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Summayry.—A numerical method is given for calculating the lifting forces on oscillating wings of any plan-form. The
principles and techniques of Multhopp’s subsonic theory have been applied to the supersonic problem resulting in a
single basic theory which embraces both subsonic and supersonic cases.

One of the most important features of the method is the careful choice of the points at which the lift and downwash
distributions are measured. The position of these points in the chordwise direction depend upon whether the local
leading and trailing edges are subsonic or supersonic. '

Extensive use has been made of various interpolation functions which simplify the evaluation of the integrals required
for both the downwash and the generalised forces. In the latter case it is shown that the continuous lift distribution
can be replaced without loss of accuracy by a set of concentrated lift forces at the lift points. The lift distribution is
expressed in terms of these discrete forces since for most purposes they are more convenient to use.

It is shown that control surfaces can be dealt with by using equivalent continuous deflections and downwash angles
to replace the true discontinuous values. Simple expressions are given for these equivalent values, and these expressions
are applicable to both subsonic and supersonic cases.

1. Introduction.—The problem of calculating the lift distribution on wings of finite span in both
steady and unsteady motion has been the subject of many investigations. For wings travelling
at supersonic speeds attention has been chiefly concentrated upon obtaining exact solutions
(within the limitations of linearised potential flow) for certain simple plan-forms and downwash
distributions. This exact approach, however, is unsuitable for dealing with complicated plan-
forms and downwash distributions since it becomes extremely cumbersome.

Numerical methods have been used for investigations of the subsonic problem, and in particular
Multhopp’s lifting-surface theory (Ref. 1) and its developments (Refs. 2, 3, 4 and 5) have been
very successful. In the present report the principles and techniques of Multhopp’s subsonic
theory have been applied to the supersonic problem, resulting in a single basic theory which
embraces both subsonic and supersonic cases.

2. The Integral Equation.—The first problem is to find the integral equation which gives the
downwash angle on the wing surface in terms of the lift distribution.

Consider a small element of wing with area éx dy at the point (x, y) and let this element have
a pressure difference 4p(x, v, #) between its upper and lower surfaces for a short time interval é¢
at time ¢ This lift can be considered as due to a line vortex of strength I'(x, ¥, #) travelling with
the element of wing at speed V. The strength of this vortex is found by equating the lift due to
a moving vortex with the lift on the wing element.

Ap(x, v, 8) 6x 6y = pVI(x,y,8) 8y . .. . . .. . (1)

* Fairey Aviation Company Tech. Office Report 165, received 27th August, 1956.
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Since the lift exists for a short time ¢ only, a s‘tarting vortex of equal and opposite strength is
left in the wake at a distance V8¢ behind the bound vortex, and these two vortices are connected

by trailing vortices at the tips of the wing element. Thus a closed vortex loop is formed
surrounding an area Véféy (see Fig. 1).

This vortex ring is identical to a doublet of strength equal to the product of the vortex strength
and the area of the ring. The strength (%, y,?) of the doublet on the wing element is therefore

M(x,y,t)zﬁpf’f(x,y,t)axayaz. e

In order to find the downwash on the wing at point (%,v,) and time £, the combined effect of all
the doublets (of strength given in equation (2)) at all points (xy) on the wing surface and all
times ¢ must be found. However, instead of using doublets it is more convenient to consider the
effect of sources and obtain the doublet solution by differentiation.

Consider a unit source which comes into being at time . When the speed of sound is infinite
the velocity potential at a distance # from the source at time #, will be :

b=y WheRE<h| LB

=0 when ¢, < ¢

The reason for these two parts to the result is clearly that the source cannot have any effect
before it exists. When the speed of sound is finite, however, the velocity potential given in
equation (3) will be modified in some way. It can be shown from the work of Lomax, Heaslet
and Fuller (Ref. 6) that the change is merely to modify the regions of equation (3). Clearly the
source can affect only points within a sphere of radius a(f, — #). Therefore equation (3) is modified
to »

— 1
$s = 4oy

=0 - when a(t, — ) <7

when 7 << a(t, — ¢)

4)

Then if the wing is in the plane z the velocity potential at point (x,y,2f) can be found by
using equations (2) and (4) as follows :

_—109 14p ‘ , :
Sroyende) = o Lf fmm_t) p Ly dddedy. )
The downwash on the wing surface is therefore
=1, @ 14p
) W(xoyOtO) 4w }01;1'12 0%, 02 fsf fr<a(iq~t) ;7 (X,‘ ¥ t)dt; aa dy . . o (6)
The following substitutions can be made
X = %, — x, r=VI —-X
Y=9y,—y v =4+/(" + Y? 27
Z =2y — 2 R=+/(X*4+ (1 — M*»(Y*+ Z%) when M < 1 (7)
T=1t —1t = 4/(X? — (M* — 1)(Y* 4+ Z%) when M > 1
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Then the condition » << a(f, — ¢) becomes

__*~___—1X——|—]é1;IR<T < @ when M < 1
X MR _ X+ MR ' . ()
ME—1 "> —1 when M > 1
X >|Y|v(M* —1) i

Then equation (6) becomes

02 f"" Ap dx

1 i _
W (% Volo) = AEJ‘S f 11_1:})572 I (%, y, 1) VET VI E 7 dxdy when M < 1
1—n2
X+MR
==l fim 2 [ 2L (a5 I dx d o
 4n S w> v/ (2—1) { e=>0 YA X-MR PV 'Y \/(Tz -+ Y? -+ Zz) Y
M1
when M > 1
The harmonic time variation can now be introduced '
Ap (5, y, 1) = Ap(x, ¥, o) e~
= AP,y by e L . .. (10)
In addition we will introduce the notation |
A
e 9) = 1,55 (4,9, 1)
z (11)
w
(%0 Yo) = 7 %o Yobo)
Then equation (9) will become .
o —1 Ix,
(%) =87fo <Y2y)K(X, Vydedy, .. .. . . (12)
where the kernel K(X, Y) is defined as
KX, V) = — v lim 2 f ) oV dr when M < 1
’ N o002 ) _xyur /(7P + Y2 4 Z7)
. R ! .
AHMR i . (18)

i 2 AT -
Cim o | S when X |7 /(M* — 1)

Y R T
when M > 1{ " Yeev EI—I;; 02% ) xymr v/ (78 + Y? + Z7)
, iy

— 0 when X < |y|+/(M? — 1)

This kernel is fully discussed in Appendix I.

