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Summary.--Methods recently developed for estimating distributions and intensities of sonic bangs are described. 
They are applied to several interesting flight manoeuvres and the results discussed in detail. The effect on sonic-bang 
distributions and intensities of refraction (caused by the temperature gradient existing in the actual atmosphere) is 
also considered. 

1. Introduction.~This paper has been written to meet a variety of needs. First, it replaces the 
earlier work of Warren 1, parts of which have now become outdated due to the appearance of 
Rao's papers 2' 8. The opportunity is taken to correct one or two errors which crept into Ref. 1. 
Secondly, a detailed discussion of the distributions and intensities of bangs produced during 
various flight manoeuvres is given. Thirdly, the phenomenon of refraction of sonic bangs, which 
is caused by the non-homogeneity of the atmosphere, receives closer consideration than in Ref. 1. 
Finally, it is hoped that  the elementary explanation of Section 2 will be of use to those who wish 
to brush up their sonic bangs. 

2. The Nature of Sonic Bangs.--The controversy which raged a few years ago over the cause 
of sonic bangs has now died down and few aerodynamicists would disagree with the explanation 
o f the  phenomenon given here. For simplicity, linear theory is used at first, but the introduction 
of a non-linear theory does not alter the basic ideas. 

When a disturbance is produced in a homogeneous atmosphere at a time taken to be zero then, 
after a time t, the disturbance is confined to a sphere with its centre at the origin of the disturbance 
and its radius equal to at, a being the speed of sound. It follows that the disturbance is propa- 
gated along straight lines which all pass through the origin of the disturbance. These lines are 
called 'rays'. 

If an object (e.g., an aircraft) causing disturbances is moving in a straight line at a constant 
speed V, where V > a, then the fronts of the disturbances at any time have an envelope which 
is a cone with its axis along the directio~t of motion and its vertex at the aircraft, the vertex 
angle being 2 sin -1 (a/V). As the aircraft moves along, the cone moves with it and, whatever 
the length of time that has elapsed since the motion began, the disturbances are all confined 
within this cone. This statement assumes that  the motion started impulsively. When the cone 
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passes through any point there is a sudden change in pressure at the point, and it is this which 
causes a sonic bang. If the aircraft is in straight and level flight the effect on the ground is confined 
to a hyperbola moving over the ground. The successive positions of the hyperbola form a family 
of curves and all points lying on one of these curves receive a bang at the same instant of time. 

Fig. 2 shows that  this cone, the envelope of the disturbances, is propagated along straight.lines 
making an angle ½~ -- sin -1 (a/V) with the flight direction. Thus, the rays along which the 
envelope is propagated are a sub-family of the rays along which each separate disturbance is 
propagated, and the component of the aircraft's velocity along them is sonic. The rays of tile 
envelope which emanate from a particular point on the flight path form a cone, which faces the 
opposite way to the cone described above and which has a vertex angle of ~ -- 2 sill -1 (a/V). 
Each point on the flight path has such a cone associated with it and these cones again intersect 
the ground in hyperbolae, which form another family of curves on the ground. All points lying 
on one of these hyperbolae receive bangs which were created at the same time but they receive 
them, ill general, at different times. Thus, there are two families of curves on the ground to be 
considered in sonic bang problems : the first consists of curves connecting points at which bangs 
are received at  the same time ; the second consisis of curves connecting points which receive 
bangs created at the same time. The first family might seem the more suitable physically but, 
since it is easier to perform calculations on sonic bangs by starting from the flight path, the 
second family of curves is obtained in practice. If the first family is required it can be obtained 
from the second without difficulty. 

When the aircraft is not moving in the extremely simple manner of the above example, t h e  
resulting patterns of curves become more complex. In accelerated flight some regions on the 
ground may be covered more than once by the curves connecting points at which bangs are 
received at the same time, so that  in these regions multiple bangs are received. In such a case 
there are lines on the ground on and near which the pressure jumps causing the bangs are larger 
than elsewhere ; the line forming the boundary of the area subjected to bangs is always one of 
these lines although there may be others inside the area. Since the bangs received on and near 
such lines are more intense than those elsewhere in the locality they are called 'super-bangs'. 
The second family of curves, each consisting of points receiving bangs created at the same time, 
are always conics, although, if the aircraft dives during its flight, some of these conics may be 
ellipses. When the flight path is known, together with the Mach number at each point, this 
second family of curves is obtained exactly as in the simple special case described above. 

In reality, the successive positions of the curves joining points which receive bangs at the same 
time correspond to shock waves moving over the ground, while the sudden change in pressure 
associated with the passage of the curves is replaced by the phenomenon of an 'N-wave'. Fig. 1 
is a sketch of such a wave. As this wave passes a point there is a sudden increase in pressure 
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(A to B), an approximately linear fall to a pressure lower than the initial value (B to C), a second 
sudden rise in pressure to a value slightly higher than the initial value (C to D) and then a tail 
in which th e pressure gradually falls to the initial value. Tile jnmp AB is called the ' intensity'  
of the wave and is approximately equal to CD. The ' impulse '  of the wave is defined to be tile 
area of ABE. The distance between A and D is of the order of the aircraft's length and, in 
horizontal flight, tile wave moves with the speed of tile aircraft, which is at least equal to the 
speed of sound. The time interval between the arrival of A B and that  of CD is, therefore, of the 

2 



order of the time taken to travel a distance of 50 It with a speed of 2,000 ft/sec, i.e., a time interval 
of the order of 0.05 see. This is sufficiently long for the ear to be able to distinguish the pressure 
jumps A to B and C to D. Hence, the single bang described above is to be replaced by  a double 
bang, both bangs being roughly of the same intensity. The first pressure jump, A to B, is called 
the 'bow shock wave'  and the second pressure jump, C to D, the 'stern shock wave'. 

3. The Estimation of Sonic Bangs.--The first estimates of distributions and intensities of sonic 
bangs were obtained from linear theory 4, s. These estimates were then improved by applying 
the technique of Whitham 6, 7. Briefly, Whitham assumes that  linear theory yields the correct 
values of required quantities along any particular characteristic but he recognises that  the linear- 
theory characteristics are incorrect and replaces them by characteristics derived from a non-linear 
theory, t~ao 2, ~ applies this technique to the linear theory of sonic bangs as developed by Warren i. 
No further description of Rao's theory is given here and the interested reader is referred to the 
original papers. Rao's results, which apply to a homogeneous atmosphere only, are quoted and 
briefly discussed in the next Section. 

3.2. Sonic-Bang Distributions on the Ground.--Concentrating on a particular point P of the 
flight p a t h  it is assumed tha t  the Mach number, M, and dM/dt are known at P ; t is the time, 
measured from a suitable origin, when the aircraft is at P. The cone with its vertex at P, its 
axis along the direction-of motion at P and its vertex angle equal to ~ -- 2 sin -1 (I/M) cuts 
the ground in a conic C and, if  (2 is any point on C, then the component of the aircraft 's velocity 
along PQ is sonic. E a c h  point P has a conic associated with it and these conics form the second 
family of curves described in Section 2, those joining points which receive bangs created at the 
same time. (If the aircraft is climbing, it is possible that  cones from some points never intersect 
the ground and the conics C do not exist in this case. This means tha t  no bangs created at such 
points reach  tile ground). 

I t  is convenient here to introduce three geometrical quantities, O, s and ~. 0 is the angle 
between the plane containing PQ and the tangent to the flight path at P and the instantaneous 
plane of motion at P. s is the distance between P and Q, and ~ is numerically equal to the 
curvature of the flight path at P. ~ is positive if the angle between the lines PQ and PO (0 being 
the centre of curvature) is acute, and negative if this angle is obtuse. The time taken for a bang 
to travel from P to Q is s/a where a is the speed of sound, and so the time when a bang arrives 
at Q is s/a-¢-t. The curves along which bangs are received at the same time are obtained, 
theref0ro, by  drawing the conics C corresponding to points on the flight path, working out values 
of s/a + t at points on these conics and drawing curves through points having the same value 
of s/a + t. It  is clear that  the two families of curves described in Section 2 can be obtained b y  
elementary means, although some entertaining three-dimensional geometrical problems may have 
to be solved. 

