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Summary.--It has been suggested in some American investigations that  differential gearing, combined with adjust- 
ment of the aileron floating angle by  means of a tab, may  be a powerful method of balancing ailerons. This report sets 
out the theory of this method of balance and analyses i t  in relation to the most pressing problem of aileron design, 
which is to obtain close balance at high speed without overbalance in any part  of the range, or uncomfortable lightness 
at slow speed. I t  is shown that  this result can be achieved more directly by  differential balance than by  any other 
method if the differential and the tab setting are nicely adjusted to the natural  floating properties of the aileron. Thus 
if the aileron tends to float up as incidence increases, a differential giving more downward than upward movement 
must be used, and this must be combined w i t h  an upward-set tab ; while if the aileron tends to float down as the 
incidence increases, a differential giving more upward than downward movement must be used, combined with a down- 
set tab. After examining the possible disadvantages of the downward differential, and the loads se t  up by the tab, 
it is concluded that  there is a strong case for exploration in flight of differential gearing as a major means of aileron 
bMance. 

Some notes on the geometry of differential gearing are given in an Appendix. 

1. I n t r o d u c t i o n . - - I n  the past, .when ailerons have been m o v e d  differentially, it has always 
been with the object rather of improving the rolling moments than of lightening the stick force. 

-The potentiali ty of differential gearing as a major means of aileion balance has been broached 
in two American reports 1, ", but the theory of this method is probably still unfamiliar to many 
designers in this country, I t  may be profitable, therefore, to make a rather more extended 
analysis of the subject, relating it particularly to the central problem of aileron design, which 
is to make the ailerolf l ight  enough a t  very high speed, while avoiding overbalaI~ce in any part  
of the range and retaining sufficient feel at low speed. There seems to be much promise in the 
development of differelltial balance, but  only if the designer realises its power and its limitations 
in relation to other balancing methods at his disposal, and designs his gear deliberately to fit 
the hinge-moment characteristics of the aileron he is seeking to balance. 

2. D e f i n i t i o n  o f  D i f f e r e n t i a l  G e a r i n g . - - A  sketch of a method of analysis which seems simpler 
and more illuminating than the American discussion has been given in Appendix I of Ref.7 3, 
and will now be developed in more detail. Instead of working with C,, ~d, defined respectively 
as the settings of the up-and-down aileron, each being regarded as positive, it  seems clearer to  
base the analysis on two quantities, ,,  , defined as 

.. 1) • • . • • . . • * 

so that  *~-----~+ e a n d  ~ =  8 ' ' 8 .  ' " 

* R.A°E. Report.No. B.A. 164g--received 18th Januaw,  1941. 
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With  these definitions the  ailerons can be regarded as moving through q- ~ from the  common 
set t ing e. ~ will be called the  displacement of the system and e the  eccentricity. So long as the  
set t ing of ei ther aileron does not  exceed the angular range in which the rol l ing-moment  coefficient 
C~ is proport ional  to aileron setting, the displacement  ~ fixes C~ whatever  the  differential. Under  
this assumption ~ is therefore the  basic variable for assessing the balancing power of differential, 
since it concentrates  on the  magni tude  of the  force to produce a given roiling moment .  

A differential gear is specified when ~,, and e or al ternat ively ~ and e, are given as functions 
of x, the  m o v e m e n t  of the  pilot 's hand  from the central  position. A typical  sketch is given in 
Fig. 1. I t  should be realised at the outset  tha t  the essence of a differential gear, and the proper ty  
by  vir tue of which it provides balance, is tha t  the eccentricity ~ should vary as the stick goes over. 
In  an ordinary non-differential  gear e is zero, and when this is worked from a rigged up or down 
posit ion e is constant.  I t  is only when e varies with x or ~ that  a t rue differential is obtained 
and the possibility of balance arises. 

The amount  of differential D is usually taken to be the  ratio of ~,, to ~ at full movement .  
The common usage will be re ta ined here in spite of its failure to define the differential in any 
strict sense, and using the  suffix max. to denote  full movement ,  we have 

Thus for an upward  differential (~,, > ~d), D is greater  than  1 and e and de/a# are positive, and 
for a downward  differential D is less than  1 and e and de/d# are negative. The spurious case of 
non-differential  from a non-central  position (e constant) should be excluded from this detmition. 

