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SUMMARY

The paper shows that 1t 1s possible to design geometric curves,
given by single explicait equations, and having shapes suztable for use as
aerofoil sections. A family of sharp-nosed sections with variable maximum
thickness position is described., A method of rounding the leading edge
of any sharp-nosed section 1s then suggested., Finally a famly of curves
with camber and nose droop is given. The methods used could be adapted
to produce other sectron variations if requared.

1. Introduction

In the design of an aerofoil section for high-speed aeroplanes,
it 1s sometimes possible to specify the general characteristics, such as
thickness, maximum thackness position and nose radius, which are required.
The problem 15 then to design a smooth curve having these properties.

This has sometimes been done by fitting together several algebraic curves,
making sure that the ordinates and their first and possibly second derivatives
ere continuous at the join, This method is however unsatisfactory in

several ways, The higher derivatives are of‘ten discontinucus and the curve
not suffrciently smooth., It is difficult to vary one characterastic

(e.g., nose radius or maxamum thickness position) while leavaing the general
shape unchanged, The lack of a single expliecit equation for the whole

curve may lead to complacation in calculating the low speed pressure
distrabution,

The presenil paper gives examples showing that it 1s possible to
design geometrical curves, given by single explicit eguations, which are
surtable for aerofoil sections., The curves have all their deraivatives
continuous ané their shape 15 given by parameters which enable nearly
independent variation of maximum thickness position, nose radius, etc.

The first family of curves described was used by Michel, Marchaud
and Le Galio!l for bump sections. They provide useful sharp-nosed aerofoil
sections with variable maximum thickness position.

A method is then given for rounding the nose of these or any
other sharp-nosed sections, and the resulting nose shapes are described
in detaal,

Finally/
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Finally a method is given for adding an extended and drooped
nose to these seclaions,

Apart from the value of the particular examples given, the methods
shown will suggest possibilities for designing curves of any other shapes
which may be requared,

2. Notation

English symbols

A = oix(1-xn1) + oéx(1—xn2), Section 5.2
a Length cut off in rounding the nose, Section 4,2
B = a x(1-x™) - cr.ax(‘l-xna), Section 5.2
b Intercept of linear portion under the drooped nose with the
x-axis, Section 5.2
C = ~ L log (e'B/L + e'D/L), Section 5,2
a, +a,\1/n
c = ( ----- > , w=ection 3.4
oy

Chord of sharp-nosed aerofeil wath droop, bection 5.2

D = - m(x-b), Section 5,2

E Ordinate of droop-nosed aserofoil, Seclion 5.2

L Parameter in the fairing curve C, Sections 5.2, 5.3

m Slope of linear portion under the nose of the drooped aerofoil,

Section 5.2

N Axis ratio of conic, Section 4.3
n Parameter determining maximum thickness position, Section 3
t Meximum thickness/chord ratio of aerofoil, Section 3,2
x|
5 Co-ordinates

Greek symbols

o Parameter determining thickness, Section 3
Jij Parameter determining nose shape, Section &4
y Ratio to the nose radius of the basic-section ordinate at
x = a+p, Section .k
x-a
€ = =--=, bSeotion 4.3
8

n/
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1 Ordinate, Sections 4, 5
P Nose radius, Section &4
Ta
¢ = -~=, bection 4.3
a
W Slope of basic sharp-nosed section at x = a, Section 4.3
o) Parameter determaning thickness for n = 0O, Section 3.1

3. A Pamily of Symmetrical Aerofoils1

3,1 Equation and reneral properties

A famly of curves surtable for sharp-nosed aercfoil sections is
y = t U..X[JI"“xn] -50(301)
where y = 0 at x = 0 and at x = 1, so that the chord 1s unity.

The possible range of the parameter n, which determines the
maximum thickness position, 1s from =1 to +oo, The effect of this

parameter 1s shown in Figs, 1, 2.
For n = -1, ths curve 1s trianguler.
For -1<n<¢-0.5, the curve has an infinite slope and infinite
radius of curvature at x = 0, e.g., Fig.la.
For n = -0.5, the curve has a finite radius cqual to
F® at x = 0, Fag.?.
For -0,5n20, the curve has infinite slope but zero radius
at x = 0, e.g., Fag.lc.
1
For n = O, the limating curve®* y = §xlog- 18 an
X
approximatieon to an egquiangular spiral,
Faig.14,
For ns0, the curve has a finite slope equal to
a at x = 0, Fzg. 2.
For all values of n the slopeat x = 1 is -na., The
slope at any value of x is:-
dy
—— = s [1“(1’]+1)Xn] . -00(5-2)
dx
1 \1/n
This 1s zero when X = (‘-——> , so the maximum thickness position
n+1
13 al this value of x. Fig. 3 shows a graph of the maximum thickness
position against n. For n = 1 +the curve us the parabolic arc havang
its maximum thickness at x = 0.5. Por ne<¢! the maximum thickness