3.2. Intensities of Sonic Bangs on the Ground.--A formula for the intensity of the bow shock 
wave is given in Section 4 of Ref. 3 ; as stated in Section 2 of this note, the intensity of the stern 
shock wave is approximately the same as that  of the bow shock wave. The formula applies for 
all s, but  a considerable simplification occurs when s is large compared with the length of the 
aircraft. Since this is almost always the case, the simplified formula only is quoted here. I t  is 

[ i;i F 
/50- - + 2) ( M  - -  1) L B ( s ,  z)  - . . . . . . .  (2) 

Here, 150 is the pressure of the undisturbed air, Ap the intensity of the bang (i.e., the jump in 
pressure which causes the bang), 7 the ratio of the specific heat of air at constant pressure to 
that  at constant volume and M the Mach number. ~, is taken to be 1- 4. The remaining symbols 
are explained in the following Sub-sections, but it can be said now that  the numerator of the 
te rm in brackets is a measure of the effect of the aircraft 's geometry and that  the denominator 
is a measure of the effect of the aircraft 's  motion. 
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3.2.1. The effect of the aircraft's geometry.--The function F@) ill equation (1) is given by 

F ( ~ )  = G ° o  (~ - -  ~ ) ' ~ '  . . . . . . . . . . . . . . .  (2) 

where S(~1) is the cross-sectional area of the aircratt at a distance 71 from the nose. ~o in equation 
(1) is the smallest solution of 

F ( ~ )  ---- 0 .  (~o > o) . . . . . . . . . . . . . .  (3) 

The area distribution of a parabolic body of revolution of length I and maximum cross-sectional 
area S~ is 

S =  163,, (7) ~ ( 1 - - 7 )  3 . . . . . . . . . . . . . .  (4) 

and the corresponding distribution of F(~) is 

( - -  -d P/~ 1 - - 4  + 3 . 2  . . . . . . . . . . .  (5) 

giving ~70 = 0-3455/. I t  follows that  

. .  F(~) @ = 0.461 b/~ . . . . . . . . . . . . .  (6) 

These distributions of S(~) and F(~I) are shown in Fig. 3. 

For large s the detailed geometry of the aircraft is of little consequence and a knowledge of 
the length and maximum cross-sectional area is probably sufficient for estimating the effect of the 
aircraft's geometry. The area distribution of equation (4) is typical of conventional aircraft and 
so the numerical constant in equation (6) is taken as representative and is used throughout the 
rest of the work. If a particular aircraft has an area distribution differing considerably from 

equation (4)the determination offi° F @ ) @  is straightforward, although tedious. 

The constant factor in equation (1) is now given by 

21/,~ Ff" 7 0.733,. it2 
(~, + 1)'l~ LJo° F(~) d~J ' / ~ -  ..  .. l'/+ . . . .  (7) 

3.2.2. The effect of the aircraft's motion.--The function B(s, St) in equation (1) takes different 
forms depending on the sign of X and the relative magnitudes of s and 4. St is defined by 

= ( M  e -  1)a ~ 
a d M  . . . . . . . .  (8) 

M dt + M ( M 2 - - 1 ) W ~ a ~  cos 0 

The denominator is the component of the aircraft 's acceleration along the line PQ (see Section 
3.1). B has the following forms 

B = ( - -  X ) l ,  s i n h - 1  (s/-- St)~/~, ~ < 0 . . . . . . .  (9@ 

B = (St)W~ sin-~ (s/st)w~, 2 > 0, s < 2 . . . .  (9b) 

B = - (stl ,  + cosh-  (s/stl ,  1 , > O , s  > St (9c) 

B = s 1/~ St = oo (9d) J . . . . . .  

s and St appear only in the combination [Bs{1 -- (siX)}] li~ in the denominator of equation (1), 
and this is plotted against St for various values of s in Fig. 4. 
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3.3. A Discussion of Rao ' s Formula.--Combining equations (1) and (7), 

Ap _ O. 73S,~ 1/~M 3/~ (10) 
Po P/ ' (M ~ --  1) ~/4 [Bs{1 -- (s/2)}] ~/~ . . . . . . . . .  

A few remarks on this equation must be made. At first sight it appears that Ap becomes infinite 
when M tends to 1 and also when 1 tends to s. The former conjecture is not true, since the 
presence of {1 -- (s/Z)} ~/~ in the denominator means that (M ~ -- 1) 1/8 appears in the numerator 
(from equation (8)). Therefore, Ap tends to zero as M tends to 1, a result which is physically 
evident. There is, however, a real difficulty when ~ tends to s. The following remarks are made 
without proof, although their validity is established in Refs. 2 and 3 and in Section 4.4. of Ref. 1. 
In regions on the ground where s > 1, the phenomenon described in Section 2 takes place and 
multiple bangs are received. The rays of the envelope converge as s approaches t and, at points 
where s = 2 they cross, while the curves connecting points which receive bangs at the same time 
have two (or more) branches in these regions ; s is greater than 2 on the rear branches and less 
than ~ on the front branches. The branches meet at a cusp at which ~ = s and at these cusps 
the theory leading to equation (10) breaks down. When ~ : s, d2s/dt ~ = O, and this is the case 
disctlssed in Section 4.4 of Ref. 1 (where the notation for d2s/dt ~ is 1;0). A method for use when 
d~s/dt ~ vanishes is given in that Section, but it is somewhat difficult to apply and assumes that 
the flight path is known in great detail. If d3s/d# is known at points where ~ = s, and higher 
derivatives can be ignored, then, using the theory of Ref. 1, the formula replacing (10) is 

A p =  1.05aS,,~/2Mlm~(M 2 --  1)1/' .. .. .. .. .. (11) 

Po pmsh/~ d3s i/3 
dt 3 

(This result is derived by a method similar to that  described in Section 4 of the Appendix to the 
present paper.) The formula is expected to possess the ~ame degree of accuracy as the other 
formulae of Ref. 1. A comparison of these with Ra0's formula, where possible, suggests that  
equation (11) certainly gives the correct order of magnitude of Ap, and it should be adequate 
for estimating the intensity of sonic bangs at points for which d~s/dff --- O, where high accuracy 
is not expected any way. 

3.4. Propagation of Bangs in a Non-homogeneous Atmosphere.--The effect of a non-homogeneous 
atmosphere (in which pressure and temperature vary with altitude) is discussed in a later Section. 

The variation in pressure can be crudely allowed for by replacing Ap/po in equations (10) and 
(11) by Ap/(pgp~)*/t pg is the pressure at the ground and p~ that  at the altitude of the aircraft 
when it created the bang. a in the quanti ty (s/a) + t is similarly replaced by (aga~) ~/2, where 
ag is the speed of sound at the ground and a~ that  at the altitude of the aircraft. 

4 .  Examples of Sonic-Bang Patterns Produced during Various Manoeuvres . - -The work described 
in the previous Section is now illustrated by considering the distributions and intensities of sonic 
bangs produced during various flight manoeuvres. The aircraft is assumed to have a length of 
50 ft and a maximum cross-sectional area of 30 sq ft. 

