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Summary.---A numerical method is given for calculating the lifting forces on oscillating wings of any plan-form. The 
principles and techniques of Multhopp's subsonic theory have been applied to the supersonic problem resulting in a 
single basic theory which embraces both subsonic and supersonic cases. 

One of the most important features of the method is the careful choice of the points at which the lift and downwash 
distributions are measured. The position of these points in the chordwise direction depend upon whether the local 
leading and trailing edges are subsonic or supersonic. 

Extensive use has been made of various interpolation functions which simplify the evaluation of the integrals required 
for both the downwash and the generalised forces. In the latter case it is shown that the continuous lift distribution 
can be replaced without loss of accuracy by a set of concentrated lift forces at the lift points. The lift distribution is 
expressed in terms of these discrete forces since for most purposes they are more convenient to use. 

I t  is shown that control surfaces can be dear  with by using equivalent continuous deflections and downwash angles 
to replace the true discontinuous values. Simple expressions are given for these equivalent values, and these expressions 
are applicable to both subsonic and supersonic cases. 

1. Introductiora.--The problem of calculating the lift distribution on wings of finite span in both 
steady and unsteady motion has been the subject of many investigations. For wings travelling 
at supersonic speeds attention has been chiefly concentrated upon obtaining exact solutions 
(within the limitations of linearised potential flow) for certain simple plan-forms and downwash 
distributions. This exact approach, however, is unsuitable for dealing with complicated plan- 
forms and downwash distributions since it becomes extremely cumbersome. 

Numerical methods have beenused for investigations of the subsonic problem, and in particular 
Multhopp's lifting-surface theory (Ref. 1) and its developments (Refs. 2, 3, 4 and 5) have been 
very successful. In the present report the principles and techniques of Multhopp's subsonic 
theory have been applied to the supersonic problem, resulting in a single basic theory which 
embraces both subsonic and supersonic cases. 

2, The Integral Equation.--The first problem is to find the integral equation which gives the 
downwash angle on the wing surface in terms of the lift distribution. 

Consider a small element of wing with area dx ~y at the point (x, y) and let this element have 
a pressure difference A~b(x, y, t) between its upper and lower surfaces for a short time interval ~t 
at time t. This lift can be considered as due to a line vortex of s t rength/ ' (x ,  y, t) travelling with 
the element of wing at speed V. The strength of this vortex is found by equating the lift due to 
a moving vortex with the lift on the wing element. 

~p(x, y, t) ~x ~y = pVr(x, y, t) ~y . . . . . . . . . . .  (1) 
* Fairey Aviation Company Tech. Office Report 165, received 27th August, 1956. 
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Since the  lift exists for a short  t ime at only, a s tar t ing vor tex of equal and opposite s t rength  is 
left in the wake at a distance V a t b e h i n d  the  bound  vortex, and these two vortices are connected 
by  trailing vortices at  the  tips of t h e  wing element.  Thus a closed vortex loop is formed 
surrounding an area V a t @  (see Fig. 1). 

This vortex ring is identical  to a doublet  of s t rength  equal to the  product  of the  vor tex s t rength  
and the  area of the ring. The s t rength ff (x, y ,  t) of the doublet  on the wing element  is therefore 

~(x, y ,  t) = ~p  (x, y ,  t) ax ay at . . . . . . . . . . . . . . .  (2) 
P 

In  order to find the  downwash on the  w i n g a t  point  (XoYo) and  t ime to the combined effect of all 
the  doublets (of s t rength  given in equat ion (2)) at all points (xy) on the wing surface and all 
t imes t mus t  be found• However,  instead of using doublets it is more convenient  to consider the  
effect of sources and obtain the  doublet  solution by  differentiation• 

Consider a uni t  source which comes into being at t ime t. W h e n  the speed of sound is infinite 
the  velocity potent ial  at a distance r from the  source at t ime to will be • 

' / ' "  - -  4at  . when t < to 

= 0 when to < t )  

(3) 

The reason for these two parts to the  result is dea r ly  tha t  the source cannot  have any effect 
before it exists. When  the  speed of sound is finite, however,  the  velocity potent ia l  given in 
equat ion (3) will be modified in some way. It  can be shown from the  work of Lomax,  Heaslet  
and Fuller (Ref. 6) tha t  the  change is merely to modify  the regions of equat ion (3). Clearly the 
source can affect only points within a sphere of radius a(to - -  t). Therefore equat ion (3) is modified 
to 

¢~ --  4~r when r < a(to - -  

• . . . . . . . . . .  ( 4 )  

= 0 when a(to -- t) < 

Then  if the  wing is in the plane z the  velocity potent ial  at  point  (XoYoZoto) can be found by  
using equations (2) and (4) as follows" 

¢(XoYoZoto)-  4= Oz so ~<~(,o_,) r p. 

The downwash on the  wing surface is therefore 

• <Xoyo,o) = f l f . < . ° _ , ,  - -  
1 A/5 ) 

(x, y ,  t)~t l ax @ . . . . .  (6) 
r p 

The following substi tutions can be made  

X ~ x o - -  x ,  

Y = Yo - - Y  

Z = z o  - - z  

T =  to - - t  

z = V T - - X  

r = V(-~ ~ + Y~ + z ~ 

R = %/(X 2 + (1 --  M ~ ) ( Y  2 + Z2)) when M < 1 / 

J = %/(X g --  (M s --  1)(Y ~ + Z~)) when M > 1 

2 
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Then tile condition r < a(to -- t) becomes 

- - X + M R  
1 - - M  ~ < , < o o  

X - - M R  _ .. .X q- M R  t 
- - M + - ~  " <. r <. 71# 7 ~ } 

x > l V l  V ( M  2 -- 1) ) 

when M < 1 

when M > 1 
(8) 

Then equation (6) becomes 

1 ( ( t l im 32 f~ AP(x ,y , t )  dr } 1 W(XoYoto) = ~ J s J t ~ + o ~ J - x _ + ~ f R p V  V(.c2+ y ~ +  z~ ) dxdy w h e n M <  1 

:++~+~ (9) 

4~ .>,va/(M+-t) t ~ ÷ o ~  f y '  Y~ + ., ~;_+~ p v V ( ~  + + z ~) 

when M > 1 

The harmonic time variation can now be introduced 

~p (x, y ,  t) = ~2(x,  y ,  to) e -`~('o-') 

e ~ -  . . . . . . . . . .  = ~ # ( x ,  y ,  to) ~'++> (10) 

In addition we will introduce the notation 

+ } z(x, y)  _ +p v 2 (~, y,  to) 
• . . 

w XoYoto) ~(Xoyo) = g 

. .  (11) 

Then equation (9) will become 

-- l f l l(~Y) K(X, Y) dx dy , ~(xoy0)-  gd  s+ 

where the kernel K(X,  Y) is defined as 

K(X,  Y) = -- y2e-V- l im 
,÷0 ~ O_x+M~ V( r  ~ :+ Y+ :t- z ~) 

" 1 - - M  2 + l~ fX+MR --im,~ 
- i ~ x  32 M~-I e v d r  

- -  y2e ~ - -  lira 
w h e n  M > 1 ~+0 ~ 2  ~ ., +++~-~+ V ( r  ~ + -  Y + ~ -  z 2) 

. M 2 - - 1  

0 when X < I v l V ( M  ~ - 1) 

I O • ~ 

when M < 1 

w h e n X  > ] y [ V ( m  2 -  1) 

. .  (12) 

( i s )  

This kernel is fully discussed in Appendix I. 

3. The Lift and Downwash Points.--The basis of the method presented in this report is the 
replacement of the integral equation (which contains the lift and downwash as functions) by  a 
matr ix equation (which contains the values of the l if t  and downwash at specified points). These 
lift and downwash points must be carefully chosen to ensure the maximum accuracy from an 
equation of given matr ix order. 

3 
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The distribution of these points along a chordwise wing section will be considered at first, and 
the analysis must extend much further than lViulthopp's which was concerned only with the 
subsonic case. If the airspeed normal to the leading edge (in plan view) is subsonic, then the lift 
distribution will have an infinite peak of the type 1/@(1 + ~) at the leading edge (~ -+ -- 1). 
Also if the trailing edge is subsonic (in the same sense) then the lift distribution will have a zero 
value of the type %/(1 -- ~) at the trailing edge (~ --> q- 1). If, however, an edge is supersonic, 
the lift distribution at that  edge will remain finite. These edge conditions will be taken into 
account by defining a function f(~) with four alternative forms as follows: 

(subsonic LE, subsonic TE) 

(subsonic LE, supersonic TE) 

(supersonic LE, subsonic TE) 

(supersonic LE, supersonic TE) 

= V ( 1 - e )  

= 1  

A chordwise lift distribution la(~) will now be defined by 
polynomial in ~ of order ,% as follows • 

z~(~) = (a~0 + a~l~ + a ~  ~ + a~d  3 + . . .  