3. The Lift and Downwash Points.—The basis of the method presented in this report is the
replacement of the integral equation (which contains the lift and downwash as functions) by a
matrix equation (which contains the values of the lift and downwash at specified points). These
lift and downwash points must be carefully chosen to ensure the maximum accuracy from an
equation of given matrix order. ' '

3
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The distribution of these points along a chordwise wing section will be considered at first, and
the analysis must extend much further than Multhopp’s which was concerned only with the
subsonic case. If the airspeed normal to the leading edge (in plan view) is subsonic, then the lift
distribution will have an infinite peak of the type 1/4/(1 + &) at the leading edge (¢ — — 1).
Also if the trailing edge is subsonic (in the same sense) then the lift distribution will have a zero
value of the type 4/(1 — &) at the trailing edge (¢ — -+ 1). If, however, an edge is supersonic,
the lift distribution at that edge will remain finite. These edge conditions will be taken into
account by defining a function f(¢) with four alternative forms as follows :

f(&) = \/ ( }_——_I:-g) (subsonic LE, subsonic TE)

\/ (—11—5) (subsonic LE, supersonic TE)

= +/(1 — &)  (supersonic LE, subsonic TE)
1

I

(supersonic LE, supersonic TE)

A chordwise lift distribution /,(¢) will now be defined by multiplying the function f(&) by a
polynomial in & of order 1 as follows : '

L(E) = (@ + ané + @& + ap8® + ... + a8 f(e). .. .. (15)

_ The downwash distribution due to this lift distribution can be calculated from two-dimensional
(infinite aspect ratio) theory. Subsonic theory is used for this purpose when both edges are
subsonic, supersonic theory when both edges are supersonic and sonic theory when one edge is

subsonic and one edge supersonic. The detailed analysis is given in Appendix II and in all
cases the downwash distribution is a polynomial in & of order 4.

Suppose_that the coefficients aj, a4, etc., are chosen so that the lift distribution Z,(£) gives

zero total lift, zero pitching moment, zero second moment, and so on up to zero (A — 1)th moment.
It is then found that the downwash polynomial becomes :

“1(5) = (“m — Aué b apf® — a,ugt L aﬂlé:a)Fl . .. . . (16)
The factor F, depends on the type of function of f(£) used and does not affect the argument.

The chordwise pressure distribution can be expressed as an infinite series as follows

i¢) = go A(E) . .. .. .. .. e .. .. (17)
The downwash distribution (in two-dimensional flow) will then be
o (£) =ZOAM(§). .. .. .. .. .. .. .. (18)

Suppose, however, a shortened series is used consisting of only the first p terms. It is clear
from the definition of the lift functions that this shortened series will give the same lift, pitching

moment, second moment and so on up to the (p — 1)th moment as the full infinite series. This
shortened series and its corresponding two-dimensional downwash will be

Ue) = 3 Adi(e)
- (19)
a(8) = > Aio(é)

ngever, both the lift and downwash are going to be expressed in terms of the values at
# points along the chord instead of in terms of the arbitrary coefficients 4, as above. The values
of lift and downwash between these points though must conform to the above series.
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Suppose one additional term is admitted to each of these series. These terms /,(¢) and o,()
each have p zero values along the chord. If therefore these points are chosen for the lift and
downwash points, the lift and downwash values will be unaffected by one additional series term.
It is clear then that the best lift points.£, will be given by /,(&;) = 0 which becomes

Apo + Apiéy + pél + o aél = 0. (20)
The downwash points &, will be given by «,(&,) = 0 or
Apg — Ak, -+ @b — a8° 4 . a7l =0. (21)

Equations (20) and (21) show quite obviously that the lift and downwash points are com-
plementary, 7.e., the lift points are the same as the downwash points on a wing section in reverse
flow. -

The chordwise analysis in the previous subsonic theory (Refs. 1, 2 and 4) is therefore reduced to
the special case in which f(&) = /(1 — &/1 + ). The angular co-ordinates used by Multhopp
are, however, unsuitable for dealing with the additional three chordwise cases, and for this
reason the complete analysis has been kept in terms of & for this report.

In the subsonic solution the case p = 1 leads to the well-known result that the lift point is
at the i-chord, and the downwash point is at the 2-chord. The analysis for the other chordwise
cases leads to the following interesting generalisation of this rule :

Condition of | Condition of : : Downwash
LE TE Lift Point Point
Subsonic Subsonic +c Zc
Subsonic Supersonic 3¢ £
Supersonic Subsonic Zc 8¢
Supersonic Supersonic % 3c

Now the spanwise positions of the wing sections are considered. At the tip » — — 1 the lift
distribution will tend to zero in the manner 4/(1 4 ). At the tip 4 — + 1 the lift distribution -
will tend to zero in the manner 4/(1 —4). Therefore the product /(1 — %*) of these two
functions must appear in the lift distribution. There is no difference between the subsonic and
supersonic cases for this spanwise analysis and .the position of the spanwise lift and downwash
sections will be identical to those used by Multhopp. The spanwise analysis will however be
given here in polynomial form for the sake of completeness.

A spanwise lift distribution y,(n) will be defined as
va(n) = (@ + ann + @’ + @an® + ..+ @) /(1 —97).

The downwash distribution due to this lift distribution can be calculated from two-dimensional
(zero aspect ratio) theory which is independent of Mach number. The detailed analysis is given
in Appendix IT and in all cases the downwash distribution is a polynomial in # of order 4.

(22)

- Suppose that the coefficients a,y, a,;, etc., are chosen so that the lift distribution y,(y) gives

zero total lift, zero rolling moment, zero second moment, and so on up to zero (A — 1)th moment.
It will be found that the odd or even terms of the polynomial of equation (22) disappear according
to whether 4 is even or odd. Then equation (22) will be of the form

vin) = (@ + aan® + aun® + . .. ") /(1 —5®) (1 even) }
= (%11"7 + awn® + an® + ... %1771) \/(1 — 772) (ﬂ- Odd)
5
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With this definition of the coefficients a,,, a,, etc., the downwash polynomial becomes
0‘1‘(77) = (@ + an® + am* + . .. “aﬂ?z) E, (4 eVen)
= (%177 + awn® + an® 4. azﬂ’]ﬂ) E, (Z Odd)

Then the spanwise pressure distribution and its appropriate two-dimensional downwash can
be expressed as an infinite series :

ln) c(n) = 2:0 Azya(n)

(24)

- (25)
“(77) = z;) Az“a(’?)

Tf this series is shortened to the first # terms then it is clear from the definition of the lift
functions y,(n) that the lift distribution will still give the correct lift, rolling moment, second

moment and so on up to the (m — 1)th moment. This shortened series for the lift and its
corresponding two-dimensional downwash will be

m—1

L) eln) = 2, Aspaln)

B (26)
() = ZZO Azealn)

The lift and downwash are, however/, to be defined by the values at # points rather than the

arbitrary coefficients A4, in the above equation. However, the values of lift and downwash
between these points must conform to the above series.

If one additional term y,,(y) or «,(y) is admitted to each of the above series, the values of lift
and downwash will be unaffected at the  points 5, and 7, given by yu(n,) = 0 and «,(y,) = 0.
These conditions (for odd values of #) are given by .

amlnn _I— &Zm?ﬂ/]ns + am577n5 + L + (/mennm - 0
amlnv —,_ am(invs —I— 0';7;';577'»5‘ _|_ “ e . —l—- dmmnvm — 0

It is clear, therefore, that the spanwise positions of the lift and downwash stations are identical.