4.1. Steady Level Fl ight . - -The simplest manoeuvre is that  of an aircraft moving with constant 
velocity at a constant altitude ; this is referred to as 's teady level flight'. In this case both 
d M / d t  and n are zero and so ~ = oo. Allowing for a non-homogeneous atmosphere, equation (10) 
becomes 

Ap 0.73S,~ 1/~M 3/~ 1.50M ~/~ (12) 
~ / ( p ~ p ~ ) -  ll/4(M~ - 1)1/%3/, = (M s --  1)i/~s~/~ . . . . . . . . .  

Fig. 5 shows how the intensity of the bangs received at points on the track varies with the 
altitude of the aircraft and with its Mach number. The variation with Mach number is, in general, 
small, particularly for Mach numbers sufficiently large for M 1/2 to be a satisfactory approximation 
to (M s -- 1) ~/~. s is then approximately equal to the altitude and so Ap varies as M 1/4. The 
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variation with altitude is more marked than the power ~- in equation (12), since p~ increases as the 
altitude decreases. Fig. 7 shows how the intensities fall off as the distance away from the track 
increases. The curves are drawn for various altitudes and for a Mach number of 1.414. Figs. 6 
and 8 give similar information about the impulses of bangs produced during steady level flight. 
To calculate the impulse of a bang it is necessary to know the value of AE in Fig. 1 of Section 2. 
W h i t h a m ' s  result for thedis tance  between the two shock waves of an N-wave produced during 
steady level flight provides a reasonable estimate. 

In all font of these Figures the curves are cut off by broken lines. To one side of these lines no 
bangs reach the ground because of refraction (in the standard atmosphere). The method by 
which these lines are obtained is described in Section 5. 

Although the Figures are strictly true for steady level flight only, they provide a measure of 
the averag e intensity of the bangs produced during any flight. If the dimensions of an aircraft 
differ from those used here, this can be easily allowed for ; the factor S,~1/2/P/~ in equation (12) 
shows that  the intensity varies as the linear dimensions of the aircraft to the power ~ or roughly 
as the all-up weight to the power 1. Figs. 5 t~o 8 inclusive were given in Ref. 1, but were slightly 
ill error. 

4.2. A Horizontal C#cular Turr~.--An instI~active example of the effect of accelerated flight on 
distributions and intensities of sonic bangs is that of an aircraft moving in a circle at constant 
altitude and at constant Mach number. Figs. 9 and 10 apply to an aircraft performing this 
manoen-vre at an altitude of 30,000 ft and at a Mach number of 1.5. The radius of tile circle is 
24,600 it, so that the indicated acceleration is 3g (i.e., the usual normal accelerometer would read 
3g, but the centripetal acceleration is 2w/2g). In both diagrams of Fig. 9 the abscissa is distance 
measured from the point 0 vertically beneath the centre of the circle. The upper diagram shows 
the intensities of the bangs. Inside a circle with centre 0 and of radius 31,400 ft no bangs are 
received, while outside this circle two double bangs are received. The circle itself is the locus of 
points for which s ---- i (see Section 3.3). The lower diagram shows the times of reception of 
bangs, the origin of time being the time at which a bang first reaches a point on the radius being 
considered. Fig. 10 shows one of the curves along which bangs are received at the same time ; 
it moves with the same angular velocity about 0 as the aircraft, and has a cusp at the point B 
where s = i. As stated in Section 3.3, equation (10) is not valid at such a point, but equation (11) 
provides an estimate for the intensity of the super-bang received there and this estimate is 
indicated by a cross. It  is clear from Fig. 10 that  only one double bang is received at B, while 
for points a little further out than t3 two double bangs very close together are received and the 
resulting pressure variation is complex. This can be seen from Fig. 11 which is a sketch depicting 
the interaction of two N-waves. 

The broken line in the upper diagram of Fig. 9 comes from using equation (12) to calculate 
the intensities, so that  the effect of acceleration has been ignored in deriving it. I t  ceases to be 
even qualitatively correct near the points where s ---- 1. The intensities there are two to three 
times as large as those obtained when acceleration is ignored, and this factor is typical. 

4.3. Si•usoidal Variatio~ o f  Altitude.---Tile next example is that  of an aircraft moving in a 
vertical plane at a constant Mach number of 1.1 and performing sinusoidal oscillations of 
amplitude 100 ft about a mean altitude of 15,000 ft. The length of each Oscillation is chosen so 
that  the maximum normal acceleration produced is 0.5g. Altitude and normal acceleration are 
plotted against time in Fig. 12. 

The upper diagrams of Figs. 13 and 14 show the intensities of the bangs received along tile 
track and along a line 15,000 ft to one side of the track respectively. The lower diagrams show 
the corresponding times of reception. Over most of the distance one double bang only is received 
but there are very small portions, not visible on the Figures, where three double bangs are received. 
The extremities of these portions, marked with crosses, are points at which s = t and once again 
equation (11) has been used to estimate the intensities of the super-bangs received at such points. 
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The intensities obtained when acceleration is neglected are shown by dotted lines in the upper 
diagrams of Figs.. 13 and 14. These lines provide a good approximation except in the region of 
points where s = 4. 

4.4. Si~¢usoidal Variatio~¢ of Forward Speed . - -The  previous Section contained an example of 
varying normal accelerition ; in this Section an example of va ry ing  forward acceleration is 
discussed: The aircraft is assumed to be flying in a straight line and at a constant altitude but  
with its Mach number and forward acceleration varying sinusoidally. The altitude is 10,000 ft, 
the mean Mach number is 1.10 with an amplitude of 0.03 and the period of oscillation is 20 sec. 
The amplitude of the acceleration becomes 0-317g. Mach number and forward acceleration are 
plotted against time in Fig. 15. 

The upper diagrams of Figs. 16 and i7 show the  intensities of the bangs received along the 
track and along a line 10,000 ft to one side of the track respectively. The lower diagrams show 
the corresponding times of reception: Over most of the distance one double bang only is received 
but these are small portions where three double bangs are received. The extremities of these 
portions, marked with crosses, are points at which s = 4 and again equation (11) has been used 
to estimate the intensities at these points. The intensities obtained when acceleration is neglected 
are shown by dotted lines in the upper diagrams of Figs. 16 and 17. These lines provide a good 

approx imat ion  except in the region of points where s = 4. 

The distribution of bangs is very similar to that  obtained in the previous Section (sinusoidal 
variation of altitude). In both these cases the distributions in the neighbourhood of the points 
at which s = 4 are much more complex than is suggested by Figs. 13, 14, 16 and 17 ; the reason 
for this is given in Section 4.2. 

5. The Effect of Refraction or~ the Propagatio~¢ of Sonic Ba~gs . - - In  Section 3.4 a crude procedure 
was described for estimating the changes (due to variation in atmospheric pressure), in intensities 
of sonic bangs when a non-homogeneous atmosphere is considered instead of a homogeneous one. 
Further changes caused by the non-homogeneity are now considered. The speed of sound, a, is 
assumed to vary  with altitude according to the equation 

a = a s --  k h ,  . . . . . . . . . . . .  (13) 

where a s is the speed of sound at the ground, k is a positive constant and h is altitude. That  this 
is a close approximation to the variation in the I.C.A.O. standard atmosphere 8 (where temperature 
and not speed of sound varies linearly) can be seen by examining Fig. 18. This is a plot of speed 
of sound against altitude in the I.C.A.O. standard atmosphere. From ground level to an altitude 
of 36,089 ft (the 'tropopause'), the curve is almost indistinguishable from a straight line. Above 
this altitude the speed of sound remains constant and, if bangs are produced at all altitude above 
the tropopause, they propagate as described in Section 2 until  they reach the tropopause. Below 
the tropopause, bangs are not propagated along straight lines but  are refracted away from the 
ground in a manner to be described below. All results quoted without proof are derived in the 
Appendix. 

