z  

must vanish Separately, i.e., 

& 
C~o" + ~ = 0 

~1 p + ~1 
4 

& "  + _ 
4 

2 
. . .  + xn  2 sin @~1 - 

+ 43 
4 . . . .  , etc. 

2 2 
- -  - - 2~@o' - al~ o - ~n cos ~$o + ~ n2 sin~b6o 

2 
2,~24, o' - az$ o - 22@/ - a151 - )h2q~o - ~ n cos $ ~ +  . . .  

n sin 2~b~0 - 2n~ cos 2~b o 
Y 

(28) 

(29) 

(30) 

7 

(34) 

(35) 

(36) 

t /  
;~1 = ~ (sin 2e + n cos 2e) ,  

a l = ~ ( c o s 2 ~ - n s i n 2 c  O. 

Note. In arriving at (34) and (35) use has been made of 

Thus  the original differential equation with periodic coefficients has been reduced to a set of 

successive equations with constant coefficients. The  general solution of (28) is, 

~b ~ (31) ~0 = E l c ° s ~ +  F l s i n ~ .  

But since (20) is linear its solution is only determined to within an arbitrary constant; therefore 

we can, without loss of generality, assume that 

(32) 

The 'phase' angle ~r is the second of the parameters mentioned in the Introduction; the reason 
for introducing it here is explained below. If  we now substitute (32) in (29), (30), etc., (29) becomes 

~al,, + ~14_ )t 1 cos ( ~ - a ) - a  1 sin ( ~ - ~ ) - ; s i n  ( ~ - , z )  n23 

cos n n~ cos a)  . . . .  (33) ( ~ - c r )  + ~ s i n ( ~ +  a) + ~- ( ~ +  + 

Now ~1 must be periodic, but the solution of (33) is not periodic unless the coefficients of 

sin (½~b - a), cos (½~b - ~b) in the right-hand side are zero, i.e., unless 



It is now possible to explain the introduction of ~ in (32). Theso lu t ion  of (33) would be non- 
periodic if a term in either cos (½¢ - e) or sin (½~b - ¢) appeared in the right-hand side. Therefore, 
since these two functions are independent, at least two arbitrary unknowns must be made available 
to ensure that the coefficients of both cos (½~b - ~) and sin (½~b - ~) are zero. But the a~ are not 
completely arbitrary since equation (25) must also be satisfied. Thus  if it had been assumed 
that ~ = 0, (25) could only have been satisfied for one value of/~. But ~ may take any value, even 
complex, without affecting the form of the solution. Therefore it is possible to satisfy (25) for 
all /z if a i is given by (35). 

With a t and A t given by (34) and (35), (33) becomes 

¢1" + Ct n ~- ~s in  (~2¢ or) - n ~  o) 
so that 

Ct = 6 [sin ( ~ - ~  ) + n cos (~2~ - er)] • 

If we now substitute for ¢0, Ct, (30) can be written in the form 

¢2 n 2 n2)] sin ( ~ .  ~) ¢ ( ' + ~ - = - A ~ c o s ( ~ - ~ ) -  [ a 2 + A t 2 + ~ ( 1  + 

- A t + ~ c o s 2 ~ - ~ s i n 2 e  cos - 

+ A1 + ~ s m 2 e + - ~ c o s 2  sin ~ - -  

+ 1_18 ( n ~ -  3) 1 sin ( ~ -  e) - I ~ -  21 cos ( ~ -  ~ ) .  

(37) 

(38) 

+ , , ,  

(39) 

¢2 will not be periodic unless the coef f i c ien t s  of  cos  (½¢~ - ~) and sin (½~b - or) are zero. Hence, 
we must have 

)t~ = 0 (40) 
n 2 

a2 = - 2,12 - ] ~ ( 1  + n 2) (41)  

Then 

¢2--  7¢)'1+ ~ n  + ~ c o s 2 ~ - ~ s i n 2 ~  cos - ~  + . . .  