The downwash distribution due to this lift distribution can 

. ~  Q Q O 0 . . . .  ( 1 4 )  

multiplying the function f(~) by a 

+ ~ )  f(~) . . . . .  (IS) 

be calculated from two-dimensional 
this purpose when both edges are (infinite aspect ratio) theory. Subsonic theory is used for 

subsonic, supersonic theory when both edges are supersonic and sonic theory when one edge is 
subsonic and one edge supersonic. The detailed analysis is given in Appendix II  and in all 
cases the downwash distribution is a polynomial in ~ of order ,~. 

Suppose that  the coefficients a~0, a~l, etc., are chosen so that  the lift distribution l~(,) gives 
zero total lift, zero pitching moment, zero second moment, and so on up to zero (4 -- 1)th moment. 
I t  is then found that  the downwash polynomial becomes 

~ ( ~ )  = (a~o - -  a , l ~  + a , ~  ~ - -  a ~ d  3 + . . .  a ~ * * * ) G  . . . . . . .  (16) 

The factor F,  depends on the type of function of f(~) used and does not affect the argument. 

The chordwise pressure distribu±ion can be expressed as an infinite series as follows 

l(~) = ~ A~l~(~) . . . . . . . . . . . . . . .  (17) 
~ = 0  

The downwash distribution (in two-dimensional flow) will then be 

~(~) = ~ A ~ ( ~ )  . . . . . . . . . . . . . . .  (18) 
~ = 0  

Suppose, however, a shortened series is used consisting of only the first p terms. I t  is clear 
from the definition of the lift functions that  this shortened series will give the same lift, pitching 
moment, second moment and so on up to the (p -- 1)th moment as the full infinite series. This 
shortened series and its corresponding two-dimensional downwash will be 

~=o ) (19) 
o o  . • • i i I o  • • o . . . . . 

~(~) = ~ A ~ ( , )  
, ~ = 0  

However, both the lift and downwash are going to be expressed in terms of the values at 
p points along the chord instead of in terms of the arbitrary coefficients A~ as above. The values 
of lift and downwash between these points though must conform to the above series. 
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Suppose one addi t ional  term is admi t ted  to each of these series. These terms l~(~) and %(~) 
each have 15 zero values along the  chord. If therefore these points  are chosen for the  lift and 
downwash points, the  lift and downwash values will be unaffected by  one addi t ional  series term. 
I t  is clear then  tha t  tile best  lift points  ~e will be given by  I~(~) = 0 which becomes 

a~0 + ap~q + a ~ ,  ~ + . . .  a ~ / =  0 . . . . . . . . .  (20) 

The downwash points  ~ will be given by  %(~)  = 0 or 

ap0 - -  a ~  + a ~  ~ p ~  + . , .  a p p , / =  O.  (21) 

Equat ions  (20) and (21) show quite obviously tha t  the  lift and downwash points are com- 
plementary ,  i .e. ,  the  lift points are the same as the downwash points  on a wing section in reverse 
f l o w .  

The chordwise analysis in the  previous subsonic theory  (Refs. 1, 2 and 4) is therefore reduced to 
the  special case in wh ich f (~ )  ---- ~/(1 --  ~/1 + ~). The  angular  co-ordinates used by  Multhopp 
are, however, unsui table  for dealing wi th  the  addi t ional  three ehordwise cases, and for this 
reason the complete analysis has been kept  in terms of ~ for this report. 

In  the subsonic solution the case t5 = 1 leads to the  well-known result  t ha t  the  lift point  is 
at  the  ¼-chord, and the downwash point  is at  the ~-chord. The analysis  for the  other  chordwise 
cases leads to the  following interest ing generalisation of this rule : 

Condition of Condition of Lift Point Downwash 
LE TE Point 

Subsonic 
Subsonic 
Supersonic 
Supersonic 

Subsonic 
Supersonic 
Subsonic 
Supersonic 

~6 

~c 
½~ 

~C 
~c 
--3 c 5 ½c 

Now the  spanwise positions of the wing sections are considered. At  the  t ip ~ -+ --  1 the  lift 
dis t r ibut ion will t end  to zero in the manner  ~/(1 + 7). At  the  t ip 7 -+ + 1 the  lift d is t r ibut ion 
will t end  to zero in the  manner  ~/(1 - -7 ) .  Therefore the  product  ~ / ( 1 -  7 ~) of these two 
functions mus t  appear  in the lift distributiofi. There is no difference between the subsonic and 
supersonic cases for this spanwise analysis and . the  position of the  spanwise lift and downwash 
sections will be identical  to those used by  Multhopp. The spanwise analysis will however be 
given here in polynomial  form for the  sake of completeness. 

A spanwise lift dis t r ibut ion rz(7) will be defined as 

= (a 0 + + 2 + + . . .  + - 72). (22) 

The downwash dis tr ibut ion due to this lift d is t r ibut ion can be calculated from two-dimensional  
(zero aspect ratio) theory  which is independent  of Mach number.  The detailed analysis is given 
in Appendix  I I  and in all cases the  downwash dis t r ibut ion is a polynomial  in 7 of order 4. 

Suppose t ha t  the  coefficients a~o, a~l, etc., are chosen so tha t  the  lift d is t r ibut ion ,,'~(7) gives 
zero to ta l  lift, zero rolling moment ,  zero second moment ,  and so on up to zero (4 --  1)th moment .  
I t  will be found tha t  the odd or even terms of the  polynomial  of equat ion (22) disappear according 
to whether  X is even or odd. Then equat ion (22) will be of the  form 

y~(V) = (aao + a~2~ ~ + aa~7 ~ + . . .  aaa7 a) ~/(1 --  7 ~) (iX even) ~.  

1 = (aa17 + aa~78 -}- aa~ 5 + . . .  aaa7 ~) V/(1 -- 7 ~) (4 odd) 
(23) 



be expressed as an infinite series • 

z(~) o(~)= ~ A~(~) 
2 - 0  

With  this definition of the  coefficients aao, aaa, etc., the downwash polynomial  b e c o m e s  

~z(~) = (as0 -5 a~,~ ~ -5 a~,~ ~ -5 . . .  a ~ )  E~ (X even) 

= (aa~ -5 a~,a~ ~ -5 aa~ ~ -5 a a ~  a) E~ (~ odd) / . . . . .  (24) 

Then the spanwise pressure distr ibution and its appropriate two-dimensional  downwash can 

If this series is shor tened to the first m terms then  it is clear from the  definition of the lift 
functions ya(~) tha t  the lift distr ibution will still give the  correct lift, rolling moment ,  second 
m o m e n t  and so on up to the (m --  1)th moment .  This shor tened series for the  lift and its 
corresponding two-dimensional  downwash will be 

m - -  1 \ 

~=0 
• o • 

m--I 

2 = 0  

. . . . . . . . . . . .  (26) 

The lift and downwash are, however,  to be defined by the  values at m points ra ther  than  the  
arbi t rary coefficients A~ in the above equation. However,  the  values of lift and downwash 
between these points must  conform to the  above series. 

If one addit ional  term y,,~(~) or ~,~(v) is admi t t ed  to each of the  above series, the values of lift 
and downwash will be unaffected at the  m points v,, and v~ given by  y,,,(~,~) = 0 and ~,,~(v,) = 0. 
These conditions (for odd values of m) are given by 

a,o~,~ + a,,~, ~ + a,,,~,? + . . .  + ~,~,,;,~,~ " - -  0 
a ~  + a,,~fl + a~,sW~ + -5 a '~ / • • . . . . . . .  (27) 

I t  is clear, therefore, tha t  the  spanwise positions of the  lift and downwash stations are identical. 

This spanwise analysis is identical in principle to ~chat of Multhopp who, however, used angular 
co-ordinates. The above polynomial  form shows the  general connection with the chordwise 
analysis more clearly. 