A disturbance created in all atmosphere in which the spe6d of sound varies according to equation 
(13) is propagated along rays which are not straight lines but circles. The circles all pass through 
the point of origin, O, of the disturbance and all have their centres lying in the plane h = aJk  
where the speed of sound in the fictitious atmospherenow being considered falls to zero. At any 
instant of time the disturbance is confined to a sphere with its centre on the vertical lille through O. 
The centre moves downwards as time increases, while the highest point of the sphere approaches 
the plane h = a~/k asymptotically. If an aircraft is moving with supersonic speed, the disturb- 
ances produced by it have an envelope and, just as ill the case of a homogeneous atmosphere, 
the rays along which the envelope is propagated form a sub-family of the rays along which each 
separate disturbance is propagated. The rays of the envelope which emanate from a particular 
point on the flight pa th  are again those rays of the disturbance created at that  point which make 
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the complement of the Mach angle with the flight direction. The rays of the envelope are, in 
general, circles and so; even if they start with a downward slope, they eventually become 
horizontal and finally move up away from the ground. It follows that  if the aircraft is at a 
sufficiently-great altitude, the bangs it produces are refracted upwards without reaching the 
ground. 

These remarks are illustrated by Fig. 19 which depicts an aircraft at an altitude of 25,000 It 
and flying at a Mach number of 1.1. The variation of speed of sound is approximately that  in 
the real atmosphere, except that  the tropopause has been ignored (this diagram should be 
compared with Fig. 2). The altitude and Nach number are such that  a bang reaches the ground 
just as the ray along which it is travelling becomes horizontal. The full lines are the portions of 
rays and of the envelope (or shock wave) which are actually formed. They bear a considerable 
resemblance to the rays and the envelope in Fig. 2. If the altitude is increased slightly the rays 
no longer hit the ground but continue along the portions drawn with a broken line. A second 
branch of the envelope (also drawn with a broken line) now appears, the two branches meeting 
at a cusp. Rays in the vicinity of the cusp converge and, at the cusp, they cross, so that  there is 
a strong resemblance to the behaviour described in Section 3.3 near points at which s = Z. For 
this reason there is little point in extending Rao's technique for determining the intensity of sonic 
bangs to a non-homogeneous atmosphere since it would break down in the region of most interest. 
Instead, the method described in Section 4.4 of Ref. 1 is extended t o  cover the case of a non- 
homogeneous atmosphere. First, however, the problem of the effect of refraction on the 
distribution of sonic bangs is considered. 

The equation of the flight path is assumed to be x = f ( t ) ,  y = g(t),  z = h(t) ,  t being the time 
and x, y, z being rectangular Cartesian co-ordinates. The origin of t, x and y is of no importance 
but z is measured vertically upwards from the ground, f ' ,  g '  and h'  are written for d f /d t ,  dg /d t  
and d h / d t  respectively. Fixing on the point P of the flight path corresponding to time t, the 
curve on the ground connecting points which receive bangs created at time t is found as follows : 
Let P1 be the point on the ground vertically below P. The required curve is given by 

'l I r = ~ ( A  s - -  a~2) 1/~ - -  ( A  s - -  a ~ )  1/~ , . . . . . . . . . .  (14) 

where a~ is the speed of sound at the ground and a~ that  at an altitude h (so that  a~ = a~ - -  kh)  
and 

A = a~{a~(f'~ + g'~)i/~ ± h ' [ ( f '~  ± g'~) - -  (a~ - -  h'~) sec~ t911/~} 
(ao - h s e c  

r and f2 are polar co-ordinates with P~ as pole and the tangent to the track at P as axis. This 
resultcomes from equations (I.20) and (I.15) in the Appendix. If ~ is the angle of dive at time t 
it may be written as 

A Ma~{cos ~ cos f2 + sin ~[M ~ cos ~ ~ cos 2f2 ~- M ~ sfn ~ ~ -- 1~ ~/2} .. (15) 
= (1 -- M 2 sin ~ ~) 

The two signs arise because there are, in general, two directions in a vertical plane through the 
aircraft which make the complement of the Mach angle with the direction of flight. The lower 
sign corresponds to the upper ray. This bang can reach the ground only if the aircraft is diving 
and the angle of dive is greater than the complement of the Math angle, and even then it may be 
refracted away from the ground. The condition for the bang to be refracted away is that  

A < a~ . . . . . . . . . . . . . .  (16) 

If Q is a point on the curve of equation (14) with co:ordinates (r, ~9) then, from equation (I.19), 
the time taken for the bang to travel from P to (2 is 

,( A) 
t~ o = ~ c osh-~ cosh -~ . 

~ct 
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Thus, the bang is received at a time tR, where 

1( A A) 
tR = t + ~ cosh -~ cosh -1 . . . . . . . . . . . . .  (17) 

These formulae simplify when applied to an aircraft moving in supersonic steady level flight 
at an altitude h and with a speed V. 

r = 1 cos  _ 

and equation (17) becomes 

1( v 
t R = t + ~  cosh -~ 

Equation (14) becomes 

_ ( V 2  c o s  - . .  

cos 
a~ 

cosh_ 1V cos D~, 
gg / 

. . . . . .  ( i s )  

. . . . . . . .  ( 1 9 )  

while from (16) the bang never reaches the ground if 

c o s  s?  < ( 2 0 )  r .  • • • • • • • • • • . 

If d is the distance of Q from the track so that  d = r sin X2, then no bangs are received at points 
for which d < d~, where 

1 (1 - -  ag~ 1/2 l 6t 2~1/2 
- -  -24/ - . . . . .  ( 2 1 )  

This formula, which predicts the lateral spread Of the sonic bangs produced during steady level 
flight, is illustrated in Fig. 20. There d~ is plotted against Mach number for six altitudes ; the 
change in the equation of propagation at the tropopause has been taken into account. No bangs 
are received anywhere on the ground if 

V < ag . . . . . . . . . . .  (22) 

These results apply to level ground only. If the terrain is hilly it may be prudent to consider the 
propagation of disturbances more carefully. (In a homogeneous atmosphere the region affected 
by  bangs may theoretically extend to an infinite distance to either side of the track. The intensity 
of the bangs tends to zero as the distance tends to infinity). 

The presence of winds in the atmosphere also affects sonic bang distributions. Two simple 
examples must suffice : a gradient in headwind speed and a constant sidewind. If the headwind 
speed at altitude h is Aw greater than that  at the ground the speed of the aircraft in (22) must 
be reduced by A w so that  no bangs reach the ground anywhere if 

V -- Aw < a~ . . . . . . . . . . .  (23) 

This result is illustrated in Fig. 21 in which the Mach number below which no sonic bangs reach 
the ground is plotted against altitude for several values of the difference in headwind speeds. 
The curves have discontinuities in slope at the tropopause. The presence of a sidewind affects 
the result of equation (21). Suppose the speed of the sidewind is Ws. From (19) and (20) the 
bang arriving furthest away from the irack takes a time 1/k cosh -i  (a~,/a,~) to travel from the 
aircraft to the ground. During this time the wind has blown it a distance w,/k cosh -1 (c%/a~). 
Hence the lateral spread on the side of the track towards which the wind is blowing should be 
increased by this amount while that  on the other side should be decreased by the same amount. 
I t  is noteworthy tha t  th i s  result does not depend on the Mach number of the aircraft. 