(27)

This spanwise analysis is identical in principle to-that of Multhopp who, however, used angular

co-ordinates. The above polynomial form shows the general connection with the chordwise
analysis more clearly. '

4. The Lift Distribution.—Consider the lift along the chordwise strip first of all. The lift
function /,(¢) is zero at all p lift points. If this lift function is divided by the line tangential to
it at the gth lift point a new function %,(¢) is obtained :

() o |
k(&) = £ . .. . . .. .. (28
N e AT, %)
This interpolation function is unity at & = &, and zero at all the other lift points. Clearly
from the definition of /,(£) the interpolation function /(&) can be written as

M) = (b + baf + 0l + . by, f(8) . .. L. L (29)

This is a linear combination of the functions o(£), 1.(8) . . . 2,_4(&) and so the series for the lift

distribution (équation (19)) can be replaced exactly by a series of the interpolation functions
ho(£) as follows :
4

(o) = 2 M) . .. L (30)

g=1



The unknown coefficients in this equation are the actual values of the lift at the lift points
instead of the arbitrary coefficients 4, in equation (19).

In an exactly similar manner a spanwise 1nterpolat10n function g,(n) can be obtained from
va(n) as follows :

— aln)
&) = o =G o (31)

This function is unity at 4 = #, and zero at all the other lift points. It can be written in
polynomial form as follows:

gn(n) == (bn(] —'_ bnln + annz + e bn,m-—ll'/]m“].) \/(1 - 772) . < . . (32)

- This is of course the same as Multhopp’s spanwise interpolation function, and is a linear com-

bination of the functions y,(n), yi(n) ... vm_1(n). Therefore the spanwise series for the lift
distribution (equation (26)) can be replaced exactly by a series of the m interpolation functions
g.(n) as follows :

m—1
2

M) e) = 3 dnelledn) . - (39)

The unknown coefficients in this equation are the actual values of the lift at the lift points
instead of the arbitrary coefficients in equation (26).

Equatlons (30) and (33) can now be combined to give a double series for the varlatlon of lift
over the wing surface.

m—1
2

? .
UE, n) = ol &ol) 2 Mepm) Blé) - - (3

o) Sha

=22

2

The unknown coefficients in this series are the lift values at the lift points and it should be
noted that the interpolation function %,(£) can have any one of its four alternative forms at any
spanwise station. This makes it poss1ble to deal with wings having edges which are subsonic
for part of the span and supersonic for the rest of the span.

Equation (34) can be used directly in the form given. However, it is convenient to take the
analysis a step further. The pressure distribution 1s usually requlred merely in order to be able
to calculate the total lift or pitching moment or some other generalised force. If the wing has
a general deflection z(x,y) downwards then the generalised force Q corresponding to the generalised
co-ordinate ¢ will be

—Q = 2pV2f flxy (x,7) dx dy . . . . . .. (35)
Substituting the lift distribution of equation (34) into this expression gives
1 m21 , )
—Q =5V 3 Sleun)en)z [ ez b o (& ds|dn. .. (30
2 —-m—1 1 2

2
Considering the bracketed integral first of all we will define the average value of 4,(&) as follows :

:%f_ @

Now it is shown in Appendix III that when 02/9¢(£, 1) is a polynomial expression in & of order
not greater than p, we have

éf_lhq(é)a—q(é,n)dé:Hq—gg(sq,n). O )
7



In the spanwise direction the average value of g,() can similarly be defined by
o1t
G,,:ﬂ g.(n) d . @)
—1 .

Then in a similar fashion to the chordwise case it is found that when Sz/aq(s » 1) 1s a polynomial
expression in 5 of order not greater than m we have

I 0z 0z, -
Qf_lgn(n)a—q(fq,n) I =Gog(bom). . (40)
- Then equation (86) becomes
m—1
1 ., < 2 0z _
—Q = QPV b _;_leqGﬂ c(n4) 1&g 1) 5 (&4 M) - .o (41)

2

Now a set of non-dimensional quantities P, will be defined as follows :
' q

c(n)

P, = HQG,L—C_ Wepma) o .. .. .. . .. (42
q
Then in terms of P, equation (41) becomes
q
s—1
| QT 0z
_inpVS ZZP,La—(Eq,nn). . . . .. (49)
—m=11 ¢ 0f :

2

It should be emphasised that equation (43) (and also of course equation (41)) is correct only
when 9z/2q (&, n) is a double polynomial in & and 5 of order not greater than p and m respectively.
With this restriction, however, equation (48) is exactly what we should get if the pressure
distribution were replaced by a set of discrete lift forces of magnitude 1pV2S P, at the lift points.

It is therefore preferable from an engineering point of view to express the lift in terms of the

non-dimensional discrete lift forces P, rather than the values /(&,, ,).
q

Equation (34) will therefore become

m—1

~ 2

Uen) =

> p 7(8) 8u(n)
DRSS e ctH NPT ()

{(m—1
2

If the pressure values at the lift points are required they can be obtained from equation (42) when
the values of P, have been found. The only restriction on the use of the discrete lift forces when

they have been found is when 0z/9q (x,v) is a discontinuous function (as for instance when a
control surface hinge moment is being considered). The general question of discontinuities in
both downwash and deflection, however, is dealt with in detail in a separate Section of this
report.

5. The Matrix Equation.—Equation 12 is the integral equation which gives the downwash in
terms of the lift. It will be put in the non-dimensional co-ordinates (£, ) and the downwash
measured at the point (£,, 5,) as follows :

OC(EH "]v) = ;_Ebl 1_1 (17 c__(_nzh)z fil l(é:; 77)K

(00 — %), (0, —9)dédn. .. .. (45)
8



The co-ordinates of which K is a function have been left in the dimensional form for convenience.
The pressure distribution given in equation (44) can now be substituted in equation (45). This
ives
g v o om—1
2

(&, n,) = _mz

—1

!
—

|

R

»
22%
7

[L f &) _
2G, ) 1 (n — 77 2H -1
This is a set of linear simultaneous equations which can be put into matrix form. In general

the kernel K will be complex (for unsteady motion) and we will therefore define the following
matrix element in complex form '

) — 171 1
Ay —ivBy =g g [ e n 2H _lk (£)K

Then the matrix equation corresponding to equation (46) will be

[av}z[Am_meHP,,] R R )
7. rq ¥ g .

The problem involved next will be the evaluation of the elements of 4 and B from equation (47).

— W), —y)‘dé:; dﬁ} P, .. ()

(o =), 0 =) el @] 47

6. The Chordwise Integration.—The chordwise part of the integral involved in equation (47) -

is denoted
K, (r) = 2Hf § —x),(yw—y)gds. R 275

We are concerned only with the values for 4 = 5, and these will be denoted

K,,,_2H f_lh £ K

Fig. 2 shows how the kernel is zero over a considerable region in the supersomc case. In the
chordwise direction therefore the kernel is finite only in the range x < x,, — |y, — ¥.|v/(M* — 1).
This restriction applies also to the subsonic case when % = ». We will therefore restrict the
range of integration to a region denoted by — 1 < & < &, (where &, denotes either the edge of
the Mach cone x = x,, — |y, — ¥,|4/(M* — 1) or the trailing edge & = 1, whichever is the less).

