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Summary.—The equations of motion of the helicopter are presented and reduced to non-dimensional form. The force
and moment derivatives for the single-rotor helicopter (including tailplane if required) are given as simple formulae or
in the form of charts. Comparisons are made with wind-tunnel and flight tests where possible and agreement is generally
quite good.

In the development of the theory, static and manoeuvre stabilities are introduced in a manner analogous to fixed-
wing aircraft practice. It is shown that the static stability of the helicopter is proportional to the coefficient £ in the
stability quartic whilst the manoeuvring qualities are represented by coefficient C. The N.A.C.A. divergence
requirement ’ is expressed in terms of the  short-period * motion. .

Calculations show that the poor.damping in pitch of the single-rotor helicopter without a tailplane results in poor
manoeuvring qualities, 4.e., considerable time taken to reach steady acceleration following a control movement, but
that the fitting of even a small tailplane provides a great improvement in stability and control.

1. Introduction.—Literature on helicopter longitudinal stability is to be found widely scattered
among various reports and hitherto no attempt has been made to tackle the problem in general
form. Moreover, these individual reports often differ considerably in notation, choice of axes
and even in conception of the problem so that comparison and interpretation of the results given

are sometimes difficult.

This paper will discuss the equations of motion, the derivatives (physically as well as
numerically) and the stability and control of the single-rotor helicopter. It is intended that one
of the features of this paper will be to enable the reader to calculate the derivatives of the helicopter
either from simple formulae or directly from the given charts. None of the items in this paper
is discussed exhaustively, for a full discussion would often require quite a large report in each
case, and also much more work is required to be absolutely certain of some of the conclusions

drawn. ,

The method of rendering non-dimensional the equations of motion is not original but, apart
from a few modifications, is that suggested by Yates in Ref. 1. He used the rotor tip speed as
the reference speed which, as will be pointed out later in the text, has obvious advantages over
the forward flight speed. While this paper was being drafted a report by O’Hara® was published
containing static and manoeuvre stability analyses similar to those presented here but the non-
dimensional derivatives were referred to the forward flight speed and not rotor tip speed. In the
United States the manoeuvring qualities of the helicopter have been expressed in the form of the
N.A.C.A. “ divergence requirement ® which states that the second derivative of the normal
acceleration with respect to time should reach zero within the first two seconds of the manoeuvre.

* R.A.E. Report Naval 1, received 23rd August, 1957.



This is clearly related to the ¢ short-period ’ motion of the helicopter and it is found that the
criterion can be quite simply expressed in terms of the roots of the ° short-period ~ motion.
O’Hara's conclusion that satisfying the N.A.C.A. divergence requirement is equivalent to having
at least a small positive value of the coefficient C in the stability quartic is confirmed by the
present analysis.

It is important to note that this report deals entirely with the stick-fixed aspects of helicopter
behaviour. Tt should not be forgotten that stick-free conditions can be much more important
to the pilot in his evaluation of handling qualities. However, for the present helicopters, where
power-operated controls are the general rule, irreversibility is such that stick-fixed and stick-free
conditions are not significaritly different.

2. The Equations of Motion— Derivation of Stability Quartic—The motion of the helicopter is
referred to a rectangular right-handed set of wind-body axes fixed in the helicopter and with the
origin at the centre of gravity. It is assumed that the helicopter has a longitudinal plane of
symmetry, that is, the effect of the torque balancing device (if the helicopter has one) can be
ignored. The x axis lies always in the plane of symmetry and is directed along the initial line -
of flight in steady motion. The y axis is perpendicular to the plane of symmetry and points to
the pilot’s right. The z axis is perpendicular to the other two and, except for the special case of
vertical flight, points downwards.

It is realised that these axes, which are the same as for the fixed-wing aircraft, may not be
those most suitable for the helicopter. For example, it may appear that the equations of motion
would become simpler and the derivatives easier to calculate if the axes were fixed in the plane of
the rotor. The various possibilities have not yet been fully explored but it is thought that the
present choice is justified by the desire to retain as much of fixed-wing aircraft practice as possible.

 In applying the above axes to the helicopter we are faced with two difficulties. Firstly, in
hovering flight there is no relative wind along which the x axis can be orientated. This can be
overcome simply by regarding hovering flight as the limiting case when the speed V in level
forward flight approaches zero, 7.c., we take the x axis as horizontal in hovering. Secondly, in
vertical ascent or descent, the x axis, by definition, must point vertically upwards or downwards
and since m all conditions of flight the rotor plane is roughly horizontal the values of the
derivatives become completely interchanged in the transition from hovering to vertical flight and
change sign according to whether the helicopter ascends or descends, e.g., z, in level flight becomes
+ %, in vertical flight and so on. This causes some confusion in the physical interpretation of the
derivatives but this particular flight case does not demand much attention and the difficulty can
be tolerated. This difficulty might be avoided altogether by a different choice of axes.

The analysis of the longitudinal motion of the helicopter in the general flight case with forward
speed is made in a similar way to the established practice for fixed-wing aircraft. It must be
stressed from the outset, however, that some of the simplifying assumptions made with reasonable
Justification for the fixed-wing aircraft are also made in the present helicopter analysis but that
more work is needed to see if they still hold under the same conditions. For example, we treat
the stability of the fixed-wing aircraft as a linear problem and find that this assumption holds
good for quite large disturbances but a comparison of helicopter derivatives (not in non-
dimensional form, of course) with those of a conventional fixed-wing aircraft at low speeds shows
that the helicopter derivatives are usually far more dependent on forward speed, so that our
calculations must be limited to smaller disturbances in order to retain reasonable accuracy. The
problem of linearity in helicopter stability is rather similar to that of the fixed-wing aircraft at
transonic speeds.

. Another simplifying assumption we make is that the lateral and longitudinal motions can be
treated separately. We know, however, that longitudinal disturbances produce lateral forces
and moments and vice versa, but it has been shown by Zbrozek™ that the cross-coupling of the
two motions has little effect on the damping and the periods of the oscillations. Here again,
further investigations aré needed to determine under what conditions this approximation is
reasonably accurate. : '

2 .



With the above assumptions, the equations of motion are:

w
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It is to be noted that in the above set of equations we include the extra degree of freedom
provided by the variation of the rotor speed as it was observed in flight tests on the Sikorsky
R—4B (Ref. 4) that there was quite a large variation of rotor speed in disturbed motion. However,
some calculations were made based on these results which showed that the variation of rotor
speed was roughly in phase with the velocity along the z axis, w, and had the effect of increasing
the derivative z, by about 25 per cent and so increase the damping of a motion which was already
heavily damped (see Section 3). As the other modes of motion were practically unaffected we
assume that we can ignore the variation of rotor speed in our calculations and so reduce the
frequency equation from a quintic to the usual quartic.

—Zu —Zw — 2 —Z,02  Whsiny,

g — XoQ + Wocosy, = X181 + Xoobo
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We now convert the equations to non-dimensional form by means of the scheme given in the
Table below. The Table is made more general by the inclusion of lateral derivatives.

I II 111 v v
Units of
quantities in | Quantities | Divisors to obtain Symbol Name
IT and III column IV
X, Z, L Force velocity
b fiec Y, psAQR Vo derivatives
Xw Z’LI) x’LU zw
b Y, Vo Force angular velocity
Tadnfsec X, Z, osARRR Xy % derivatives
Y, Vo
b £t M, Wy Moment velocity
fisoc L, N, psARRR by, 1y derivatives
[sec M, iy
b ft L, N, Iy "y Moment angular velocity
| M, psA QRR? My, derivatives
radn/sec L. N, L, n,
b Y. Ve Force control movement
dn X, Zy psA(RR)? Xy 2y derivatives
Y; Ve
b £+ L N le me Moment control movement
a " psA(QR)2R My derivatives
raan L; M ¢ lc (24
Ib ft sec? Moment downwash
ft M; psA R* i derivatives
Slues 2 ABC W R? tatnic Inertia coefficients
. s E g s

(73987)
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We can regard the lateral and longitudinal cyclic pitch and tail-rotor collective pitch application
of the helicopter as equivalent to the aileron, elevator and rudder movements of the fixed-wing
aircraft and put

£ =44, n =+ By, E=0r.

We adopt the following non-dimensional quantities:

v = {[{ = non-dimensional measure of time,

where
— g—psle o = ’L;—; seconds ,
and
Wf
b= aw =%

is the relative-density parameter, being the same for both lateral and longitudinal motions (unlike
the fixed-wing aircraft case). Since we can regard the rotor radius as corresponding to the span
of the fixed-wing aircraft we adopt the suffix , by analogy with the aircraft lateral density
parameter. In any case we must distinguish between the relative density parameter and the
tip speed ratio.

It is worth noting that 7 is constant with forward speed, unlike the fixed-wing aircraft case
where it decreases with forward speed.

We also introduce, for convenience,

= W
¢ = psA(GR)
Note that,
tz’ - tt; COos (OCD _1_ ':Ve) - h’c sin (“D —I_ Ye>

and, since «, is small, and y, = 0 in level flight, we have approximately ¢," = ¢, .

Some comments may be made about the factors used to put the equations of motion in non-
dimensional form:

() The reference velocity is taken as QR rather than the forward speed V. The rotor
forces have a greater dependence on QR than on V' and hence we can expect the
non-dimensional values of the forces to vary little with different flight conditions, since
in steady flight QR varies little from one flight condition to another. Moreover, the
derivatives will retain finite values in the important hovering case.

