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Summary.--The calculation of test factors is reviewed. The distribution, of tile population from which the test  
sample is taken is assumed to be Gaussian. Three cases are discussed, in which 

(i) there is no prior knowledge of the mean or standard deviation 
(if) there is no prior knowledge of the mean but the standard deviation is a given fraction of the mean (i.e., coefficient: 

of variat ion known) 
(iii) there is no prior knowledge of the mean but the standard deviation is known. 

In each case an estimate is made of the average proportion of items under strength which go into service as a result: 
of the continued application of a given test factor. The distributions of the statistics used in the solution of cases (i) 
and (iii) can be found from published Tables. The corresponding .distributions for case (if) for tile appropriate ranges. 
are given in this paper. 

1. Introductiora.--When many components are made to the same nominal specification, the. 
strengths, or the values of any other property under consideration, are in general scattered about 
the  mean value. If this distribution is known it is a simple mat ter  to state below what s t rength  
any given fraction of the total number of specimens (i.e., of the 'populat ion ) will fall. In  
practice, although the general form of the distribution Call usually be inferred, with fair accuracy, 
from previous investigations, the paramete.rs of the distr ibution,  such as the mean and the  
variance, are unknown. In order to obtain further information about the population it is usual  
to test a small number of specimens, perhaps only a single specimen, assumed to be selected at 
random. The mean strength of the sample specimens, however, ;does not necessarily coincide 
with the mean of the whole population, and merely provides an estimate of it which may be h igh  
or low. This point has been discussed by, Starkey and Cox 1 and by Atkinson" who also calculate 
test factors necessary to fulfil certain requirements , a test factor being defined as the factor b y  
which the sample mean is required to exceed the design strength. The form in which their 
results are given, however, does not indicate the proportion of items under strength likely to, 
result h-ore the continued use of a given test factor. Such information is important  when con- 
sidering how the additional cost caused by an increase in the required test factor compares with 
the saving brought about by having fewer defects in service. In the present paper tile results 
are presented in such a form that  this information is readily available and methods are given for 
finding tile appropriate test factor for any permissible proportion of items under strength. 

2. Discussion of the Problem.--From a large population, a small number of specimens, n, is 
taken at random and tested for strength (or other property) and found to give values xl, & , . . .  x,, 
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'Out of the fur ther  specimens going into service we shall fix our a t t en t ion  on a single specimen 
se lec ted  at r andom and of unde t e rmined  s t rength  x. Then  any  conclusion d rawn about  this 
.single specimen will apply equally to all others going into service. 

Now the  sample values x~, x~, . . . x~ provide only est imates of the  populat ion parameters ,  bu t  
it  is often possible to find the  dis t r ibut ion of a statist ic which is a funct ion of x~, x~, . . . x,, and  
x only, and such t ha t  it is independent  of the unknown  populat ion parameters. .  The sample 
values x~, x~, . . . x~ are known,  and hence the  dis t r ibut ion of x can be inferred. The stat ist ical  
principles involved are discussed fully by  Fisher  3 who considers" as ,an example  the  case discussed 
i n  Section 3 (i) below, the  solution of which depends on ' S tuden t  s t distr ibution.  

Before any  progress can be made  in the  analysis of tile problem, some assumptions mus t  be 
made  about  the  dis t r ibut ion of the paren t  populat ion.  I t  is assumed tha t  this is normal  (i .e. ,  
Gaussian). Three cases are considered here, depending on tile existing state  of knowledge 
:regarding the  populat ion parameters .  They  are the cases in which 

(i) there  is no prior knowledge of the  mean  or s t andard  deviat ion 

(ii) there  is no prior knowledge of the  mean  bu t  the  s t andard  deviat ion is a given fract ion 
of the  mean  (i.e.,  coefficient of var ia t ion known) 

(iii) there  is no prior knowledge of the  mean  but  the  s t andard  deviat ion is known.  

3. C o n s i d e r a t i o n  o f  P a r t i c u l a r  C a s e s . - -  

(i) Case  ( i ) . - - T h i s  example is discussed by  Fisher 3 and is, in fact, ' S tudent ' s  ' t test  applied to 
t w o  small samples, the  first sample giving the  values xl ,  x~, . . . x,, and the  second sample being 
t h e  fur ther  single i tem giving the value x. Since no assumptions are made  regarding the sca t ter  
.of the  populat ion,  the  sample itself is used to provide an es t imate  of this, in addi t ion to providing 
.an est imate of tile mean.  F rom the sample,  the  statistics £ and s are est imated,  where 

r =  l ~Vl~ ' 

I t  can be shown tha t  the statist ic 

s ' =  ( x , -  e)2 " 
( n -  1) " 

-is d is t r ibuted  as ' S tudent ' s  ' t wi th  n --  1 degrees of freedom. I t  will be no ted  tha t  the statist ic 
e s t i m a t e d  is a funct ion of xl ,  x2 . . . .  x,~ and x only. Tables of the t dis t r ibut ion are given by  
Fisher  and YatesL 

As an example,  a numer ica l  case is cons idered .  A r a n d o m  sample of five specimens from a 
normal  populat ion gives values of 

10-33 

9 - 7 6  

10.53 

9 - 5 8  

10.35 

'(These five values are t aken  at  r andom from Tables giving normal  variates  of mean  10 and  
s t a n d a r d  deviat ion 0- 5). Calculat ing ~? and s : 

2 =  10 .11 ,  

s = 0 . 4 1 4 .  
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If we can tolerate, for example, a proportion of 1 in 100 below strength we obtain from Tables 
of the t distribution for 4 degrees of freedom, tile information that  1 per cent of the distribution 
is cut off at a value of t = 3.747. The value of x corresponding to 1 per cent is hence given by • 

3" 747 - - 1 0  "11--  x ~ ( 5  . 414 

and x ---- 8.41. 