(x,y—x),(yy—yn)‘df. )

Then equation (50) may be written

- 1 4 i
Ry =g [C &Ko, =0, (0 —2)jds. . (8]
We will now introduce a co-ordinate ¢ which is — 1 at the leading edge (¢ = — 1) and is - 1
at £ =&, :
: 1 =&, + 2 ' :
C-———~—1_}_§A . . .. . . . . . .. (52)

Then equation (51) becomes

R = (M) g [ | (5 e — ()




When ¢ = — 1 the interpolation function %, has values of the order 1/4/(1 + ¢) or 1, and
the kernel K has values of the order 1. Therefore the product 4,K will have values of the order

1/4/(1 4+ ¢) or 1.

When { = - 1 the interpolation function %, has values of the order 4/(1 — ¢) or 1, and the
kernel K has values of the order 1 or 1/4/(1 — ¢). Therefore the product %2,K will have values
of the order /(1 — ¢) or 1 or 1/4/(1 — ¢).

These end conditions are shown in the sketch graphs of Fig. 3, and we will define a function %(¢)
with six alternative values to cater for these various conditions.

1 1
Vi—n * vitg o vi=9

or \/ (_1_:__@) or 1 or .
I+¢ v =1
We can now approximate to the product %,K by the series
<1+§A)C_(1—§A)
2 2
The function %(¢) must be picked very carefully for any particular case with the help of Fig. 3.
We must now substitute equation (55) into equation (53) and integrate. To do this we will make

use of the idea of the interpolation function which was so successfully used in an earlier Section
of this report. We will define a function u,(¢) as follows :

k() =
(54)

h

q

K%rﬁM%—w

- ((ao a4+ aa“m—l) k(¢) . (35),

pa(8) = (@ + anl + @pl® 4+ .. aut?) R(C) . .. .. .. .. .. (56)

The coefficients a,,, @;, etc., are chosen so that the lift, first moment, second moment and so
on up to the (4 — 1)th moment are all zero for the range — 1 << ¢ < 1. Then by an analysis
which is exactly the same as that used to develop the lift points we can determine a set of * special ’
points ¢, from the following equation :

Ago & Anly -+ Al + ...+ alyr=0. .. e .. .. (87)

Then following the same procedure as that used to determine the spanwise and chordwise
interpolation functions we can obtain an interpolation function ¢,(¢) which is unity at the ¢ special’
point ¢, and zero at all the other (@ — 1) ‘ special * points.

i(0) = (o + bl + bl o bpanl™ Y EE) . .. .. . .. (58)

For four of the alternative values (2(¢) = /(1 — ¢/1 + &) or 1/4/(1 4+ &), 4/ (1—¢) or 1) the
above interpolation function can be obtained from the values of %,(¢) already determined by
substituting ¢ for £&. For the fifth alternative (2(¢) = 1/4/(1 — £) 4,({) can be obtained from
k(&) (the case involving f(£) = 1/4/(1 + &)) by substituting — ¢ for &  Only in sixth and
final alternative (2() = 1/4/(1 — (?) does additional work need to be done and this case is
dealt with in Appendix 1V.

Now equation (65) may be written

nl(S5) e - (B e — 2. 00— 0] :

554 (5

b=1
10 .

K (xrv - xbn)! (yv _yn) Il’b(é) . ' . (59)




Then equation (53) will become

=3 () g () e - ()
(x,v——x,m),(y,——y,z)%fl—lib(é)dé. e

K

We can denote

1. |
Ib=Qf_lzb(§)d§. OO (<13

= 5 (S A - (55)

Furthermore, since equation (61) holds for polynomials of greater order than that involved
in 4,(¢) (see for example equations (37) and (38)) the expression above for K,, holds true when
equation (55) is replaced by the better approximation : &

[ £ P
= (@ + &l + ...+ 4 1LY R(C) . .. .. .. .. .. (83)

In general the value of a should be at least as great as the value of .

Then we have

K (%, — %), (3 — Y)( - (62)

For the particular cases shown in (b) and (c) of Fig. 3 when a = $ equation (62) reduces to
K% = K{x” o)y (Vo — V)b - .. .. .. .. .. .. (64)
For the other cases equation (64) is a fairly near approximation for points which are not near
to the singularity at & = &,.

7. The Spanwise Integration.—If we substitute the definition of K ( ) from equation (49) into
the surface integral of equation (47) we will have

. e T A .
A:g_“’B”"—znA[zanf_l—( _m)zl{r;(n)dn] L e5)

~ First of all it should be noted from Fig. 2 that (in the supersonic case only) this spanwise
integral does not usually extend over the full span. Therefore equation (65) will be written

Ay, — ivB,y — —1[1I"B(L’%K,(n)dn] O 5

v 2nA 1 2G, n —n,)°

¢

Then it must be noted that strictly K, ( ) has a logarithmic singularity at » = %, and should
be written

qu(n) = qu*(n) _l_ qu(n - 7/1’1‘)2 10g ‘17 /P (67)
The term L, is dealt with in Appendix V. We can now modify equation (66) to read
7q
: L :
g _— 11 [ & 5
Ay — 008, = o o | G B 0 dn gt [ e log ln —wldn] - (68)

11



When # < » there is no singularity in the second integral of equation (68) since

g.(n) log |n —nu,|= 0 when 4 = 1,.

Therefore the form of the integral given by equation (66) can be used. We will write

&.(n) K:q (n) = 7.(n) K?’; Coes . .. . . .. (69)
The function 7,() has similar properties to g,(n) except that it applies only to values of 5 in
the range #, <7 < 95 It is unity when » = #, and zero at all the other spanwise stations in
the range defined. It is thus an interpolation function, similar in many ways to 4,(£), g,(#) and
1,(¢). It differs from these, however, in that the stations used are not defined as special intervals
in the range from %, to 7, (except for the case when , = — 1 and ;= + 1). No special
theorems exist therefore which simplify the integration (with the exception of the special case
defined in the last sentence). A further discussion of the function 7,(n) will be given shortly.
In the meantime, however, we can substitute equation (69) into equation (66) giving

S R _
Av’,qb—wB:;,..%—AEJ S g R . (0)

n4 (77 - 771/)2 g

When # = » the alternative form (equation (68)) of equation (66) must be used since the second
term has a true logarithmic singularity in it. We can write

g,(n) K:q*(n) = 7,(n) K:z . .. .. .. .. .. . .. .. (71)
(since K,,* = K,, from equation (67)).
79 rq

Therefore we can write

. = 1 1 s 4,0n) _ 1 B B
Ay =By =50 [ 2G, LA i — ) d’?‘ Ky + j% LA g.(n) log [ mldn; L:J . (72)
Now we must consider the interpolation function j,(») in more detail. When 4, = — 1 (i.e.,

the range of integration extends to the port tip) the factor 4/(1 + #) must be included in j,(5) so
that it becomes zero in the proper manner at this tip. Similarly when 4, = - 1 the factor
4/ (1 — n) must be included in 7,,(»).

When one of these limits of integration is not at the tip it is because the Mach cone crosses the
leading edge at this point (see Fig. 2). If the limit is at a subsonic edge then the value of 7,(5)
must remain finite at this limit. This can be shown to be due to the singularities of both the
kernel and the leading-edge pressure becoming coincident at this point. However, when the
limit is at a supersonic leading edge the value of 7,(n) must be zero at this limit. Typical examples
of the spanwise integrand are shown in Fig. 4.