4. The  L i f t  D i s t r i b u t i o n . - - C o n s i d e r  the  lift along the  chordwise strip first of all. The lift 
function 1~(8) is zero at all p lift points. If this lift function is divided by the  line tangent ia l  to 
it at  the  qth lift point  a new function hq(8) is obta ined • 

Ip(8) • .. (28) h (8)  = (8  - 8 ~ ) ( ~ 1 ~ ( 8 ) / ~ 8 ) ~ = ~  . . . . . . . .  

This interpolat ion function is un i ty  at 8 = 8¢ and zero at all the other  lift points. Clearly 
from the  definition of lp(8) the interpolat ion function h¢(8) can be wri t ten  as 

hq(8) ---- (b,o + bq18 + bq~8 ~ -5 . . .  bq, p_~SP-~) f ( 8 )  . . . . . . .  (29) 

This is a l inear combinat ion of the functions I0(8), li(8) . . .  lp_l(8) and so the series for t h e  lift 
distr ibution (equation (19)) can be replaced exactly by  a series of the p interpolat ion functions 
h~(~) as follows • 

P 

~, z(8) = ~ z(8~)h~(8) . . . . . . . . . . . . . . .  (30) 
q=l 
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The unknown coefficients in this equation are the actual values of the lift at the lift points 
instead of the arbitrary coefficients A~ in equation (19). 

In an exactly similar manner a.spanwise interpolation function g,~(~) can be obtained from 
y,,(W) as follows : 

~ " ° ( ~ )  . . . .  (31) 
g " ( ~ )  = (7 - ~ , , ) ( ~ , , , , ( ~ ) l a , ~ ) , , : , , ,  " . . . . . . . . . .  

This function is uni ty  at f l  = ~, and zero at all the other lift points. I t  can be written in 
polynomial form as follows: 

g;,(,fl = (b,,o + b,,~,~ + b,,~,? + . . .  b,,,,,,_l~ ''-~) v ' (1  - -  ~ )  . . . . . . .  (32) 

This is of course the same as Multhopp's spanwise interpolation function, and is a linear com- 
bination of the functions ~0(~), h ( s ) - . .  ~,,-1(s). Therefore the spanwise series for the lift 
distribution (equation (26)) can be replaced exactly by  a series of the m interpolation functions 
g,~(~) as follows : 

m - - I  

z(~)~(~)= ~ z(~,,)~(~,,)g.(~) . . . . . . . . . . . . . . .  (33) 
2 

The unknown coefficients in this equation are the actual values of the lift at the lift points 
instead of the arbitrary coefficients in equation (26). 

Equations (30) and (33) can now be combined to give a double series for the variation of lift 
over the wing surface. 

m -- 1 

I 2 p 
l(~, ,~) _ ~(~) ~ ~(,~,,) g,o(~) ~: l ( ~ ,  ~,,) h~(~) . . . . . . . . . . .  (34) 

n= m--I q=l 
2 

The unknown coefficients in this series are the lift Values at the lift points and it should be 
noted that the interpolation function hq(~) can have any one of its four alternative forms at any 
spanwise station. This makes it possible to deal with wings having edges which are subsonic 
for part of the span and supersonic for the rest of the span. 

Equation (34) can be used directly in the form given. However, it is convenient to take the 
analysis a step further. The pressure distribution is usually required merely in order to be able 
to calculate the total lift or pitching moment or some other generalised force. If the wing has 
a general deflection z(x,y) downwards then the generalised force Q corresponding to the generalised 
co-ordinate q will be 

1 2 l" f ~z 
- (2 = v L ) z(x,y) (x,y) ( 3 5 )  

Substituting the lift distribution of equation (34) into this expression gives 

--Q=2PV2b -m-1 ~ '~ Z(~q' ~n) ~("~'~') ` 1 1  -1 gu(~) -1 ~q.(~:) ~ (~:., T]) d~: ~ ] . . .  (36) 
9. 

Considering the bracketed integral first of all we will define the average value of h~(~) as follows : 

1 
f l  h~(~) d~ . . . . . . . . . . .  (37) H~ = 'i -1 

Now it is shown in Appendix llI that  when Oz/~q($, ~7) is a polynomial expression in $ of order 
not greater than p, we have 

1 c I ~z ~z 
(38) 
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In the spanwise direction the average value of g,(~) can similarly be  defined by 

1 1 
G :2 jIlg"('7) & (39) 

Then in a similar fashion to the chordwise case it is found that  when 3z/~q(G, ~) is a polynomial 
expression in v of order not greater than m we have 

1 f l  Oz 3z _ g~(v)~-q (G, ,) d~ = G. ~ (G, w) . . . . . . . . . . . . .  (40) 

Then equation (36) becomes 
m -- 1 

1 ~ P ~z 
--  Q = 2 p V2b -m-lE E1 HqGn c'(T]n) l( ~q,. ?]n) ~ ( ~q, ? ] n )  " 

2 

Now a set of non-dimensional quantities P,~ will be defined as follows • 
q 

P,, = H c c( o) zG ,  
q ~ X . * " " " " " "  

0 q 

( 4 1 )  

(42) 

Then in terms of P,~ equation (41) becomes 
q 

Oz -- Q = lpv=s  ~ l  ~ P;,-g-q (#,, *l,,, . . . . . . . . .  (43) 

2 

I t  should be emphasised that  equation (43) (and also of course equation (41)) is correct only 
when ~z/Oq (~, ~) is a double polynomial in ~ and ~ of order not greater than p and m respectively. 
With  this restriction, however, equation (43) is exactly what we should get if the pressure 
distribution were replaced by a set of discrete lift forces of magnitude }o V~SP, at the lift points. 

q 

I t  is therefore preferabIe from an engineering point of view to express the lift in terms of the 
non-dimensional discrete lift forces P ,  rather than the values l(G, ~,). 

q 

Equation (34) will therefore become 

l(~, ~]) - -  c ~ )  /-" ~ P . .  . (44) -(,.-1) '~ H~ g .  " . . . .  
2 

If the pressure values at the lift points are required they can be obtained from equation (42) when 
the values of P,, have been found. The only restriction on the use of the discrete lift forces when 

they havezbeen found i s w h e n  Oz/~q (x,y) is a discontinuous function (as for instance when a 
control surface hinge moment is being considered). The general question of discontinuities in 
both downwash and deflection, however, is dealt with in detail in a separate Section of this 
report. 

5. The Matrix Equation.--Equation 12 is the integral equation which gives the downwash in 
terms of the lift. I t  will be put in the non-dimensional co-ordinates (~, ~) and the downwash 
measured at the point (C, ~,) as follows • 

- -  1 1 @7) l(~, ~])K (x,~ - -  x),  (y~ - - y )  ~d~ d~] . . . . .  (45) 
- - 1  - _ i  : 

8 



The co-ordinates of which K is a funct ion have  been left in the  dimensional  form for convenience. 
The pressure dis tr ibut ion given in equat ion (44) can now be subs t i tu ted  in equat ion (45). This 
gives 

m - - 1  

- w p _  I 
(X(Sr, ?Iv) = --~m--1 "~1 2yf, m 

2 

(46) 

This is a set of l inear s imultaneous equations which can be put  into m a t r i x f o r m .  In general  
the  kernel K will be complex (for uns t eady  motion) and we will therefore define the  following 
mat r ix  element in complex form 

--  1 [2-~. ~ g ~ ( v ) 1  1 ~ l I I (47) 

Then  the  ma t r ix  equat ion corresponding to equat ion (46) will be 

The problem involved next  will be the evaluat ion of the elements of A and B from equation (47). 

6. The Chordwise Integration.--The chordwise par t  of the  integral  involved in equation (47) 
is denoted 

1 ~1 h ~ ( 8 ) K / ( x ~ -  x), ( y ~ -  y)-ld8 
R;q.v,(/ --  2Hq j _~ 

(49) 
[ / 

We are concerned only wi th  the  values for ~ = ~ and these will be denoted 

K~'~ - 2H~l -~ h~(8) K ( x . -  x), (y~ --y,~) d8 . . . .  . (5o) 

Fig. 2 shows how the kernel is zero over a considerable region in the  supersonic case. In  the  
chordwise direction therefore the kernel is finite only in the  range x < x,~ -- [y~ --  y ,  ] ~ / (M ~ --  1). 
This restriction applies also to the subsonic case when n = v. We will therefore restrict  the  
range of in tegra t ion to a region denoted by  --  1 < 8 < 8A (where 8a denotes either the  edge of 
the  Mach cone x = x ,  -- ]Y~ - Y,, I ~/( M= - 1) or the  trai l ing edge 8 = 1, whichever  is the  less). 