3. A~alysis of Pilot's Force.--The equat ion of vir tual  work is 

Pdx -+- { C m d d*~ + CH, .,, L-- d ~,,) } -,}S,. c~ q -= 0 ,  

where P 
S~ 
c6 

CH,,, , C~, d 

pilot 's force ill the  direction of displacement,  
total  aileron area, 
aileron chord, 
respectively the  h inge-moment  coefficients of 

ailei0ns, referred to the  area of one aileron, 
the  up and downgoing 

q - -  ½pl?-~ 

Rearranging in terms of x and ~ we have 

(3) 
S~ c~ q dx k, 2 2 d~ / 

Assume now tha t  the h inge-moment  coefficient of one aileron is linear in local incidence and 
aileron displacement,  so tha t  

C~ -- b0 + bl (mean aileron incidence) + b~ (aileron displacelnent)*. 

Assume also tha t  response in roll due to the  mean  displacement  # is proport ional  to ~, so tha t  
the  mean  incidence is increased by n ,  at  the upgoing aileron and decreased by  n~ at the downgoing 
aileron. I t  follows tha t  if ~ is the  incidence before the control is applied, the downgoing aileron 
has mean  incidence ~ --  n~ and displacement  ~ -- e, while the  upgoing aileron has mean  incidence 

+ n# and displacement  --  (,  + e). We therefore have  

= b0 + bl + - + 

* No a t tempt  is made to discuss aileron types, such as the Frise whose hinge moments are far from tinea/. 
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so that  C ~ , ,  - -  CH, ~ --_ (nb~ - -  b~) 
2 

and C~, ~ + C,, ~ _ b0 + b ~ - -  b~e . 
2 

The discussion of response in Ref. 3 leads to a response factor 

K =  1 - - n  b~ 

and so we have 

CH, ~ - -  CH, d _ _ Kb2~ . . . . . . . . . . . . . . .  (4) 
2 

Again, if ~I is the floating angle of the aileron at incidence ~, measured positive when upward, 
we have 

b0 + b1~ = b2 ~I, . . . . . . . . . . . . . . . . . .  (5) 

and so C~, ~ + CH, ~ -_:- b2 (~I -- ~) . . . . . . . . . . . . . . . . .  (6) 
2 

Substituting in (3) from (4) and (5) we have finally 

S~c~q ~ ~ ~ ' "" "" 

and in order tha t  thecont ro l  may never be overbalanced we must have 

dp > 0 . . . . . . . . . . . . . . . . .  (s) 
d x  

4. P r e l i m i n a r y  D i s c u s s i o n . - - E q u a t i o n  (7) is the fundamental  expression for pilot's force. 
The aerodynamics of the control is represented by the quantities b~, K and ~I, the geometry of 
the gearing by $, , and x ,  and it is the designer's problem to adjust the geometry .t° the. aero- 
dynamics of the control so that  the force to provide a given rolling-moment coefficient is small 
enough at high speed without being too small at low speed. An analysis of the geometry of a 
simple form of differential gearing is given in the Appendix. I t  is clear from (7) that  differential 
provides balance in virtue of the term (~I - -  s) d e / d $ .  Now in all prac-tical Cases the eccentricity 
e will increase steadily, either upward or downward, as the control goes over, tha t  is, , and d e / d $  
will have the same sign. Hence to make the differential effective as a balance the floating angle 
$I must be arranged to exceed e numerically throughout the range. Thus with upward differential 
a large up floating angle, and with downward differential a large downfl0ating angle, is required 
to produce an effective balance. The Americans 1' ~ have pointed out that  a fixed tab gives a 
simple and effective means of providing a n y  floating angle t h a t  is required. I t  must be noted, 
however, tha t  the floating angle ~I has in general an important  variation with the incidence c~, 
since 

~I----- b0 bl 

The tab is available for the adjustment of b0, but  as will be seen later, the part  o2 ~i represented 
by (bl/b2)~ must be carefully considered in designing a differential for satisfactory operation 
over the whole of the incidence range. 

One other general conclusion from equation (7) may be mentioned There will be a general 
tendency for a differential to give most balance for small movements of the control, since ~i -- e 
decreases as the control goes over and will not be compensated by an equal increase in d~ /d~  
unless the gear is specially designed to provide this. 