Therefore in general we can write the interpolation function 7,(») in the following form :
jn(n) = (bnﬂ _I_ bnln + bn2772 + R _]_ bn,m*—lnm*_l) 6(77) . . L .. .. (73)

Where m* is the number of spanwise stations falling within the range %, << % < %3, and the
function ¢(») has various alternative values depending on the conditions at %, and #5 as follows

e(n) =+ (1 —9%) or v/(1+19) or 4/(1 —1n)
or (n —n)y/ (1 —2n) or (n —ny)ns—mn) or (n —n4) }. .o (74)

or (ns —n)y/(1+n) or Lor (ns —n)
12



The numerical calculation of the function 7,(r) is given in Appendix VI, which also gives the
method for calculating the following integraIS'

* f
1;11 Gn 17 - 77

(75)
Gyt =g [ ) Yog |y — .| dn
Equations (70) and (72) then become
A, —ivB,, =1 [ T K} when # % v
o o 2mA
(76)

4, —ivB, =2 A[JW KW+GW*L}

74

We now have the elements of the downwash matrix and must proceed to solve the matrix
equation.

8. The Solution of The Matrix Equation.—Equation (48) is the matrix equation which gives
the downwash in terms of the loads. The solution of this equation will clearly be given by

1 :
[Pn] — [AM ZVB,,,,:I I:a:| O ¢ 7).
q. rg 74. 7.

This will be written as follows :

[Pﬂ:[}?,;ﬁwc;%] [1} e

By matrix manipulation we can find the following expressions for the real and imaginary
parts of this inverse matrix. For convenience the brackets and suffixes have been omitted from
the matrices in the next two equations.

F=(4+ szA‘lB)‘l] . (79)
G = (AB7'4 4 »*B)*
When » — 0 these become
F=A4"
G = A7BA™ } (80)

9. The Generalised Forces—For flutter calculations we need to find the generalised force Q
appropriate to a generalised co-ordinate ¢g. Let the downward deflection of the wing be denoted z

where . [Zt} I: {I
- (]

Then the boundary condition for the downwash will be

a=[zg+wz,][t]. O )
Let the generalised force Q, (appropriate to the generalised co-ordinate ¢,) be given by

[—o]=v[][e]+V[][a] - - - (83)

13
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Then [6,;] and [¢,,] are matrices of aerodynamic damping and stiffness coefficients respectively.
These flutter coefficients can be found by substituting the boundary condition from equation (82)
into the matrix equation (78) and then finding the generalised force from equation (43). This gives

T N X A R
o) = des2 [ 2,] | P | [ 2,] + v | 2, ] [, [Z i - (89)

10. The Effect of Kinks in the Plan-form.—The effect of discontinuities in the plan-form can be
treated quite simply by using' Multhopp’s rounding-off rule. In the supersonic case, however,
care must be exercised to see that the proper chordwise functions are used at these stations.
This is because the local sweep angle of the leading or trailing edge will be altered by the rounding-
off process.

As an example we can consider the central section (# = 0) of a swept wing. When the rounding-
off rule is introduced the resultant modified wing will have no sweep angle on either the leading
or trailing edge at this station. Therefore in supersonic flow the local leading and trailing edges
will be supersonic and the downwash and lift points at this central section must be chosen with
this in mind.

11. The Treatment of Control Surfaces.—The only feature which distinguishes a control-surface
mode from an elastic mode or body freedom is that the deflection and downwash angle are
discontinuous functions instead of being expressible as polynomials in ¥ and y. In Ref. 5 the
equivalent slope techniques of Falkner and De Young were generalised to give equivalent
continuous deflections and downwash angles for the subsonic case.

The results obtained for the subsonic case can be generalised into results applicable to all four
types of chordwise condition. A proof of these expressions will not be developed in this report, -
but an analysis is given in Appendix VII which shows that the subsonic results given in Ref. 5
can be developed into the form given in equations (86) and (87).

In the chordwise direction the equivalent continuous deflections and downwash angles are
given by
1 0z
e =g | hle) 5 (0) s

1 1
w(6) =g | o= Dale) s

The function 4,.,_,(— &) is of course simply the reverse-flow version of the function %,(§),
and equation (86) (which applies to all four types of chordwise function) is really just a generahsa—
tion of the various reverse-flow theorems which occur in aerodynamics. The expressions are
applicable to any type of discontinuous deflection or downwash angle whether due to a control
surface mode or not. It can be seen that if 9z/2¢(£) or a(&) in equation (86) already exhibits the
continuous properties which are required (z.e., if they are polynomials in & of order not greater
than $) then the equivalent and true values will be identical. . This can be seen by comparing
equation (86) with equation (38).

(86)

The spanwise version of equation (86) is

0z, 1 02

a q (nn) Q—Gj g 71.(77)

= (n) d
8 5, () dn

M 87)
adn.) = 5o | &(n) aln) dn
This is a general form of the spanwise equations given in Ref. 5 and it can be seen that the

equivalent deflection and downwash angle are glven by identical formulae because of the spanwise
symmetry of the equations.

14
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NOTATION

Rectangular co-ordinates system attached to the wing, origin at the
vertex

Positive rearwards from the vertex

In the starboard direction

Positive downwards

Pressure

Density of the flow about the wing

Speed of sound

Perturbation velocity components, in the direction , 3, z respectively
See equation (7)

Velocity of undisturbed flow relative to wing

(V]a) Mach number

Circular frequency

Non-dimensional load distribution defined by equation (11)
Wing incidence at (x,y,) = w/V

Kernel function defined by equation (13)

2(% — xi/zcn)

Cn Non-dimensional wing co-ordinates related to the
2% inducing wing section
b

" Local W1ng chord

Chordwise lift distribution having edge cond1t1ons defined by
equatlon (14)

F&) x polynomial in £ of order 4

Chordwise pressure distribution defined by equation (17)

Chordwise downwash angle distribution defined by equation (18)
Points at which the lift is evaluated

Points at which the downwash is evaluated

Spanwise lift distribution in polynomial form defined by equation (23)
Spanwise distribution of downwash incidence

Suffices numerating the spanwise stations, , giving the pivotal
station, , the inducing station

Chordwise interpolation function defined by equations (28) and (29)
Spanwise interpolation function defined by equation (31) and (32)
Generalised component of force due to mode z(x, ¥)

Generalised co-ordinate associated with mode z(, ¥)

15



NOTATION-—continued
5 | ) de (suttix , refers to Lt points)

éf_l g(n) @

Wing span

Mean chord of V:zing

. Non-dimensional quantity defined by equation (42)

Total number of spanwise stations in Multhopp’s theory
Wing area
Aspect ratio

Matrix elements in equation giving downwash in terms of pressure
(equation (47))

Chordwise integral in expression for downwash (equation (49))

Edge of Mach cone x = x,, —|¥, — v,|4/(M* — 1) or the trailing
edge & = 1, whichever is the less

L—éa+ 28 oordinate which is — 1 at L.E. (¢ — — 1) and
1+ ¢,
+ 1for & = &,

“ Special ’ points used for the chordwise integration (equation (57))

Function defining the end conditions of the product %,K (see equation '
(54)) '

Chordwise interpolation function for integrating the product %,K

1/ .
5 .[_1 2(8) d¢
Regular part of &, ( ) forn =1,

Coefficient of logarlthmlc singularity part of K ( ) when 4 =, (see
equation (67) and Appendix V)

Spanwise interpolation function similar to, g,(n) but only for % in the
range 74 < n < 7 (see Fig. 2)

Expression in 7,(y) dependent on the boundary conditions at %, and
7z (equation (74))

Functions defined by equation (75)

—1
I:Av,, sz,,J (see equation (77))

rq

Vertical displacement of wing in mode ¢
Matrix of aerodynamic damping coefficients

Matrix of aerodynamic stiffness coefficients

Frequency parameter
16
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APPENDIX 1
The Kernel Function of the Integral Equation

The kernel K(X, Y) is defined by equation (18). It is not possible to give a single analytical
solution to the integral involved and therefore various cases are treated separately.