Then equat ion (50) m a y  be wri t ten  

K~'~q -- 2Hql f~l hq(8)K l ( x ~ -  x), (y~ -- y,)l  d8 (5~) 

We will now introduce a co-ordinate ¢ which is --  1 at the  leading edge (8 = --  1) and is + 1 
at  8 = 8A " 

¢ = 1 --  8A -+- 28 (52) 
. . . . . , , . . o . . , , . . 

1 -~- 8A 

Then equat ion (51) becomes 

_ _ _  l 1 - -  - -  

9 
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W h e n  ¢ = --  1 the  in terpolat ion funct ion h e has values oi the  order  1/@(1 + ¢) or 1, and 
the  kernel  K has values of the  order 1. Therefore the  product  hqK will have values of the  order  
1/@(1 + ¢) or 1. 

W h e n  ~ = q- 1 the interpolat ion funct ion h e has values of the  order  @(1 --  ~) or 1, and  the 
kernel  K has values of the  order  1 or 1/@(1 --  ¢). Therefore the product  hqK will have  values 
of the order  @(1 --  ¢) or 1 or 1/@(1 --  ~). 

These end condit ions are shown in the  sketch graphs of Fig. 3, and we will define a funct ion k(¢) 
wi th  six a l te rna t ive  values to cater  for these various conditions. 

k(¢) - -  @( l  _ ¢) or @(1 + ¢} or @(1 - - ¢ )  

or ~ or 1 or @(1 --  ¢2) 

(54) 

We can now approximate  to the  product  heK by  the series 

+ . . . .  2 ~ 2 I K lx,~- x), (y~- y)I= ((ao + a~¢ -+- + a,_~¢ "-1) k(¢) (55). 

The funct ion k(¢) mus t  be p icked very  carefully for any  par t icular  case wi th  the  help of Fig. 3. 
We mus t  now subst i tu te  equat ion  (55) into equat ion (53) and  integrate• To do this we will make  
use of the idea of the  in terpolat ion funct ion which was so successfully used in an earlier Section 
of this report• W e  will define a function #a(¢) as follows : 

~(~)  = (a~0 + a ~  + a ~  + . . .  a ~ )  k(~) . . . . . . . . . . .  (56) 

The coefficients az0, az~, etc., are chosen so tha t  the lift, first moment ,  second m o m e n t  and  so 
on up to the  (2 --  1)th m o m e n t  are all zero for the  range --  1 < ~ < 1. Then  by  an analysis 
which is exact ly  the  sam e as t ha t  used to develop the lift points we can determine  a set o f '  special ' 
points Cb from the  following equat ion  : 

a~0 + a ~  + a~Z~ ~ + . . .  + a~Zb ~ = 0 . . . . . . . . . . .  (57) 

Then  following the  same procedure  as t ha t  used to de termine  the spanwise and chordwise 
in terpolat ion functions we can obtain an in terpolat ion funct ion ib(¢) which is un i ty  at t h e '  specia l '  
point  Cb and  zero at  all the  other  (a --  1) ' spec ia l '  points• 

= (b 0 + b l: + b 2¢ 2 + . . .  + bb, o_l* o-1) k(C) . . . . . . . . .  (55) 

For  four of the  a l ternat ive  values (k(¢) = @(1 --  ~/1 + ¢) or 1/@(1 + ¢), @ (1--  ¢) or 1) the  
above interpolat ion funct ion can be obta ined  from the  values of hq(~) already de te rmined  by  
subst i tu t ing ¢ for ~. For  the  fifth a l ternat ive  (k(¢) = 1/5//(1 -- ¢) ib(¢) can be obta ined  from 
hq(~) (the case involving f (~)  = 1/@(1 + ~)) by  subst i tu t ing --  ¢ for ~. O n l y  in s ixth and  
final a l te rna t ive  (k(¢) = 1/@(1 --  ¢~) does addi t ional  work need to be done and  this case is 
deal t  wi th  in Appendix  IV. 

Now.equa t ion  (55) m a y  be wr i t ten  

(59) 

1 0  



Then equation (53) will become 

rq ~ b = l  2 

- - 1  

We can denote 

af I = i~(¢) d : .  

.. (60) 

Then we have 

÷ 
~q ~ b = l  2 " 

Furthermore, since equation (61) holds for polynomials of greater order than that  involved 
in ib(¢) (see for example equations (37) and (38)) the expression above for/~,,~ holds true when 
equation (55) is replaced by the better approximation : ~q 

= (a0 + a ~  + . . .  + 

In general the value of a should be 

For the particular cases shown in (b) 

R,,~ = K { x . -  x,,,), (y~ - 
rq 

For the other cases equation (64) is 
to the singularity at ~ = ~A. 

(~" - ~)' (Y" - Y')  I 

<.o_~:~o-~) k ( t )  . . . . . . . . . . .  (63) 

at least as great as the value of p. 

and (c) of Fig. 3 when a = 15 equation (62) reduces to 

y,~)} . . . . . . . . . . . . . . .  (64) 

a fairly near  approximation for points which are not near 

7. The Spanwise Integration.--If we substitute the definition of K, (~) from equation (49) into 
the surface integral of equation (47) we will have "q 

(65) 

First of all it should be noted from Fig. 2 that  (in the supersonic case only) this spanwise 
integral does not usually extend over the full span. Therefore equation (65) will be written 

(66) 

Then it must be noted that  strictly/£~ @) has a logarithmic singularity at ~ = ~ and should 
be wri(ten 'q 

/7 ,  (~) = R *(~) + L ,  (v - -  n,)~ l og  1~ - -  ~, l  . . . .  . . . . . . .  (67) 
rq ~rq rq 

The term L~ is dealt with in Appendix V. 
c q  

- -  2 v ,q ,~ = 2~A 'A(V--r /")  ~q 

We can now modify equation (66) to read 

L~q ~,~ ~, i d~Tj *(~) dr + ~ joAg,~(~) log Iv - 4 O g (6s) 
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When  n ~ ~ there is no s ingular i ty  in the second integral  of equat ion (68) since 

g,,(~) log 1~ -- % [ =  0 when ~ = ~ .  

Therefore the  form of the integral  given by  equat ion (66) can be used. We will write 

g,~(~)/£, (v) = ],~(~)/£~,~ . . . . . . . . . . . . .  (69) 
rq rq 

The funct ion j,(~) has similar properties to g,(~) except tha t  i t  applies only to values of ~ in 
the range ~A < ~ < ~B. I t  is un i ty  when ,/ = ~ and zero at all the  other spanwise s tat ions in 
the range defined. I t  is thus  an interpolat ion function, similar in m a n y  ways to hq(~), g,(~) and 
io(~). I t  differs from these, however, in tha t  the  s ta t ions used are not  defined as special intervals  
in the  range from ~A to ~ (except for the case when ~A = -- i and ~ = -}- 1). No special 
theorems exist therefore which simplify the in tegra t ion (with the exception of the  special case 
defined in the  last  sentence). A fur ther  discussion of the funct ion jn(~) will be given shortly.  
In  the  meant ime,  however, we can subst i tu te  equat ion (69) into equation (66) giving 

- - l l  1 f ' z  j,(v) d~l - " . . . . . . . . . . . .  (70) 

When  n = v the  a l ternat ive  form (equation (68)) of equation (66) mus t  be used since the second 
term has a t rue logari thmic s ingular i ty  in it. We can write 

g~(v)/£, *(n) = j~(~) K . . . . . . . . . . . . . . . . . . . .  (71) 
rq vq 

(since R~,* = R ~  from equat ion (67)). 
rq rq 

Therefore we can write 

f. + f:Z (72) 

Now we mus t  consider the  interpolat ion funct ion j,~(~) in more detail. W h e n  ~A = -- 1 (i.e., 
the  range of in tegra t ion extends to the  port  tip) the factor ~/(1 + v) mus t  be inhluded in j,(~) so 
tha t  it becomes zero in the proper manner  at this tip. Similarly when ,B = + 1 the factor 
~/(1 -- ~) mus t  be included inj~,(~). 

When ,one  of these limits of in tegrat ion is not  at the t ip it  is because the Mach cone crosses the  
leading edge at  this point  (see Fig. 2). If the  l imit  is at a subsonic edge then  the  value of j,(~) 
mus t  remain finite at this limit. This can be shown to be due to the  singularities of bo th  the 
kernel and the leading-edge pressure becoming coincident at  this  point.  However,  when the 
l imit is at a supersonic leading edge the value of j,,(~) mus t  be zero at this limit. Typical  examples 
of the  spanwise in tegrand  are shown in Fig. 4. 