+ a l -  ~-A1-  ~ s m 2 ~ -  ~ c o s 2 ~  sin - c~ 

This process of solution and substitution may now be continued indefinitely, depending upon 
the degree of accuracy required, but for small /~ it has been found to be sufficient to stop at the 
second approximation. Then to the second order in ~ we have, from equations (25), (35) and (41) 

n2 2 n~ l~ l n [ n~ 1 1 4 9 = 4- + / ~ 3 ( c ° s 2 ~ -  n s i n 2 ~ ) -  /~2 At2 + ~ ( 1  + n 2) (43)  

and from equations (23), (34) and (40), 
n 

A = /~A 1 = t~ ~ (sin 2or + n cos 2c 0 , (44) 
/ 



T h e  m e t h o d  used for  the c om pu t a t i on  of  stability boundar ies  (i.e., the  de te rmina t ion  of  )t for  

g iven /~  and n) is given in Sect ion 4.1. 

3.3. Solution when p/co = 1. 

Sect ion 3.2. T h e  subs t i tu t ion  co r re spond ing  to (25) is 

n 2 2 
1 4 9 n~/*~ 1 + /~a~ + tz~a~ + . . .  

U s i n g  ( 2 2 ) ,  ( 2 3 )  a n d  ( 4 5 ) ,  equat ion  (20) becomes  

T h e  analysis for  this case is exactly similar to tha t  descr ibed in 

(45) 

40" + ~41" + ~ G "  + . . .  + 2(z~1 + ~;~2 + . ~ .  ) ( 4 (  + ~41' + ~ % '  + . . .  ) + . - .  

. . .  + [1 + /~a 1 + /z~a2 + . . .  + /z~;~a~ + 2/xa)~l)t ~ + . . .  + ~n/~cos ~b - ~-n2/L sin~b + . . .  

. . .  + n/~ ~ sift 2~b + ~n2/~ 2 cos 2~b] (40 + /x41 + t~45 + . . .  ) = 0. (46) 

R e g r o u p i n g  the te rms  as coefficients o f  ascending powers  o f /~ :  

40" + 40 + [41" + 41 + 2A14o' + a14o + ~n cos ~,b4o - ~n 2 sin ~b4o]/~ + . . .  

• . .  + [42" + G + 2A54o' + 2~141' + -141 + -~4o + ~ ? G  + ~n cos ¢41 - . - .  

. . .  - ~n = sin ~41 + n sin 2~,b40 + ~n 2 cos 2~b40]/~= + . . .  = 0. (47) 

As in Sect ion 3.2, on  equa t ing  individual  powers  o f /~  to zero, 

40" + 4o = 0, (48) 

41" + 41 = - 2~14o' - a14o - ~n cos ~b4o + ~n 5 sin ¢ 4 0  - (49) 

4 ( '  + 45 = - 2A~40' - a24o - 2A141' - a~41 - A1~4o - §n cos ~,b41 + . . .  

+ ~n 5 sin ~41 - n sin 2 ~ G  - ~n~ cos 2~40 .  (50) 

43" + 43 . . . .  , etc. 

T h e  general solut ion of  (48) is 

4o = E1 cos ~b + F 1 sin ~b. 

As in Sect ion 3.2 we assume that  

4o = sin (~b - ~ ) .  (51) 

T h e n  (49) becomes  

4'1" + 41 = - 27'1 cos (~b - ~r) - a I sin (~b - ~r) - §n cos ~b sin (~b - ~r) + . . .  