3 
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5. Basis of Comparison with t¢o Differential .--Before discussing the matter  further, a basis of 
comparison with the case of no differential must be decided. Referring to Fig. 3 let us consider 
more closely what the designer's problem actually is. He makes the best use of cockpit space to 
get a large stick movement,  so that x .... may be regarded as fixed. He then chooses a range of 
aileron displacement + ~ .... which gives what he considers to be a satisfactory maximum rolling- 
moment  coefficient with a linea) non-differential gear, represented by the straight line OP. The 
question at issue is, how much can he lighten the control by using a differential while retaining 
the same aileron power ? If the differential is restricted to the l inear  rolling-moment range, 
the condition is that  ~ ..... must remain the same, and so in Fig. 1 we compare the non-differential 
gear represented by the straight line OP with the differential gear represented by the curves 
OP and OQ. This seems the fairest basis of comparison, admitting of course that  if the differential 
is extreme there will be some loss of power due to breakdown in linearity. Equation (7) can now 
be modified to express this line of argument. The non-differential gearing 11¢ or ~max./X ..... is the 
mean value of d~/dx, and writing 

d~ 
dx --  #m , 

equation (7) can be conveniently rearranged in the form 

mKb  - -  . . . . . . . . . . .  ' (9)  

F is a function of ~ and c~ which is equal to -- ~ when there is no differential. The factor #, 
although introduced by the differential, is not a true differential effect since it would be produced 
by a non-differential gear represented by the curve OP. The characteristic differential effect is 

represented solely by the factor 1 -- ~f --  ~ d__e The pilot's force P is obtained from F by 
mul.tiPlying it by mKb~S, c~ q. K~ d~" 

There is another basis of comparison which may be made when the designer finds that  he has 
some aileron power in hand and can sacrifice some of this to lighten his control. He therefore 
uses a differential which reduces the downward movement while retaining the maximum upward 
movement.  This is illustrated in Fig. 2, where the no-differential (straight line OP) is to be 
compared with the differential curves OP',  OQ. Here, quite apart from the true effect of the 
differential, the loss of power represented by PP '  appears as a gain in lightness represented by 
the angle POP' ;  it could of course be produced by merely reducing the range and retaining 
equal up and down movement (straight line OP'). The equation for this comparison is 

F = -- # ~ . \  -- . . . . . . . . . . .  (10) 

6. _Form of Differential to give Constant Balance . - - In  general the variation of force with dis- 
placement under a differential will not be linear, but the conditions for linearity are of some 
interest. If the differential is to multiply the force at any displacement ,~ by the Constant factor 
k, t h e  general condition is from (9), 

, ~ ( 1 - - ~ : - - ~ d ~ ) = k  
K~ 

and if the displacement remains linear with stick movement (~ = 1), the equation for the eccen- 
tricity becomes 

1 8:-- ed~_]~. 
K¢ d~ 

Integrating this under the condition that e and ~ vanish together, we have 

)' 
K ( 1  - 1 = 1 . . . . . . . . . . . .  
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This elliptic variation of e with ~ is plotted in Fig. 3 for various values of K(1 -- k). Complete 
balance is obtained when k = 0, and so the number attached to any curve is the value of the 
response factor K for which there is complete balance with that  form of the eccentricity. For 
instance, if the response factor is 0.6, any curve to the right of 0 .6  will give less than complete 
balance; and any curve to the left will give overbalance. 

With K ---- 1 the eccentricity curve for complete balance is an arc of a circle. This h a s b e e n  
further analysed in Fig. 4, where curves of e/~ma~, against */~max. are plotted for various values of 
~s/~ ..... the condition being complete balance with K = 1 and d~/dx is constant ; all these curves 
are circular arcs. The point to notice here is that  it is aerodynamically possible to get complete 
balance by differential without using an impossibly large tab. I t  appears from Fig. 20 (reproduced 
from Fig. 19 of Ref. 4) that  a floating angle of at least 20 deg. can be obtained with a tab whose 
chord does not exceed 20 per cent. of the aileron chord and whose angle does not exceed 15 deg. 
Taking ~s = 20 deg. and a maximum displacement ~ .... of 16 deg. we have the curve labelled 1.25 
of Fig. 4. This differential gearing has been drawn in more detail in Fig. 5, and is aerodynamically 
quite feasible. I t  represents about the lowest eccentricity which can be used in practice to give 
complete balance. Higher eccentricity, combined with a smaller tab, would give the same result, 
the limit occurring when the floating angle is equal to the maximum displacement. 