First of all when ¥ = 0 we have for all frequencies and for both subsonic and supersonic speeds

K(X,O):Zcosw—;{—%sin? WhenX>O}' N - - N

=0 when X < 0

Secondly we can consider the case of limiting small frequency (= — 0) for all values of Y.
This leads to

y 2 Ve
KX, ¥) =1 +%ﬂ J%[XJF:}-(‘;—l} when M < 1
22X 1w [2(X? 4 Y?)
=& -7
These small frequency results have been evaluated by expanding the exponential in the integral
to the first two terms of a power series. In the subsonic case it is not possible to take this series
analysis any further because the semi-infinite range of integration leads to infinite values for the
third and succeeding terms of the series. However, in the supersonic case the range of integration
is finite and therefore this difficulty does not apply and it is possible to evaluate the kernel as a
power series of the frequency. Of course there is a limitation to the practical use of this series
at the lower supersonic speeds because as M — 1 the upper limit of integration tends to infinity

which makes the series converge very slowly indeed. This series (which applies for M > 1 and
X >|Y|+4/(M* — 1)) is as follows : :

K(X,Y) = [2_{{} = [w}

(A1)

. (A2)
when M > land X >|Y|4/(M* — 1)

RI™ 7V R

_ I:é (IE;_) [.2.]%( (X T Yz) 4 Y® sinh-? ?’(%R_—n]

w1 (7) [R (0 + Gy + e ¥

1 3XY*sinh=! (%ﬂ Lolletee .. ... .. (A3

Any number of terms of this series may be evaluated but the expressions involved become
more and more cumbersome as the expansion proceeds. It will therefore be necessary to evaluate
K(X, Y) numerically in most cases when Y # 0 and » = 0. However, equation (13) as it stands
is not in a suitable form for numerical integration. We must therefore perform the differentiation
and write the exponentials as trigonometric functions.

Then for M < 1 we have :
MY*MX + R) cos aM(MX — R))
R(X* + Y? ( V(i — M?

+ Y?cos (zi() Jw —_-__COS (ﬁ%) ” — Y%sin (WX) va S———~—in (%—f) dr}

14 —x+Mr (7% 4 Y?)?/? vV
i

K(X,Y) = [

| MYMX+R) . (eMMX — R)
T T TR LYY ( V(1 — MY )

x Jw sin (1371) dr X Jw cos (ET/Z d"} (A.4)
- . . [T : :
+ Y?cos (—’V—) . (“Kz—i——w -+ Y?sin (—V) _X+MR (_—[-2—_*T2)3/2

-7

1—M*
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For M = 1 we have (for X > 0)

2Y*® (m‘ (X? -+ Y7
2VX

” cos (72 dr ” sin <W—I> dv
~+ Y?cos (WTX) —-La/z — Y?sin (’c%() T 4

(vi—X?) (7:2 -+ Yz)
54

K(X, Y) == [m COSs

_.[ 2y (w(X2—|—Y2))

H b G 75 e
T sin (T} 4 " cos dr
()i [ O] - o0

Finally for M > 1 we have (for X >|Y|+/(M* — 1)) :

IMPYEX oM?2X wMR
R [mﬁ o vtar—) = (v =)
+ ey S g S0 ()
X7 V& V(M2 — 1) > V(M2 — 1)
X+MR &M—R
e Cos ( ) dr e sin ( dr| -’
L V® cos (‘E}_()J _ VT yegin (ﬂ{)J’ WVHJ
V) J s (8 + YRR V] Jxomr (28 + V?)
e M1
_ ’L ___MX_ Sin (M) 0s (_’(_U;Zﬂ—)
RX*+ Y9 vor = 1) O \varE =)
_2MYr ( MX )S_m _‘ZJ@__)
v (pir—) 0 (viE =
‘ X+MR X+ MR
JMZ sin ( ) dr J " CoS (m‘_z‘) dr}
oX v . (wX vV ... (A8
2 it S S/ — 2 o T2 | 1723/
-+ Y COS( V) X MR( T Y2)3/2 + Y Sln( V) MR (7:2 T Yz)ﬁ/z
e ME—1

Equations (A.4), (A.5) and (A.6) all contain the two integrals

Y? f[cos (W—;)/(rz + Y2)3/2:| dv and Y? f[sin (?Vl)/(rz + Y2)3/2:l dr

with various limits of integration. These must be evaluated numerically by some suitable method.
This is possible even in the case M < 1 (which involves an infinite limit) since the integrand
tends rapidly to zero as this limit is approached

The equations in th1s Appendix give the real and imaginary parts of K(X, Y) separately in a
form suitable for substitution in equation (62). However, the equations have been given in
dimensional form involving =/V rather than » = =¢/V. TFor the non-dimensional form the
values of X, ¥ and R must be given in terms of ¢.

19
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APPENDIX II
Two-dimensional Lift and Downwash

In Section 3 of this report the downwash due to various two-dimensional lift distributions is

given. These are all derived from two-dimensional aerofoil theory and there are five cases to
consider :

(1) The chordwise case when both edges are subsonic can be derived from two-dimensional
subsonic steady theory.

(2) The chordwise case when both edges are supersonic can be derived from two-dimensional
supersonic steady theory.

(3) The chordwise case when the leading edge is subsonic and the trailing edge is supersonic
can be derived from two-dimensional sonic indicial lift theory when the distance
travelled from the step in the downwash approaches infinity (see Ref. 6). This theory

is used because the lift at sonic speeds continually increases with time and this never
reaches a steady state.

(4) The chordwise case when the leading edge is supersonic and the trailing edge is subsonic
is derived by a theory which is more difficult to justify than those above. In the other
sonic case above (3) there is an additional second-order lift distribution which tends
to zero as the distance travelled increases. This additional lift is zero at the leading
edge and finite at the trailing edge. If therefore we use this additional lift term in
reverse flow (so that the zero pressure is at the trailing edge) we will have the right sort
of distribution required. Since this type of chordwise condition is not Very common

(occurring in the main on swept-forward wings) no attempt has been made to offer
a better justification of this case.

(5) The spanwise case is independent of Mach number and can be derived from slender-wing
theory.