Therefore in general we can write the  interpolat ion funct ion j~(~) in the  following form : 

j , (~) ---- (b,~o + b,,l~ + b,~2n ~ + . . .  + b,~,,,~._A"*-*) e(~) . . . . . . . . .  (73) 

Where  m* is the  number  of spanwise s tat ions falling wi thin  the range ~TA < ~ < ~S, and the 
function e(~) has various a l ternat ive  values depending on the conditions at ~a and ns as follows 

e (~) = ~ / (1  - -  ~2) or ~ ( 1  + ~) or V ( 1  - -  ~) 

or (~ - -  ~ A ) V ( 1  - -  ~) or (~ - -  ~ A ) ( ~  - -  7) 

or ( ~ - - ~ ) V ( 1  + 7) Or 1 or ( ~ - - 7 )  

or (~ - -  ~A) ) .  (74) 
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The numerical calculation of the function j,~(~) is given in Appendix VI, which also gives the 
method for calculating the following integrals: 

Jr, ,*,  = 2G,--~ ~ (~ - ~,,)~ 
• , . 

- -  2G, log 1~ - -  ~ , 1  d ~  

Equations (70) and (72) then become 

(75) 

,~ = ~ ,,* when ~¢ ~ v 

A,, i~B, - - 1  I - ] - -  = K ; ~  GT* 

(76) 

We now have the elements of the downwash matrix and must proceed to solve the matrix 
equation. 

, 

the downwash in terms of the loads. 

This will be written as follows • 

The Solution of The Matrix Equation.--Equation (48) is the matrix equation which gives 
The solution of this equation will clearly be given by 

. . . . . . . . . . . .  (77) 

By matrix manipulation we can find the following expressions for the real and imaginary 
parts of this inverse matrix. For convenience the brackets and suffixes have been omitted from 
the matrices in tile next two equations. 

F = (A + ~,~BA-1B) -1 ) 
G-= ( A B - M  + v~B) -I ) . . . . . . . . . . . . . .  (79) 

When v ---> 0 these become 

F = A -1 

G = A_IBA_ ~ ] . . . . . . . .  . . . . . . .  (80) 

9. The Gemralised Forces.--For flutter calculations we need to find the generalised force Q 
appropriate to a generalised co-ordinate q. Let the downward deflection of the wing be denoted z 
where 

O Z  . . . . . . . . . . . . . . .  

Then the boundary condition for the downwash will be 

° - - P : + " q  Iq . . . . . . . . . . . . .  (~ 
Let the generalised force Q, (appropriate to the generalised co-ordinate q~) be given by 

[ - q - -  " I q  b] + ~ [q  [~,] . . . . . . . . . . .  (~ 
13 



Then [b.] and [Cs~] are matrices of aerodynamic damping and stiffness coefficients respectively. 
These flutter coefficients can be found by substituting the boundary condition from equation (82) 
into the matrix equation (78) and then finding the generalised force from equation (43). This gives 

10. The Effect of Kinks in the Plan-form.--The effect of discontinuities in the plan-fornl can be 
treated quite simply by using Multhopp's rounding-off rule. In the supersonic case, however, 
care must be exercised to see that  the proper chordwise functions are used at these stations. 
This is because the local sweep angle of the leading or trailing edge will be altered by the rounding- 
off process. 

As an example we can consider the central section (n = 0) of a swept wing. When the rounding- 
off rule is introduced the resultant modified wing will have no sweep angle on either the leading 
or trailing edge at this station. Therefore in supersonic flow the local leading and trailing edges 
will be supersonic and the downwash and lift points at this central section must be chosen with 
this in mind. 

11. The Treatment of Control Surfaces.--The only feature which distinguishes a control-surface 
mode from an elastic mode or body freedom is that  the deflection and downwash angle are 
discontinuous functions instead of being expressible as polynomials in x and y. In Ref. 5 the 
equivalent slope techniques of Falkner and De Young were generalised to give equivalent 
continuous deflections and downwash angles for the subsonic case. 

The results obtained for the subsonic case can be generalised into results applicable to all four 
types of chordwise condition. A proof of these expressions will not be developed in this report, 
but  an analysis is given in Appendix VII which shows that  the subsonic results given in Ref. 5 
can be developed into the form given in equations (86) and (87). 

In the chordwise direction the equivalent continuous deflections and downwash angles are 
given by 

3z~ ( 4 ) -  1 -t -~ 4 ( ~ )  
a~ 

. . . . . . . .  (86) 
1 h ,+ l_ / - -  e)a(e)de 

at (8,) - -  2 H , + I _ ~  -1 

The function hp+l_/-- 8) is of course simply the reverse-flow version of the function hq(e), 
and equation (86) (which applies to all four types of chordwise function) is really just a generalisa- 
tion of the various reverse-flow theorems which occur in aerodynamics. The expressions are 
applicable to any type of discontinuous deflection or downwash angle whether due to a control 
surface mode or not. I t  can be seen that  if ~z/~q(e) or a(e) in equation (86) already exhibits the 
continuous properties which are required (i.e., if they are polynomials in e of order not greater 
than p) then the equivalent and true values will be ident ical .  This can be seen by comparing 
equation (86) with equation (38). 

The spanwise version of equation (86) is 

1 ~ . . . . . . . . . . .  (87) 

This is a general form of the spanwise equations given in Ref. 5 and it can be seen that  the 
equivalent deflection and downwash angle are given by identical formulae because of the spanwise 
symmetry of the equations. 

14 



x ,  y ,  z 

X 

Y 
z 

p 

P 

~,  V, 72) 

X , Y , Z , T , ~ , r , R  

V 

M 

y) 
 (xoyo) 

K(X, y) 

Sq 

~gj 

Q 
q 

NOTATION 

Rectangular co-ordinates system attached to the wing, origin at the 
vertex 

Positive rearwards from the vertex 

In the starboard direction 

Positive downwards 

Pressure } 

Density of the flow about the wing 

Speed of sound 

Perturbation velocity components, in the direction x, y, z respectively 

See equation (7) 

Velocity of undisturbedflow relative to wing 

(V/a) Mach number 

Circular frequency 

Non-dimensional load distribution defined by equation (11) 

Wing incidence at (XoYo) -- w/V 

Kernel function defined by equation (13) 

%/ Non-dimensional wing co-ordinates related to the 
2y inducing wing section 

b 

Local wing chord 

Chordwise lift distribution having edge conditions defined by 
equation (14). 

f($) x polynomial in $ of order ,~ 

Chordwise pressure distrit~ution defined by equation (17) 

Chordwise downwash angle distribution defined by equation (18) 
Points at which the lift is evaluated 

Points at which the downwash is evaluated 

Spanwise lift distribution in polynomial form defined by equation (23) 

Spanwise distribution of downwash incidence 

Suffices numerating the spanwise stations, , giving the pivotal 
station, ,~ the inducing station 

Chordwise interpolation function defined by equations (28) and (29) 

Spanwise interpolation function defined by equation (31) and (32) 

Generalised component of force due to mode z(x, y) 

Generalised co-ordinate associated with mode z(x, y) 
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H q  z 

b 
g 

Pn 
q 

S 

A 

A,,  -- ivB,,, 
rq rq 

rq 

~b 

Ib 

rq 

L, 
rq 

jo(7) 

e(7) 

Jvn*~ ~vv* 

NOTATION--continued 

f 1 hq(~) d~ (suffix q refers to lift points) 
2 - i  

i f  
2 -1  

Wing span 

Mean chord of wing 

Non-dimensional quanti ty defined by equation (42) 

Total number of spanwise stations in Multhopp's theory 

Wing area 

Aspect ratio 

Matrix elements in equation giving downwash in terms of pressure 
(equation (47)) 

Chordwise integral in expression for downwash (equation (49)) 

Edge of Mach cone x = x,, -- ]y~ -- y,, 1%/( M2 -- 1) or the trailing 
edge ~ = 1, whichever is the less 

, a co-ordinate which is -- 1 at L.Ei (~ = -- 1) and 

+ 1 for ~ = ~A 

' Special '  points used for the chordwise integration (equation (57)) 

Function defining the end conditions of the product hqK (see equation 
(54)) 

Chordwise interpolation function for integrating the product hqK 

1 F ib(¢) de 

Regular part  of K~ (7) for 7 = 7~ 
rq 

Coefficient of logarithmic singularity part of /~,  (7) when 7 = 7, (see 
equation (67) and AppendiX V) ~q 

Spanwise interl~olation function similar to, g,~(7) but only for 7 in the 
range 7A < ~ < 7B (see Fig. 2) 

Expression in j,~(~) dependent on the boundary conditions at 7A and 
78 (equation (74)) 

Functions defined by equation (75) 

= [ATq -- ivB~,ql-~ (see equation (77)) 

Vertical displacement of wing in mode t 

Matrix of aerodynamic damping coefficients 

Matrix of aerodynamic stiffness coefficients 

Frequency parameter 
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A P P E N D I X  I 

The Kernel Function of the Integral Equation 

The kernel K(X, Y) is defined by equation (13). I t  is not possible to give a single analytical 
solution to the integral involved and therefore various cases are treated separately. 

