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Summary.--Existing theories for the Stanton tube are critically reviewed, and the paper then outlines a 
simple method which predicts the calibration function at high Reynolds numbers to the right order of 
magnitude. 

The Stanton tube, first usedby  Stanton, Marshall, and Bryant 1 to investigate the laminar sublayer 

of a turbulent flow, has the general form shown in Fig. 1. Its width is usually very much greater 

than its height d, so that the flow over it is effectively two-dimensional. The instrument may be 

calibrated by, for example, placing it in a duct whose walls are far apart compared with the tube 

height. The skin friction Tw can be deduced from the pressure drop along the duct. If  the Stanton 
tube reads a pressure Ap higher than the local static pressure, a suitable non-dimensional way of 
presenting the calibration results is, following Taylor 2 with some modifications, to plot the ratio 
d'/d against R~, where 

( API1/21z d' - 2 - -  - -  
P / "rw' (1) 

P d a R~ - ~-~ ,r~, , (2 )  

the flow being assumed to be incompressible. The calibration curve can thus be expressed as 

d' 
d - F(Rs)" (3) 

In what follows it is sometimes found convenient to refer to the quantity R s as the 'Stanton-tube 
Reynolds number', although if 7~ is thought of as being density times friction velocity squared, 

R8 has the appearance of a Reynolds number squared. However, if T w is thought of as being viscosity 
times velocity gradient, R~ does have the appearance of a Reynolds number, and for a case where 
the upstream velocity profile is linear, R~ is the Reynolds number based on the tube height d and 
the velocity at distance d from the wall. 

Another result, true when the profile is linear, is that d' then represents the position of the 
'effective centre' of the tube; for (2Ap/p) 1/~ can be regarded as the velocity measured by the tube, 

so that the right-hand side of equation (1) is the distance from the wall at which the velocity in the 
upstream linear profile is equal to that measured. 

* Published with the permission of the Director, National Physical Laboratory. 



The calibration curve (equation (3)) is assumed to apply if the Stanton tube is used to measure 

the skin friction in a boundary layer, so that ~'w can be found from the measured value of Ap. The 
validity of this procedure is discussed in Ref. 3. In particular it is shown that if the instrument is 

to be used to measure the skin friction in a turbulent boundary layer, it should be calibrated in 

turbulent flow. This is because of Bradshaw's finding ~ that the calibration function F(R~) is not 

the same for turbulent flow as it is for laminar flow. This difference partly arises from the fact 
that for values of R, greater than about 30, the height d of the tube will be greater than half the 

sublayer thickness in turbulent flow (cf. Ref. 3). Thus in turbulent flow at high Reynolds numbers 

the velocity profile will not be linear over the region influenced by the tube, whereas in laminar 
flow the profile probably will be effectively linear. The presence of velocity fluctuations within the 

laminar sublayer may also contribute to the difference between the laminar and turbulent 

calibration results, as Bradshaw 4 has pointed out. 
Fig. 2 shows some calibration results for laminar and turbulent flow. For the laminar curve a 

smooth join has been made between Taylor's results ~ for very low Reynolds numbers and Hool's 
results 5 at moderate Reynolds numbers. To draw a single curve in this way may not be justifiable 

because the tubes used by Taylor and Hool were probably not geometrically similar in such respects 

as the proportion of the total tube height d comprised by the opening (cf. Fig. 1). However, in 

turbulent flow it seems that the precise geometry of the tube may not matter, since Bradshaw's 
data ~, obtained with tubes whose shapes differed somewhat, all lie roughly on a smooth curve, 

which is reproduced in Fig. 2. Thus for turbulent flow, and possibly also for laminar, the pressure 

recorded by most forms of Stanton tube would probably be much the same as the pressure in the 

corner at the bottom of a solid step of the same height d as the tube, as shown in Fig. 3. 
If such a step were placed in a uniform laminar shear flow, d' corresponding to the pressure in 

the corner would vary with Reynolds number in  a similar way to the laminar curve in Fig. 2. It 

would be of interest to try to predict theoretically the calibration curve for this apparently simple case 

of a step in a linear velocity gradient. 
In fact the problem is far from simple, since the full Navier-Stokes equations are involved. 