The equations for these five cases are as follows :(—

(&) = — V(in_ M) f (é(&) dc‘;) (LE subsonic, TE subsonic
-1 o
A/ (ME—1) R . ’ (8.7)
«(&y) = g f l(&) 6(& — &) dé  (LE supersonic, TE supersonic)
_A(MEF—1) ] (since the Dirac function (&, — &)
=g U&) is defined by
: (A.8)
Juar s —gae=uey
o
a(&y) = ﬁ; Jf . vli(i)_jd—_fé) (LE subsonic, TE supersonic) .. .. (A9)
(where s = number of half chords travelled).
_V(2s) 8 fl I(&) dg . .
. a(&g) = T3 98 ). Ve — &) (LE supersonic, TE subsonic) .. .. (A.10)
- 1 .
) = 1 | B (;D("i”f;?)z (spanwise distribution) .. .. .. (A.11)

It can be shown by substitution of the various distributions [;(¢) and y,(n) from Section 3 of

this report into the appropriate equation above that the corresponding downwash will be a
polynomial in & (or %) of order 1. :
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APPENDIX III
The Integration of the Interpolation Functions

Consider the chordwise functions first of all. We have (see equation (15)) a loading function :
ZA(E) - (dm—l—dnf —Faﬂzfz—{—dm&a—f— e —I—&luéz'l)f(é') . . . .o .. (A..IZ)

Suppose that we define a polynomial function /,*(¢) using the same coefficients :

LX¥(&) = (@p + aué + a8+ ... +a,8. .. .. .. .. .. .. (A13)

Then because of the way in which the coefficients in /,(£) are defined (no lift, no pitching
moment, etc.) we can show that these two functions are orthogonal :

1 |
-é RGIAGEE whem 2 £ p. .. .. .. (A4

Now consider the interpolation function %,(£) which is derived from /,(£) (see equation 29) :

B(E) = (b + Dk + bal® 4 ... - b, , 187 F(£) . .. .. .. (A15)

Suppose we define a polynomial function %.*(£) using the same coefficients
C RK(E) = (b 4 bad DI b, BN FE) . .. .. .. .. ..(A16)

This new function is unity at & = &, and zero at all the other stations. Then it can be shown
that because of the orthogonality of the two functions (&) and 7,*(£) (from which 4,(&) and
h* (&) are derived) a similar relation holds between %,(£) and 4,*(£) as follows :

2f_1 4 =H, whens =g . (A17)

=0 whens #q

- Then if the deﬂectiong—; (£) is a polynomial in & (of the appropriate order) it can be expressed

in terms of the new function 4.*(¢) as follows :

0z 2. 0z
a—q(f)—szlaq(f)h*(é) . .. . .. . .. (A.18)
Then the chordwise integral required in Section 4 of this report is
lfl h(é) i—z f () B*(E) dé | (A.19)
5] 2 3 2 » . .. .. (A
Substituting equation (A.17) in this expression gives the required result (see¢ also equation (38)).
1t 0z 0z
Qf_lhq(é) g (6) 48 = H, 20 (5). L (A20

An exactly similar analysis may be made in the spanwise direction leading to the result

2f_1 1 =G, q(). e e (A1)
21



Chordwise Distribution

Position of < p° Loading and * p° Downwash Points, together with the Equivalent Interpolation
Function

Subsonic Leading Edge. Supersonic Trailing Edge

p=1
Loading point | Downwash point
§=—0-3333 | £=0-3333
0-81650
; = ——— | H,(§ = 1-15470
11(‘5) \/(1 + ) 1(5) 4
p=2
Loading points Downwash points
& = — 0-76883 & = — 0-48311
&= 0-48311 &= 0-76883
k(&) = \/(1—1‘*‘5—) (0-18554 — 0-38405&) | H (&) == 044343
1
o(£) == ViEg (0-74788 + 0-97276¢) | H,(&) = 0-59910
p=3
Loading points Downwash points
& = — 0-88612 & = — 0-73900
& = — 0-12561 & = + 0-12561
&= 0-73900 &= 0-88612
By (&) = :/*(#3) (— 0-02535 — 0-16748& + 0-27304£%) | H, (& = 0-22331
ho(8) = T}f‘g) ( 0-93125 — 0-209225 — 1-42210£2%) | H,(&) = 0-47708
— 1 . . . 2 - 0-
hy(&) V) ( 0-10446 - 0-949533 4 0-93853£2) | Hy(£) = 0-31951
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Position of < p’ Loading and < p’° Downwash Points together with the Equiv

(78201)

Chordwise Distribution

Function

Supersonic Leading and Trailing Edges

Loading point | Downwash point

£ — 0-0000

& = 0-0000

k(£ = 1-0000

H,(& = 1-0000

Loading points

£ = — 0-57735 3

Downwash points

= — 0-57735

&= 0-57735 &= 0-57735

By(£) = (0-50000 — 0-86603¢) | H,(£) = 0-5000
Ba(£) = (0-50000 + 0-86603&) | H,(£) = 0-5000

Loading points

Downwash points

& = — 0-77460
&= 0-00000
&= 0-77460

& = — 0-77460

£ = 0-00000

£, = 0-77460
By(8) = (— 0-64550£ + 0-83333£2)-
hy(§) = ( 1-00000.— 1-666672)
By(5) = (064550 + 0-83333£2)

H,(£) = 0-27778
Hy(&) = 0-4444
Hy(&) = 0-27778

23
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APPENDIX 1V
An Additional Interpolation Function
Equation (58) gives the general interpolation function ¢,(¢). When %(2) = 1/4/(1 — ¢?) it is

easier to use the angular co-ordinates used by Multhopp (as for 2(¢) = /(1 — ¢/1 +¢) or
4/ (1 — ¢*)) rather than the polynomial form which is forced upon us in the other cases.

Substitute :
{ = —cos¢. .. .. .. . - .. .. (A.22)
Then p,(¢) in equation (56) can be written :
__Cos ¢
Mﬂ(é—) = m. .. “ (A23)
The special points ¢, then become :
7(2b. — 1
b, = (20z —) .. . .. . . .. .. (A.24)
Then the function 7,(¢) becomes :
. Ising, 1T . cos A¢ -
id) =35 5 2 l:sm (1 4+ 1)¢, — sin (4 — 1)¢>b} . (A5)
and [, is given by :
1, =3 nz,,(qﬁ) sin ¢ d¢ ,
0
oo A
=g S, . .. . .. . .. (A.26)




APPENDIX V
The Logarithmic Singularity
The logarithmic singularity has been treated for the low-frequency subsonic case (Refs. 1

and 2). The supersonic case will be dealt with now. For small frequencies we have in non-
dimensional co-ordinates :