I t  should be  noticed that  if ~s varies with incidence, complete balance can only be obtained 
at one point of the incidence range. 

7. Parabolic Differe~,tial.--In several actual examples of differential gear which have been 
examined, the displacement ~ varies linearly with the stick movement x and tl~e eccentricity 
s varies as the square of the displacement ~.* This typical parabolic gear is useful as a basis for 
further discussion. In this case we have 

d ~  -~ 
, ~ -  1, d ~ - - a t ,  e = 1 2 ~ = , D - -  

1 --F 2 f f  . . . .  

1 - - ~  ..... 

and so equation (9) becomes 

Since d~ - - - -  1 - - ~ s  . + ~ Z 2 ~  , 

the balance decreases as the displacement increases, and the condition for stabili ty is 

1 - - ~ - ~ s  > 0 ,  

complete balance being obtained at ~ - - 0  when 

K 
Cj- ~ .  . . . . . . . . . . . . . . . . . .  (13) 

As illustrations of the kind of force reduction which can be obtained with various amounts of 
differential combined with various floating angles, two cases have been worked out for parabolic 
gears, assuming that K = I, i.e., that the differential balance is independent of incidence : 

(I) Parabolic gears with the same maximum displacement, ~ ...... = 16 deg. 
(2) Parabolic gears with the same maximum upward movement ~ ...... = 20 deg. 

These illustrate respectively the two bases of comparison discussed in section 5. 

* See for instance the gears tried ill flight in Ref. 2. It  is shown in tile Appendix that this gearing is obtained when 
tile stick crank is eccentric and the aileron crank central in the neutral position. 

5 
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(1) Parabolic Gears with Same Maximum Di@lacement, ~ . . . .  = 16 def.--The gearings as 
developed from the black line representing no differential are shown for a range of D in Fig. 6, 
and the force function F is plotted against ~ for three floating angles (0, 10, and 20 def.) in 
Fig. 7. In Fig. 7 the black line at 45 deg. represents no differential, and overbalance occurs as 
soon as the slope at the origin becomes positive. The diagram shows the marked increase of 
curvature at a given floating angle as the differential increases, and indicates clearly that  with this 
form of gear it pays to use a moderate eccentricity combined with a large foat ing angle, rather 
than a large eccentricity combined with a moderate floating angle, if the object is to get a large 
reduction of force over the whole range of displacement. This is seen for example by comparing 
the curves for D ---- 2, ~s = 20, and D = 6, ~s = 10. These give roughly the same force up to 

---- 5 deg., but at maximum displacement the force with the small  differential is still compara- 
t ively small, while with the large differential it is actually greater than with no differential, 
since the eccentricity has exceeded the floating angle. 

Figs. 6 and 7 are drawn for upward differentials (C, > ~) but they apply unchanged for down- 
ward differential if C, and ~ are interchanged, ~ and ~s are changed in sign, and D is inverted. 
This remark applies also to Figs. 8 and 9 (see below). 

(2) Parabolic Gears with the Same Maximum Upward Movement, ~ ......... = 20 deg.--The gearings, 
as developed from the black lille representing no differential, are shown for a range of D in Fig. 8, 
and the force function F is plotted against ~ for the floating angle in Fig. 9. 

In Case (1) above all the systems had the same maximum power. In this case the decrease in 
~m~. as the differential increases represents a deliberate loss of power, which is reflected by a 
reduction in force quite independent of the true differential balance. The loss in power is shown 
in Fig. 9, and the corresponding reduction in force is represented by the broken line. 