(6) The blade area s4 (= saR?) is used as the reference area rather than the disc area A
itself, as this gives values of # and u, which correspond well with typical values in
fixed-wing aircraft practice, e.g., by using blade area 7 has values of the order of 1 to 2
instead of say, 0-05 to 0-1, which the disc area would have given. The equations of
motion are now

(D — %)% — X%, + (iﬁ’ cos y, — % ) 9 = X, B, -+ %40, .. (5)
2
“ ‘ . ;s u CZ
- zu%. —I— (D - Zw)w —I_ 3tc 511175 - (COS &y + /L_:) D£ 6 == zBlBl + ZOOGO .t (6)
-—-Mzzﬂﬁ—(?—WD—I—MZ?E)’(@—[—jDE——%DEG ::1“27‘4%31"_#2%%90 (7)
B B B B B B
where
4 . u . W
D=5 =GR ?=5R



" The equations of motion are solved by assuming that

12 == 720 eli 3 etC-
If the controls are fixed

Xp1 = Xgo = &1 = Zpg = Mp1 = Mgo = 0

and the frequency equation is of the form

A - BB+ CR+DL+E =0 .. . . )
where
A=1 .. .. .. .. . .. .. .. 9)
— - N Zq) M (10
B=— {5+ ) =5 &%%+MMB.. a0
", ‘ mﬂ') M 2 X Pl
C = (X 2w — X2y ___II Xy 2y - ) Xy ( J) — Zy 2 ic smy,
( )+$B( + )_i_'LB COSmD+ﬂ2 ,LL2+ 4
e (2 ﬁy_ﬂﬁﬁ 11
He 1p (COS %p T 223 Fe g o ()
. Wy
D=_" (%20 — %u2a) -+ L' (7, COS Y, — %, SIN Vo) —
1g ' 3
Wy 7 zq) %, . 2
tg—— { X, Ay — gz, L1 sy,
T (COS“D+M2 pa 7l
wy, (,, u b4 X
2 cosy, — Xy —") 2y — 12
+ g |l cosy (COS%—FM + (12)
A mw : ’ mu 3 ! )
E = o (z,cosy, — %, siny,) b — o (2, COS ¥, — %, SIN Y, .. (18)
B B
In level flight
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ip ig

These expressions for the coefficients are exactly the same as for the fixed-wing aircraft except
that ¢’ cosy, replaces 4C; and ¢, sin y, replaces 3C; tan y..

Also the term (1 4 z,fu,) has become (4 + z,/u,) as a consequence of taking QR rather than V
as the reference speed. . .

The terms containing x, are retained here although for the fixed-wing aircraft they are usually
neglected. The terms containing s, are included because 7z, will certainly not be zero for
helicopters with horizontal tail surfaces or for tandem-rotor helicopters. For the conventional
single-rotor helicopter #,; is generally taken as zero but this assumption has no theroetical or
experimental foundation and further investigation is required before it can be justified.

If we adopt a notation similar to that of Ref. 5 we can write the coefficients of the stability
quartic in a very compact form:

B:N+v+x&£%+£)” s
C=P+NwHk+w&%%+£%Hﬁi T
D=Py+ Ry+ Qo —Sx .. .. . .. .. . .. (17)
E—Ro—T% . .. . i e (18



here N ... T are force derivatives, viz,

N=—x,—2z, .. .. .. .. .. .. .. .. .. (19
P=xz,—x2 .. .. .. .. .. .. .. .. .o (20
S (- Eq)ac—z"sin 2, Ya 21
0= —(gr ) m—t/siny, 2,5 . (21)
R = —1'(z,co8y, — x,siny,) .. .. .. .. .. oo (22)
b4 X
S =1'cos e—xw( “ —4) - L .. .. .. .. .. 23
v COS oty | by + e | (23)
I'= —1t'(z,cosy, — x,siny,) .. .. .. .. .. .. o (24)
and o . .. & are moment derivatives, viz,
mw
© = =y . . . .. .. . .. .. .. (25)
B
v=—"T0 L @)
(33} .
X:—T .. .. . .. .. .« .. .. .« (27)
B
Ho= — (28)
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It will be seen when discussing the numerical values of the derivatives that some of the terms
in equations (10) to (18) are often negligible. In particular, the equations can be greatly simplified
for the hovering condition which will therefore be considered immediately.

3. Discussion of the Stick-Fixed Longitudinal Motion of the H elicopter in Hovering.—The hovering
case affords a useful introduction to the discussion of helicopter stability because it can be con-
sidered without any detailed analysis of the magnitudes of the various derivatives or of how
they vary with forward speed.

The influence of the various design parameters on the stability of a typical helicopter having
two degrees of freedom has been fully discussed by Zbrozek in Ref. 6. This work shows that the
single-rotor helicopter is inherently unstable, possessing a divergent long-period oscillation,
whatever the combination of such parameters as hinge offset, blade and helicopter moments of
inertia and height of rotor above the centre of gravity of the helicopter. The shape and inertia
of the helicopter are, in any case, largely determined by performance and structural considerations
and the designer of a conventional single-rotor machine has very little control over the factors
affecting the stability unless he resorts to an autopilot, auto stabilization and/or a tailplane,
although a tailplane will probably have little effect in hovering. All these methods are likely to
receive increasing attention in the future. More ways of improvement are open to the designer
of a tandem-rotor helicopter, e.g., considerable success has recently been achieved in America
with different amounts of 8, hinge settings on front and rear rotors.

In the hovering case (x axis horizontal), m, = m,; = x, = z, = 0 and the stability quartic then
becomes

{
(w2 o 50 (0 2 27 T8
1y in iy

——Mzz.i“zwtc’ —=0... .. (29
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We can neglect the small term (m,/i5)x, compared with the other two terms in the coefficient
of 2* and the quartic can be written :

(}t—zw)(1—xu—m.—q)/lz—[—(l—zw)/@%tc’zo, R ¢ ()
giving a root 1 = z,, i.e., the vertical motion is independent of the fore-and-aft and pitching

motion. The remaining motions of the helicopter are given by the cubic equation

z%(;u_x,,_%)Jm@z;:o, N )
which can be written ‘
B KMl KE, =0, .. .. . o (32
where ‘
Kzz_(xﬁ-?;_’*q) N )
B
and :
KFM?MC. O ¢:
B

Now, it can be easily shown by resolving a cubic into-a linear and quadratic factor and equating
coefficients that if the coefficient of 1 or 4% is zero then the cubic represents either a subsidence
and two pure divergent modes or a subsidence and a divergent oscillation.

For the S-51 in hovering, K, = + 0-32 and K, = + 0-17 and the solution is
A*+0-322* + 0-17 = (4 + 0-68)(2* — 0-362 + 0-25), . . .. (35)
2., a well-damped subsidence and a divergent oscillation of 15 sec period which doubles its
amplitude in 4-6 sec.

Let us try' a first approximation to equation (32) by neglecting the term in 2* which is smaller
than the constant term. We get at once

(A 4+ K2 — KM + K@ =0, .. .. .. .. (36
giving numerically
‘ (4 4+ 0-55)(2* — 0-554 4+ 0-31) =0, .. . . .. (87)

which is a fair approximation to equation (35).

This first approximation, equation (36), tells us that, in hovering, the motion of the helicopter
is entirely a function of m, (f," we can regard as constant and changing little from helicopter to
helicopter), that is, due to rotor tilt with speed variation. The quadratic term refers to the
coupling between the pitching and fore-and-aft motion resulting .in the divergent oscillation.
A detailed account of this oscillation is given in Ref. 6. It seems difficult to attach a physical
meaning to the remaining negative real root.

To obtain a better approximation we substitute 1 = — K,'/ in the second term of equation (32)
and get

Af_\__’ . (K0+K2K02/3)1/3'
(B4 K+ K= (A4 o)+ 24y .. .. .. .. (39

o6 = (K[) + K2K02/3)1/3 .
Equating coefficients in equation (38)

Let us write

and put

«a+ =K, .. .. . .. .. . .. (39
af +y =20 .. .. .. . .. . .. (40)
ay = Ky. .. . .. . .. . .o (41)



Then, from equation (41), - :
: K ,
Y = w (Ko T K2K02/3)1/3 .

(42)

Since we have already approximated to « and obtained y from equation (41) we only need one
of equations (39) or (40) to determine 8. It appears better to choose equation (39) so that

=K, —a=K, — (K, + K,K}2*"*. .. .. (43)
The numerical result is

(A-0-65)(1* — 0-831 +0:26) =0, .. .. .. .. (44)

which is a good approximation to (35) and it is seen that the term «x, + ,/i; has the effect of
increasing the period and reducing the negative damping. '

Two special cases are of interest. If the moment of inertia of the helicopter approaches zero
the cubic equation (31) reduces to the quadratic.

",
Zz—MZ%tc:O’

q

TOZZWZJ(~mq),
MZmuc

a result given (though not in non-dimensional form) by Hohenemser in Ref. 18.

giving a time of oscillation of

Secondly, if m, increases indefinitely, we have A* = 0, implying that increasing m, gives, at
best, neutral stability.

It has been possible to include this discussion of the stability in hovering at this early point in
the report but before discussing the stability for the forward-speed case it is necessary to give a
qualitative explanation of the derivatives and to obtain formulae or give graphs showing how
they vary with forward speed and other parameters.

4. Physical Explanation for the Derivatives—A general nomenclature diagram is given in Fig. 1.
The rotor thrust T acts at right-angles to the disc and H is the in-plane force. The rotor disc is
inclined to the flight path at angle «, (negative for forward tilt). The incidence of the rotor hub
axis is «; where «, = a; - (B; — a,), and the incidence of the no-feathering axis is «,; (negative
when the axis is tilted forward), where «,, = ¢, — @;. In these expressions, a, is the angle
between the axis perpendicular to the rotor disc and the no-feathering axis and B, is the amplitude
of the longitudinal cyclic feathering and hence is the angle between the no-feathering axis and
the rotor hub axis (positive when disc tilts forward). The term ‘ shaft ’ has often been used rather
indiscriminately to mean either the no-feathering axis or the rotor hub axis (i.e., axis perpendicular
to the plane through the flapping hinges). For the usual wind-tunnel model, where there is no
cyclic pitch device, the rotor-hub axis and no-feathering axis coincide and there is no ambiguity.
When cyclic pitch is applied, as in the flight case, the attitude of the disc is directly related to
the no-feathering axis, while its position with respect to the rotor-hub axis is, as far as the forces
on the rotor are concerned, of little importance. In this report the word ‘ shaft * alone (convenient
because of its shortness) will be taken to mean the no-feathering axis unless specifically stated
to the contrary. In any case, we shall be mostly concerned with stick-fixed motion where B,

will be constant and hence the no-feathering axis and rotor hub axis will remain at a fixed angle
B, to one another.

