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Summary.—The author has found the Busemann theory very rapid in use for the determination of C;, Cp and C,
and this report will enable the exact scope of its use to be determined.

It has been tacitly assumed in the past that Busemann’s second-order theory of aerofoils at supersonic speeds was
subject to the same limitations of wedge angle as the exact theory given by Lighthill' and others, namely, the wedge
angle at which the bow wave detaches. ‘ ,

The range of angles for which Busemann’s theory gives a pressure coefficient in error by less than 1 per cent is shown
to be smaller than the angle range for the shock wave to be attached. There is also a limit to the application of
. Busemann’s method to angles of expansion as well as to angles of compression, unlike the exact theory, which can be
extended to expansive angles of the order of one right-angle without breaking down, in fact far beyond the useful range.

The limits of angle given for the use of Busemann'’s theory are conservative, since they give the pressures to 1 per cent,
and the force coefficients will be more accurately determined since the errors ténd to cancel out when integrating
pressures to obtain forces. ’

1. Imtroduction.—Busemann assumed® that the pressure coefficient C, on a two-dimensional
supersonic wing surface can be expanded in the form g

| cpzfil%;‘_v@“:clgﬁJrczquJrcggbaJretc., R ¢ )
and showed that for the case of expansive flow (the Prandtl-Meyer expansion) ‘

C, = 2(M*— 1)7"2, o . .. . . .. .. (2)
Co =L { (M?*— 2"+ 1-4M*} (M*—1)7%, .. . . .. (3)

0-4M° — 1-813M° +- AM* — 2M* + 1-3333 )

Cs = (Mz _ 1)3-5

. 0-36M° — 1-493M° + 3-6M* — 2M* 4 1-3333 ' )

bs = (Mz_ _1)3-5 J

¢ being the angle in radians of the element of surface to the free stream at infinity, negative for
expansive flow, and taking the ratio of the specific heats for air to be 1-4. :

A similar ‘type of series can be applied to calculate the increase of pressure associated with an
inclined shock wave. In this case ¢ is positive, and it can be shown that while the C; and C,
terms of equation (1) are also valid in this case, the third and higher order terms are different and
are denoted by b, and b,. Thus the C, and C, terms are independent of the shock-wave pattern,
and this leads to a second-order theory in which the shape of the aerofoil ahead and behind the
point in question has no influence on the pressure at that point. More generally it may be shown
that the first two terms of the series apply to any aerofoil with sharp leading and trailing edges,
provided that the maximum inclination of the surface to the free stream does not exceed a
certain limit, which depends on the stream Mach number. ‘
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If the third or higher order terms are to be considered, a special allowance will have to be made
for the particular shock wave strengths involved.

2. Calculation of Criterion for 1 per cent Evror in Busemann's Theory.—It was decided to allow
an error Ap in p, of not more than 1 per cent of p,. This is a fairly strict criterion, since the errors
tend to cancel out when computing forces and moments,

If we take the error in using second-order theory as represented by the C,¢® term alone
(neglecting fourth and higher orders), then we have

1

10063¢3:07]W+Cl¢+62¢2 .. .. (5)
as the criterion for 1 per cent error in pressure, remembering that
Pr—P0 P — Do
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This criterion is only true for expansive flow, and the limitation for 1 per cent accuracy in the

case of compressive flow is considered in section 4 below.
The curve of ¢ against Mach number calculated from equation (5) is shown in Fig. 3.

3. Lumatation for Expansive Flow.—As shown by Prandtl and Meyer, a supersonic flow of
initial Mach number between 1 and 2 may be turned expansively through an angle as great as
90 deg. or more. Lighthill’s theory" allows for this expansion exactly; moreover, this [imit to
surface angles in the expansive direction is unlikely to affect any practical design of wing section.
Therefore, it is somewhat surprising to find a limit to expansive flow, as there is no shock wave
to become detached in this case. This limitation arises solely from neglect of the third and higher
order terms of equation (1). : _

In particular, if we use only the first two terms of the Busemann series, negative values of ¢
(expansive flow) of about — 20 to — 23 deg give & minimum value of C, = — 0-75 C,*/C, occurring
at ¢ = — {C,/C, radians. This can be seen by differentiating the first two terms of equation (1)
with respect to ¢, and equating to zero. This apparent recompression in expansive flow is due
entirely to neglecting higher order terms; presumably the negative C, ¢® term which was
neglected becomes greater than the positive C, ¢* term causing the apparent recompression. This

effect is illustrated in Fig. 1, and the limiting value of ¢ (= — 1C,/C, radians) is given in Fig. 3.
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F16. 1. False Compression Effect in Second-order Theory.
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4. Angular Limitation for C ompressive Flow—Exact knowledge of supersonic aerofoil theory
is at present limited to those cases where the bow wave is attached to the sharp leading edge of
the aerofoil. This limits the maximum angle between the leading edge and the flow at infinity
to a definite value, beyond which the exact theory does not apply. This limiting angle is a
function of Mach number, and is also plotted in Fig. 3. :

The pressure on a wedge of given angle at a given Mach number can be calculated from the
Rankine-Hugoniot relations, and curves of these results are given in Fig. 4. These curves hold
good as long as the flow does not pass through a second shock.

The curves calculated on Busemann’s second-order theory are shown dotted in Fig. 4.