_ 8= (2 ) m, i)/ (322-1) _
B )= o [ B (2) A0 2
A Vit — e — 0 =1 (2) . — )
. b2 . (A.27)
oo 1 sz—(;)lnp—nl\/(w—l) 2 %(é:r - 5)2 s (C_) (m . 77)2§ »
— =5 577 7o (&) . aé
V2 2H ! R b\? R
o VAE — 8 — 022 = 1) () (. — )
We will now expand 7,(£) as a Taylor series from the point &, as follows
oh h,
ho(&) = h,(&,) — (&, — &) a—; (&,) + %(&, — &) agzq (&) +.... .. . . .. (A.28)
~ Substituting this in the expression for &, () we have :
rq
: : (H\?
_ 1 &p+1 ' 2(5, — S) — v (%)i(f, — 5)2 —I— (C_) (771) —77)2§
q q En-nvae—s /(=8 — (M =) (Z) 0 — )}

_1_ahq§) &,+1
~oH, 5 &

(6= &0+ (2) (6 = O —

(f—y)m—m«/mﬂ—l)
2 ., (C

2, —¢) “’(5) )

b

Ve — 8 — 0 = 1) (2) 0 — )

01/

a,—&) ... e;cc. (A.29)

When these integrals are evaluated it is found that most of the terms are regular and could
be expanded as a power series of n. However, the remaining terms are of the form (3, — )
log |7, —#n| and (4, — #)*log |9; — | and (4, — 4) log |4, —#| and so on. Only the first of
these terms causes an important singularity at # — 5, and so K, () can be written (see equation

(67)) as follows : e
,K:q(n) = K’;:(ﬂ) + L;,q(n = n,)log |9 — n,]|. .. .. .. . .. .. (A.30)
The term £, *(n) is the regular part and the singular term L, is found to be :
rq g
1 on, . by . 1 . b
L, =om 3¢ (£) O — 1) (E) v gy l€) O+ 1) (20_0) ¥ )

The subsonic low frequency case can of course be evaluated in a similar manner and leads to
exactly the same result. The result differs slightly from that of Garner (Ref. 2) in its unsteady
part because the true lift and downwash (instead of the transformed values) are being used in
this report.

The above expression applies only to the small frequency case. A further analysis (on the
same lines) is required for the finite frequency solution.
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APPENDIX VI
The Function 7,(n)

Equation (73) gives the series expression for the function j,(3). - The coefficients b,, b.,, etc.,

must be chosen to make 7,() be zero at all the spanwise stations in the range except station 7,.
Since the stations will not in general have any special mathematical significance a purely numerical
method must be found for evaluating them. We will consider a third-order system (taking in
points #,, 7, and 7;) as an example. In matrix notation :

71(n) by by b [e(n)
To(m) | = | bao Do bae| |me(n) .. (A.32)
js(ﬂ) bsy by by 7725(77)
Then by definition :
by b bis e(n):, e(ns) , e(ns) 1 00
b b bw| |mieln) . meeln), mselns)| =10 1 0]. .. (A.33)
by bs s lee(ﬁl) , mete(ns) ,  7mse(ns) 0 0 1

This can be solved to give the b’s which can be then substituted into equation (A.32) as follows :

— — -1 -

1 1T -

71(n) T 0o, O |l1 1 1 e(n)
.72(77) = | 0 ’ 6(7’]2) ’ (1) N1 M2 W3 n 6(77) . (A34)
L].3(77)_ L 0 , 0, e(ms). _7712 7" 7732_ L772€<77)_

The advantage of this form is that the matrix inversion required is independant of the end

conditions which determine e(r).

Furthermore, since a number of such matrices require inversion

for a calculation on a given wing, it is found that the most convenient method of inversion will

be by submatrices. This method of inversion enables some of the required (small order)

to be obtained as stages in the calculation of the larger ones.

The values of J,,* are then :

inversions

-1 T 1 1T 17 [ (e eln) dn T
v : , 0 11 1 f
]rl 26+ (1) 1y (n — n,)?
"5y e(n) dn
?! == 0 3 o7~ 1\ O Jv n—' . A.-35
]rz 2G2 3(1’]2) 771 772 7/3 . (77 - ?77)2 ( )
1 "5 9?e(n) dy
. O s , — 2 2 2 RGNV iial
el L Gretng) ™ ] L, = ar
When the integration extends to both tips, the formulae of Multhopp can be used and we have
— (m 4 1)*
f— — 7 —_
:n - 2(1 ___ 7]”2) when # v
———2—-2 when |# —»|=1,38,5 ",(A'SG)
(nn - 771/)
=0 when |# —v|=2, 4,6

The values of G,,* can be calculated in a similar manner.
’ 26
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APPENDIX VII
Equivalent Deflections and Downwash Angles

In the chordwise case with subsonic leading and trailing edges we can put %,(£) in angular
co-ordinates as follows :

2 2r. o cos (2 + 1)¢ - cos 27\
hld) = g > [sin (4 + g, — sin 74, -
b+ 15 |: :l[ sin ¢ J 3 (A.37)
Hq=—2? - lsinqﬂq

Substituting these results into equation (86) we have for the equivalent deflection :

ey =S [Sin (2 4 1)¢, — sin -”‘ﬁq] [1 f Z_Z (#) 1cos (2 - 1)¢ + cos M’E d(,‘é] . (A38)

- 0g ) sin ¢, 7)o
We can also put :
2 ar. . — A A
b ) = gy 2 [sin (3 + D, — sin g[S LT R oo 2]y g

Then the equivalent downwash angle becomes :

wip) =3 [ eS0T

i=0 sin ¢, 7T Jo

—cos (A + 1)¢ + cos i dqs} . (A.40)

These two expressions ((A.38) and (A.40)) are those developed in Ref. 5. A similar substitution
- in the chordwise case shows that equation (87) and the spanwise results of Ref. 5 are identical.
The spanwise substitution is of course :

&lt) = o Z: [sin (3 + 10, [sin (2 + 1] . (A4])

G, = sin 6,

2m + 1)
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Fig. 1. Co-ordinates.
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(@) 1=7, all speeds

(b)n#n, subsonic

d)n+n, supersonic(é=!)

{e)n £1y, supersonic(g,=1)

{c)n+1, supersoniclicg)

i
|
i

1

[l

h(¢) i

Subsonic LE L _KE® ’ E

Subsonic T.E. ‘ |

. 1 1
‘ A

/i

/ |

Subsonic L.E. ; :

ISupersonicT.E, :

!

—od

¥
!
f
SupersoniclE| . :
-7 o 1
Subsenic T.E. : :
) . L
- O 5+l
"
i
/1
SupersonicLE] ! :
SupersoricTE| [ L :
- O E,+]

Fi1c. 3. Chordwise integration.
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Ma
g
=1 (o] +1
n, 78
A
LE:!
= (e} +
ﬂA ’,5
T4
Ta
= ¢} +|
4 g
Na
Ty
~1 O +]
Ma 77B
M4
g
-1 o] +
M T!B

at tip.
at tip.

at subsonic L.E.

at tip.

at supersonic LE.

at tip.

at subsonic L.E.

at subsonic L.E.

at supersonic LE,

at supersonic LE.

F1G. 4. Spanwise integrands.

(78291) 'Wt. 3523/8210 K.7 4/60 Hw.
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Lift points are shown on complete wing.
Downwash points are shown on half wing only.-
Area of integration is shown for each
downwash point.

F16. 5. Lay-out of points on a wing for
M =1-687 (p =2;m = 11).
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