4.1. The Effect of u, a Small Increment of Forward Speed.—The helicopter in a typical condition
of steady forward flight is represented in Fig. 2a. In discussing derivatives with respect to # we
have to consider what will happen if the helicopter (and therefore the rotor hub axis and also the
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no-feathering axis if the stick is held fixed) receives an increase in forward speed » such that its
attitude and incidence remain unchanged, i.e., § and w remain zero. Conditions will then be as
represented in Fig. 2b. The disc will have changed its angle with respect to the no-feathering
axis by éa,, and also have increased its incidence with respect to the flight path by the same
amount. The thrust and in-plane forces will have changed by 67 and 6H, respectively. Unless
circumstances are unusual, e.g., very large x and large disc tilt, the disc will always tilt backwards,
i.e., da, is almost always positive. The thrust increment, however, may be positive or negative
depending mainly on the initial incidence of the disc. At all speeds, except at hovering, an
increase of forward speed increases the mass flow of air through the disc which increases the
thrust. However, in general, there will be a component of the forward velocity perpendicular
to the disc which affects the incidence of the blades. In hovering and at low speeds this component
is zero or small and the blade incidence is practically unaffected by an increase of forward speed
but at high speeds, with large disc tilts, this component is large and an increase of forward speeds
considerably reduces the blade incidence and the consequent loss of thrust may more than cancel
the increase due to the change of mass flow. Thus at low speeds, except hovering, an increase
of forward speed results in an increase of thrust, while at high speeds there will probably be a
loss of thrust. At hovering there is no change of mass flow and no change of blade incidence so
that the change of thrust is zero.

8H representing the drag of the rotor disc, will always be positive. The X and Z forces can be
written :

X = —Tsin«, — H cos « o

o Tup—H .. .. ... )
Z = — T cosuap -+ H sin a,

~ — T + Hoy .. ;e . . .. .. .. (46)

and since ,
&p = anf + a; — ds - (Bl - [ll)‘

0X = —Téa, —apoT —0H .. .. .. .. .. (47
7= — 8T+ Hoay+apdH. .. .. .. .. .. (48

From the above remarks and from equations (47) and (48) we see that 6X will be negative at
low speeds but at higher speeds the term — «, 4T may become large enough to make §X positive.
This refers only to the rotor derivatives, of course. For the complete helicopter we have to
include the derivatives due to fuselage. :

Usually, in equation (48) we can neglect the terms in H and éH, in which case 6Z will be zero
-in hovering, negative at low speeds and positive at high speeds. '

Strictly speaking, we should include the terms x, and z, to account for the lag of the disc in
response to a disturbance, but these terms are probably very small.

4.2. The Effect of w, a Small Normal Velocity Disturbance.—Let us suppose that the helicopter
experiences a vertical velocity disturbance w. The shaft will experience an increase of incidence
w/V = 6x, and the flow through the rotor will be decreased. The formula for rotor tilt a, is

(neglecting tip losses)
2u (500 + }')

1+ §u?
and since, in this case, 4 is constant, the increase in 4 (4 representing the flow through the disc)
will result in an increase of a,, i.e., the rotor disc will tilt back. The amount of tilt, as will be

seen from equation (49) is roughly proportional to the tip speed ratio x, while in hovering there
is no tilt at all.

a, =

(49)

9



Physically, the reason for flapping due to vertical velocity is that a disturbance w results in
an increase of blade incidence and with forward speed the advancing blade receives a greater
increment of lift than the retreating blade so that the disc tilts back. Roughly speaking, the
incidence change is proportional to 1/V and the lift to V? so that the resulting flapping is propor-
tional to V, which is approximately true neglecting induced velocity changes. Therefore, the
effect of w is to tilt the disc back (except at hovering, x = 0) and to increase the thrust. The
in-plane force, H, will decrease slightly due to the decrease of flow through the disc.

Referring again to equations (47) and (48) the change of X force, 6X, will depend, as in Section
4.1, on the initial tilt of the disc. At low speeds 6.X will be negative, i.e., an increment of force
directed backwards, but at high speeds and large tilts 6X may become positive.

0Z is, in every case, negative and, like the aeroplane wing, the helicopter rotor has a lift * slope ’,
ot,[om, ¢, being positive and linear up to a certain incidence when the blades themselves stall.

0t./0x, however, is a function of u, as will be seen later, and from reasons of symmetry, is zero in
hovering.

The remarks at the end of Section 4.1 concerning the terms x; and z, also apply to x, and z,.
However, the term m, arising from the development of the downwash could be quite important
especially for a helicopter with a tailplane.

4.3. Effect of g—Rate of Pitch.—If a helicopter is subjected to steady angular velocity in pitch,
the tip-path plane will lag behind the shaft, i.e., if the helicopter pitches nose-up steadily, the
tip-path plane will not remain fixed relative to the shaft but tilt forwards. The rotor, in fact,
behaves like a gyroscope and the precessing inertia moment, although acting in the lateral plane,
tilts the disc longitudinally through the interaction of aerodynamic forces.

For some time it was believed that the rotor force could be assumed perpendicular to the
disc, in which case the tilt of the disc with pitching velocity provided a stabilizing damping
moment. However, it is shown in Ref. 7 that, due to the change of airflow, a large force can be
set up in the direction of pitching velocity which can tilt the resultant force considerably from the
perpendicular in the destabilizing sense and under some conditions (at high speed and in the
climb (large 1)), the overall damping may become negative.

In addition to pure rotation, the rotor, which is not at the c.g., will be subjected to linear
velocities, ghR perpendicular to the mechanical shaft and ¢/R along the mechanical shaft,
corresponding to increments # and w, and the rotor will behave as discussed earlier (Fig. 2d).
If » and ! are both positive, 7.e., if the c.g. is below and forward of the rotor hub the effect will be
stabilizing, the rotor tilting away from the direction of rotation.

5. Estimation of Derivatives.—5.1. Rotor Derivatives—From Ref, 9 the rotor-force derivatives,
after being reduced to non-dimensional form, are A '

(), = — [Zc%+aDg—f;+%c} C D)
(5), — — [2_2 _ hc%—f — %’ﬂ Y
o)y = — j; [tc aa% + ocD%{; + %};} (52)
(zw),:_%[%_hcg—f-%%] (59
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Numerical substitution in the expressions for the derivatives given later (Section 5.2) show that
in equations (51) and (53) the first term in each case is by far the most important, glvmg as
approximations:

oL, ‘
(Z")T:_W . .. .. . e .. . oo (54)
- | %ﬁ=-3%‘--,-- N 1)
and from Fig. 2d, : ' , :
- o (%), = (%,0), — (%,),(F + lo)) + (%,),(0 + kha,) ~ (for small a).
o = (%,0), — M(x,), + Lixs), .. - .. . .. R 15)
and similarly,
(Z)i = (20)r — Mu(2), + bl2a), » - - . .. .. . .. (57

where (%40), and (2,,), are the force derivatives due to disc tilt. Equations (52) and (53) do not
apply to ‘the hovermg case or at very low u, as the assumption is made that the relation between
wand « is w = Va. However, in the next Section, two different expressions for z, are given, one
for hovering flight and the other for w>0-1 and a satisfactory interpolation can be made to
cover all . At hovering x, is zero, as was pointed out in Section 4.2, and again intermediate
values between o = 0 and z = 0-1 can be estimated.

The moments due to the rotor depend entirely on the rotor forces and the distance of their
line of action from the c.g.-

From Fig. 1 the pitching moment about the c.g. due to the rotor is
M,=1%F, eR(a, — B)) — hR(X), + LR(Z),, . . .. (58)

where F, = f,psA Q*R? is the centrifugal force of one blade and eR is the distance of the flapping
hinge from the rotor hub.

The moment derivatives in non-dimensional form are

(‘)—{fa% )+, e 59)
)= gofe e ), F B, e (60
(%L:%ya% M), L) 6D

5.2. Calculation of Thmszf Tt and H-Force Derivatives.—5.2.1. Assumptions.—The expressions

for ¢,, @, and %, are
@ [36o{B° + $B*%*(3 — 5B) + 9u'} + A(B* — 1B%)]

— 2
tc 4 B2 + %ME (6 )
Qu(:B0o, -+ A _
1 — M(BW)‘ P .. .« « . .. .. . n (63)
AB(B2a 16 — 240
h, = 1usB® “’“‘4 +B j_ o L) (64)
and also we have the relation )
‘canoc,):ﬂ St S .. .. .. . .. (65)

p + ZBzy(,uz + ;{2)1/2
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These are obtained on the assumptfons of
(@) blades of constant chord
(6) blades with zero twist
(¢) no blade stalling and reversed-flow effects.

The complete expressions taking into account taper and twist are very lengthy and the
simplified expressions have been used by taking the appropriate chord and pitch angle to be
those at 0-75 radius. The latter approximations are exactly true in hovering with linear blade
twist and taper, assuming a trianglular induced velocity along the blade, and should be very
nearly true under any normal condition of flight. The assumption of triangular induced
velocity distribution is confirmed in hovering flight' and should be reasonably accurate in forward
flight. No account can be taken at present of blade stalling, etc.

5.2.2. Derivatives with respect to u.—5.2.2.1. 8¢,/ou.—It was pointed out in Ref. 9 that the

most reliable way of estimating this derivative is by finding the slope of #, with respect to x at
constant ‘shaft’ angle, solidity and blade pitch angle, graphically. An analytical expression
had been obtained but it was very clumsy and owing to simplifying assumptions gave poor
agreement with experimental values.