oceurs at x<0.5 .whercas for ns1 1t ocours at. x>0.5. Hence 2f the
curves with n»1 are used fér aerofoils and if their maximum thickness
position 1s to be forward of 0.5, the curves must be reversed, so that X
15 zero at the trailing edge and unity at the leadang edge,

Thus/
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Thus for any maximum thickness position other than 0.5 there are
two possible curves, one with n<1 and the other with n>1. Pig. 1 shows,
however, that negative values of n 1lead to unsuatable nose shapes, and
so practically the range over which there are two possible sections is
that of maximum thickness positions from e *(= 0.368) to 0,5.

Fig. 4a shows, for comparison, the sections n = 0 and
n = 3, which have approximately the same maximum thickness position,
(37%), when one is reversed, This shows that the section with n>1 is
thinner and less curved, both at the leadaing and trailing edges. The
curvature near the maxamum thickness position is of course correspondingly
greater,

3,2 Leading-and trailing-edge slopes

From equation (3.2), for w0, the slopes at x = 0 and
x = 1 are respectively o and -na. Thus if m>1 the leading-edge
slope is n times the trailing-edge slope, while if n<1 at is 1/n
times the trailing-edge slope (for aerofoils wath their mexamum thicknoss
forward of mid-chord). The maximum thickness of the section is:-

t = 2a (;};)Vn -r:-. vee(3.3)

Hence in terms of the thickness, o is given by:-

t
a = =- (n+1)n+1/n .
2n
Fag., 5 shows «a and na plotted against n, for t = 0,10, The

trailing-edge slopes of the RLAE 100-10k4 series? are also shown, at the
valuecs of n giving the same meximen thickness positions, This shows that
the sections with n»1 have nearly the same trailang-edge angles as the
corresponding RAE sections, (within 7/}, while the sections wath n<l

have trailing-edge angles 20 to 30iv greater than the RAE sectiomns.

Pig. 4b shows a comparison of the sectaion n = 2 and the
RAE 104 section, with the samc chord and thickness, The naximum thickness
position 1s nearly the same, and the scctions differ little behind this
position, exccpt that the RAE section has a slight bump at about
x = 0.6,

3.3 QCurvature

When the slope, o [1=(n+1)xR], is small, the curvature is
approximately equal to d?y/dx® which 1s:-

d?y 1
n{n+4) ax?~t

dx®

In terms of the thickness:-

a2y t
—_ - . (n+1)(2n+1)/§] xn-‘l ]
dx? 2
Thus with n>1 the curvature increases from zero at x = O,
(the trailing edge), to a maximum at x = 1, Thus these sections are

flat near the trailing edge. The higher derivatives up to the mth,

where/
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where nemcn+!, are also zero at x = 0. Thus the extent of the flat
portion increases with n. The length marked "Plat" in Figs, 1, 2, is
that over which the value of y differs from ax, (or, for n<1, from

na{1-x)), by less than 1% of the semi-thickness 1t/2.

For n = 1, the curvature 18 constant and equal to 4t, For
n<! the curvature 1s infinite at x = 0 and decreases to a minimum
at x = 1, For n = 0 the radius of curvature is approximately

proportional to the distance from the leading edge.

3.4 Bump sections : effect of tilting

The sections have a property which makes them particularly
useful for testing as "bumps" on the wall of a wind tunnel. This I8 that,
1if the section 1s tilted,about its trailing edge through a small angle,
the result is a similar section with a different thickness to cheord ratio.

Consider the section y = a,x(1-x0). The effect of tilting
this through a small angle a, about the origin is approximately to add
an ordinate a,x. Thus the seclion becomes

¥y o= ax{(1-x") + g%
r %
= (qrqb)x ] = mm————— xA
E
Hence, -
y x X \n
RSP CO N I
.
where

Q

fl
"
R
\M_/%;

The result is a similar section with a chord increassed by the factor
a, +a,\1/n
( ----- ) , and the thickness/chord ratio increased by the factor ==~--
Thus if o, /o, is small, the inerease of chord 1s about
1/n  times the increase an thickness ratio, So if n as fairly large,
greater than 2, say, the thickness ratio of the bump may be varied by
tilting it, with only slight variation of the chord.