. . .  + §n 2 sin ~b sin (~b - ¢ ) .  (52) 

But  41 m u s t  be periodic,  so tha t  

A x = 0 ,  (53) 

a~ = 0 .  (54) 

(52) may  now be wri t ten  

n n 2 n 
41" + 41 = ~ (n eos a + sin or) - ~ cos (2~b - ¢) - g sin (2~b - ¢ ) ,  (55) 

wh ich  has the  solut ion 

/Z n 
41 = g (n cos ¢ + sin ~) + ~ In cos (2~b - ¢) + sin (2~b - ~)] .  (56) 



(50) now becomes 

~ / '  + 43 = - 2A 2 + g s i n 2 ~ -  n + 2 n 2  

• . + - a 2 + g c o s 2 ~ +  n + ~ n  s in2a  

• . .  + 2-~ (n 2 - 4)s in  (3~ - or) + n - ~-7 n ~ 

Since ~2 must be periodic, 

)t 2 = ] ~ s i n 2 c r -  ~ - ~ n  2 c o s 2 ~ ,  

as = ~ - c o s 2 e +  n + 9  n~ sin2cr + (1 

and hence 

4 / '  + ~2 = ~ (  n z -  4 ) s i n ( 3 ~ b -  or) + n - ~ n  ~ 

T h e  equations determining ?, to the second order in/~ are: 

= /~?tz = /x ~ ~ s i n 2 ~ -  ~ + ~ n  cos2~ 

1 
c o s  c o s  - + . . .  

2 
(1 + n~)] sin (~b - cr) + . . .  n 2 

cos (3~b - {r). (57) 

-}- n 2 ) n  2 

(58) 

(59) 

cos (3~b - a ) .  (60) 

(61) 

1 4 9 cos2~ + n + ~ n  2 sin2cr + ~ n Z ( 1  + n  ~) . (62) 

A discussion of the results, together with methods of computation, are given in the next Section. 

4. Calculation of Degree of hzstability and Transients. 4.1. Stability when p/co = ½. 
shown in Section 2 that the degree of instability is given by 

I t  was 

n~vv 1 2;~ 
n - - n ( 6 3 )  

In  other words, for a given blade and forward speed the stability is determined by A. For  the case 

where the period of oscillation is two revolutions the relationship between )~, k~ and n is obtained 

by eliminating ~ from (43) and (44). Since both (43) and (44) contain first-order terms in/x,  and/~ 
is small, it is possible to obtain an approximate solution by ignoring/z  2, i.e., the equations 

n 2 1 n 
1 4 - 4 + /x ~ (cos 2~ - n sin 2{r), (64) 

n 
;~ = /z ~ (sin 2a + n cos 2~),  

are solved simultaneously. 

Noting that 

c o s 2 ~ -  n s i n 2 a  = A c o s ( 2 a  + e) ,  

where A 2 = 1 + n z and tan e = n, it follows that 

A sin (2or + e) = sin 2cr + n cos 2a .  

(65) 

(66) 

(67) 

10 



Therefore (64) becomes 

3 - -  T/2 

4 
and 

i 

n 
- f f g A c o s ( 2 a  + e) 

n '  
~t= / z ~ A s i n ( 2 c r +  e) .  

Then  if n~vv/n = N, (68) and (69) give 

3 
sin (2~ + e) = 2 - ~  (1 - N ) ,  

and finally, 

(68) 

(69) 

(70) 

" ~1~ - 16A~ n~ + 4(1 i v )  , (71)  

where Pa is the first approximation to/~. 
On including terms in/z 2 and eliminating ~ from (43) and (44) a quartic equation in/z is obtained. 

Newton 's  method for finding roots of polynomials has been used to find/~ to the second approximation 

(ff~), i.e., 

f ( /h )  
/x 2 = ~ f , ( / q ) ,  (72) 

where f ( f f )  = 0 is the quartic in ft. The  resulting expression for ff is 

/x 2 ,= /~ 1 - ~ ~ - T  - ~ 2 ~  - D)/~ 2 ' 

where 
" 3 - -  n 2 

B -  - - + E  
4 

n 2 
C - 18 (3 - n 2) 

/,/2 
D = ~ - ( 1  + n ~) 

/ , /2 
E = ¥ ( 1  - N ) ~ .  