Care should be used in the interpretation of this result. I t  does not imply that  for this particular 
case 1 per cent of further specimens will fall below 8.41. It  merely implies tha t  if we continue 
to apply the same procedure to a series of samples, then the overall proportion obtained from 
summing all the cases, will tend to 1 per cent. In this sense, the value calculated above 
corresponds to an expected proportion of 1 per cent. 

(ii) Case (ii).--In the example considered in Section 3 (i), allowance is made not only for the 
fact tha t  the mean as estimated from the sample may be high, but  also for the fact that  the 
variance as estimated from the sample may be low. This results from assuming a complete lack 
of prior information about the variance. I t  may happen, however, tha t  we have a considerable 
amount of information in this respect. For a given type of structure the standard deviation is 
often found to be a constant fraction of the strength. When previous experience points to such a 
relationship it is justifiable to take advantage of the fact, and when only one specimen is available 
for test it is necessary to make some such assumption involving the standard deviation. In  
case (if) it is assumed that  there is no prior knowledge of the population mean, but that  its 
standard deviation is some known fraction v of tha t  unknown mean, where v is termed the co- 
efficient of variation. Atkinson ~ gives values of v for typical cases • 

Bui l t  up light alloy structure (i.e., typical metal wing) . .  0.03 

Built up wooden structure (i.e., typical wooden wing) ..  0-07 

Light alloy castings .. . . . . . . . . . .  0.10 

Glass in sheet form . . . . . . . . . . . .  0.20 

Making the assumption that  v is known suggests considering the distribution of the ratio Y~/x 
or its reciprocal. The result is obtained from work by Geary 5 who considers tile distribution of 
the ratio of two normal variates. In the notation used here, his result shows tha t  tile statistic z, 
where 

is distributed normally aboutzero mean with unit standard deviation. For a given value of z the 
value of x/~ is quickly found by iteration from the relation 

x - - 1  - - v z  1 + ~  

by substituting the previous approximation to x/Y~ in the right-hand side of the equation. The 
test factor is then given by ~/x. 

In order to show the importance of additional information about the population variance, the 
sample data of Section 3 (i) is taken and the 1 per cent level calculated on the assumption tha t  
v = 0.05. Substituting z = 2.326, corresponding to the 1 per cent point for the normal 
distribution, and n----5 gives Y~/x =-1.  143. Finally substituting for ~, we have x----8.85, 
which may be compared with the previous value of 8.41. 

Tables 1 to 5 give values of ~/x for values of v ranging from 0" 03 to 0.20, the expected pro- 
portion below strength, P, ranging from 1 in 10 to 1 in 10,000 and ~¢ = 1, 2, 3, 5 and oo. 
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The results are shown graphically in Figs. 1 to 5. 

(iii) Case ( i i i ) . - - I t  is assumed that  the mean is unknown but the standard deviation is known. 
This is seldom a practical case but it is discussed for completeness. I t  is easily shown that  

-- x is distributed normally with standard deviation ~ / { 1  + (1In)}, where ~ is the standard 
deviation of the parent population (see, for example, KendalP, Vol. 1, p. 234). Thus the statistic 
z, where 

Z =  

is distributed normally about zero mean with unit standard deviation. 

4. App l i ca t iom. - -The  numerical example already considered shows the method of calculation 
of the test factor and serves as a comparison between cases (i) and (ii). In practice, however, 
each method is used in its own particular situation. Case (i) is applicable to a small component 
where a reasonable number of specimens can be tested. The fraction defective to be expected 
in service, on the basis of the test factor achieved is then determined directly. Case (ii) may be 
used to meet existing airworthiness requirements in the case of a large component such as a wing, 
when very few specimens (perhaps only a single specimen) are available for test. In this case 
the requirements are intended to ensure tha t  a large majority, say 90 per cent, of items reach the 
design strength, which itself includes a factor of safety. As an over-riding requirement when the 
coefficient of variation is large it is specified that  only a negligible proportion fall short of 90 per 
cent of the design strength. I t  is conventional to take this negligible proportion as 0.1 per cent 
of the distribution, although as the form of the distribution curve at i t s '  ta i l s '  is usually uncertain, 
this proportion is  not likely to be exact. Fig. 6 gives values of the test factor plotted against the 
coefficient of variation when the requirement is for 90 per cent greater than the design strength 
or 99.9 per cent greater than 90 per cent of the design strength, whichever is the more severe. 
Fig. 7 is a similar Figure for test factors which are required to give 90 per cent greater than 
design strength or 99.9 per cent greater than 80 per cent of the design strength. 