4, Round Noses

4.1 Properties required

A geometricsl method 1z required for rounding the leading edge
of any sharp-nosed aerofoil section., The resulting section should have the
following properties:-" /
1.

“The suitebility of a particular noss radius or nose shape depends on its
effect on iane aercdynamic characteristics of the section, which must be
determined by experament or by calculation of the pressure distribution.
The geometrical properties given are not an adequate guide to suitable
nose shapes.,
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1. It should be possible to vary the nose radius independently of
the shape of the basic section,

2. Necar the leading edge the curve should approximate to an ellipse
or hyperbola, whatever the shape of the basic section.

3. The curve should be a smooth one and the curvature should decrease
monotonically from the leading edge,

L, Subject to 3, the length cut off the sharp-nosed section should
be as small as possible relative to the nose radius,

5. The curve should Tear in rapidly to the baric section.

The last two properties, 4 and 5, are not always necessary, but

they are Qesirable when a family of aerofoils 1s required, differing from
one another only near the nose.

There are many ways of obtaining these properties. One fairly
simple method 1s given below.

e e o i e
H

i
1

xa t
4.2 The function tanhidkl—-- - J

12
Suppose y = tn(x) is the ordinate of a symmetrical sharp-nosed
aerofoil section with its leadaing edge at x = 0, Consider the equation:-

__._rx‘z__. -
¥y = ZIp tanh ‘,-;— 1 . voo(h.1)
Sl

This is a section with a round nose, with a radius and shape depending on
a and p, which for suitable values of these parameters has the properties
stated above, Tig, 6 illustrates the paramcters involved,

From equation (4,1}, y = 0 when x = a, Thus the length
cut off in rounding the nose is a. For x very close tq,"g,__nq is

VU xd
1
approximately equal to its value 7, at a, and tanh | == =1 1s
x* [a?
approximately egqual to | == = 1; ., Hence near x = &, y 18
a2

approxamately given by:-

My
¥, = 7 -— =1,
a |
L. _
%2 yf
or,  em e aem————= = 1
’ 22 (ny/B)?

The curve is thus approximately a hyperbola with axes a and 73 .
The nose radius, p, is the value of y dy/dx at x = a, which 1s:-

’

dy x

=y = Bl

P dx & as
Ta

po= B

This/
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This value for the nose radius is exact, as may be seen by
dafferentiating the exact expression for y.

4.3 RSecond approximation to the leading-edge shape

Let x = afi+e). The previous section shows that for
e<<1, the nose shapc approximates to a hyperbola.
¢ such that

Now consider values of
€®, but not e, 1s negligible,

To this approximation,

no= Ny +Bey ,
where ¢ 1s the value of dn/dx at x = a, The second approxiration
tanh 8 62
to tanh 6 for small 6 i3 =—r——-- = = -
9 3
Hence,
e T TSI T
. - 5
' {‘ @ sl e | | I 2
tathB---‘l = (---——1;)\};9 -1,
2 2 ' 3
I 3@ N

w—d
%e — -
& (1 - --—) Be(2+e) .
3 /N
Hence the secend approximation to y is gaven by:-
ave 8¢
nom e (02 (- B
Ma 3
1 2a¢ 4B
or, y2 o= 2r2pc i1+ e(— t om—— - _...> . ...(11-.2)
a a.
2 g 3 |
Consider a conic section wath
]
7

the same leading-edge radius

g -- , and let the ratio of iils axes be N, Then 1ts semi-axes are
a

2

T, ot T

NB == in the y direction end N°p --

in the x directicn. Hence the
8 a
equation of the conic is:-~ R
ey BN
<x -a - NS ....) .
a N2 2
y‘z + e —ssmomcee o ———— = emmmeem 3
NB aQ
g (x-a)? -
or, y? = 2x-a) g -= - --m--- ,
c a N?
C 1 a%e
Or’ yz = 2]1266 1 - e e — . ooo(’ll- -5)
2 prAN®
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So, comparing equations (4.2) and (4,3), the aerofoil section and the
conic coincide, to this approxumation, ifi-