Values of #, for different shaft inclinations, tip speed ratios, blade pitch angles and solidities
are given in Ref. 11. These values were plotted to give variations of ¢, against p for constant
values of solidity, blade pitch angle and ‘ shaft * angle and the slopes at regular intervals of u
from O to 0-4 were measured. These results are given in Figs. 3 to 5 for s = 0-03, 0-05, 0-07;
0, = 6, 8, 10 and 12 deg and for shaft angles 0, 5, 10 and 15 deg forward tilt.

The objection might be raised that 9Z,/ox is presented in terms of ¢ shaft ’ incidence instead of
disc incidence which is easier to calculate and more directly related to ¢, It must be remembered,
however, that the disc tilts with respect to the helicopter axes and that in differentiating ¢, with
respect to 4 we must refer 7, to parameters which, apart from g, remain constant. Therefore
t, 1s referred to the shaft angle while differentiating, but after differentiation it is not possible to
refer 07,/0u back to disc incidence without a lot of cross-plotting and interpolation. - The procedure,
then, is to calculate disc incidence «,, where ‘

d® + B,
2

O‘,’D:_

(66)
and subtract a;, since
tZ,Lf — p — (ll .
For any given parameter the variation of 9,/6u is roughly linear from one value of the para-
meter to another so that interpolation is easy. :

5.2.2.2. 9a,/ou.—The expression for a,,
L 2u(BY + 1)
1 Bz + %[uz , 3
can be differentiated with respect to p if we assume that 1 is constant with p.

(67)

Numerical calculations have shown that this is quite a good approximation for a large range
of # and we get the result

bay _ 2(4B0, + 1)(B* — )

8[“ - (BZ _i_ gIMZ)2 v (68)
5.2.2.3. oh,/ou.—From Ref. 9 we get that a very good approximation to 9k,/op is

oh,

aﬂz—iéBz, .. . . .. .. .. .. .. (69)

where ¢ is the mean blade drag coefficient,
12



5.2.3. Derivatives with Respect to «.—5.2.3.1. 9¢,/9« and 9¢,/01%.—Differentiation of the standard
expression for ¢, with respect to « gives

ot, B’a B* — {u® 04

%—Tmé&. .. .. P . .. P (70)
" Now by differentiating equations (62), (63) and (65) with resepct to « (with tan «p = «;) and
eliminating 94,/9« and 9a,/0« we get .

a1 8uB+ ) .
a“_(Bz—%ﬂz)(S#—f—Sﬂ), .. .« . . .. . ( )

so that
ot Qap®B?
hiad .. .. .. .- .. .. 2
doe  8u +sa o (72)
and thus in equation (55)
‘ . 2au
Z"’_—Sy—{—sa' . .. . .. . .. .. (73)

This expression is not valid for x < 0-1 but we can obtain 9¢,/01% = 27,/o(w/QR) for the hovering
case, p = 0. In this case

tc=§[§3360+3ﬂ- Y ¢ 21
Let us write '
- Q@R
so that ‘
al2 o, o (Ui — W ]
tc_I[gBGG—B<W)}, R b )

where v, is the mean induced velocity and w is the vertical velocity of the rotor (positive when
the rotor is moving downwards).

Also, for 4 = 0, we have from the momentum theory that
(QR)3st, = 2v; |v, —w| B* .. . .. . . . .. (76)

(The term v, — w represents the air mass flow and always takes the positive sign.)

Eliminating v, between equations (75) and (76) gives
o (2 7 N2 o 4¢

Differentiating with respect to @, rearranging and putting @ = 0, i.e., no initial vertical descent,

gives
s O 2(23300—‘%) (1 S at”)

0w 3 ~ Blaow
or from equation (70)

t, 8 ot
ie.,
0t, 2B%al
0w |16 ]i] + Bas ,(77)

(In hovering 9¢,/9% can never be negative, hence modulus sign.)
13
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9L,
5@ .
2B%ai
16 || -+ B*as|’
Equations (73) and (78) are shown plotted in Figs. 6 and 7 for different values of s agamst
w and 4. A blade lift slope of 5.6 is taken.

In hovering, Zy = —

Therefore Zy = — (78)

5.2.3.2. 9a,/ex and dh [ox—Differentiating the relations (63) and (64) and using the result

01 Sui(B+ uY
du  (B* — §u’)(8u + sa)’
we get |
da, 1647
O« (B*— }u*)(8u + sa) ”
oh,  3Bap®[6Bi 4 0,(B* — $u%)] (80)

O (8u + as)(B* — i)
Equation (79) is shown plotted in Fig. 8, for a range of s, against .

5.2.4. Derivatives with vespect to g.—When the helicopter pitches with a steady nose-up angular
velocity ¢, the disc tilts forward relative to the shaft by angle 4a,;, and for constant induced
velocity

AN 16 1
( 9g ) - yB'e
the suffix,, , referring to constant induced velocity. The derivation of this relation can be found

in Ref. 12. ‘Also if we let the change of tilt of the rotor-force vector with respect to the shaft
be a,’, we have from Ref. 7 that

da,” Ba, (3 f : -
aq—aq(z 2) O - )
and therefore
oa,’ ' :
(2,0), = cagQ .. .. .. .. .. .. .. (82
where
3 90
=5

The derivative (z,,) will arise from the change of thrust ‘due to pure rotation and the change of
incidence due to disc tilt. The first contribution is zero, since the gain of thrust on one side
of the disc will be cancelled by the loss on the other. The second contribution is

L g ie e
¢ do 0a, Eq——
16 ot, '
:ma—a, .. . .. « . .. . .. (83)
since d«/0a, obviously is equal to unity.
(2,0), 1s usually small and affects the stability coefficients by 2 or 3 per cent at most.

There is an effect (not taken account of in this report) of the induced velocity distribution on
the tilt of the disc in pitching or rolling. Sissingh, in Ref. 8, has calculated this effect in the form
of a correction factor to the value of 9a,’/2¢g given in Ref. 7, but numerical values indicate that

14



this correction increases rapidly with increase of forward speed which is the opposite to what
would be expected as the induced velocity becomes smaller with speed. Moreover, Sissingh
assumes constant induced velocity along the blade and the correction would be even larger,
perhaps doubled, if a more realistic distribution, e.g., triangular, had been assumed.

Since blade flapping is very sensitive to normal velocity distribution, it is essential that the
induced velocity be calculated very accurately. It is very likely that the simplifying assumptions
made in Ref. 8 are too severe and that the inaccuracy increases with increasing forward speed.

5.3. Fuselage and Tailplane Derivatives.—5.3.1. Contribution of fuselage dvag to %,—If X, is
the part of the X force due to fuselage drag, -

V 2
XD=—D0(m) O (- 74
where D, is the fuselage drag at 100 it/sec.
80X, 2D,V
Therefore Il T

The non-dimensional drag derivatives (x,), is therefore

(%)p = — 2o, .. .. .. .. .. .. .. .. (85)
where : '
, b,
dy = 10%psA

and therefore

Xy = (%), + (%.)p -

In the absence of data we have to assume that the fuselage (without tailplane) makes no
contribution to the pitching-moment derivatives. It is important that this assumption be
checked by flight and wind-tunnel tests as in the presence of the rotor slipstream the fuselage
detivatives may be quite large, especially at low speeds. In addition, a steady pitching moment
from the fuselage would displace the rotor force vector from the c.g. and hence may considerably
influence the last two terms in each of the moment equations (59), (60) and (61).

5.3.2. Ratle of change of downwash angle at tail.—The induced velocity at the rotor disc is v, and
at the tail it may be assumed that the slipstream is fully developed so that the velocity there
is 2v,.

Now for x > 0-1, using momentum theory

T SE,QR

(36)

YT AT T %
and the downwash angle at the tail will be approximately
2v, st
& — V = /7 . (87)
Therefore 0s _ S O 2as (88)

Oo ;LFECZSIM—{—JS.

This calculation is not valid for # << 0-1 but in hovering we observe that 9¢/0« is zero, from
symmetry, and we can assume that 9¢/o« rises from hovering to some maximum value and then
dclacreages steadily following equation (88), as shown dotted in Fig. 14 where equation (88) is
plotted. '
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5.3.3. Calculation of m, due to tailplane.—Let the tailplane area be A, let IR be the distance
of the tailplane from the helicopter c.g. and a; the tailplane lift slope.

Then for a disturbance w the change of incidence de at the tailplane will be

w O¢
o @ = (1= 7)
and the change of lift dL is

w

I (1 — %) argpV?A .,

so that the change of moment is

aL =

M= (1 _ %) arkp VA LR .
Denoting the tailplane moment by (M), we have
(M= — JanpVALR
or, in non-dimensional form,
(Mg = — darpV AR (1 - g)/psAQRR
:—%ﬂaT7(1_g§), R 1. )

where V is the tail volume ratio, V = A ,I;/sA.

5.3.4. Calculation of m, due to tailplane—For a steady pitching rate ¢ the change of incidence
at the tail is

da — ZTII/GQ
and the moment change is
o that aM = — tapV AL R
nd (My)r = — 3arpV Al R
(mg)r = ~ yawuVi, . .. .. . . . .. .. (90)

5.3.5. Calculation of m,, due to tailplane—We will calculate m,, for the helicopter with tailplane
in a similar manner to that of the fixed-wing aircraft.

Suppose the helicopter changes its incidence by dx. There will be a change of downwash which
will reach the tailplane after time /;R/V, so that the downwash angle at the tailplane can be

written
_de ( _ dal R
=l F7)
and the incidence at the tailplane is
Kp — 0 — &
IR deda de
T aate(1-5)
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If we write 7

b _w
e~ V’
then
dOCT - ZTR aS
dw ~ V? da’
Therefore (%)T = — la,pA R gg )
Therefore (mg)y = — %aTVlTZ—z. . .. . . . . (91

This expression for (), must be treated with caution as we have made the assumption that
the time taken for changes of downwash angle to reach the tailplane is /;R/V. This assumption
is probably quite a good one for the fixed-wing aircraft where the wing chord is usually small
compared with the distance from wing to tailplane but for the helicopter the large diameter of the -
rotor may make the assumption invalid. However, calculations show that unless the tailplane
is very large the effect of (m,)r, as calculated from equation (91), is not important.