Consider a co-ordinate system as shown in Fig. 3 with its origin at the bottom of the step. X and Y 

are the physical lengths, and the corresponding velocities are U and V. The equations can be written 

in non-dimensional form by making the substitutions 

x -  d '  Y - d  
, (4 )  

~ y -  d % '  ~ x =  - ~ 

where ~',o is the friction stress at the wall for x -7 - oo. Then x = O, 0 ~< y ~< 1 represents the 
vertical face of the step, x > O, y = 1 represents the top of the step, and x < O, y = 0 is the wall 

upstream of the step. Hence the boundary conditions are 

~y '  ~ x -  Oforx  < O,y= 0 

x = O , O ~ < y ~ < l j "  

x > O , y = l  

(5) 



Also, since the upstream profile is linear, 

ay2 

The continuity equation is automatically satisfied by ~, and the X and 

equations become respectively 

% ~x - ~x~y  + 0 9 ~y~x ax aye] ' (7) 

~,o ~ y  - ~x~ ay~x  R~ ~y ~x 2 + ~x ax~yJ ' (8) 

where p is the physical pressure. Eliminating p we obtain 

Oy~ + 2 ~y2ax ~ + ~ = R~ Lax 3 + ~xay2J - 7 x  Lay s + ~x~Oy_] " (9) 

It is dearly a formidable task to obtain solutions of (9) under the boundary conditions (5) and (6). 
For very low Reynolds number the problem is simplified, since the terms on the right-hand side of 

(9) can presumably be neglected, giving a solution for ~ which is a function of x and y only, 

independent of R,. Along the wall upstream of the step equation (7) reduces to 

% ax - \Oya]y=o 

in virtue of (5). Hence, if the pressure at the bottom of the step is greater by Ap than the pressure 

far upstream, 

Ap = % oo \~Ya]u=o 

and from (1) and (2) 

a' [ 2 fo {a% (10) 
- L E j _ ~ \ T y y % = o  J " 

In general the integral here is itself a function of R,, but this is not so for low values of R,, when 
~b is a function only of x and y, so that d'/d is proportional to R, -~/~, as found by Taylor ~ experi- 
mentally. Whilst it is easy to get thus far, it is difficult to find the numerical value of the factor of 
proportionality, since this involves solving for ~b. Dean ~, 7, s has attempted the problem analytically, 
and Thom" has obtained a numerical solution, but  all these methods are necessarily laborious. 

When the Reynolds number is not very low the situation is still worse, since it is not even possible 
to determine the power of R, to which d'/d is proportional. Trilling and H~ikkinen ~° attempted to 
find a solution for large values of R~, but their work is open to objections. They write 

3 y - Y +  ~ , (11) 

y R  ~/a) 

assuming that derivatives of quantities with respect to ~/are of the same order as derivatives with 
respect to x. Far upstream of the step ~-> 0, from (6) and (11). Accordingly, in equation (9) the 

(6) 

Y component momentum 



right-hand side is linearised, terms involving products of g or its derivatives being neglected. Thus 

for large values of R, the equation reduces to 

8~) a - "q 8x8~ " 

Trilling and H~kkinen make the reasonable assumption that the flow separates from the wall at 

some distance Ld  upstream of the step, as shown in Fig. 4, so that (x = - L, ~/ = 0) is the separation 

point. Then  they assume that the boundary conditions (5) may be replaced by the approximate 
conditions 

= 0 for~7 = 0, - oo < x < - L ]  

X J ~ +  l f o r ~ /  O, L < x <  0 

This allows for the velocity being non-zero on the streamline which divides the main flow from t h e  

region of separation. The  dividing streamline can, it is supposed, be treated as though it were flat 
down on the wall upstream of the step, and the flow inside the separated region is ignored. With 
these assumptions a solution can be found with ~ a function of x/L and ~7/L 1/3 only, independent of 
Rs. Thus  (a3~b/~ya)v= 0 in equation (10) becomes proportional to L~21aR, ~1~, and d'/d to Lll6Rs -1/6. 
However, since the dividing streamline must in reality terminate near the top corner of the step, 
which is at V = R, 1/~, the assumption that ~/can be treated as zero along the streamline would seem 
to be invalid. A further objection to the solution concerns the linearisation applied to the right-hand 
side of (9), since it can be shown that, except far upstream, the neglected non-linear terms are 
probably bigger than the linear terms included. Finally, Trilling and Hiikkinen assume L to be 
constant, so that d'/d is, according to their  solution, proportional to R~ -1/~. However, in reality the 

separation position is quite likely to vary with Reynolds number, so that even if their solution were 
valid, d'/d might be proportional to some different power of R~. 