As an example on the above work the distribution of bangs produced by an aircraft in steady 
level flight at a Mach number of 1- 15 and at an altitude of 30,000 ft is considered. The speed of 
sound at this altitude is 995 ft/sec, while at the ground it is 1,117 ft/sec. Equation (13) then 
gives k as o. 00407 sec -1. Fig. 22 shows one Of the curves on the ground along which bangs are 
received at the same time. This curve moves with the same velocity as the aircraft and, as 
explained in Section 2, it corresponds to an N-wave moving over the ground. Also shown is the 
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position at the same time of the curve corresponding to a homogeneous atmosphere in which the 
constant speed of sound in feet per second is the geometric mean of 995 and 1,117, i.e., 1,054 
(see Section 3.4). Up to what may be called the 'cut-off point '  the two curves lie very close 
together. This suggests that  the effect of refraction on a sonic-bang distribution can be allowed 
for, simply by finding the cut-off point corresponding-to various points on the flight path. In 
the general case (i.e., not necessarily steady level flight), the value of ~ at a cut-off point is given 
by A ---- ag as follows from (16), A being defined by equation (15). The corresponding value of 
r is then obtained from equation (14). 

The effect of refraction on the intensities of sonic bangs is considered in Section 4 of the 
Appendix, which deals with a special case only, that  of an aircraft in steady level flight at an 
altitude and speed such that  bangs just reach the ground (as in Fig. 19). The results are shown 
in Fig. 23 and it can be seen that  the focusing effect of refraction increases the intensities con- 
siderably, by a factor roughly equal to 5. The curve has been drawn only to a point just below 
the tropopause. To obtain results beyond this altitude would entail considerable work and, 
since the atmosphere is homogeneous above the tropopause, tl{e factor is likely to remain approxi- 
mately constant beyond it. For more complicated flight paths the method describedin Section 4 
of the Appendix can, in principle, be used, although it may well require considerable labour. 
This case provides an upper limit for the focusing effect of refraction, since it assumes the worst 
possible combination of altitude and Mach number. For other combinations and, in particular,  
for Mach numbers greater than about 1.15, the effect is considerably reduced. 

On occasions temperature inversions occur in the atmosphere, but they are close to the ground, 
extending to altitudes of about 4,000 it  only. Their effect is, therefore, small ; this effect is one 
of defocusing. 

6. Conclus ions . - -The  phenomenon of sonic bangs is explained in Section 2 of this note and 
methods for de±ermining the distributions and intensities of sonic bangs are given in Section 3. 
Section 3.1 deals with the determination of the distributions and Sections 3.2 and 3.3 with the 
technique-developed by Rao for estimating the intensities. Normally equation (10) suffices for 
this, but at and near points where d 2 s / d # =  0 (s being the distance from the aircraft to the 
point on the ground and t the time at the aircraft), this equation breaks down. It  is suggested 
that  equation (11) be used in such a case. In practice it is probably best to find the lines along 
which d2s/dt ~ vanishes first and then use equation (11) to estimate the intensities on these lines. 
For the rest of the area subjected to bangs it should be sufficiently accurate to use Figs. 5 and 7 
(strictly applicable to steady level flight only). The difficulty is that  equation (11) requires a 
knowledge of d~s/dt ~ and it may be impossible to obtain this in actual cases. As a rough guide 
it is usually true that  the intensities of super-bangs, i.e., bangs received in areas where d"s/dt ~ is 
small, are two to three times as large as the average of the intensities elsewhere, although there 
is always the possibility of a combination of circumstances leading to much larger intensities. 

Examples of manoeuvres producing super-bangs are examined in Section 4 and the results 
confirm that,  whether the aircraft is accelerating by performing a horizontal turn or by oscillating 
in a vertical plane or by varying its speed, the super-bangs produced have intensities of two to 
three times the intensities obtained by using Figs. 5 and 7 .  

A further complication in sonic-bang calculations arises because the actual atmosphere is not 
homogeneous and so the speed of sound varies with altitude. The most marked effect on a 
distribution of sonic bangs is the 'cut-off' of bangs at a sufficiently great distance from the 
track (see Fig. 20). I t m a y  even happen that  no bangs are received anywhere on the ground. 
This is due to the phenomenon of refraction which is discussed in Section 5. Formulae are given 
in that  Section for determining the cut-off points and a knowledge of these together with an 
application of the technique described in Section 3.4 (i.e., using the geometric mean of the speeds 
of sound at the ground and a t  the aircraft as a constant speed of sound in a fictitious homogeneous 
atmosphere), should be sufficient for determining a sonic-bang distribution. In Section 3.4 it 
is also suggested that  P0 in equations (10) and (11) be replaced by the geometric mean of the 
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pressures of the air at the aircraft and at the ground. This probably gives a sufiiciently accurate 
estimate of the change in intensity due to the variation of pressure with altitude but  refraction 
may also increase the intensity of sonic bangs. This is because the rays along which the bangs 
are propagated are approximately circles in the real atmosphere and when their slopes become 
nearly horizontal they converge, thus producing an enhancement of the intensity in the same 
way as in accelerated flight. One example of this is considered in detail in Section 4 of the 
Appendix, that  of an aircraft in steady level flight. The results suggest that,  in the worst case, 
i.e., at points where the rays become horizontal the intensities of the bangs are increased by a 
factor roughly equal to 5. The area receiving super-bangs (caused by either accelerated flight or 
refraction effects) is unlikely to extend further than about a quarter of a mile inward from the 
boundary of the area affected by bangs. 

This note deals with thickness effects only. Other work 9 suggests that  the results given here 
would not be significantly affected if incidence effects were included. 
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LIST OF SYMBOLS 

Defined by equation (15) 
Speed of sound 

Speed of sound at altitude h 

Speed of sound at the ground 

Defined by equations (9) 

Distance of a point on the ground from the track 

Distance of cut-off point from track 

Defined by equation (2) 

x = f ( t ) ,  y = g(t),  z = h(t) is the equation of the flight path 
Altitude of aircraft 

Defined in equation (13) 

Length of aircraft 

Mach number of aircraft 
See dp 

Pressure of undisturbed air 
Pressure at altitude h 
Pressure at the ground 
Radial co-ordinate defined after equation (14) 
Cross-sectional area of aircraft 
Maximum cross-sectional area of aircraft 
Distance of point of origin of bang to point of reception 
Time 
Time taken for bang to travel from P to Q 
Time of reception of bang 
Speed of aircraft 
See A w  

Speed of sidewind 

Rectangular Cartesian co-ordinates, z being measured vertically upwards from 
the ground 

Angle of dive 

Ratio of specific heats of air 

Jump in pressure which causes a sonic bang 
Difference between headwind speed at altitude h and that at the ground 
Distance of a section of the aircraft from the nose 
Smallest solution of F(~) = 0, ~0 > 0 

Defined in second paragraph of Section 3.1. 
Curvature of flight path 
Defined by  equation (8) 
Polar angle defined after equation (14) 

Dashes denote differentiation with respect to time. 
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APPENDIX 

The  Propagat ion  o f  Sonic  Bangs  in  a Non-homogeneous  Atmosphere  

1. A S ta t ionary  D i s t u r b a n c e . - - L e t  r and z be rectangular co-ordinates in a vertical plane, 
z being measured vertically upwards. The origin of co-ordinates is of no importance. Let a(z) 
be the speed of SOnlld, which is assumed to obey equation (13) so that 

a = ao - -  kz . . . . . . . . . . .  (I.1) 

ao is the speed of sound at z ---- 0, while k is a positive constant. Let ds be an infinitesimally 
small section of a normal to a disturbance created at time t = 0 at the point r = 0 ,  z = 0 and 
let dr and dz be the changes in r and z associated with the change ds. On linear theory the 
disturbance is propagated as a sound wave and, since sound is refracted according to the well- 
known refraction law, 

d5 
a-d; = A , 

where A is a constant. Thus, 

and 

o r  

(ao- -  kz) l + \-d}] } = A 

& {A S - -  (ao - -  k~)~} "~ 

= - -  ( a o -  k~) 

{ A  S - -  (ao - -  kz)~} ~/~ = - -  kr  + A~ ,  

where A~ is an arbitrary constant. Since the origin of the disturbance is at the point r ---- 0, 
z = 0, all the rays pass through this point. Hence, 