All these moment derivatives are only valid if 4 > 0-1 but each of them is zero in hovering
so that, as in Section 5.8.2, we draw the curve for # > 0-1 and must make an intelligent guess to
complete the curve between ¢ = 0 and g = 0-1.

5.3.6. Calculation of m, due to tailplane—If M; is the pitching moment due to the tailplane,

aM, oM, oM, de '
et e ar .. . .. . .. .. (92)

and

MT — _.CLT%PVZATZT .

oM
Therefore BVT: — Cp pVALdr .. .. .. .. .. .. .. (93
and ‘

M — eV e 0

We need to know 9¢/0V and hence dv;/dV.
Now, from equation (86) A
0. — st Q°R?
' 2V
o _sOR (L3 Ly
av-— 2 \VeV V*

s ot,
=_(M@_zc)... 9

Therefore

Also, writing

#%—2:,;‘, RN ('

from equations (95) and (86).
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Substituting in (92) and reducing to non-dimensional form

14 ot
(M) = — 5 120Crr + 57 (’“‘520_ Ztc)l' N 174
The first of the terms in the large bracket refers to the change of moment due to the increase
of air velocity over the tailplane and this contribution can be arbitrarily varied by the tailplane
setting, i.e., by altering C,,. The other two terms are due to the change of downwash angle

with forward speed variation and these terms are determined by the forward speed and cannot
be arbitrarily varied.

5.4. Comparison of Theoretical Values of Dervvatives with Flight and Wind-Tunnel Data.—
Flight and wind-tunnel measurements of rotor characteristics are very scanty but Ref. 13 provides
a reliable set of wind-tunnel tests on a 12-ft diameter rotor over a large range of » and shaft angles

and from these tests the derivatives of ¢, and a,, with respect to # and «, can be obtained. Ref. 14
gives a few flight measurements of ;.

5.4.1. 0¢,/ou.—The values of 2¢,/0u shown in Figs. 3 to 5 have been extrapolated to meet the
case s = 0-08 since this is the solidity of the wind-tunnel model, a blade pitch angle of 8 deg has
been chosen to represent a typical practical value and Fig. 9 shows a set of curves of 9¢,/0u
obtained theoretically together with a corresponding set of points of 9¢,/8u taken from wind-tunnel

tests. On the whole agreement is fairly good except at the higher values of » where the values
obtained theoretically appear to be consistently high.

Since o¢,/op is very nearly equal to — z, we see clearly from Figs. 3 to 5 and Fig. 9 that z, can
take either positive or negative values according to the initial tilt of the disc and is therefore in

direct contrast to the fixed-wing aircraft where 2, = — C, and is thus always negative in level
flight.

5.4.2. 9a,/ou.—DBoth Ref. 13 and Ref. 14 show that calculated values of a, are always smaller

than the corresponding measured values and that the discrepancy increases with the tip speed
ratio . By comparing calculated values with values from Refs. 13 and 14 we find that the
empirical relation

a, (measured)

a, (calculated)

=1405u .. .. ... ... .. @8
gives very close agreement. '

The probable reason for the discrepancy is that the theoretical value of a4, assumes. that the
induced velocity over the rotor disc is constant. In fact, at any given forward speed the circula-
tion, and therefore the induced velocity, is stronger on the retreating blade than on thé advancing
blade (due to the difference in relative wind speeds and since the lift is roughly constant round the
disc). The reduction of incidence due to induced velocity is thus larger on the retreating blade
than on the advancing blade and to relieve this there is more flapping at the front of the disc than
at the back which in turn means that the disc tilts further back. This effect should increase with

forward speed and the fact that the ratio @, emes)/a; @) increases linearly with ¢ would seem to
bear out this explanation.

If, therefore, we correct the calculated value of a;, by the factor 1 4 0-5p, then, approx1mately,
@, can be Wr1tten as

a,(true) = ku(l 4 0-5p) , .. .. .. .. .. .. (99
where % is a term which is practically constant with u.
Then
% ka1 100
i (14w, .. .. .. .. .. .. .. .. (100)

i.e., to correct the calculated value at 2a,/9u we multiply by the factor (1 4 u).
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In Fig. 10 a comparison is made between 0a,/ou as cal(;,ule{ted from equation (68), 9a,/9x with
the factor (1 + x) applied and values of da,/on from wind-tunnel tests.

Tt can be seen that fairly good agreement is obtained by introducing the correction factor.
The smaller (negative) shaft incidences have been deliberately left out in the comparison because
~ they would have represented unusual cases in practice and ones in which there would have been
considerable blade stalling. Blade stalling has a marked effect on flapping and no account of it
can be taken in the theory and it would therefore be unreasonable to attempt a comparison.

543. z, (; — 3 —2—%) —TFig. 11 shows the comparison between calculated and measured values
of z,. Here the agreemeﬁt is remarkably good. At the low-speed end the discrepancy is probably
due to the fact that in this region the approximation that A* is negligible compared with u* is
hardly true while at 4 = 0-3 the point representing 0, = 8 deg is affected by the onset of blade

stalling. ,

5.4.4. da,/0«.—Referring to Sectioﬁ 5.4.2 we find on differentiating equation (98) with respect

to « that
oa ok
a—;za u(l + 0-5u) ,

since p is constant in this case, so that the derivative is corrected by (1 + 0-54).

Fig. 12 shows the comparison between calculated and wind-tunnel measurements of 94,/8« with
and without the correction factor. There is rather large scatter of the wind-tunnel measurements
but the correction factor appears to give satisfactorily close agreement.

5.5. Variation of Stability Devivatives with Forward Speed for a Typical Helicopter (Stkorsky
S-51).—The Sikorsky S-51 has been chosen as typical of present day single-rotor helicopters and
its derivatives and stability coefficients have been calculated for a range of forward speeds
~ represented by x = 0 to g = 0-3 (i.e,, 0 to 100 m.p.h.). The method used in this report for
obtaining the quantities necessary to calculate the stability derivatives having been given the
" weight, dimensions and inertia of the helicopter is given in Appendix I. A specimen set of
results for the Sikorsky S-51 is given in Table 1. :

We will take each derivative in turn and discuss its variation with tip-speed ratio .

5.5.1. &——From Sections 5.1 and 5.3

oa ot, . oh,
xu=—[tca;+au5;+ay}—zﬂdo, (10

i.e., x, consists of four parts: that due to the backward tile of the rotor with speed, that due to
the change of magnitude of the thrust vector, that due to the change of rotor in-plane force and
that due to the drag of the fuselage. -

The rotor-tilt component £,(3a,/dx) depends directly on 3a,;/dp which is roughly independent
of 4 through the normal speed range and is unlikely to vary much from one helicopter design to
another. The component of rotor thrust «,(d%,/du), only becomes important at the higher end of
the speed range, where a, becomes appreciable.  Since o/,/ou will then almost certainly be
negative, the term o,(0%,/9u) assists the rotor tilt component £,(9a,/ du). The third term 9/%,/9u is
taken as being independent of u.

 The fuselage-drag term is zero in hovering and increases linearly with speed. For the Stkorsky
S-51, the rotor and fuselage-drag terms are equal at about u = 0-15 and therefore at higher
speeds the fuselage-drag term becomes the more important. It should also be noted that reduction
of the fuselage drag not only has the direct effect of reducing the fuselage-drag term in %, but
also reduces the term a,(d%,/0u) particularly at the higher speeds, since less tilt of the rotor disc
is then required to overcome the drag. '

The estimated variation of x, with u for the Stkorsky S-51 is shown in Fig. 13a.
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5.5.2. %,—From Section 5.1 %, is given by

1T, oy o,  oh, |
%_“5@$+%%+$] N O 1)
Numerically, the most important of these terms, particularly at the higher speeds, is the
component of the change of magnitude of the thrust vector, i.e., a,(0,/0e), since this term
increases rapidly with u. The term #,(8a,/9«) is only comparable at low speeds.

An aerodynamically clean fuselage is effective in reducing x, as well as x,, since it reduces
«p and hence a,(07,/0a).

The estimated variation of x, with x for the Sikorsky S-51 for both level flight and auto-
rotation is plotted in Fig. 13b.

5.5.3. x,—1t is assumed that x, depends only on the tilt of the thrust vector and it has already

been explained in Section 4 that not only does the disc tilt with respect to the shaft during pitching
but also the rotor force vector tilts with respect to the disc (i.e., large H force). At the high
speeds, or more exactly for large collective pitch angles, the rotor-force vector tilts in the opposite
direction to the disc, i.e., in a destabilizing sense. This can be seen in Fig. 13c where «, for level
flight decreases rapidly with # and, extrapolating the curve, it appears that for large x, x, might
be negative. ~

Numerically, in most exémples, it should be found that x,, accounts for the major part of x
and that the effect of linear velocities imposed on the rotor due to pitching is fairly small.

5.5.4. z,—From Section 5.1

%

o ot da, oh,
%;{ﬁwﬁ_%d 03
but as stated in Section 5.1, for all practical purposes we may put
| Lo Bt
7 @ .

The calculated variation of z, with u for the Sikorsky S-51 is shown in Fig. 13d. It appears:
that, except near hovering, z, varies almost linearly from a negative value at low u to a positive
one for p > 0-2. The principal reason for this change is the ingrease of disc tilt with forward
speed. It will be pointed out later that a positive value of z, may have undesirable consequences
and so it is significant that once again an aerodynamically clean fuselage may be advantageous.
A reduction in the drag of the fuselage would decrease the tilt of the disc and so might prevent
z, taking positive values at the higher values of z.

5.5.5. z,~—As mentioned in Section 5.1, the terms in zwrdepending on the rotor in-plane force
can usually be neglected and we have, simply

1 22,
Zw:—‘;a—& (,LL>OI)
For the hovering case
o 2al
Fu = ‘161 + sa|” .