The difference between the two curves represents the effect of the C; ¢° term plus the third-order
effect of the bow wave. - The Mach number at which this difference amounts to 1 per cent was
determined, and the results are shown in Fig. 3.

5. Ervor-to be Expected when Calcwlating Force Coefficients by Busemanw's Method —Tf the
pressure distribution is known to within 1 per cent, in general the resultant force on the aerofoil
should also be known to the order of 1 per cent. The optimum supersonic aerofoil section has

both lateral and fore-and-aft symmetries. For such a shape, every element of surface at a
distance x from the leading edge on the

top surface will have its counterpart
distance x forward of the trailing edge
on the lower surface.

The first-order effects on this pair of
elements will be both upward or both
downward. Integration of these first-

, , order terms will yield a lift and drag
(a) First-order pressures on aerofoil. force, but no moment about the mid-
chord point. The second-order forces on
this pair of surface elements will give
equal and opposite forces, #.e. a couple
without lift or drag.

Thus we see why Ackeret’s first-order
theory is good for lift and drag, but
theory is poor for pitching moment, while -
second-order theory gives a fair approxi-
mation to moment also.

(b) Second-order pressures on aerofoil. . The thlrd"orde.r forces‘, usually neglected
in force calculations, will be of the same

sign as the first-order forces, but unequal

on the two components of the pair of

/ surfaces. The more intense shock wave
ahead of the lower surface will increase

/ pressures over the whole lower surface
' relative to the upper surface, resulting in
extra lift and drag at highincidences, over

and above the simple Ackeret values.

\ This causes the well-known increase of
, . dCy/de with o, which is so unlike subsonic
\' results, and which is mot given by
_ ’ : Ackeret’s or Busemann'’s theories.

(¢) Third-order pressures on aerofoil including shock " The curves of limiting angle given

wave effects. Sign and magnitude of pressure . ; .o
are indicated by arrows. in Fig. 3 are of general application
Fic. 2. to two-dimensional problems, but 1t



is useful to consider the case of the double wedge (rhombus) and the bi-convex sections
separately. If maximum wing thickness = ¢ and chord — ¢, then the semi-angle of the
-double wedge will be tan~(¢/c) and that of the bi-convex tan-' 2(¢fc). Since for thin wings
tan x = x, we may take the limitations on wedge angle for a 10 per cent double wedge as
applicable to a 5 per cent bi-convex aerofoil,

For any given Mach number ¢, is known, and may be sub-divided into wedge semi-angle
(t/c) and incidence «, so that

¢max — (t/c)max + O() .
(£/C)max = Prax — L. .. .. .. . .. .. .. (6)

This gives the maximum incidence at which this aerofoil may be used in order that the theory
shall apply.

or

Figs. 5 and 6 have been plotted showing the maximum incidences for which Busemann’s theory
applies to certain aerofoils. Fig. 5 shows the curves appropriate to Busemann’s theory, and
Fig. 6 shows the curves appropriate to Lighthill’s exact theory. Figs. 7 and 8 are similar, but
show the maximum values of C, to which the theories apply.

8. Busemann Force Coefficients—For convenience of reference the Busemann force coefficients®
are given below, for a closed aerofoil contour with its chord line joining leading edge and trailing
edge Cy,yp2 1s the moment coefficient about the half chord.

Fiyst-order vTeyms ' Second-ovder Terms
Co =2C a+ C, (I, — I,,)*# . + Co(lyp — Ioy)* .
C, = Cl(Izu -+ IzL) +2C, 0+ 2C, & (IlL — I1U)*# + Cz(Isu + IsL)# + 362(I2L — IzU)* &
Cue = Coldyy — I,,)* — 20,14y + 1,;) oc+ Collsy — I )* #

‘Where
I,=10dx; I,=]0%dx; I,=] 0%dx; I, =[ 0xdx; I, =[0’xdx

and 6 is the angle between aerofoil surface and aerofoil chord, and the origin of x is taken at the
half chord. Terms marked * vanish for zero camber; terms marked # vanish for fore-and-aft
symmetry, leaving only the unmarked terms for aerofoils with double symmetry. Suffices U
and L refer to upper and lower surfaces. Note that (— Iuw — I.;) is the cross-sectional area of
aerofoil.
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TABLE OF BUSEMANN COEFFICIENTS

M C, Cy Cs by
(Isentropic) (One Shock)

1-1 4364 30-32 568-98 544-4
1-2 3-015 - 8-307 54-034 53-22
1-3 2-408 4-300 14-247 14-53
1-4 2-041 2-919 5-801 6-128
1-5 1-789 2-288 3:059 3-331
1-6 1-601 1-950 1-937 2-153
1-7 1-455 1748 1-4109 1-583
1-8 1-336 1-618 1-1444 1-280
1-9 1-238 1-529 1-0050 1-111
2-0 1-155 1-467 0-9341 1-0161
2-2 1-021 1-386 0-8946 0-9394
2-4 0-9167 1-337 0-91921 0-9356
2-5 0-8728 1-320 0-94322- 0-9476
2-6 0-8333 1-306 0-97189 0-9654
2-8 0-7647 1-284 1-0382 1-013
3-0 0-7071 1-269 1-1116 1-069
3-5 0-5963 1-245 1-3090 1-231
4-0 0-5164 1-232 1-5132 1-405
4-5 04559 1-224 1-7191 1-584
5-0 0-4082 1-219 1-9250 1-764
0 0 1-2 (v o0
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