( A  ~ - -  ao~) 1/2 ---- A 1  

and the equation of the rays is 

( a 0 -  kz) ~ + { (A 2 -  a02)" ~ -  k r } " =  A S . . . . . . . . . . . . .  ( 1 2 )  

The rays are, therefore, circles with centres lying on {he line z = ao/k, which is the line where the 
speed of sound falls to zero. To determine the equation of the wave fronts the orthogonal 
trajectories of equation (1.2) must be obtained. The slope of the rays is given by 

dz {A - -  (ao - -  kz)~} "~ 
d r  - -  . ( a o  - -  k z )  

and so the slope of the wave fronts is 

dz ( a o  - -  kz) 
8 7 =  {A - -  ( a o -  k~)~} 1 "  

The differential equation for the wave fronts is obtained by eliminating A between this equation 
and (I.2). Using equation (1.2) 

dz ( a o  - -  kz) 
~-~ = {(H a - -  a02) 1 1 2 -  k~ t} 

or 

( A  S - -  ao2) 1/2 - -  k r  - ~  (ao - -  k z )  d r  
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Equa t ion  (1.2) m a y  be wr i t ten  

( a o -  k z )  2 
and so 

OT 

Now 

Hence 

o r  

This gives 

o r  

and so 

- -  2 k r ( A  ~ - -  ao 2) + k~r ~ = a d  

(ao - -  kz) ~ - -  2kr(ao - -  kz)  dr  k2r2 ~ - -  ~ ~0 2 

- -  2aoZ + k z  2 - -  2r(a0 --  kz)  dr  - -  k r  2 = O . 

2r(a0 --  kz)  dr  - ~  + k #  
d . ~,2 

- -  2aoZ + k z  ~ d r ~ 

( a o - -  kz)  ~ - -  dz  l (ao - -  kz)  l 

d r ~ 1 go ~ 

~dz I ( a o - -  kz)  l - -  k k ( a o - -  kz)  2" 

Zz Z 
(ao -kz) a°~ = - - - ~  + A 2 ( a o -  kz)  

k2r ~ + {k~z ~ - -  k(ao - -  k M 2 ) z }  = - -  ao ~ + k M 2 a o  

1 k2r ~ + {kz  - -  -~(ao - -  k~A~)} ~ = - -  (ao ~ - -  aokM~)  + }(ao - -  k M ~ )  ~ . 

Here,-A2 is an a rb i t ra ry  constant  (or, ra ther ,  a funct ion of time) ; wri t ing 

it follows tt lat  
( a o - -  k M 2 )  = " k 2 a o A 3 ,  

r ~ +  z +  A8 -=--a0~Adl + ~  3j. (1.3) 

There  remains the  correlat ion of A3 wi th  the t ime, t, t ha t  has elapsed since the  dis turbance was 
created. The ray  wi th  an infinite slope at  z = 0, r = 0 is s imply the  line r = 0, as can be seen 
by  let t ing A tend  to infinity in equat ion  (I.2). Along this r ay  the wave  front is propagated  with  
the  speed 

dz  
d--t = ao - -  k z  , 

so t ha t  

a0 (1 - -  e -~') Z ~ - ~ -  . , 

the  constant  ill the  in t eg ra t ion  having  been chosen to make  z = 0 when  t = 0. On the  other  
hand,  r = 0 in equat ion  (I.3) produces 

Hence,  
z 2 + aokA3z  = ao2A3. 

A s - -  
z 2 _ ( a 0 2 / k 2 ) ( 1  - e - , , ) 2  

ao(ao - kz )  ao ~ e - ~  

2 
= ~ (cosh k t  - -  1) . 
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Finally, 

t a ° ( c ° s h k t - - 1 ) }  2 a°~ r 2 + z + ~- = k- ~ sinh 2 kt . . . . . . . . . . .  (1.4) 
\ 

I t  follows tha t  the wave fronts are circles with centres lying on the  line r = 0 and gradually 
moving  down this line as t increases. The max imum value of z for a particular value of t is 

z,~=-~a° {sinh kt --  cosh kt + 1} = a0~ (1 -- e -At) 

and so the  circles approach the  line, z = ao/k, at which the speed of sound falls to zero asymptotic-  
ally as t tends to infinity. As k tends to zero, equat ion (I.4) tends to the familiar fo rm,  

r ~ q- z 2 -- ao~t ~. 

Put t ing  the  results obtained in a general three-dimensional  form, the  wave fronts of a 
disturbance created at a t ime to at a point  Xo, Y0; z0, move according to the equation 

l I' ao (cosh k t --  to -- 1) a°~ (x - -xo)  ~ + ( y - y o )  ~ +  ( Z - - Z o ) + ~  ----- k- z s i n h  ~ k t - t 0 ,  . .  (1.5) 

where a0 is the  speed of sound at z = Zo. The lines along which the  wave fronts are propagated,  
i.e., the rays, are given by 

{ ( A  S -  ~0~) -~  - -  k ( 1  + n ~ ) - ~ ( x  - -  ~0)}  ~ + {a0 - -  k ( ~  - -  Zo)} ~ = A S , .  . . . . .  ( I . ~ )  

( y  - -  y o )  = D ( x  - -  Xo) . . . . .  (I.~b) 
A and D are arbi t rary constants. This pair of equations expresses the  fact that ,  ill any vertical 
plane through x0, Yo, Zo the rays are a family of circles of the  form of equat ion (I.2). 

2. A Moving Source of Disturbances.--Suppose now tha t  a source of disturbances is moving  
along a path  given by  x ---- f(r), y = g(T), z ---- h(,), ~ being the  t ime (its origin is of no importance).  
Jus t  as in the case of a homogeneous atmosphere,  the  disturbances form an envelope if the  speed 
of the source is greater than  the  speed of sound at the source, and it is the  mot ion of this 
envelope which causes sonic bangs. In  this Section it is now proved tha t  the  rays of the envelope 
are a sub-family of the  rays of each separate disturbance and tha t  this sub-family consists of 
those rays of the  disturbances which make  initially the  complement  of the  Mach angle to the  

• flight direction. 

The position at  t ime t of the  wave front originating at t i m e ,  is given by  , 
a S 

a ( c o s h k t _ , l }  ~- -  sinh " k t - , ,  (I.7a) {x --f(~))~ + {y - g(~))~ + {z --  h(~) + ~ p ..  

where a, the  speed of sound at the point  x = f, y = g, z = h, is 

a = ao - k h ( ~ ) ,  . . . . . . . . . .  ( I . 7 b )  

a0 being the  speed of sound when z = 0. 

The position of the  envelope at t ime t is obtained by  el iminating ~ between (I.7a) and this 
equat ion differentiated with respect to , ,  namely,  

a ( c o s h  k t - - ,  - -  1 ) }  x { h ' ( , )  e o s h  k t - - ,  + {x--f(~)}f'(~) + {y--g(~)}g'(~)+ {z--h(~)+ 

~7~ . 

+ a s i n h k t - - r } = - ~ s m h k t - - ~ : { h ' ( r ) s i n h k t - - , + a c o s k k t - - - ; } .  . .  (I.8) 

Considering the  position of the  envelope at  t ime t, the  points on the envelope belonging to a 
disturbance created at  t i m e ,  form a curve, i.e., there is a single infinity of such points. By  the  
nature  of an envelope, the  tangent  planes of the  envelope and the disturbance created at t ime 3, 
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coincide at each one of these points and so the rays of the envelope and of the disturbance created 
at t i m e ,  have the same direction at these points. Now the constants A and D,  defining that  
particular ray of the disturbance created at t i m e ,  which passes through a point x, y, z, are given 
by equations (I.6) as the solution of 

[(A s -  aS) l / s -  k(1 + D~)'/S{x - - f ( x ) } ] s  + I s - -  k{z  - -  h(~)}]s= A ' . . . .  (I.9a) 

{y -- g(T)} = D { x  - -  f(~)}. .. (,.9b) 

If now x, y and z are eliminated between equations (I.7a), (I.8), (I.9a) and (I.9b), the resulting 
relationship between A and D defines the single infinity of the rays of the disturbance created 
at t i m e ,  which are momentarily tangent (at time t) to rays of the envelope. If this relationship 
does not contain t it follows that  the same single infinity of rays of the disturbance created at 
time ~ are always rays of the envelope. 