First of all when Y = 0 we have for all frequencies and for both subsonic and supersonic speeds 
~ X  ~ X  } 

K(X,O) = 2 c o s ~ -  - - 2 i s i n ~ -  w h e n X > 0  . . . . . . . . .  . .  (A.1) 

= 0 when X < 0 

Secondly we can consider the case of limiting small frequency ( ~ - >  O) for all values of Y. 
This leads to 

K(X, Y) = 1 4:- - - - ~  X- t  R w h e n M <  1 
(A.2) 

---= I~---] __ ;~r-VL2(X~, -t- y2!~7 when  M > l a n d  X > I YI ~ / (M  ~ -  1) . R 
These small frequency results have been evaluated by expanding the exponential in the integral 

to the first two terms of a power series. In the subsonic case it is not possible to take this series 
analysis any further because the semi-infinite range of integration leads to infinite values for the 
third and succeeding terms of the series. However, in the supersonic case the range of integration 
is finite and therefore this difficulty does not apply and it is possible to evaluate the kernel as a 
power series of the frequency. Of course there is a limitation to the practical use of this series 
at the lower supersonic speeds because as M -> 1 the upper limit of integration tends to infinity 
which makes the series converge very slowly indeed. This series (which applies for M > i a n d  
X > I Y]'~/( M2 -- 1))is as follows : 

1 2M ~ -  1 y~ 2XR 
i 2 ( V ) '  [-~- ( X ' +  M2__l Y ~ ) +  sinh-ly,(M, 1) ] 

3M 4 -  1 8- 2 - - 3 M  2 + 2  

+ 3XY~ sinh-1 \y2(~-~ - -  1) + . . etc . . . . . . . . . . .  (A.3) 

Any number of terms of this series may be evaluated but  the expressions involved become 
more and more cumbersome as the expansion proceeds. I t  will therefore be necessary to evaluate 
K(X, Y) numerically in most cases when Y ¢ 0 and ~ % 0. However, equation (13) as it stands 
is not in a suitable form for numerical integration. We must therefore perform the differentiation 
and write the exponentials as trigonometric functions. 

Then for M < 1 we have : 

[ M Y ' ( M X  + R) [~M(MX 
K(x, r ) - -  L ~ T  Y~) cost V(1 --  ~/ /~) )  

_ 

cos d~ sin 
÷ 

- - X + M R  (T 2 ~ -  y ~ ) a / 2 J  
1 - -M 2 1 - - M  ~ 

- ~ - R(x~ + Y~l sin t V(1 -- ~ ) 

( ~ _ )  sin d~ c o s -  V d~ (A.4) 
+ Y~ cos - -  -x+M. (,~ + Y~)~-/~ + Y" sin -x+M~ ~ ~ ~ ) ~ j  

1--M 2 I _ M  2 
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For M = 1 we have (for X > 0) 

K(X, Y ) =  LX ~ + y2 cos \  2VX ] 

f cos d~ 
+ Y~c°s(~),(r~x~)ff2+y~)~/2 

2X 

r ~ sin ~ ~ ~ ) ~  (y-~-X -~) 
2X 

- -  i ~X 2 + y~ sin \ 2VX ] 

sin dr 
+ Y~c°s (Z~-) ,  ~-x'-~+ Y~)~/~+ Y~sin 

2X 

~-~.. ~ ~ ~ / ~  
2X 

(A.5) 

Finally for M > 1 we have (for X > l  Y ] ~/(M 2 -- 1)) • 

2M2¥2X cos[  ~M2X ~ cos [ ~-MR K(X, Y) 
L R ( X  ~ ÷ r ~) ~ V ( M  ~ - -  ~)/  ~ ,V(M ~ - -  1) 

2 y2  M2x 
+ X ~ +  y 2 S i n V ( M 2 _  1) sin V(M2_ 1) 

X + M R  

COS dV 

M2--1 

X + M R  

sin ~ d~ 

- - i  ~R(X~. + y2)sin \V(M2_ 1))cos ( V ( ~  ~ 1)) 

2MY ~ 
X 2 -4- Y ~  1))  v(M - 17) 

+ 

X + M R  

sm -V d~ 
~_~ ~ ~ ~)~2 + r2 sin 

X + M R  

cos ~ -  d~ . 

~-~ ~ ~ ~)~J  
M-~_I 

.. (A.~) 

Equations (A.4), (A.5) and (A.6) all contain the two integrals 

~ T  2 ~y2)3/21 dT a n d  y 2  -~-T 2 ~72)3/21 dT 
. . a  

with various limits of integration. These must be evaluated numerically by some suitable metl~od. 
This is possible even in the case M ~ 1 (which involves an infinite limit) since the integrand 
tends rapidly to zero as this limit is approached. 

The equations in this Appendi x give the real and imaginary parts of K(X, Y) separately in a 
form suitable for substitution in equation (62). However, the equations have been given in 
dimensional form involving ~/V rather than ~----~/V.  For the non-dimensional form the 
values of X, Y and R must be given in terms of 5. 
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A P P E N D I X  II  

Two-dimensional Lift and Downwash 

In Section 3 of this report the downwash due to various two-dimensional lift distributions is 
given. These are all derived from two-dimensional aerofoil theory and there are five cases to 
consider : 

(1) The chordwise case when both edges are subsonic can be derived from two-dimensional 
subsonic steady theory. 

(2) The chordwise case when both edges are supersonic can be derived from two-dimensional 
supersonic steady theory. 

(3) The chordwise case when the leading edge is subsonic and the trailing edge is supersonic 
can be derived from two-dimensional sonic indicial lift theory when the distance 
travelled from the step in the downwash approaches infinity (see Ref. 6). This theory 
is used because the lift at sonic speeds continually increases with time and this never 
reaches a steady state. 

(4) The chordwise case when the leading edge is supersonic and the trailing edge is subsonic 
is derived by a theory which is more difficult to justify than those above. In the other 
sonic case above (3) there is an additional second-order lift distribution which tends 
to zero as the distance travelled increases. This additional lift is zero at the leading 
edge and finite at the trailing edge. If therefore we use this additional lift term in 
reverse flow (so that  the zero pressure is at the trailing edge) we will have the right sort 
of distribution required. Since this type of chordwise condition is not very common 
(occurring in the main on swept-forward wings) no at tempt has been made to offer 
a better justification of this case. 

(5) The spanwise case is independent of Mach number and can be derived from slender-wing 
theory. 

The equations for these five cases are as follows : - -  

~ ( 2 o ) = - - ~ / ( 1 - - M  2) f l  l(~)d2 
4 ~  - i  (2o - -  ~) 

V ( M  ~ 1) 
~1 Z(~) ~(20 -- 2)d~ 

m 

4 a - 1  

\ 

(LE subsonic, TE subsonic l ,  

J 
O O 

(LE supersonic, TE supersonic) 
(A.7) 

_ V ( M  2 -  1)Z(e0) 
4 

1 (*° l(e) d~ 
~ ( ~ o )  - -  4 % / ( 2 ~ )  J - i  V (G0 - -  2 )  

'where s = number of half chords travelled). 