8. Choice of D~fferential and Tab Setting when the Floating Angle Varies with Incidence.--The 
preceding discussion has assumed tha t  the floating angle is independent of incidence. We have 
now to discuss the crucial problem of differential balance, which is how best to make it effective 
over the incidence range between diving and landing when the floating angle varies with incidence. 
Let the upttoating angle in the dive (i.e. near e = 0) be 2s0 and let the increase in upfloating angle 
at landing (i.e. near ~ = 15 deg.) be A, so that  the extreme values of the floating angle are 
~) = ~s0 and ~i = ~s0 + A. The corresponding values of the force!unction F are, for a parabolic 
differential, 

F o = - -  ~ 1 - -  ~ ~io-- ~2 in the dive 
. . . .  }(14) 

f 2 f ~" 2 
and FA = - - ~  l l  ---~-k,~,o + A - - - ~  ]~ at landing 

The designer's problem may be put as follows. The sign and magnitude of /x is fixed by the 
type of aileron he has chosen. & will be positive or negative according as the aileron is convergent 
or divergent (i.e. according as bl/b~ is positive or negative)*, and since the range of bl/b~ may 
well be + 1 and the incidence range is of the order 15 deg., the range 0f /x to be considered is 
of the order ~ 15 deg. The designer has to arrange the sign of his differential (Z' is + or -- 
according as the differential is upward or downward) and the value of ~s 0 (controlled by tab size 
and setting) to give, with the A with which he is working, the best distribution of balance over 
the incidence range. The best balance distribution is governed by the following considerations" 

(1) F0 should be as small as possible. 
(2) F a  should be numerically considerably greater than F0 if sufficient feel is to be retained 

at slow speed, for the speed-squared factor between diving and landing is at least 20. 
(3) Overbalance must be avoided in any part of the range. With a parabolic differential this 

means that  dFo/d~ and dFA/d~ must both be < 0 when ~ = 0, whatever the incidence. 
That  is, ~s must not exceed K/Z numerically (see equation (13)). 

* An aileron is convergent or divergent according as it tends to float upwards or downwards when the incidence is 
increased. I t  is null when the floating angle is not affected by  incidence. 
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We can now see in diagrammatic form the solution of the problem. 

, ¢ o . /  

~ , /  4 \~~\ \ \ \ \ \ \ \~  Convergent Aileron 

,/ 
~ ~ " - , ~  AQ = QB = K/~ 

. ° / ~ i  ° l  , ~ . \ \ \ \ ~ - x ~ x _ ~ \ \ \ l  AP -~ XQ = Q y  _ K2 A 

low speed 
high speed 

. / 

Suppose that  a convergent aileron (A positive) is to be balanced by a differential 2 which may  
be of either sign. If the floating angle is zero at the high speed limit, the range of floating angles 
is represented by the sector OPQ, where PQ = / x .  Now the floating angle for complete balance 
is K/~. ; this is represented by OA when the differential is upward, and by OB when it is downward. 
Adjustment of the floating angle ~s0 by means of a tab is represented by rotation of the sector 
OPQ within the limiting sector OAB. Thus if upward differential is used, the most that  can be 
done through the adjustment is to rotate O P Q  to the position OAX through the small upward 
floating angle AP, thus reaching complete balance at slow speed (OA) and XQ/AQ of complete 
balance at  high speed (OX)*. T, his is the opposite of what is wanted. If, however, downward 
differential is used, tab adjustrrfer~:~ can rotate OPQ to the position OYB through the large negative 
floating angle QB, thus reaching complete balance at high speed (OB), and QY/QB of complete 
balance at low speed (OY). This is what is wanted. 

The condition for balancing a divergent aileron (A negative) being exactly the opposite of 
the above, we are led £o the following general rule: 

To obtain good balance by differential, a downward differential, combined with an upward- 
set tab, must be used to balance a convergent aileron, and an upward differential, combined 
with a down-set tab, must be used to balance a divergent aileron. If the aileron is null 
(A ---- 0), differential of either sign may be used, but in this case the balance is invariable 
over the speed range. 

This discussion establishes one favourable factor which seems to be peculiar to differential 
balance, namely, that  the convergence or divergence of the aileron can be used to make the 
hinge-moment coefficient progressively heavier as the speed falls, and so the speed-squared law 
can to some extent be defeated. 

The above argument has been illustrated in Figs. 11 to 15 by working out the force functions 
F0 and F a  for the parabolic g.earing 2 ---- i 0.05 (Fig. 10) when it is used to balance 

(a) a convergent aileron, b~/b~ = 1, A -----15 deg. (Figs. 11 a n d  12), 
and (b) a divergent aileron, b~/b2 = --  1, A -- --  15 deg. (Figs. 14 and 15). 