1 Zay 4B 1 &
- mem—— e e = — e e ————
2 ng 3 2 Bl
Ty,
or, putting -~ = ¢,
a
3 by 3
ﬁ —_ﬁ 1+—- - mmmee = 0 - tl-(h"l*')
8 ¢_J 8N2 ¢
For N <0 the conic 1s & hyperbola, ¥or N = oo 21t 1s a
3 by
parabola, and the condition for this 1s £ = - <1 +-->. For N°>1
& ¢
the conic is an ellipse with 1ts major axis on the x-axis, and hence with
1ts greatest curvature at the leading edge., For N° = 1 the conic is a
Ta
circle of radius B -- . For O<W¥<1 the conic 1s an ellipse with its
a

minor axis on the x-axis, Its curvature thus increases with ¥y, and thas
viclates condataon 3 of Section 4.1,

Thus condation 3, that the curvature should decrease monotonically
from ihe leadang edge, will not be satisfied unless 1/A® 2 1. The present
paper will give no proof that the condition is satisfied if 1R ¢ 1, for
any particular seclion shape, but will suggest that, for normal section
shapes, this appears likely to be a good c¢riterion,

4.4 BEBffects of A for a linear basic sSection

Suppose the basic sectzon is linear, or approximately linear

for =x<2a, say, Then ¢ = y and n = ¢x. Equation (4.4) becomes:-
15 3
£ - - - - = 0.
8 8i® ¢
A graph of B against ¢ for N = 1, the limiting value for which the

nose shape approximates a circle, i1s shown in Fig, 7.

The effect of B on the nose shape for dfferent values of ¢
and y 18 given by equation (h.4) but this is rather difficult to
visualize., A parameter which seems to be useful in practice 1s the ratio
to the noge radius of the ordinate at a+4p of the basic section. Denoting
this ordinate by Matp? the parameter y is:-

Taw
Yy - -8 s
P

Na
= --+V,

p

a
= == ty,

Bng

= =y . coo{lee5)

Ao Hence,/



Hence,
1
L :
B (y=v)
For the linear section, for which ¢ = ¢,
1
y = = +¢.
£
Hence
1
$(y=$)
_ Pig. 7 shows F plotted against for values of vy of
1,0, V2 and@ 2.0, The curve for y = /2 differs little from that
for N = 1. F¥Fig. & shows the variation of y with ¢ for N = 1.
The curve has a minumue at ¢ = 0.5, and the varia’ion of y over

the useful range of ¢ is from about 1.3 to 1.6,

I'ig 9 shows, for ¢ = 0.1, 0.2 and C,4, the effect of y on
the nose shapes, Ths curves drawn are these wvath y = 1,x/§ and 2.
With y = 1 ine curvature clearly incrcases away frowm the nose, the nose
shapes have "snhoulders" and are unacceptable, With y = 2 the curvature
clearly decreases monotonically away frowm the nose, and the curves are
geometrically acceptable noss shapes, VWaith y = \'2 the curves appear
to follow the circle of curvature at the leading edge through a large angle.
The nose shapes siill appear acceptable, alihough it 1s not clear from the
figure whether the curvalure is a maximum at the leading edge., Fig, 8
shows that in fact N 1is greater than unity for ¢ O, about equal
to unity for ¢ = 0.2, and less than unity for ¢ 0.1,

Thus the value of y gaves a useful criterion as to whether the
ncse shape 1s acceptakle, It should not be less than lhe value given by
Fig., 8, for N = 1, This value gives a curve which probably will have
a monotonically decreasing curvature. The curvature appears to fall very
suddenly where the curve departs from the nose circle, however, and a rather
belter nose shape may be obtained by choosing a value of y greater than
this by a factor of +/2.

¥1g, 10 shows the variation of N with y for three values of
¢. For y = 2, N equals 1.42at ¢ = 0,1, passes through infinity
as ¢ aincreases and equals 2,18/-1 at ¢ = O.. The appearance of the
curves of Fag. 9, wath y oconstant and equal to 2,0 suggests that, so
long as N>1, a constant valus ¢f y gives curves of generally similar

appcarance, and y may therefore be a more practical parameter than N.

L,5 Effects of non-linearitv of the besic section

The effect of non-linearity of the basic section 15 to alter the
ratio ¢/ 1n equation (4.4). Usually the basic section 1s convex and

v<de

Fig. 11 shows, for various values of g (=8,) when v/ = 1,
the change in & which 1s requared to keep N¢ constant when v/¢ differs
from unity. The method of using this figure i1s to determine the value of
g vwhich, for the existing ¢, would give a surtable N for ¢/¢ = 1.
Then from the figure, obtain the correction to be subtracted from this
value of g for the actual value of /g,

The/
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The effect of v/¢ on y, or on the value of B required for
a given vy, may be obtained from eguation (4.5). The effect on y is
considerably smaller than the effect on N, unless ¢/y 1s unusually large.