~ (2o) -  V'(2s) 3 f~ l(2) d~ 

- 1 ( ~ r(7) d7 
~(70) - -  4= 3_1 (70 - -  7) 3 

(since the Dirac function ~ (~0 -- 2) 
is defined by / . . .  (A.8) 

f l (2 )  ~(~0 - 2) d2 = l(~0)) 

(LE subsonic, TE supersonic) . . . .  (A.9) 

(LE supersonic, TE subsonic) . . . .  (A. 10) 

(spanwise distribution) . . . . . .  (A. 11) 

I t  can be shown by substitution of the various distributions l~(~) and ~(7) from Section 3 of 
this report into the appropriate equation above that  the corresponding downwash will be a 
polynomial in ~ (or 7) of order ~. 
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A P P E N D I X  I I I  

The Integration of the Interpolation Fumtio~s 

Consider the chordwise functions first of all. We have (see equat ion (15)) a loading funct ion : 

l~(~) = (a~o + a~,~ + a ~  ~ + a~}  ~ + . . .  + a ~ } ~ ) / ( , )  . . . . . . . . .  (A.12) 

Suppose tha t  we define a polynomial  funct ion l~*(,) using the  same coefficients : 

Z / ~ * ( ~ )  : @7~u 0 " @  a / z i ~  + a / g l ~  2 @ . . . ~ -  a / z / z ~ / ~ )  . . . . . . . . . . . . .  (A.13) 

Then because of the way  in which the  coefficients in l~(~) are defined (no lift, no pi tching 
moment ,  etc.) we can show tha t  these two functions are or thogonal  : 

1 
f l  /a(~)/~*(~)d~ 0 when ~ ~ / ,  . . . .  (A.14) - -  ~ , • • • • • , 

2 -1  

Now consider the interpolat ion funct ion hq(~) which is derived from la(~) (see equat ion 29) : 

hq(~) = (bqo @ bql~ @ bq2~ 2 @ . . . @ bq, p_l~ p-1) f ( ~ )  . . . . . . . . .  ( A . 1 5 )  

Suppose we define a polynomial  funct ion h~*(~) using the same coefficients 

h,*(~) = (b,0 + b,,~ + b¢~ = + . . .  b , , p_y  -1) f(~,) . . . . . . . . . . .  (A.16) 

This new funct ion is un i ty  a t ,  = ~, and zero at all the  other  stations. Then it  can be shown 
tha t  because of the or thogonal i ty  of the two functions /a(~) and l~*(~) (from which hq(~) and 
h,*(*) are derived) a similar relat ion holds between hq(~) and h,*(~) as follows : 

1 1 hq(~) hs*(~) d# H e when s = q . . . . . .  (A.17) 
- 1  . . . . . 

= 0 when s va q 

Then  if the d e f l e c t i o n ~  (~) is a polynomial  in ~ (of the appropr ia te  order) it can be expressed 

in terms of the new funct ion h,*(~) as follows : 

a--q ,=1 ~ (~') h's*(~e) . . . . . . . . . . . . .  (A.18) 

Then  the chordwise integral  required in Section 4 of this report  is 

i f  1 F - ,  hq(~e) ~ (~e) d~ = ,=lZ ~ (*,) ~- -1 hq(~ e) h,*(~) d~ e . . . . . . .  (1.19) 

Subst i tu t ing equat ion (A. 17) in this expression gives the required result (see also equat ion (38)). 

1 f l  ~z az -z hq(~) ~ (~) d$ = Hq g-q (ee) . . . . . . . . . . . . .  (A.20) 

An exact ly similar analysis may  be 

1 f l  az - go('7) ('7) & = G~ 2 -1 

made  in tile spanwise direction leading to the  result 

az 
(~,~) . . . . . . . . . . . . .  (A.21) 
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Chordwise Distribution 

Position of ' p '  Loading and ' p '  Downwash Points, together with the Equivalent Interpolation 
Function 

Subsonic Leading Edge. Supersonic Trailing Edge 
p = l  

Loading point 

5 =  --0-3333 

0"81650 
h1(5) --  ~/(1 + 5) 

Downwash point 

5 = 0 . 3 3 3 3  

HI(# ) = 1.15470 

p = 2  

Loading points 

5 1 =  - - 0 . 7 6 8 8 3  

5 2 =  0.48311 

1 
h1(5) - -  ~/(1 + ~)(0. 18554 --  0.384055) 

1 
h2(5) - -  %/(1 + ~) (0.74788 + 0.972765) 

Downwash points 

5 1 =  - -0 -48311  

5 2 =  0"76883 

H1($ ) = 0.44343 

H2(~ ) = 0 . 5 9 9 1 0  

p = 3  

Loading points 

5 1 =  - - 0 . 8 8 6 1 2  

~ = - - 0 . 1 2 5 6 1  

~ =  0.73900 

1 
h1(5) --  ~/(1 q- 3) ( -  0.02535 - -  0. 167485 q- 0-2730452) 

1 
h2(5) = ~/(1 q- 3) ( 0.93125 --  0.209225 --  1.4221052) 

1 
h3(~) - -  V'(1 q- 3) ( 0.10446 -]- 0.949533 q- 0.93853~ 2) 

Downwash points 

~1--~ - - 0 . 7 3 9 0 0  

~ =  + 0 . 1 2 5 6 1  

G =  0.88612 

2,r-/1(5 ) = 0.22331 

H2(5 ) = 0.47708 

HdO = o.31951 
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Chordwise Distribution 

Position of ' p '  Loading and ' p '  Downwash Points together with the Equivalent Interpolation 
Function 

Supersonic Leading and Trailing Edges 

p = l  

Loading point 

= 0- 0000 

Downwash point 

= 0. 0000 

hl(~ ) = 1.0000 H~(~) = 1.0000 

p = 2  

Loading points 

~ 1 =  - - 0 . 5 7 7 3 5  

G =  0.57735 

h~(~) = (0.50000 - -  0.866035) 

h2(.~ ) = (0.50000 + 0.86603~) 

Downwash points 

~l = --  0"57735 

~2 = 0" 57735 

H~(~) =0.5000 

H~(~) =o.5ooo 

p = 3  

Loading points 

$ 1 =  - - 0 . 7 7 4 6 0  

~ =  o.ooooo 

~ =  0"77460 

hi($) = (-- 0.64550~ + 0.83333~) - 

]h($) = ( 1.00000-- 1.6666752) 

h3(~ ) = ( 0.64550.~ + 0.83333~ ~) 

Downwash points 

~1---- - -0"77460  

5 =  0.00000 

~ =  0.77460 

HI(~ ) = 0.27778 

H2(~ ) = 0.4444 

H3(~ ) = 0-27778 
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A P P E N D I X  IV 

An Additional Interpolation Function 

Equa t ion  (58) gives the general interpolat ion funct ion i~(¢). When  k(¢) = 1/%/(1 -- ¢~) it is 
easier to use the angular  co-ordinates used by  Multhopp (as for k ( ¢ ) =  % / ( 1 -  ¢/1 + ¢) or 
%/(1 -- ¢=)) ra ther  than  the polynomial  form which is forced upon us in the  other  cases. 

Subst i tu te  • 
¢ ~ -- COS ¢ . . .  (A.22) 

Then ~(¢)  in equation (56) can be wri t ten  ' 

cos Z¢ 
#a(¢) -- s ine  "" ..  (A.23) 

The special points  ¢~ then become • 

= ( 2 b - -  1) 
Cb - -  2a (A.24) 

Then  the funct ion i~(¢) becomes : 

1 sin ¢~ 
i~(¢) = - - .  

a s ln ¢ 

and I t  is given by  : 

1 ~1 [sin (,t q- 1)¢b --  
+ f f ~ = ,  

fy~ 1 %(¢) sin ¢ d e ,  I ~ = ~  o 

s in - - -  

cos ~¢ 
sin ¢ ' 

. .  (A.25) 

7g 
= ~-~ sin ¢~. O I I I (A.26) 
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A P P E N D I X  V 

The Logarithmic Singularity 

The logari thmic singulari ty has been t rea ted  for the  low-frequency subsonic case (Refs. 1 
and 2). The supersonic case will be dealt  with now. For small frequencies we have in non- 
dimensional co-ordinates • 

1 
R~,~(~) - -  2He 

--1 

4(~) 2(e~-  ~) ~ 
V { ( ~ -  ~)~-  (M ~ -  ,) (c~)~(~ -- ~) 2} 

i~r c~ 1 
V 2 2He --1 

~(~) ~ 
~ / { ( , -  ~)2_ (M2_ ~) (~)~(~ _~)2} 

We will now expand he(~ ) as a Taylor series from the  point  ~r as follows '" 

ah~ ,2 a~h¢ 
h~(~) = 4 ( < )  --  (< --  ~) T~ (~J + -~(~ --  ~) ~ (<.) + . . . . . . . .  