These relations are plotted in Figs. 7 and 6 respectively, for different solidities and the
estimated variation with x4 for the Stkorsky S-51 is given in Fig. 13e.

' 5.5.6. m, and m,—The full expressions for m, and m, in terms of the X and Z rotor-force
derivatives are given in Section 5.1. To see physically the reasons for the variation of m, and m,,
with speed, however, it is easier to consider the moments in terms of the rotor-force vector,
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for the change of pitching moment is simply due to the tilt of the force vector (so that its distance
from the c.g. is changed) and the moment about the c.g. of the change of magnitude of the force
vector. Now for a tailless helicopter the pitching moment of the fuselage is assumed to be small
(in the absence of any reliable information) and therefore, the force vector passes through or very
close to the c.g. and hence the moment due to the rate of change of magnitude of the force vector
is small. Therefore the total pitching moment is due almost entirely to the tilt of the force
vector, i.e., m, depends mainly on 8a,/dx and m, depends mainly on 84,/0«. The first of these is
almost constant with z while the second increases rapidly with z. Also both are positive so that
m, acts in a destabilizing sense. :

When a tailplane is fitted the effect on m, and m, is considerable, particularly on #,. As
pointed out in Section 5.3.2 (m,), can have a range of magnitudes and take either sign depending
on the tail setting, i.e., the tailplane can assist or resist (m,),. Calculations show that for a tail-
plane of reasonable size (m,)r can have a magnitude at least as large as (m,),. (m.)r does not
depend on the tail setting and acts, of course, in the stabilizing sense. If, however, the tailplane
provides a large moment in trimmed flight the rotor-force vector may pass a considerable distance
from the c.g. and provide large moments due to its rates of change with forward speed and
incidence. Hence the tailplane can have a considerable effect on the pitching moments from the
rotor which may or may not be beneficial. ‘

In order to simplify calculations it has been assumed that by gearing the tailplane to the stick,
the relation between tail sétting and the forward speed is such that (m,)r is zero and also that
the tailplane is not used for trimming but is only effective in disturbed flight, thus ensuring that
it does not affect the moments from the rotor. This does not invalidate the final conclusions
about the performance of the helicopter with a tailplane. This case is quite possible in practice
but is not necessarily the most effective arrangement for the given tailplane. The calculations
given here are meant to show how effective only a small tailplane can be in improving the stability
and control characteristics of the helicopter. The area of the tailplane assumed is 8 sq ft, i.e.,
0-44 per cent of the rotor disc area. The lift-curve slope is assumed to be 4. A full discussion
of the effectiveness of the tailplane is too lengthy to be included here and will be the subject of a
" later report. The values of m, and m,,, with and without the given tailplane, are shown in Fig. 13j.

5.5.7. m,—TFrom Section 5.2.4, (z,), is taken as zero and therefore from equation (61)
o’
ag -

m, « %, for a helicopter without a tailplane. Hence, as above, %, decreases with g, m, also
decreases with u for x > 0-1 and for high values of x, m, becomes positive, i.e., destabilizing, as
shown for the Stkorsky S--51 in Fig. 13h. '

Also, as shown in Fig. 13h, a tailplane has a considerable beneficial effect on m, and as in the
case of m,, even a small tailplane can be more effective than the rotor. In fact, the given tailplane
has more than counteracted the destabilizing tendency of the rotor at the higher values of x.

My C X, C

5.5.8. m;—For a single-rotor helicopter, m, is only appreciable if the helicopter possesses a

tailplane. The tail contribution to #, is particularly large at about u = 0- 1, where the change of
downwash with incidence is large (Fig. 14). The variation of m, with x for the given tailplane is
shown in Fig. 13j.

5.6. The Derivatives in Auto-Rotation.—As pointed out in Section 2, the physical interpretation
of the stability derivatives in vertical flight is confusing because the axes have rotated through
90 deg from the level-flight case. This also implies a large variation of disc incidence in auto-
rotation, in fact the variation throughout the speed range is from about 15 deg at p = 0-3 to
- 90 degatu = 0. Such derivatives as 9¢,/0u, for example, which depend largely on disc incidence,

would need to be fully calculated for the range —15 deg to 90 deg to cover all level flight and
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auto-rotation cases. It is considered that in practice such a laborious calculation is not justified
and in this report the procedure has been to estimate the stability for » = 0- 15 and above, where
the angle of descent and disc incidence are not great, so that the derivatives given in the report
can be used, and as in the case of ¢,/9u, for example, extrapolated where necessary. In addition,
the special case of vertical descent can easily 'be calculated. A far more reliable though longer
method of estimating derivatives in auto-rotation is given in Appendix III. '

In vertical descent, the z, of hovering flight becomes x, and we calculate x, by means of Section
5.2.3.1, where for a rate of descent to We obtain :

gy = — 2a |4] . (104)
oca + 16 |2| + 8 D—k
Also -
ot, ‘
Ky = o (105)
. oa,
Z"’——t”a_,u’ . .. . .. .. (1086)
where 9a,/0u is calculated from equation (68) with x = 0;
My = 2,0 . - . .. .. . .. (107)
and
m, = hz,, . .. .. . .. .. .. (108)

where z, has become the x, of hovering flight and can be calculated from equation (83).

The other derivatives are all zero; also, for vertical descent y, =90 deg and x = 0. The
equations of motion, (5), (6) and (7), with controls fixed then reduce to

(D — %)t — %, =0
V4
(D—zw)z@—(tc—{——qD)B —0
He
—M@z@—l—(Dz—@lD)ezo

and the coefficients of the stability quartic are therefore:

w
B=—x,—2z,——
133

w
C - xuzw —l_ Z_‘] (xu + Zw)
B

D:——%xuzw—}—ﬂ”zq
My,
E——Iu’2_1"—l;tc:
(z—xu)(z_zw)(12~-@1)—M2@(1_xu)tc:o, L (109)

which is very similar to equation (30) for hovering, giving
A=z, (cf. 2 =z, for hovering)
and

l(l—zw)(l—%)~yzﬁtczo. N S 1)
L ZB .

ip
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The derivatives, coefficients and stability have been calculated for u > 0-15 and vertical
descent (# = 0) and are shown in Figs. 18 to 15. The regiony = 0tou =0: 15 is indicated by
the broken part of each curve and indicates the probable values in the region. There is no physical
reason why any unusual values should occur here and the values shown by the broken curve
should be fairly representative.

6. Stability of the Helicopter in Forward Flight—8.1. Variation of coefficients in the Stability
Quartic with Forward speed for a Typical Helicopter (Stkorsky S-41, Level-Flight case).—

8.1.1. Coefficient B.—Recalling equation (10)
B = — (x,+ z,) ——.—?—yﬁ(—f&———l—ﬁ).

For a single-rotor helicopter without a tailplane, the most important term in B is 2, but when
a tailplane is fitted, B is greatly increased by the m, and m, terms, the latter becoming quite
important.

Since z, is negative throughout the speed range, B is alwa,yé positive and, for a helicopter
without a tailplane, is easily the largest coefficient. :

The estimated variation of B with u for the Sikorsky S-51, with and without the tailplane
rconsidered, is shown in Fig. 15a.

6.1.2. Coefficient C.—Recalling equ.ation (11)

C = (%2, — X2 (%, + 2, —“”x( —“’)'—z—" ¢, sin
( 14 u) + ZB ( _l_ ) -i_ ’I‘B 2% cos g + e I PR —I— ¢ Ve
My [ B 2, m, %,
- ﬂz_-— — - A 2# — .
tp \COSap [y ip Mo

It is usually found that the terms in 2z, and %, can be neglected.

At low forward speeds, the most important term in equation (11) is the positive , term. This
and other assertions later can be checked by an examination of the curves in Fig. 13.

As p increases the term — po(m,/i5) increases ré,pidly, thus reducing the value of C until it
eventually becomes negative. Fig. 15b shows that for the Stkorsky 5-51, this occurs about
p=10-2 :

For a helicopter with a tailplane, the sign of the , term is reversed and also the , term is
larger (it is found that the s, contribution is still small). For the example considered here .
Ay = 0-00444) ; C for the helicopter with tailplane remains positive and increases rapidly with p.

- It will be shown later that the magnitude and sign of C is intimately related to the control
TESpOo1Se. '

6.1.3." Coefficient D.—Recalling equation (12)

. om .
D = — (%2, — %u2) + Lz, COS y, — %, sin 7e)
B
M, “ 24 X4 . }
2l ) —z, sin
_l_;u2 7’B u'(COS “D_'_/’Q) uﬂ2+tc ys‘

m,
+ s
7]

. ume Z X
t,cosy, — %, —f’) Z,—2t .
4 (COS ®%p T Mo T wﬂz(

It is again found that the terms in z, and %, can usually be neglected.
23



For the tailless helicopter at low x, the m, term governs D. At high x the m, term becomes
important but in the example quoted D does not become negative up to 4 = 0-3, although it is
decreasing rapidly.

With a tailplane fitted, the m, term is numerically larger and opposite in sign, so that D remains
positive and in our example increases rapidly with x above y = 0-2 (Fig. 15c¢).

The m, contribution is again small.

6.1.4. Coefficient E.—Recalling equation (14)

E = tc (ﬂzﬁwz1L - /’LZ%ZM) .
For the tailless helicopter the m,, contribution is small at low speeds and E is mainly determined
by the m, term. At higher speeds the m, term becomes more important and helps to increase E
since m,, and z, are both positive; E therefore increases with u (Fig. 15d).

When a tailplane is fitted the m,, term is most important and since it contains z, it can have
cither sign according to the speed. At high forward speeds, #,, is negative and z, positive (Fig. 13)
and the term could easily become large enough to make E negative and so introduce a divergent
instability. For the example shown in Fig. 15d, E is beginning to fall off rapidly with 4 above
about 4 = 0-25 and might become negative near 4 = 0-4. These results therefore constitute a
warning that the addition of a tailplane may not be entirely beneficial but may produce some
detrimental effects, although they can probably be avoided by careful design.