1 
The value of K is taken to be 1 --  3 b~/b2. 

To round off the argument, results for a mill aileron (A ---- 0) are shown in Fig. 13. 

* T h e  a rgumen t . i s  of course  l imi t ed  to ~ ----- 0 ; ba lance  decreases  as ~ increases  

7 



Fig. 16 shows the force functions when these parabolic gears are combined w i t h  the various 
ailerons to give the best possible results, that  is, when ~j 0 is arranged so that  in each case there 
is complete balance, when ~ = 0, at one extreme of the incidence range. 

9. Design4 Co74ditio~s for Optimum74 Balance by-Differential with Fixed Tab.--It will now be clear 
that  if differential gear is to be used as a major means of aileron balance, its design is bound to run 
counter to accepted practice, which is to balance mainly by other means and to use all upward 
differential to improve the aileron rolling and yawing moments at large displacements and high 
incidence ; as no more than the natural  floating angle is used, the differential balance at high speed 
is feeble and may be of either sign. Now i t  is highly probable that  an unbalanced aileron will be 
markedly convergent, and can only be made divergent when it is aerodynamically in close balance. 
Hence if the designer decides to balance such an aileron by differential, he is virtually committed 
to a downgoing differential in combination with an upward-set tab. He will enter on the credit 
side of his design account : - -  

(1) A direct at tack on his main objective--fine balance at small displacements at high speed, 
coarse balance at large displacements at low speed--which is very difficult to at tain 
by any other means. 

(2) Suppression of most of the serious troubles arising from lack of hinge-moment linearity 
m common types of nose balance, such as the Frise. 

On the debit side of his account there will appear : - -  

(3) Some loss of rolling moment and increase in adverse yawing moment due to the sign of 
the differential. 

(4) Increases in load in the control system, in pitching moment and in drag, due to the tab. 

As regards (3) a very rough idea of the losses involved in a downward differential is given in 
Figs. 17 to 19, which show the variations in rolling and yawing moment coefficients (wind axes) 
when the differentials of Fig. 6 are applied to results for plain'ailerons on rectangular wings 
given in Table 2 of Ref. 5. The loss in rolling moment is due to the earlier breakdown in flow 
over the downgoing aileron. This can be retrievect to some extent by the use of a slot. The 
increase in adverse yawing moment is due partly to increase in profile drag of the downgoing 
aileron and part ly to increased induced drag moment ; the former, but not the latter, is recover- 
able with a slotted aileron. Lacking full-scale evidence, it is impossible to say how serious the 
adverse yaw effect is likely to be, but the fact that  opposing moments from rudder power a n d  
weathercock stabili ty are }3oth much greater now than formerly is a strongly mitigating factor. 
Certainly the ill effects of adverse yaw are much less noticeable now than they used to be, and 
the possibility of trouble from this source should not act as a deterrent to exploration of the full 
potentialities of differential balance. 

As regards (4), the loads due to the tab, let O$s be the increment in floating angle which it 
provides. Then the neutral load in the control circuit is simply that  due to a hinge-moment 
coefficient b~ ~ ~i- Again it appears from the multi-flap theory of R. & M. 1 171 6 that  the corre- 
sponding increment in pitching moment  coefficient about the quarter-chord point is roughly 
represented by 

bC,~o = O" 1 ~ Sf 
over the part  of the wing covered by the tab, the angle being measured in radians. Thus if the 
tab increases the downfloating angle by 20 deg., it produces a local increase of CM0 of about 0.03 
and an average increase of CM0 over the whole wing of about 0.01. 

10. Upward Differential to Balance Co74verge74t Ailero74s. The necessity of using downward 
differential for close balance of convergent ailerons arises only if the differential tab is fixed. 
Upward differential can be used in association with a tab which is arranged to move downwards 
as the incidence decreases. This could be achieved by way of the fore-and-aft stability by arranging 
a suitable gearing between the differential tab and the fore=and-aft movement of the stick. 
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Apart from a tendency to give less balance in a turn than in straight flight at the same incidence, 
this should be aerodynamically quite satisfactory. There is, however, no need to face the 
mechanical complication of this scheme until it has been proved in flight that downward differ- 
ential has serious drawbacks. 