• The  stability diagram (Fig. 1) is obtained by choosing N and solving (71) and then (73) for ff 
over a range of n. It  will be seen that (73) provides a direct estimate of the difference between 
first and second approximations to /x. Fig. 2 indicates the error for corresponding values Of /x 
and n, and suggests that the first approximation is Sufficient for most practical purposes. For this 
reason the transient motions derived in Section 4.3 are to the first order in/~. 

4.2. Calculation of Blade Transient Motion when p/~o = ½. I n  Section 2 the transient flapping 

motion is given as 

/3(¢) = C1 e71~Pl(¢) + Ca e~2VP2(¢) (74) 

. .  = Cl/3j.(¢) + Cd3~(¢) ,  ( 7 5 )  
,. . . .  

where C1 and Ca are arbitrary constants. The  two solutions p~(¢) and pz(¢) are determined by the 

11 
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two values (¢1 and or2) of e which satisfy (64) for a given n and/~. From (64), 

3 - n z 3 
cos (2or + e) - 4 l~nA' (76) 

so that cr~ and ¢2 are easily determined for inclusion in $0@), ~(~b) in P(~b). The  exponents )'1, 7~ 

are given by (12) as 

r l  = - g + 

• ( 7 7 )  
n 

+ 

But from (65), 
/Z 

2, = t* ~ A sin (2~ + e), (78) 

so that on eliminating ¢ from (76 i and (78) we see that 

A(~I) = - h(~2) (79) 

for all ~ and n in this region (p/~o = ½-). The complete solution is therefore 

fl(~b) = exp [~n/~ cos ~b] [C 1 e (-½~+a)~ ~(~b, cq) + C 2 e (-½~-a)v' q~(~b, c@]. (80) 

The  constants C 1 and C a are determined by the initial conditions. For example, Fig. 3 shows the 
resulting motion for 

(i)/3(0) = 0,/3'(0) = 1 

(ii)/3(0) = 1, fi'(0) = 0 

w i t h n =  1 . 6 a n d / z  = 0.3. 

Fig. 4 gives the corresponding results for 33 = + 5 deg. The analysis for this latter case appears 

in Appendix II.  

4.3. Stability when p/co = 1. The analysis for determining the range of instability in this 

region closely follows that described in Section 4.1. Since both a 1 and  h 1 are zero, the method 

of successive approximations is not necessary. However, since for this region 0 < n < 0.41 it is 

possible to ignore powers of n higher than the second. The  equations to be solved are (61) and (62). 

From (61) and (63) with n~pv/n = N, 

n 
cos (2~ + e) = - At~(1  - N ) ,  (81) 

where 

or, ignoring powers of n higher than the fourth, 
~ g  

A 2 _ 
4 "  

Substituting for (2~ + E) from (78) in (62) yields the following quadratic in/z~: 

(~ - 32) t~  a - 2 ~ 3 / ~  ~ - (/3 + c~ ~) = 0 ,  ( 8 2 )  

where ~ = A 2, 13 = n ~ (1 - N) ~, and 3 = 8n~/27. The curves corresponding to N = 1.0, N = 0.9, 
are given in Fig. 1. The motion becomes unstable at t~ = ~2 .  

12 



Although most helicopters have blades with n in the range 1.6 < n < 2.0, the solution for 
n ~ 0 is expected to be of value in connection with wind-tunnel experiments on model rotors. 
No blade motions have been calculated and no attention has been paid to '8 s' effects but it should 

be borne in mind that full-size machines with tip-jets would also have a low value of n. These 

extensions would present no difficulty either in analysis or computation. 
In order to complete the solution of the flapping equation, the solution for the region in which 

p/co # ½ or 1 is discussed in Section 5. 