In the practical application of these test factors there is an additional safeguard. The 
assumption tha t  no further action is taken if the test specimens achieve a satisfactory standard, 
is not in general justified. When the test values are unduly high and this leads to a much higher 
proportion of weak specimens in service than is acceptable, a further investigation is soon made. 
On the other hand when the proportion below strength is less than would be acceptable, no action 
is taken. This results in a slight decrease of the overall pro.portion of weak specimens. 

5. Conclusiom.--The determination of test factors can be based on finding a statistic which 
is a function of the sample values xl, x ~ . . .  x,~ and the value x of a further random item from 
the populat ion;  the sampling distribution of which is independent of unknown population 
parameters. In the case where such a statistic can be found, its sampling distribution leads 
immediately to the determination of the required test factor. 
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T A B L E  1 

Test Factors for v = 0 . 0 3  

I 
P n = l  n = 2  n = 3  n- - - -5  n = c o  

1 i n  10 
1 in 30 
1 in 100 
1 in 300 
1 in 1,000 
1 in 3,000 
1 in 10,000 

1.056 
1.081 
1. 104 
1. 122 
1.141 
1. 156 
1. 172 

1. 049 
1. 071 
1. 091 
1. 107 
1. 123 
1. 137 
1.151 

1.046 
1.067 
1.086 
1.101 
1. 117 
1. 130 
1. 143 

1.044 
1.063 
1. 082 
1- 096 
1.111 
1. 123 
1. 136 

1.040 
1.058 
1.075 
1.089 
1- 102 
1.114 
1. 126 

T A B L E  2 

Test Factors for v ---- 0 . 0 5  

P n = l  n = 2  n = 3  n = 5  n = c o  

1 in 10 
1 in 30 
1 in 100 
1 in 300 
1 in 1,000 
1 in 3,000 
1 in 10,000 

1.095 
1.139 
1. 180 
1.213 
1-.247 
1.276 
1.306 

1. 083 
1. 122 
1. 158 
1. 187 
1.218 
1.243 
1. 270 

1.078 
1.115 
1.150 
1. 178 
1.207 
1.231 
1.257 

1.075 
1.110 
1. 143 
1. 170 
1. 198 
1.221 
1.246 

1.068 
1.101 
1.132 
1.157 
1. 183 
1.205 
1.228 

T A B L E  3 

Test Factors for v ~ 0: 07 

P n = l  n = 2  n ~ - - 3  n- - - -5  n----co 

1 in 10 
1 in 30 
1 in 100 
1 in 300 
1 in 1,000 
1 in 3,000 
1 in 10,000 

136 
201 
262 
314 
366 
412 

-461 

1. 119 
1- 176 
1-231 
1"277 
1 "325 
1" 367 
1 "411 

1" 112 
1" 167 
l" 220 
1" 264 
1 "310 
1" 350 
1" 392 

1" 107 
1. 160 
1 "210 
1 "253 
1"297 
1" 335 
1- 377 

1" 099 
1" 147 
1" 195 
1" 234 
1" 276 
1 '313 
1"352 
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TABLE 4 

Test  Factors for  v ---- O. 10 

P n =  1 n----2 n : 3  n = 5  n----co 

1 in 10 
1 in 30 
1 in 100 
1 in 300 
1 in 1,000 
1 in 3,000 
1 in 10,000 

1.200 
1.301 
1.400 
1.486 
1.577 
1' 659 
1.749 

1. 176 
1.266 
1.356 
1.434 
1.517 
1. 593 
1.677 

1.167 
1.253 
1.339 
1.415 
1.495 
1.569 
1.650 

1. 159 
1.242 
1.325 
1.398 
1.477 
1.548 
1"628 

1. 147 
1" 225 
1.303 
1.372 
1-. 447 
1"516 
1.592 

TABLE 5 

Test  Factors for  v = O. 20 

P n = . l  n----2 - n----3 n----5 n----co 

1 in 10 
1 in 30 
1 in 100 
1 in 300 
1 in 1,000 
1 in 3,000 
1 in 10,000 

1.452 
1.734 
2.069 
2.422 
2.890 
3.435 
4.241 

1.403 
1.663 
1.977 
2.312 
2.762 
3.291 
4.080 

1.385 
1.637 
1.943 
2.272 
2.716 
3.240 
4.023 

1.369 
1.614 
1.915 
2.239 
2. 678 
3. 197 
3.976 

1.345 
1. 579 
1.870 
2. 186 
2.618 
3.131 
3.903 
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FIG. 1. T e s t  f ac to r s  for  v ---- 0 .03 .  
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FIG. 4. T e s t  f ac to r s  for  v = 0 .10 .  
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FIG. 6. Test factor required to give: 

(i) 90 per cent items greater than design strength ; 

(ii) 99.9 per cent items greater than 90 per cent of design strength. 
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' FIG. 7. Test  f£ctor required to give : 

(i) 90 per  cent i tems greater  than  design s t rength ; 

(ii) 99.9  per  cent i tems greater  than  80 per cent. of design strength.  
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