Difficulties with regard to the boundary conditions similar to those encountered in Trilling's 
and H~ikkinen's method arise if it is attempted to stretch the co-ordinates in any other simple way, 

so as to obtain a solution for ~b in the stretched co-ordinates which shall be independent of R, at 

large R~. The  simple possibility that the left-hand side of (9) can be neglected because of the factor 

R~ .~  the other side is of course ruled by the boundary conditions (5). Thus the mode of variation 

of d'/ct with R, cannot easily be found even when R~ is large. However, a crude order-of-magnitude 
estimation of d'/d can be made as follows: 

Suppose that at y = n, Y = nd, there is a wall moving with velocity nd'rw/~, as in Fig. 5. Then 

far upstream of the step this will produce a Couette flow with a linear velocity profile, and for all 

values of x 

n ~' 3 ¢  
¢ -  2 '  a y - n a t y =  n .  (12) 

Provided u is not too small the flow over the step will approximate closely to what it would be in 
an infinite uniform shear flow. This is because with an infinite shear flow the streamlines some 
distance away from the wall would, as indicated in Fig. 4, be effectively undisturbed by the step, 
continuity considerations requiring the disturbance to the streamlines to decrease more rapidly 
with distance than it would if the flow over the step were inviscid, with a uniform velocity upstream. 



Let the fixed boundary including the step be denoted by A and the moving wall by B. Then if 

equation (9) is integrated between A and B with respect to y at a constant x there results in virtue 
of equation (7) and the boundary conditions (5) and (12) 

T~ (p~ - P~) = ~ x q  ~ 4' dy - R ,  ~ ~y ~ ,~y . 
Tw A 

Hence for x ~< 0, 

~ (P~ - P~) = d~ . l~  ~ ay - R~ ~ ~y ~x~ ay,  0 3 )  

since for x -~ - o~, Pa = p~ = Po and the terms on the right-hand side are zero. At x = 0, 

Pa = Po + Ap, butp~ wiil only differ slightly from P0 if n is sufficiently large. Hence from (1) and (2) 

~ t~-d~x3j~ ~hdy - 2 jA  ~y oxzd'Yt.~=o" (14) 

Suppose that separation occurs at x = - L, as indicated in Fig. 5. For this value of x also p~ will 
differ little from Po, so from equations (7) and (13) 

f o td f ta f 
_ _ 

I I l f2° °2  I - n~ ~ y ~ x ~ a y ~ = 0  + R~ ~ y ~ k ~ a Y ~ = _  . (15) 

This equation is the double integral with respect to x and y of the full equation (9) over the 
shaded area in Fig. 5. The shape of the distribution of ¢ in this region may roughly be guessed 
because of the restrictions imposed on ~b by the boundary conditions (5) and (12) and by the 

assumption of a separated f lowwith an approximately straight dividing streamline where ¢ = 0, 

as in Fig. 5. Thus ¢ can be represented by a polynomial distribution in y, with coefficients which 
are polynomials in x, between the dividing streamline and the wall B, whilst between the dividing 

streamline and the wall A, ¢ is represented by a second polynomial distribution joining on to the 
first. If  4s is to be guessed in this way, however, n must not be made too large. Nor of course must 
it be made too small, because then the pressure distribution along the wall A would differ appreciably 

from what it would be in an infinite flow field. The optimum value for n corresponds in the infinite 
flow-field case to the distance from the wall A of the nearest streamline to be virtually undisturbed 
by the presence of the step. A larger assumed value of n would include too much undisturbed flow, 
and the boundary conditions (12) would not have their proper influence on the shape of the assumed 
distribution for ¢. The situation is analogous to Pohlhausen's well-known method 11 for boundary 
layers, where boundary conditions which are strictly valid 0nly at infinity are transferred to a 
distance 3 from the wall, 3 being the effective total thickness of the boundary layer. 