6.2. The Phugoid Oscillation in Level Flight—6.2.1. Damping.—The envelope of the phugoid
oscillation is assumed to be of the form e” where negative values of 7 indicate stability and vice
versa. ‘The variations of # with u for the cases with and without tailplane are shown in Fig. 16a.
The tailless case is unstable throughout the speed range and above g = 0-1 the instability
increases with u. The time taken for the amplitude of the oscillation to double varies from about
4 seconds in the hovering condition to about 2-83 seconds at u = 0-3. For the helicopter with
tail, the degree of instability is reduced with increasing forward speed and indeed for x > 0-2
the phugoid oscillation is stable. At u = 0-3 the time to halve the amplitude is about 12 seconds.

From the point of view of phugoid damping it appears that a tailplane is beneficial but we must
be reminded that care must be taken in the design to ensure that the trim is not adversely affected
and that the ill effects noted in Section 6.1.4. are not introduced.

6.2.2. Period—For the tailless case it can be seen in Fig. 16b that the time of oscillation is
practically constant throughout the.speed range. For the tailplane case the time of oscillation
increases with speed and at higher values of z the E coefficient would become zero and then
negative, resulting in at least one divergent motion. - The two real roots combine at about
# = 0-23 to form a heavily damped short-period oscillation (Figs. 16b and 16c).

6.3. Phugoid Damping and Time of Oscillation in Awuto-rotation.—At high values of u, where
the angle of descent is not very great, the values of the derivatives, as might be expected, approach
those of the level-flight case. The only difference is in z, which is due to the large difference in
incidence. The quartic coefficients also show similar values except for E where, in the auto-
rotation case, 2, is negative and in association with a positive m, tends to reduce E instead of
increasing it, as in the level-flight case.

The phugoid damping in auto-rotation is very similar to that in level flight, which is to be
expected since the coefficients of the quartic are roughly the same in both cases. However,
the coefficient E differs considerably at the higher values of x and shows its effect in the time of
oscillation where, as E approaches zero, the time of oscillation approaches infinity and, like the

24



level-flight case with tailplane, a divergence would appear if £ became negative. In this respect
a tailplane would be beneficial as it would change the sign of m, and so prevent E from becoming
negative. The effect of a tailplane on trim and stability at the high incidences corresponding
to low values of x, however, it is not known. The variation of C with p 1s very similar to that of the
level-flight case and indicates poor manoeuvrability at the higher values of x where C becomes
negative. . :

6.4. Calculation of m, from Trvim Curves and Further Estimation of Dynamic Stability.—The
above discussion of the dynamic stability takes no account of the fuselage pitching moment and -
moment derivatives for, as remarked in Section 5.8.1, we have no means of obtaining accurate
theoretical values. It is possible to obtain reliable values of m, for the complete helicopter from
flight measurements of the cyclic pitch to trim in level flight and of the fuselage attitude through-
out the speed range, for ’
aB, dM oM oM dw

Whay == T swav
" le.,

dB, da
t”kd—y = ", —|_‘um”’d—,u )

where dB;/du and do/du are the measurements made in flight.

B s
du a “du”

It is, of course, necessary to know m,, but as the term pm,(d«/du) is small, especially at low
speeds where it approaches zero at hovering, it does not matter if the estimation is not very
accurate. In addition to the value of m, as calculated from equation (60) of Section 5.1, there
will be a contribution due to displacement of the rotor-force vector resulting from the constant
fuselage pitching moment. If the difference between the measured value of B; and the value
calculated with M, = 0 is 45, then this contribution to ,, is z,AB;.

Thus m, = t.h

Curves of B; and « against x for the S¢korsky S-51 are given in Figs. 11 to 27 respectively of
Ref. 15. The experimental points-of the three curves of Fig. 11 and Fig. 18 were each corrected
by I/h to correspond with the c.g. on the rotor-hub axis. A mean curve was drawn through the
points and the slopes measured at a number of values of x. s, and m,, were calculated and the
variation with g is shown in Figs. 13f and 13g.

The damping and period of the phugoid oscillation, using these values of m, and ., are shown
in Figs. 18a and 18b, together with the points representing flight test measurements from Ref. 19.
It will be seen that there is a. wide difference, especially in damping, between the stability
calculated with rotor moment derivatives only and that calculated with derivatives obtained from
the trim curves. The agreement between the latter and flight tests is quite good.

It seems reasonable to attribute the difference in these values of m, to the effect of the fuselage
and not to poor estimates of the rotor derivatives, since estimates of rotor derivatives agree very
well with wind-tunnel measurements. Similar improvements of stability over a limited part of
the speed range have been measured on the Sikorsky R-4B* and also found qualitatively on the
Bristol 171 < Sycamore’. 1t should be pointed out that part of the improvement measured on
the Stkorsky R-4B was due to small control movements occurring during the disturbed motion
as explained in Ref. 9. ' :

It is probable that the shape of the fuselage of the conventional helicopter is such that it
supplies stabilizing pitching moments at the speeds where the downwash is changing most
rapidly, s.e., at about p = 0-1. It would be most useful to have wind-tunnel tests of a con-
ventional helicopter in which the fuselage could be removed and to see precisely the influence of
the fuselage on the pitching moments.
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7. Static Stability and Stick Position to Trim.—The condition for static stability is that the
coefficient E in the stability quartic

M+ BP¥ 4+ CP+Dr+E=0 .. .. .. L. (111)
is positive. :

Considering the variation of pitching moment with forward speed

iC, _oC, , 9C, dd
du ~ u 0w du
ad
:m1‘+de_M' .. - .. .. .o (112)
Now in trimmed flight , ‘
di, o, | o, dw '
i = 51—@@_0 .. .. . .. .. (118)
or
awd . ot,[ou R
'@'—_W—'_z—w’ .. .. . e .« . v . (114)
so that
ac,, .
dlu - " Zw
1
:é—(muzw—muzw) ce e .. .. .. (115)
and from equation (14) ’
‘ ac, = iy 1
W min” 1o
In order to express dC,,[du in terms of the cyclic pitch to trim we have, for steady trimmed flight,
Cm - Cmf hc Z -
tn—h—%—Bl-]- h +t—cf7&—0
or : .
_ Cmf h‘c l
Bl_al—l_tch_'_z_%’ . .. . . (117)
and since £, is constant along a trim curve
ab, da, 14dC,, 1dh,
'd—M—E‘L;_FtC_h_Z[LL——'P—EC—_d;. .« . « > . .- . (118)

It is important to note at this point that the change of incidence of the fuselage along the trim
curve'is not the same as the change of incidence of the no-feathering axis since control is being
applied. If « is the incidence of the fuselage (to which all the derivatives refer) and «, is the
incidence of the no-feathering axis (fixed to « in disturbed flight), we have

w, = o — B;. .. .. . .. .. .. (119)
Thus for the fuselage pitching moment '

d 0 0 do

@=@+a§d_@ .. .. . .. .. (1209

and for the rotor variables
a 0 0 do,

B o

0 9 [da 4B,

—@+£®‘%W
26
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© Substituting in equation (118)

aB, aal oa, (da  dB, wi  0C, du 1[% oh, (da« @IH
‘ du —l_ o |du %; ?fki + B dp + u + du  du
ie.,
dB (0 Bal 1 8k, 5 8 da ,,Lf E
e B Ry PR e
ac,, ‘ . .
=7 (B; constant, i.e., stick fixed).
Therefore 4By _ AC,|du (122)
du oa, . 10h,
(1452 + s
t, dx
Le., ' .
@B _ _ & E ..o (198

aal

(142 +H)C%’

so that dB,/du, i.e., rate of change of cyclic pitch to trim with speed, is a direct measure of the
stability.

By analogy with the ﬁxed—wmg aircraft we propose to define the static margin by

dC,,
Kn:-‘jlu— .. .. .« .. .. .. .o (124)
The positive sign is taken, since for positive static stability, i.e., positive E, dC,/du must be
positive (for the fixed-wing aircraft the term dC,/dC had to be negative for positive static
stability so that K, = — dC,,/dCp).

In terms of control angle to trim, collective pitch-angle constant, we have, from equation (122)

ac,, aB,

ad, : _
KFEJMQ+ ﬂ%%m oL (195)

with dB,/du positive for positive static stability.

Since we have assumed the collective-pitch constant, the helicopter will, in general, be either
climbing or diving slightly when trimmed at another speed, but the rates should be small
enough for the assumption of level flight, made at the beginning of this Section, to remain true.
It is suggested that the correct way to measure B,, as an indication of static stability, is by a
series of partial trims. Level flight is attained at any given speed by use of both cyclic-pitch and
collective-pitch controls and then having fixed the collective-pitch lever the helicopter is retrimmed
at a slightly higher and slightly lower speed (say tenn m.p.h. either way) by use of cyclic-pitch
control alone. By this procedure we observe the condition of constant collective pitch and
maintain almost level flight at all speeds.

Fig. 19a shows calculated level flight and partial trims for the Szkorsky S-51 with and without
tailplane. It may at first sight seem surprising that although for the higher 4 (for the particular
case shown) the level-flight trim curve for the tailplane case is steeper than for the tailless case,
yet for the partial trim it is much flatter. The reason is that, at the higher values of y, retrimming
the helicopter at a higher forward speed on cyclic pitch alone results in a steady rate of descent
for otherwise, since z, here is positive, there would be a loss of thrust. Consequently, there is a
considerable change of incidence between the level and partial trims which hardly affects the
tailless helicopter as the changes of pitching moment with incidence (represented by mz,) are
small but has a considerable effect on the tailplane case where they are large. At very high
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values of i the rate of descent may become large enough to make the partial-trim curves negative
and, in fact, we notice in"Fig. 15d that E for the given tailplane case decreases steadily above
about g = 0-15.