4.6 Fairing of the nose shape into the basioc section

For large O, tanh 0 1s approxamately eqgual to 12620,

Hence for sufficiently large x/a, the curve

x3
y = #p tenh -——-1
aﬂ
is approximately given by
i-}ca Sy —
2p
y = in| 1 - 2e y - .

Thus the curve is exponentialliy asymptotic to the basic section. Fig. 12
shows, plotted egainst G, the values of x/a for which

n=y

--- = 0,01, 0,001 and 0.0001, This shows that even for low values of f#

n
the ordinate 2o within 4% of,the basic section at a distance less than

2a from the leading edge (x = 2a), The curve is very rapidly asymptotic,
as 18 required,

4.7 Application of the round noses to unsymmetrical sections

In order to preserve the symmetry of the nose, and to place the
leading edge on the centre line of the basic section, and not on the
x-ax1s, the semi-thickness of the basic seciaion, anpd this only, must be
“x2
{-— - 1] . Thus af the upper surface is nu(x)

a® B
and the lcwer surface nL(x), the equation of the round-nosed section is:~

miltiplied by tanhﬂj@

x®
y = (ngng) £ 2(ny-ny,) tanh - - 1.
a

The noses shape is then similar to that preduced by rounding the nose of
a symmetrical basic ssction with an ordinate equal to the semi-thickness,

F(ng=ng,) -

L.8 Application of the round noses to the merofoils of Section 3, and
comoarison with ths RAL 100-104 scctions?

The noses may clearly be applied to any of the sections with nO.

The more useful range is n3%, for which x = O at the trailing edge.
The equation of the round-nosed aerofoils is then:-
(1-x)?
y = ta x (1-x9) tanh B | ---——- - 1] .
aa
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For small values of a, ¢ and ¢ are given approximately by:~

¢ = no| t - === a .
2

¥ = n a; 1 = (n+1) a P,

v (n+1)
Hence - = | e - a

¢ 2

Fag, 4c shows the section n = 6, a = 0,0133, compared with

the RAR 1002, Tnc two sectiuns have ihe same maximum thickness posaitaon
and are similar except that the n = 6 section has a slightly smaller

trailing-cdges angie, and a leading-edge radius aboul half that of the

Rek sectaon., Thus it 1s possable, by suitable choice of n and a,

1o produce curves which are similar to the RAE scctions but with any desired
leading-edge radius, It 1s also possible to produce sections with the same
maximum thicknecs position and leading-edge radius as the RiE sections:
these are thus curves given by explicit equations which, except an detail,
are similar to ithe RAE sections.

#5 an example ol this, a curve has been designed to fit the
RaE 101 section as closely as possible., with a = 0.0906,
n = 3,90, a = 0.040 and g = 1,71, the nosc radius, maxamum thickness
position and trailing-edge angle are ihe same 23 for the 10% thick RAE 101
and the ordinates are everywhere the same to within 2% of the maximum
ordinate,

The RaE sections have certain disadvantages at high speeds

due to the fact that the curvature has a maxamuma Just ahead of the flat
tail section. The curves deseribed above do not have this disadvantage.

5. Droop-Nozed oand Cambered Sceetions

5.1 Camber
The aerofoils of Section 3 may, of course, be cambered by the
additzon of any surtable camber line, Mr. H. H. Pearcey has suggested
that the ordinatws of the same section, or of another member of the family,
might form a useful camber line, Then the section would become:-

y = aix(1-xyl) * agx(1—xn°) eee(5.1)

The round nosed sections would be:-

(1-x)?
y = a,x(1-x™) & o x(1-x"2) tanh i
a,

assuming n,>!' so that x = 0 at the trailing edge. The thickness of

1T 1/, n
2 2
the sharp-rused section, from equation {3.3), would be 2a9< —--—) —_—

n2+1 n2+1

1 1/ny
while 1ts camber weuld be , (——-—) ———,
n1+1

5.2/
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5.2 Nose droop

A curve is required having an extended and drooped leading edge,
faired in to the basic seotion of equation (3.1), or the canbered section
of equation {5.1). A4 suitable curve is shown in Fig, 13. The upper
surface, (A, Fip. 13), except near the rounded nose, is simply the basic
section, equataon (3.1) or (5.1), extended to values of x greater than
unity. The lower surface at the rear (B) 1s also that of the basic section,
equation (3.1) or (5,1), Near the nose a fairing curve (C) joins this

section to a straight line (D). This, and the upper surface, fair into
the rounded nose (I).