Putting k { x - - f ( ~ ) } , = ~ ,  then k { y - - g ( T ) } =  D ~  from equation (I.gb). Putt ing also 
a - -  k{z  - -  h(,)} = ¢, cosh k t - -  ~ = c, and sinh k t - - ,  = s, and writing f '  for f ' ( , ) ,  g '  for 
g'(~) ,  and h' for h'(T), the following equations are obtained 

These become 

(1 + D2)~ s + Cs _ 2(A s _ aS),/=(1 + D,~)i/s8 = aS.  

Subtracting equation (I.10a) from equation (I.10c), 

- -  (A ~ - -  aS)~/2(1 --k DS)~/s@ + ace = ~s.  

(2 + D2)~ 2 + (ac - -  ~)s = ass s ,  

( f '  + D g ' ) ~  + (ac - -  ¢)(ch'  + as) = as ( sh '  + ac) , 

{(A 2 -  aS) * / s -  (2 + DS)l,~} s + ~ s =  A s 

-(1 + DS)~ s +  ts  _ 2acC = _ a s ,  

( f " +  D g ' ) ~  - -  (ch' + as)¢ = - -  a h ' ,  

Together with equation (I.10b) this yields 

a3s 

- a(ch' + as) + #ac' 

¢ = a ( -  ah' + a#) 
- a(ch' + as) + #ac'  

a = (A s -  aS)l/s(1 + DS) I/s , 
where 

= ( f '  -t- D g ' ) .  

Substituting in equation (I. 10a), which may be written 

(2 + D~)~ s + (ac - -  : ) s =  aSsS 
it followsthat 

W • ~ 0 • I 

$ 

(I.lOa) 

(I.lOb) 
(I.lOc) 

(I.11a) 

(I.11b) 

(1 + DS)a6s 2 + aSsS{ - -  (sh'  -[- ac)~ -¢- asfl} 2 = aSsS{ - -  (ch' + as)a -[- /3ac} s 
O'C 

(h '~ - -  a=)a s - -  2ah'/3~ + aS{5 s - -  aS(1 + DS)} = 0 . . . . . . .  (I.12) 

This provides a relationship between A and D and this relationship is independent of t. Hence, 
the rays of the envelope are a sub-family of the rays of the disturbances. 

The rays of the disturbance created at a point P of the flight path given by x = f ( ~ ) ,  
y = g(~), z = h(~), which make initially the complement of the Mach angle at P with the direction 
of motion at P ,  are now obtained. These rays form a sub-family of those given by equation (I.9) 
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and this sub-family is characterised by  a relationship between A and D. I t  is now proved tha t  
this .relationship is t h e  same as equation (I.12). F rom equations (I.9) the initial  direction of a 
ray  is 

• - - a  . - - a D  
dx  " dy  " dz • (A ~ _ a2)W2(1 + D~)~/~ (A ~ _ a2)1/2(1 + D~)1/2 ." 1, 

so tha t  the init ial  direction cosines are 

a a D  
A(1 + D~) 1/~' A(1 + D2)!/~' 

The direction cosines of the flight pa th  at P are 

f '  g '  h '  
V '  V '  V '  

- ( A  S - 

A 

where V, the speed, is equal to (f ,2 + g,2 + h,2)~/2. 
and  the flight direction is, therefore, 

a ( f '  + Dg ' )  - -  (1 + D~)I/2(A2 - -  a~)~/~h ' 

V A ( 1  + D 2 )  ~/2 

If  this is to equal the cosine of the complement  of the  Mach angle, i.e., a / V ,  t h e n ,  

a ( f '  + Dg ' )  - -  (1 + D=)~/2(A ~ - a=)~/~h ' = a A ( 1  + D~) ~/2 . . .  

Making the  subst i tut ions of equations (I.11), this  becomes 

The  cosine of the  angle at  P between the r ay  

. . . .  ( I . 1 3 )  

a~  --  h'~ = a(~ ~ + a~(1 + D~)}~/~ , 
so tha t  

( h  - - + - a (1 + = 0 

and equation (I.12) is, therefore, the  same as equation ( I .13) .  This completes the proof of the  
above s ta tement  about  the  rays  along which the envelope is propagated.  

3. S o n i c - B a n g  D i s t r i b u t i o n s , - - E q u a t i o n  (I.13) is a relat ionship between A and D which 
determines a sub-family of rays  of the  disturbance originating at a point  P ; the members  of 
this  sub-family are all rays  of the envelope of disturbances.  (I. 13) can be wri t ten  as 

a~{A(1 + D~) 1/~ - ( f '  + Dg ' ) }  2 = (1 + D~)(A 2 - -  a2)h '~ , 
i.e., 

(1 + D~)(a ~ - !¢'~)A ~ - -  2a~(1 + D~)i/~(f  ' + D g ' ) A  + a~{( f  ' + Dg ' )  ~ + (1 + D~)h '~} = O.  

Hence 
A = aEa(f '  + Dg ' )  ± h ' { ( f '  + D g ' )  2 -  (a ~ -  h'~)(1 + D2)} ~/2] 

(1 + D~)l/~(a ~ - -  h '~) . .  (I.14a) 

Supposing the flight pa th  to be projected on to the  plane z = 0, and defining t2 as the angle 
between the vert ical  plane t h a t  is tangent  to the projected curve (or ' t rack ' )  and any  other  
vertical plane {y -- g(~)} ---- D { x  - - f ( , )} ,  then  D is given by  

D : g'  + f '  t an  D 
f '  --  g '  tan  D . . . . . . . . . . . . . . .  (I.14b) 

I t  follows tha t  equation (I.14a) becomes 

A = a[a(f '~ + g,2)~/2 _+_ h,{(f,2 + g,2) _ a ~ _ h,2) sec 2 ~2}1/~] 
(a ~ --  h '~) sec ~ . . . .  (1.15) 
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The two signs arise because there  are two directions in the  plane ( y -  g) = D ( x - - f )  which 
make  the  required angle wi th  the  direction of motion.  If the  aircraft  is diving so tha t  h'  = - -  a, 
then  the  negat ive direction of q is one of the  requi red  directions. This, however,  corresponds to 
A = oo, as can be seen by  let t ing A tend  to infinity in equations (I.6).- A = oo comes from 
equat ion  (I.15), when  h'  = --  a, by  tak ing  the  lower sign. Thus, the  negat ive sign in equat ion 
(I. 15) corresponds to the  lower ray. 