11. Conclusions.--(1) The essence of balance by differential is that  the eccentricity e varies 
with the displacement ~, and that the naturally small floating angle near no-lift is augmented 
by a tab so that  i t  exceeds e numerically over the range of ~. It is theoretically possible to 
design the gear so that  the hinge moment remains linear with displacement, but with the simple 
crank system in common use the heaviness increases with the displacement. 

(2) The main i~bject of current aileron design is to get the balance as close as possible for small 
displacements at low incidence while retaining coarser balance for large displacements at high 
incidence, thus defeating the speed-squared law as far as may be. If the aileron is convergent 
this can be arranged by using a downward differential with an upward-set tab ; and if divergent, 
by an upward differential with a down-set tab: If the aileron is null either differential system 
may be used, but in this case the balance will be invariable with incidence. 

(3) There is a strong case for exploring in flight the possibilities of balancing an initially un- 
balanced aileron by differential action alone. T h e  downward differential may have some un- 
favourable effects on rolling and yawing moment at slow speed; this can only be determined by 
full-scale work. Close balance can probably be obtained by using a fairly small tab set at an angle 
not exceeding 20 deg. ; the loads introduced b y t h e  tab are not prohibitive. 

(4) If downward differential should prove to have serious effects on aileron control, there 
remains the possibility of balancing convergent ailerons by upward differential combined with 
a tab geared to the fore-and-aft movement of  the s t i ck .  

Notation 
~u 
~d 

P 

X 

S, 

c~ 

. C~, , ,  C,~,~ 

C~ 

K 

up aileron angle. 

down . aileron angle. 

= 2 ' displacement" 

2 , eccentricity. 

~,,/~d at maximum displacement. 

pilot's force in direction of movement of stick. 

movement  of pilot's hand.  

total aileron area. 

aileron mean chord. 

hinge-moment coefficients of the up and downgoing ailerons, referred to 
the area of one aileron. 

--b0 + bl (mean aileron incidence) -}- b~ (aileron displacement). 

response factor = 1 -- n ~ n is taken as 3 . 

P 
-- S~c,q 

gearing between stick and aileron in radians per foot when there is no 
differential, = $ .... /x ... .  

9 



1 d~ 
# - -  

m dx " 

F P P force function. 
mKb~ -- mKb~S, c~ q ' 

k factor by which the force at any displacement is multiplied by the 
differential gear. 

de 
d~ -- 2~ for parabolic gear. 

~s floating angle, positive when upward. 
*Io floating angle at minimum incidence. 
A increase in floating angle between minimum and maximum incidence. 

~ i  increment in floating angle provided by tab. 

F0 force function at minimum incidence. 
F A force function at maximum incidence. 

APPENDIX 
Geometry of Differential Gear 

Differential gearing as used at present consists essentiall3¢ of a stick crank and an aileron crank, 
which may be of different radii, one or both of which are set eccentrically in the neutral position. 
Actually of course the control system must make a right-angle turn between stick and aileron, 
but  the general features of the system will be obtained by confining the geometry to two dimen- 
sions, and in the comfnon case when the crank radii are small compared with the distance between 
their centres, the approximation is probably fairly close. 

Taking the distance between the crank centres as the unit of length, the neutral position of the 
system is defined by 

x, y 
and 0o, ~0 

down-aileron movement 4'. 
shown below : ~  

the radii respectively of stick and aileron crank, 
the angular settings of the. crank, as shown below. 

STICK i AILERON 
CRANK CRANK 

Neutral Position. 

When the stick is displaced through an angle 0, let the up-aileron movement be $ and tile 
Then the displaced position for the up-aileron movement will be as 

x y 

/0 0o k /+++o 'I 
I 

Displaced Position. 