5. Determination of the Solution when p/co # ½  or 1. 5.1. Solution when ½ < p/~o < 1. 
Between the p/~o = { and p/co = 1 regions there exists a region of complete stability, i.e., ~t = 0 

for all /* and n. The analysis is therefore much simplified because it is only necessary to look for 

periodic solutions of equation (18). For a solution of frequency p, (25) becomes 

n 2 2 
n~/* 2 (83) 1 4 9 = p,Z + t~al + l~a~. + . . .  

and $(~b) may be written 

6(~) = sin (p'~ - or) + /x61 + /~6~ + . . . ,  (84) 

where p ' =  p/oJ. Substituting (83) and (84) in (20) with ~ = 0 and following the methods of 

Sections 3.2 and 3.3, the results 

al = O, (85) 

2u2(1 + n2) (86) 
a2 = 9(4p '2 - 1) '  

are obtained. Then from (83), (85) and (86), the variation of frequency ratio (p/o~ = p'), with n 
and/*  may be expressed analytically by 

4 p,2 . (87.) 
/,2 = ~ l_ 2(4p ~ - 1) + 2(1 + n~)J 

A few curves along which the frequency of the solution remains constant are shown on Fig. 1. 

5.2. Solution for n > 2. On examination of equation (10) it will be seen that the flapping 

frequency becomes zero when n = 2, /* = O. When forward flight is considered for n > 2 it is 

found that a region of reduced stability exists throughout which the flapping frequency remains 

zero. Since it is of little practical interest the analysis for this region of the stability diagram is 

omitted. 

6. Conclusions and Further Developments. An analytic solution of the rotor blade flapping 

equation has been obtained by a method of successive approximations. The necessity of approxi- 
mating to the flapping equation has been eliminated and the excessive labour of computation of 

previous exact methods avoided. The  convergence of the solution is rapid and the first approximation 
is correct, within the accuracy of the basic assumptions, for /* ~< 0.3. These improvements have 

made it possible to take into account the effects of the S 3 flapping hinge inclination. 

13 



The results confirm that flapping motion is stable over the normal range of advance ratio (/z) 
and inertia number  (n), and that there exists a region of reduced stability in which the frequency 

is constant (half the rotational frequency). Of considerable interest, however, is the discovery of a 
second region in which stability is reduced with increasing forward speed and in which the frequency 

remains constant at one oscillation per revolution. This reveals the necessity of obtaining the correct 
inertia number  in experimental work employing model blades, more especially as the aerodynamic 
forces have been shown 9 to depend acutely upon p/co. 

For a typical blade (n = 1.6) a small positive $3 has a considerable effect on the stability. For 
example, when /~ = 0.3 the percentage reductions in the transient in each revolution for corres- 
ponding values of 83 are (see Figs. 3 and 4): 

83 = - 5 deg, reduction of 94.0 per cent per revolution 

~3 = 0 deg, reduction of 96.2 per cent per revolution 

83 = + 5 deg, reduction of 99.1 per cent per revolution. 

Although this paper has been concerned with a single-degree-of-freedom oscillation the method 
can be extended to two or more degrees of freedom. Combined flapping-bending or flapping-pitch 

oscillations or flutter can be considered in this way and it might have some application to the 

ground resonance problem especially if friction dampers are used. 
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APPENDIX I 

Derivation of Flapping Equation of Motion 

To avoid continual reference to previous work, the flapping equation of motion is derived in 
this Appendix. When the blades are rotating with angular velocity ~o, the centrifugal force experienced 
by each is 

C = dC = rco 2 din,  (A.1) 
0 0 

where dm is the mass of the blade element at radius r. The blades also experience lift forces 

aL = ~ p e ~  (¢ + ~ ) U  2d r ,  (A.2) 
0 0 

where p is the air density, c the chord, dCz/dc~ the slope of the lift curve, 0 the blade pitch angle, 
z9 + ¢ the angle of attack, and U is the resultant air velocity (see Fig. 5@ 
In the course of forward flight the tangential component of air velocity at element dm is 