Wri t ing  r for {(x - - f ) ~  + ( y  - -  g)S}~/s, the  r ay  to the envelope s tar t ing from a point P given 
b y  x = f ,  _y = g, z = h, and lying i n t h e  vert ical  plane such tha t  equat ion (I.14b) holds, is f rom 
equat ions (1.9): 

{ ( A  ~ -  a~) ~/s + kr}  2 + {a - -  k ( z  - -  h)}S= A s , . . . . . .  (1.16) 

where A is de te rmined  from equat ion  (I.15). The t ime taken  for the envelope to t ravel  along 
this r ay  unt i l  it reaches the  plane z = O is now determined.  If s is the  arc length  along the circle 
of (1.16) measm'ed downwards  from the point  r = 0, z --  h, then  

ds 
d ~ =  a - -  k ( z  - -  h)  , . .  . .  

since the  envelope is propagated  wi th  the speed of sound. 

ds l [dr~2l~/~ 
d z -  1 + \ ~ z ]  ' "" 

since z decreases as s increases. F rom equat ion (I. 16) 

a - -  k ( z  --  h) ---- E A~ - {(A ~ --  a~) ~/~ + kr}'] ~/~ 

~z - ( ( A  s - as) - ~  + k~)k 
k 

dr  a - -  k ( z  - -  h) ' 

and  hence 

o f  

dz 
dr--  

Thus,  using equat ion (I:18), 

ds 

_ _  EA ~ . -  (a - -  k ( z -  h)}s] ~/~ 

• ° 

N o w ,  

. .  (1.17) 

. .  ( I . l S )  

- - A  
d~ [A ~ -  { ~ -  k ( ~ -  h)}~]l/~ 

I t  follows t ha t  
dz dz ds _ --  {a --  k(z --  h))EA ~ --  {a --  k(z --  h)}~U " 
dt  - -  ds d t A ' 

where equat ion (1.17) has been used. Talcing t to be zero when z = h, 

f " d z l  J 
{a - -  k ( z l  - -  h)}E As - {a - k(z~ - h))S] ~/~ --  A"  

i 

Put t ing.  z = 0, the  required t ime becomes 

1 ao{A + (A  ~ -  a~) ~/2} 1 (cosh_, A _ c o s h - ' A )  
t = ~ l o g a { A _ C _ ( A  ~ - ao 2)~,'2} = h _  - a -  v _  " "" (I.19) 

Here,  a is the  speed of sound at a l t i tude h and is equal  to ao - -  hh,  where a0 is the  speed of sound 
at z ---- 0. Hence,  the t ime taken  to reach the plane z = 0 for a dis turbance emana t ing  from the 
point  x = f f f ) ,  y = gff), z = h(,),  and  travell ing in the vert ical  plane making  an angle ~ wi th  
the  vert ical  plane t angen t  to the  projected curve is given by  equat ion  (I.19). 

If P~ is the  point  in tile plane z = 0 ver t ical ly  below a point  P on the  flight pa th  and Q is the  
point  in tile plane-z = 0 where the  ray  of (1.16) arrives, then  the  distance P I Q  comes from 

{ ( A  s - a~) ~/~ + kr} ~ + (a + kh) ~ + A s . 
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r represents P1Q and this equation comes from (I.16) on putting z ---- 0. It  is found that  

r = 1 { ( A S  _ _ ( A  S _ . . . . . . . . .  ( I . 2 0 )  

4. Sonic=Bang Intensities.--This Section is devoted to the estimation of the intensities produced 
along the track by an aircraft in steady level flight, assuming that the bangs just reach the 
ground (as in Fig. 19). The rays of the envelope converge as their slopes become horizontal and, 
as in the case of an accelerating aircraft in a homogeneous atmosphere; bangs received in the 
region of convergence have intensities markedly greater than those predicted by equation (12). 
The method used can, in principle, be applied to any flight path. 

Let Q be a point on the track, P0 a point on the flight path and 0 the point on the ground 
vertically below P0. Suppose that the aircraft is at P0 at time ~ = 0. Introduce rectangular 
Cartesian co-ordinates, x and z, with origin at 0, z being measured vertically upwards and x 
being measured along the track in the direction of motion. Let the speed of sound at the ground 
be ae, the speed of sound at h, the altitude of the aircraft be a~, and the speed of the aircraft be a s. 
From equation (20) the bangs just reach the ground. To estimate the intensities an extension of 
the method described in Section 4.4 of Ref. 1 is used. There is an interval of ,, -- vl ~ ,  ~< ,2, 
including ~ = 0, such that  the disturbances produced by the aircraft during this time all arrive 
at Q simultaneously. T~ and ~ are obtained from the condition that, in this interval, 

l 
+ t - t o [  ~<2ag' 

t is the time taken  for a disturbance to travel from a point P on the flight path to Q, P being 
such that the time when the aircraft is at P lies in the interval -- vl to v2. to is the value of t 
when P coincides with Po, and l is the length of the aircraft. The method requires £ knowledge 
of the length of the interval, i.e., a knowledge of both v~ and v2, and thus involves solving the 
equation 

l 
I~ + t -- t 0 l -  2ag . . . . . . . . . . .  (I.21) 

As is shown in Ref. 1, the length of this interval is a measure of the intensity of the bang. 
Normally the length of the interval is small (of the order of l/a,), but, if Po and Q lie on a ray of 
the envelope, the length of this interval becomes larger (of the order of ~¢/1/a~). Since the rays 
are converging the length of the interval is still further increased. 

Assume, therefore, that  P0 and Q do lie on a ray to the envelope. To solve equation (1.2l) it 
is necessary to obtain t -- to in terms of T. Now the co-ordinates of P0 are x = 0, z = h ; of P, 
x - a:~, z = h, and of Q, x = (a~ 2 -- a~)i/~/k, z = 0. The x co-ordinate of Q comes from equation 
(18). The ray of the disturbance from P which passes through Q is a circle with its centre lying 
on the line z -- a~/k, as shown by equation (I.6a). Since the circle passes through P it is of the 
form 

h is given by 

and so the circle is of the form 

]¢ _ _  g g -  ~a  

k 

~a 2 
z (K-- 

K is determined from the condition that  the circle pass through Q, and so 

l 1 12 a g ~ = ( K _ a ~ ) 2 + a ~  K - - ~ ( a ~ - - a ~ )  ~/~ + ~  ~-~. 
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H e n c e  

2(a? a~) -- k2ag%~ . .  (i.22a) 
K = 2 k { ( a  ~ _ a 2)~/~ _ k a n T } "  

Thus, the  circle has the equat ion 

( K - - x )  2 +  : - z  = R  ~, . . . . . . . .  (I.22b) 

where  

- - - _ _ _ k gT)  + + ( I  22 ) 

The formula for t, the  t ime t aken  for the dis turbance to t ravel  from P to Q, is obta ined in the  
same way  as equat ion (I. 19). The result  is 

t )) cosh - 1 -  - -  cosh - 1 -  • 

I t  follows t ha t  

1 cosh_l a~ t0 = ~ -a~ " 

Hence  
1 (  kR kR ag) 

t - -  to = ~ cosh -1 . . . .  a~ c°sh-1 . . . . .  a~ c°sh- t  ~- . . . . . . .  (I.23) 

Equat ions  (I.23) and  (I.22c) provide the  required relat ion be tween t --  to and  3. 

Let  A3 be t h e l e n g t h  of the  in terval  --  T~ to 3~ so tha t  AT = 31 + 32. Equa t ion  (22) of Ref. 1 
(in which the  constant  factor  is incorrect),  gives (in corrected form) : 

Ap S,)/~ --  1)'/~ . . . . . . . .  (I.24) - -  0.365 7 ~ -  (a~ag) 1/2 (M2h~/4 AT 

(For p ,  and p~-see Section 3.4.) 

This formula takes  into account  the  effect of a non-homogeneous  a tmosphere  in two ways : first, 
the  factor (p~p~aga~) 1/~ allows for the  changes in pressure and  in speed of sound be tween  the  
a l t i tude of the  aircraft  and the ground ; secondly, the  factor AT allows for the  convergence of the 
rays. Le t t ing  suffix ~ denote  the  value of a quan t i t y  in the  s tandard  non-homogeneous  a tmosphere  
and  suffix 1, t ha t  in a homogeneous  a tmosphere  in which  pressure and  speed of sound are geometr ic  
means  as described in Section 3.4, it follows t ha t  

(Ap), (AT), . . . . . . . . .  ( I .25)  
(~p)h - (~3),, . . . . . . . .  
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