Subst i tut ing this in the  expression for R ,  (~) we have • 

i~er+ 1 1 4 ( < )  : 

1 ~h¢ I ~+~ 
2H e a~ (~:') .j (c~)[r/v_,ii,v/(M. 1) 

r q  

V { ( ~ , - ~ p -  (M ~ -  1) (~)2(~ --,~) ~} 

• (A.27) 

. .  (A.28) 

(~-~)21 ~(~r-  ~) 

• r • d ( C - -  8) + . .  t e r e @  (A.29) 
~ / { ( ~ -  ~)2-  (M~-  1) (~j2(~ -- ~) 2} 

When  these integrals are evaluated it is found tha t  most  of the terms are regular and could 
be expanded  as a power series of 17. However,  the  remaining terms are of the  form (~, --  ~)2 
log [ % - - ~ 1  and ( ~ - - ~ ) ' l o g J ~ ; - - ~ l  and (~l~--~) 10g I~ - -_~ l  and so on. Only the first of 
these terms Causes an impor tan t  s ingulari ty at ~ --  ~ and so K~ (~) can be wri t ten  (see e q u a t i o n  
(67)) as follows : ~q 

&(~) = R~:*(~) + L~(~ 4- ~)21og [~ - - ~ l  . . . . . . . . . . . . .  (A.30) 
rq  rq  rq  

The te rm R.  *(~) is the regular par t  and the singular term L~ is found to be : 
rq  rq  

L.~q - -  2Hq O~ - -  + iv ~ffq hq(~,)(M ~ + 1) ~ . . . . . . .  (A.31) 

The subsonic low frequency case can of course be evaluated in a similar manne r  and leads to 
exactly the same result. The result differs slightly from tha t  of Garner (Ref. 2) in its uns teady  
par t  because the  true lift and downwash (instead of the  t ransformed values) are being used in 
this report. 

The above expression applies only to the  small f requency case. A further  analysis (on the  
same lines) is required for the finite frequency solution. 
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A P P E N D I X  VI 

The F u m t i o n  j.(~) 

Equat ion  (73) gives the  series expression for the  function j~(,~). T h e  coefficients b,,o, b,a, etc., 
must  be chosen to make  j.(~) be zero at all the spanwise stations in the  range except stat ion ~,,. 
Since the  stations will not  in general have any special matlfematical  significance a purely numerical  
me thod  must  be found for evaluat ing them. We will consider a third-order  system (taking in 
points W, V~ and Va) as an example. In  mat r ix  nota t ion • 

= b,., I 
. . . . . . . .  ( A . 3 2 )  

Then by definition • 

b d 
2g 

.. (A.33) 

This can be solved to give the  b's which can be then  subst i tu ted into equat ion (A.32) as follows • 
[- 

j~(~) 

j,(~) = 

£( ,7)  

1 
0 0 ~(~i), 
1 

o , e(>3' , ,  0 

1 
0 , 0 , e(~3). 

1 1 1 

rh  r]2 rla 

~,= r/s = rla = 

- 1 4 , ~ )  ] 

,7 ~(,7)1 • 
. .  (A.34) 

The advantage  of this form is tha t  the  mat r ix  inversion required is independant  of the  end 
conditions which determine e(~). Fur thermore,  since a number  of such matrices require inversion 
for a calculation on a given wing, it is found tha t  the  most  convenient  me thod  of inversion will 
be by submatrices. This me thod  of inversion enables some of the required (small order) inversions 
to be obta ined as stages in the  calculation of the  larger ones. 

The values of J,~* are then  • 
r 

J;~ 2G~ e(,h) ' 

J:~ = 0 , 

_ j ? ]  0 , 

0 , 0 

1 
0 

2 ~  e(,7=) ' 

1 
0 , 

2G~ e(v3)_ 

- - 1  

1 1 

i 

*h rh  "13 

rl= = rl ,  2 rla ~ 
fi~ *~' e(,l)& 

_ (~ - ~,)~_ 

(A .3S)  

When  the integrat ion extends to bo th  tips, the  formulae of Multhopp can be used and we have  

-- ( m +  1) 5 w h e n n =  v °r"~*, = 2(1 - ,~) 

2 when I n -  ~,[= 1, 3, 5 ) . . . . . . .  (A.36) 

when In --  v l =  2, 4, 6 = 0  

The values of G~* can be calculated in a similar manner .  
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APPENDIX VII 

Equivalent Deflections and Downwash Angles 

In the chordwise case with subsonic leading and trailing edges we can put hq(~) in angular 
co-ordinates as follows : 

2 t 
Hq -- 2p + 1 sin ¢q 

(A.37) 

Substituting these results into equation (86) we have Ior the equivalent deflection : 

, ~q~Z~ (¢q)= ~-1~ [sin (~ + 1)¢g-  sin ~¢ql[1 (~ ~z 1 / 1 
a=o sin ¢, Jo ~ (¢) cos (~ + 1)¢ + cos 2¢ d¢ (A.38) 

We can also put : 

2 
hp+l-r(¢) - -  2p q- 1 - - i ~ i  Isin (~ + 1)¢,-- sin ~4,1 [.--~os (Z + 1)¢ + cos x¢j 

sln ¢ .. (A.39) 

Then the equivalent downwash angle becomes : 

p-1 isin (,~ + 1)¢~ + sin ~¢r I E1 f~ l ~(¢,) = ~ 
sm ¢~ 0 ~ (~) - 2 = 0  

c o s ( Z +  1)4 + cos~¢l d41 . (A.40) 

These two expressions ((A.38) and (A.40)) are those developed in Ref. 5. A similar substitution 
in the chordwise case shows that equation (87) and the spanwise results of Ref. 5 are identical. 
The spanwise substitution is of course : 

g.(o)  = ~ - ~  ~ o  

J ~7~ 

G, , -  2(m q- 1) sin 0,~ 

.. (A.41) 
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Yo 

Vt o 

X 0 
~-X 

FIG. 1. Co-ordinates. 

(o) Subsonic (b) Supersonic 

1] B 
('c) Supersonic 

, B 

(d) Supersonic 

Fit. 2. Areas for integration. 
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Subsonic L~ 

Subsonic T.E 

Subsonic L.E. 

~personk:TE. 

?,upersonicL.E 

Subsonic T.E. 

(a) ~=r;~ all speeds 

~(h('O 

\_~K('O 

-I 0 ~A~I 

-I 0 ~A+I 

{.b) 9~-v subsonic 

-I O +1 

--_ - . ~ c a b l e  

-1 O +1 

(c)~, % super sonm(-I<~+l) 

/ I 

-I 0~,,, +I 

.... ~/t i ' 

, i  I -  
:1 0 ~  , +I 

(d)~¢~ v supersonic(~l ) 

Not applicable 

/ i  

t ~ _ _ _  
0 +II~ 

II 
/ I  / 

-1 

(e) T/-.k~ supersonic('~A= I) 

i i 
/ /  i 

~, _ J _  
0 +I 

-I 0 +I~ 
ii 
/t 
/I 

/ ! 

~ it 
/I // l 

e i __..I 
-I 0 +I 

fl 
II 

/ I 
. . . .  ~ ~ S /  Jj 

3uperson~:LE 

3upersodcT.E 

-I 

I 
- I  

M 

"I 

' I I 

6 '  ~+I 

- I  0 +I 

Not. applicable 

I :---L. 
-! 0 ÷[. 

-I 0 ~  +I 
I I 
/, 
/ I // I 

I , ' , I  
-I Og. +I 

-I 0 'I-I,~, 

'1 
/ [ 

/ I / 
i 

I I 

-I O +l 

I 
-I 

It 
/I  #J I 

I 

I_i 6 +l 

FI~.  3. C h o r d w i s e  i n t e g r a t i o n .  
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- ' ~  ~A at tip. 

r/s ot tip. 

-I 0 ÷1 
rJa ~a 

-I 0 +l 

~A ~B 

rt A at subsonic L.E. 

% at tip. 

- I  0 +1 
'0 A ~7 8 

t/A at supersonic L.E. 

% at tip. 

- I  0 

~A ~B 

+1 

~A at subsonic L.E. 

rtB at subsonic L.E. 

--I 

rt A 
7/8 

0 +1 
T/A ~B 

at supersonic L.E. 

at supersonic L.E. 

FIG.  4. S p a n w i s e  i n t e g r a n d s .  

L i f t  points are shown on complete wing. 
Downwash points are shown on half wincj on[)'. 
Area of integration is shown for each 
downwash point. 

FIG.  5. L a y - o u t  o f  p o i n t s  o n  a w i n g  fo r  
M = 1 . 6 6 7  (p  = 2 ;  m = 11). 
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