In Pohlhausen's method 3 is not known beforehand, but has to be found from the solution. 
Similarly in the present instance the distance to the nearest undisturbed streamline is not known, 
and neither is the separation position. Hence L and n appear as parameters in the assumed 
distribution for 4s, and the integral equation (15) gives a relation between them. Two different 

families of assumed distributions for ~b (polynomials as discussed above) were considered. With 

(78643) A* 



either family, ~b is a function of y and x/L for a given n. Hence, when the Reynolds number Rs is 

very large, (15) gives a relation of the form 

Then (14) results in 

L = R, 1/a F(n). (16) 

d t 

R-l/. (17) 
d - 

A similar procedure may be adopted when the Reynolds number is not large, but unless the 

assumed distribution for ~p is close to the real distribution, the answers are likely to suffer from 

bigger errors than those obtained for high Reynolds numbers. This is because the first two terms 

on the right-hand side of (15) involve a higher-order derivative than the other two terms. 

For high Reynolds numbers, the two different assumed families of distributions for ~b gave much 

the same results for G(n) in equation (17), and moreover G was found not to vary much with n, as 

can be seen from the following Table: 

Family 1 results 

Family 2 results 

2 

~ t  0.99 

2.82 

F ;  1- 32 

G J 3. t2 
I 

4 

1.62 

2.63 

2.35 

2.92 

6 

2.31 

2.72 

3.38 

3.00 

8 

2.99 

2.87 

4.39 

3-20 

10 

3"71 

2"99 

5"40 

3"47 

Thus a wide variety of assumed distributions for ~b all gave results for d'/d close to 3R,, -1/3, and 

this suggests that if ~b could be guessed correctly much the same answer would be obained; in other 
words, that 3R, -1/a is fairly close to the correct form for d'/d. HooFs result 5 d'/d = 1.8Rs -1/5 is in 
fact of the same order as 3Rs -1/3 for 10 < R s < 1000, as can be seen from Fig. 2, and since the 

above crude analysis can only be expected to give an order-of-magnitude estimation, the agreement 

is satisfactory. As it happens, the turbulent calibration results shown in Fig. 2 appear to be 

approaching the curve 3R, -1/3 at high Reynolds numbers, though the theory can hardly be valid for 

such conditions. 
Equation (16) and the results of the Table also show that if n were large L would probably be 

very large at large Reynolds numbers. Trilling and HS~kkinen 1° found experimentally that L was 
typically between 4 and 20. This suggests that at Reynolds numbers Rs of 1000, say, n ought not to 
be greater than about 4. At low Reynolds numbers it would seem from the work of Dean 6, v, 8 and 
Thom 9 that n, the distance from' the wall to the nearest effectively undisturbed streamline, is in 
the region of 6 to 10. Hence it may well be that if a Stanton tube in a boundary layer is to read 
approximately the same as in an infinite uniform shear flow with the same skin friction, the velocity 
profile need only be linear for about 4 tube heights at Reynolds numbers of about 1000, whereas the 
linear part of the profile would need to extend further at low Reynolds numbers.  

An experiment to test these conjectures is in hand. 
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L I S T  OF SYMBOLS 

Height of Stanton tube above surrounding surface 
Defined by equation (1): 'effective centre' position for linear-profile case 
Distance of separation position in tube heights upstream of Stanton tube 
Distance of moving wall in tube heights from fixed wall in model of Fig. 5 : for 

infinite flow field n corresponds to position of nearest effectively undisturbed 
streamline 

Pressure 
Excess of pressure recorded by Stanton tube over static pressure 
Defined by equation (2): can be regarded as Stanton-tube Reynolds number  
Physical velocity parallel to wall 
Defined by equation (11): proportional to difference between velocity at a 

general point and velocity at same y upstream 
Physical velocity normal to wall 
Physical length parallel to wall 
x/d 
Physical length normal to wall 
Y/d 

y R y  3 
Viscosity 
Density 
Skin friction for undisturbed profile upstream of Stanton tube 
Non-dimensional stream function defined by equations (4). 
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