UT = rw + t~coR sin ~b (A.3) 

and the perpendicular component is 

dfi i~oRfi cos ¢ (A.4) u~ = ~'o,R - ~ ~ - 

In (A.4), A'coR is the difference between the sinking speed of the helicopter and induced velocity 
through the rotor disc; it is called the inflow ratio. The flapping motion of the blade is governed by 
(see Fig. 5b): 

f- d ~  r(di - g d m -  ~ aC) (A.S) 
P dt2 = o 

Since v ~ and ¢ are small, 

(v ~ + ¢)V 2 - UTUp + ~UT ~. (A.6) 

Substituting (A.1), (A.2) and (A.6) into (A.5), and performing the integration (A.5), we arrive at 
the equation of flapping motion, 

d~fi + 2C(t)aft P~(t)fi E(~ot) (A.7) 
dt 2 ~ + = , 

with 
2C(t) = ms [1 + ~t~ sin o~t] (A.S) 

P2(t) = J [ 1  + ~tz cos wt + n/~ 2 sin 2wt] . (A.9) 

E(oJt) is a forcing function containing periodic terms which are independent of ft. On replacing 
oJt by ¢, (A.7) becomes 

d2fi dfi 4n sin 2¢] fl E(¢) (A.10) de ~ + n[1 + ~ / ~ s i n ¢ ] ~  + [1 + ~ /zcos¢ + n/~ ~ = . 
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A P P E N D I X  II 

Consideration of '  8 3' Effects 

In Ref. 5, Horvay and Yuan derive the flapping equation for the case when the flapping hinge 
makes an angle (½-~r - 3~) with the blade span axis. The equation for the transient motion then 
becomes 

d2~ 
+ 2C(¢) + __ 0 ,  (B.a) 

where 

2C(¢) = n[1 + ~/z sin ¢] (B.2) 

P2(¢) = [a + n / , ( ~ c o s ¢  + f fs in2¢)  + n tan  3a(1 + /~2 + 8/x sin ¢ - ff2 cos 2¢) 3 . (B.3) 

The  procedure for determining stability and transient solutions is no more difficult than that 

described in the main text and so only the results will be given. These results have been derived 

for the p/o) = ½- region and are as follows (it has been found convenient to abbreviate n - 4 tan 3a 

= n l )  : 

71 
a 1 = ~ [cos 2e - nl sin 2e] (B.4) 

n 2 7/2 

as = 18 18 t/12 - -  ~12 ( B . 5 )  

?t 1 = -~ [sin 2~ + n 1 cos 2or] (B.6) 

A 2 = 0 (B.7) 

and the equations to be solved by means of (B.4), (B.5), (B.6) and (B.7) are: 

A = /x;~ (B.8) 

3 - 3 2 
4 - I-2'-' n2ff2 + n(1 + /x 2) tan 8~ = /*a 1 + /x2a2 (B.9) 

to the second order in ft. 

Ignor ing /~  and eliminating ~ from (B.8) and (B.9) yields the first approximation to ff in the form 

9 [(3 - nn~) 2 ] 
~ ?  - 16(3 + n~) ,;~ + 4 0  - N ) ~  ( B . 3 0 )  

(cf. equation (71)). 

The  second approximation is then obtained by Newton 's  formula, 

[ 1 C2tzl ' + (2BC -__ D ) , ,  2 + (B 2 + E)]  
~¢2 = / t  1 1 4 C2~)q4 + I ( 2 B ~ - _  D)/x12 , (B.11) 
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where  

B - 3 - nnl  + E 
4 

C = ~ g  [n2nl  2 - 3n(n  - 6 t a n  $3)]  

n 2 

n = -9- (1 + ~) 
n 2 

E = T ( 1  - N )  ~ 

(cf. equa t ion  (73)). T h e  solut ion  for  ~l(~b) is (cf. equa t ion  (38)), 

~,(~) = 6 [sin ( - ~ -  ~)+ n~eos (-3f - ~)] • 

T h e  t rans ient  mot ions  for  n = 1.6,  /z = 0 .3  and  ~3 = - 5 deg are shown  on Fig. 4. 

(B.12) 
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