The equations of the different curves making up the section
are as follows:-

(A) y = o, x(1-x") + ubx(1~xn”) = A
(B) y = o x(1-x1) - qzx(1-xp9) = B
(C) y = =L log (e"B/L + e'IVL) = 0
(D) y = -m (x-b) = D
A+D  (A-D) F—(c—x)a
(E) Y os === e tenh 8] ——emm- - 1] = B, ...(52)
2 2 N a
where c© is given by A = D, or:-
aic(1-cn1) + aac(1~cn3) +mc-b) = 0 ., eee(5.3)

The assumption that the curve may be treated as a set of fave
separate parts is normally Justified, owing to the rapidity of the convergence
of ¢ and ¥ to D, It may not be gustified if o-a=1 218 small, or
negative, If thas assumption is not justified, D must be replaced by C
in the equations for E and ¢, 7This gaves the exact equation for the
curve which as:-

A+C  (A-C) (e—x)?
y = === R tanh [B] —~==~= -1 ’ .10(5-4)
2 2 a2

where ¢ 1is pgiven by:-

= Yo, o1~ ) - gye(1-c™)]
alc(1-cn1) + abc(1-cn3) = =L log’ie L

S

Y

- E(m)} |

The approximate valuc for ¢ given by equation (5,3) will, however,
almost always be sufficiently accurate, even when the approximation
C = D an equation (5.2) 1s not Justifiable,

5.3/
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5.3 Effects of the parameters

The complete equation (5.4) contains nine independent parameters,
These may be listed as follows:-

Parameter rffect

n, Position of maxaimum ordinate of the camber line
(see bections 3,1, 5.1)

n, Maximun thickness position of the basic section
(see Section 3.1)

&, Camber of the aerofoil,
(see Sections 3.2 and 5.1)

Oy Thaickness of the aesrofoil,
(see Section 3.2)

m Slope of the linear portion under the nose
(Fig. 13)

b Intersection of the linear portion with the y-axas
(Fig. 13)

L Extent of fairing between the lirnear portion and
the rear under-surface, (see below)

a Length cut off the lesding edpe in roundang the
nose (Section 4.2 and Fig, 13)

B Leading edge radius and nose shape (Section 4)

c Chord of the sharp-nosed section {(Fig. 13).

Fot independent but determined by n,, n

Oy, O, M and b.

o 8

The only parameter whose effect is not clear from preceding
sections or from Fig. 13 1s L, whach affects the fairang C, Fip. 13.

Consider two curves y = n{(x) and y = ny(x), Fag. %,
which cross on¢ another at x = x,, where n, = n, = 7,, and such that
ng>m, for x> X, and Mg <y for x«<x,. Then the curve:-

y = L log [em /A 4 ena /) s cee(5.5)
is a smooth curve which 1s exponentially asymptotic to n, for x<x
and to n, for X>x,. Its value at x = X, 28

vy = L log 2 eno/t
= n, +L log 2
= 7, +0,693L .,

Equation (5.5)/



- -

Equation (5.5) may be rearranged as:-

y_-r;,i T 2Ty
wewt = log| 14+ e L , vee(546)
L
or as
N =Ty |
y-n, -
meew = log| i+ e D .
: ]
i y-~n, Tlg =7y
Fig., 15 shows a graph of ---- against ----- . This shows that the
L L
difference between y and 5, or =n, becomes very small when
Mg =y My =Ny g 70y
_____ or --—--- exceeds about 3or4, when e L 1s small,
L L
equation (5.6) becomes approximately:=
Mg 7
y = n +Le L .
My =Ty
Similarly when e L is smell,
Bl
L

Thus the curve is exponentially asymptotic to ™ and na. y daffers
from 7, by less than 0,01 L for n,-n, > 4.605 L, and by less than
0.00t L. for n,~-n, > 6.%08 L. ‘

This method may be used to produce a fairing between any two
suitable intersecting curves, When applied to the curves B and D of
Section 5.2 and Fig., 135 the fairing curve € results,

Thas method clearly could be used to produce a round nose by
fairing the upper and lower surfaces of & sharp-nosed aerofoil. The
result would give a shape similar to one of the curves of Section &,
but for a very low, and invariable, value of A. Thus the method 1s not
very practical for this purpose.
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Figs. 5& 6
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Figs. 11 & 12
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