!0 



C o n s i d e r i n g  a s ma l l  c h a n g e  dO, de  f r o m  th i s  d i sp l aced  pos i t i on  we h a v e  

x d O . c o s  ~ - - ( 0  + 0 o )  + ~  - - - -ya le . cos  ~ (6 + ¢ o )  + ~ , 

de x 
or dO - -  y 

where  ~can ~ = 
1 

a n d  so, e l i m i n a t i n g  4, we  

de x 

s i n ( 0  + 0 o - -  ~) 
s i n ( ¢ + ¢ o - ~ ) '  " . . . . .  

y s i n ( ¢ + ¢ o ) - - x s i n ( 0 + 0 o )  
- x cos (o + Oo) + y cos (¢ + ¢o)' 

h a v e  

S in (0  + 0o) + y s i n ( 0 o - - ¢ o + 0 - - ¢ )  
d - O = ~ "  s i n ( ¢ + ¢ o )  + x s i n ( O o - - ¢ o + O - - ¢ ) "  

I f  0 a n d  ¢ are s m a l  L th i s  can  be  e x p a n d e d  in t he  f o r m  

de 
d~ = ao + a~O + a~¢ , . . . . . .  

where 
sin 0o - -  y s in (¢o - -  0o) . x x p  

ao = sin ¢o - -  x s in (¢o - -  0o) y y q  

az sin 4o {cos 0o - -  x + y cos (¢o - -  0o)} s sin ¢o 
ao - -  (sin 0o - -  y sin (¢o - -  0o)} (sin ¢o - -  x s in (6o - -  0o)}-- p q  ' 

a~ - -  sin 00 (cos 6o + Y - -  x cos (¢o - -  0o)} - -  r sin 0o 
- - ( s i n O o - - y s i n ( ' ¢ o - - O o ) } { s i n ¢ o - - X s i n ( ¢ o - - O o ) } - -  p q  do 

a n d  p ,  q, r, s are as s h o w n  be low : - -  

T h u s  al ----- 0 if 

I f  in a d d i t i o n  x 

/ \  

/ \ 
/ \ 

! 

= ~/2 ,  a n d  a~ - -  0 if /3 = ~/2. 

a n d  y also are sma l l  we h a v e  f r o m  (2) 

d¢ x s in  (0 + 0o) 
dO y sin (¢ ~7 ¢o)" 

x sin Oo 
a 0 - -  y sin ¢o '  

- -  co t  0o , 
ao  

a~  
- -  - -  co t  ¢o.  

do 

11 
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In this case a~ = 0 if O0 ---- =/2 and a= = 0 if 60 = ~/2. 
Similarly, if ¢ '  is the movement of the downward aileron corresponding to the stick movement 

0 we have 

de'  
d o  - a o  - m o  - a 2 ¢ '  . . . . . . . . . . . . . . .  (5) 

It follows now from (3) and (5), by writing 

¢ + ¢ '  ¢ - ¢ ,  
~-- 2 , s-- 2 

(as in tile main analysis), that 

d~ 
dO - -  ao/+ a2~ 
d 8  

dO - -  a10 + a2~ 

These are equivalent t o  

d~ 
dO2 - -  as~ = a~a20 , 
d28 

dOS - -  a22e ~ a 1 - ~  aoa  2 , :~-, 

and so they may be integrated i n  the form 

~=s --= (ao(a~~ +_k a~'12)a~) sinh(cosha20a20 ----a--lOa21) "I ~':" ' (7) 

Slbecial Cases.--(a) If al = 0 we have  

a0 sinh a20 ~=a-~ 

s0 (cosh a 2 o  - 1) 

Thus the variation of s with ~ is hyperbolic. 

If x, y are small, we have in this case 0o ---- ~/2 and a2/ao = -- cot ¢0. 

Hence the eccentricity E is positive or negative (i.e. ¢ is greater or less than ¢') according as 
¢0 is greater or less than s/2. The differential depends only on ¢0 and is independent of x/y. 

(b) If as = 0 we have from (6) 

= aoO , 

Bi 2 2 
Thus s -- ~° 2 2 

s = ½ a , O  2 . 

and the variation of s with ~'is parabolic. 

12 



This is the case which has been used for i l lustrat ion ill the  ae rodynamic  analysis. 

If x and y are small we have  ¢o = ~/2 

~ y cos  O o 
and  --~0 ~ = x sin 2 00  " 

Thus  the eccentr ic i ty  ~ is posit ive or negat ive according as 00 is less than  Or grea ter  than ~r/2, 
and is increased by  mak ing  the  aileron crank larger t han  the  st ick crank. 
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