It must be realised that the curves given are for a special case and that the slopes for the level
and partial-trim curves can be varied considerably by the size and incidence setting of the tail-
plane. Nevertheless the reason given above for the difference between level and partial trims is
generally true. '

It is clear from the above that the trim curves given in Ref. 15, with varying 6,, bear little
relation to the static stability but provide merely a comparison between measured and calculated
helicopter pitching moments under the given conditions.

The question of desirability of a positive static margin is not so straightforward for the
helicopter as for the fixed-wing aeroplane owing to the helicopter’s rapidly divergent phugoid
oscillation ; indeed the relationship between the static stability and dynamic stability may be
opposite to that of the fixed-wing aircraft. Referring to equation (112) the total variation of
pitching moment with speed of a trimmed aircraft is

ac,, aw

—d—? = m, + Wy d—M -
‘Now for the fixed-wing aircraft, at speeds below the critical Mach number, the , term is usually
regarded as negligible and the static stability depends on the s, term. But increasing the m,
term improves the dynamic stability so that a positive static margin usually implies dynamic
stability and it is for this reason that a positive static margin is desirable in fixed-wing aircraft.

For the helicopter, on the other hand, the m,, term is usually small and the m, term large, but
we have seen in Section 3 that m, is responsible for the divergent phugoid oscillation so that in
this case a positive static margin implies dynamic instability. The fitting of a tailplane makes
the m,, term considerable but unlike the fixed-wing aircraft the term z, of the helicopter can be
positive or negative, depending on the speed, so that although the dynamic stability is improved
the static stability may be increased or decreased, as discussed in Section 6.1.4. Thus the
relationship between the static and dynamic stability is complex in the case of the helicopter
and our aim should really be a positively damped phugoid. A case corresponding to that of the
helicopter is discussed in Section 5 of Ref. 5.

8. Control Response.—8.1. Equations of Motion.—In discussing the control response of the
helicopter it will be assumed that all manoeuvres are performed by a means of the cyclic-pitch
control alone, the collective-pitch control remaining fixed. This is probably almost exactly true
in practice for manoeuvres such as turns and pull-outs, the collective pitch being used merely for
trimming. In the equations of motion therefore we put

Koo == Zgo = Mgy = 0.

Let the control displacement from the steady state be a step function. The Laplace operational
form of equations (5), (6) and (7) of section 2 are

(p—xu)u“—xwz@—{;(c—g—zp)é :9@-}—31 .. a2
2 - (p — 2) — (Cog‘% + /—Z) PO = ZB;Bl (127)
yfu-+(w+xp)za+(p2+vp)6:i”;”, O € 22
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where 4, @ and § are the transforms-of 4, @ and 0. Equations (126), (127) and (128) give

ﬂ:x—;lzlil(p3+Uzp2+Ulp+Uo) Ce e (129)
z@:f;;TBl(przprlerWo).. L as0)
é:%(H2p2+Hlp+Ho), sy
where
A=p +Bp 4 Cp+Dp+ E
and

i Zp1 | XgMp, M By Xy Zp1
U= v — 2y o 2, 220 T (B B Kelr)
Xp1  tpXp: COSap = Mty  UpXpy

U, = (—'M—— -+ iq) (xwﬁ‘izmgl + cu) _ i (wﬁ’ — xwv)
COSaxp W, tp ¥p1 XB1 He

X ¥4
_/'If_zm_Bl(to_}—sz)—vzw—}—X Bltcl
2

?p Xp1 XB1

' z m
U(,:tc(w—B—l—kz ’uz——’“);
¥B1

Y15 Xp

'z X
W?.:Iig% (Ju’_l—_q) +_Blzu+ Y — X,

5 Zp1 M2 Zp1

X X m Z
le%&—mn——“%( d —|——q)—ﬂ.—2 le“( a —i——q)
poz Zp1 COSap = s ?p %1 COSop  Yg

X m X
+ Zu (—Bl v _,_ —Bl —q) 3
21 Zpy1 tp

W, = — ¢, (% -+ z“’ﬁm“);

1B Zp1

Ha
Hy = my, — X%B1,
ip

H, = _?mBl(xu + Zw) — H#Xpy — w2, — X(ZuxBl — quBl) s
B

HO == ‘;;LE mBl(quw - xwzu) —I— xBl(ygzw - C!)Z'u) + ZBl(wxu - %xw) .
B . .

We need to know the force and moment derivatives due to the control movement. Let us suppose

that the control has been moved so as to cause a change of longitudinal cyclic pitch of magnitude

B,. Insofar as the change of rotor force is concerned, the control movement, neglecting any

blade transient response, is equivalent to a change of incidence of the helicopter of « = — B,
so that
) 2p1By = — 2,Bu
ie.,
oL,
zm:——,uz,,,=$. .. .. .. .. .. .. .. (132)
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In calculating x,,B; we note that the rotor changes its attitude with respect to the flight path '

by amount B, — 4a,, where 4a, is the flapping angle due to the change of incidence of the rotor
and :

Adl = — %— B]_ .
' du
Therefore Xp By = t,(B; — day) + ap2p. By

Gl
= i,.B, (1 -+ —a—%) + ap2p:By,

le.,

) | .
xm:tc<1+£—l)+%zm, S O £: =)
and
My = LiZp, — MXp: - .. .. .. .. .. .. .. (134)

Since the solution of 4, nearly always consists of two real roots and a complex pair of roots
we can finally express #, @ and 6 in the form

#=F 4+ Gev - He* + e [Ccos st + Ssinst], .. .. (185)
etc.

A rapid method of obtaining the appropriate constants F, G, H, C and S is given in Appendix II.
Another method is given for the evaluation of the coefficients should the motion consist of two
oscillations when #, @ and 6 will be of the form

% = F + e [C, cos 8,7 4 S, sin s;v] - €727 [Cy o8 Sy - S, sin s,7) (136)

8.2. Manoewvre-Margin Analysis—For the fixed-wing aircraft the manoeuvre margin is defined
as the distance of the c.g. from a point called the manoeuvre point. The longitudinal c.g. position,
however, has not the same significance for the helicopter as for the fixed-wing aircraft for, as is
well known, longitudinal movements of the c.g. have very little effect on the controllability of
the helicopter but only affect the trim.

The alternative definition of manoeuvre margin for the fixed-wing aircraft is the stick travel
per ‘ g’ in a pull-out and before attempting to define the manoeuvre margin for the helicopter
it might be useful to examine its stick position to trim with ‘ g".

From equation (117) of the previous Section

Z Cfn hE
Blzf’ll—‘%_l“ tkf_}—t—’

where £, is not necessarily the value obtaining in level flight.

Then if the excess normal acceleration is #g, we have
dB, _da, | 1dC,, C, dt, 1dh, h. dt,

dn  dn ' th dn t2h dn + idn  trdn

da, | 1 (dC,; dh, 1 dt, '
;%thc_h'% T +hd—%§—W(Cﬂ,f+hhﬁ)%.. .. .. (187)
Now

t,=1¢'(1 4+ n),

where £,/ is the thrust coefficient in straight flight.
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i,

Therefore T ' .. .. .. .. .. .. .. (138)

also
d(’ll_ Baléofj_l_%d_q
dn ~ de dn ' ogq dn

dC; _ 9C, de. aCmeZ_q( (139)

an ~ dx dn og dn

dh, _ dh,dx, | 0h,dg
dn " dadn T 3gdn

where, as in Section 7,

2, = o — B;.
Then _
aB, da, | 1oh,) [da, , 1 (dC,; ah,
wlrntia - rata el
1 df,
_tcTh(C’”f_l_hh‘)c%' . .. .. (140)
Now nt,’ = (0¢,/oa)a (B, fixed, and since 9¢,/9q is negligible).
Ao t,'
Therefpre E—/& = W . . .. .. .. . .. (14:1)
and since
7,
.=
dg g
W= (142)
Then from equations (139), (141) and (142), the right-hand side of (140) becomes
da, . 123C,,  10h) ¢ da, , 13C,, 10h)g 1 dt,
”aZJFtTh o ' 4, aagatc/aa+ a—g+zf7z aq +EW V_F}Z(C"‘f+h”k>c%'
From equation (117) and since
dt, ot,da | 8t,dq .
dn " dadn " dgdn’
the above expression becomes
8ay,, | 3Cas | 0k | ot
[E bt TR — g(Bl — @)k + l% aTx} ACHED)
da, oC,, ., oh, a7 g
+ [WU“FTQ‘M e (Bl—al)h—l—l§ a] )

Now the expressions in the square brackets are equal to um, and m,/ Q respectively, being equations
(60) and (61) expressed in terms of thrust coefficient and with the fuselage pitching-moment
derivatives added.

, 2a, 12h,) dB £
Therefore &K1+ n) |1+ 50t 7 T G = Lo, + Ko,
tﬂ’ ,I’.B 4 _ tc, dcm ’
T, s C)"—_,uzw e B0, o (144)
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where (C'), is the value of C in the stability quartic with the velocity derivatives, x,, z, and s,
made zero and the moment derivatives m, and », calculated for (1 + #)g since, as can be seen
from expression (143), the expressions for m, and m, contain the term ¢, = (1 4 #)¢". In this
respect the helicopter differs from the fixed-wing aircraft for the helicopter pitching moment
depends upon thrust and rotor tilt, both of which vary with » so that the derivative with respect
to # is not constant. In stability and control response work, however, we assume small disturb-
ances and take the derivatives as constant.

Generally speaking dB,/dn is a function of # but an important special case is that in which
C,.s» ho and their derivatives are negligible so that
(1 -l-%) aB, 't oa, |, g da;

o

an ot fow 9x 'V 0oq’
i.e., dB;/dn is independent of #. This case is probably well representative of the helicopter
without a tailplane.

We could define dB,/dn as the stick-fixed manoeuvre margin but the pilot usually does not
regard the stick position as of great importance. Having made the initial stick movement he
is more interested in the ability of the helicopter to reach a steady acceleration. Assuming that
the manoeuvre is made at constant speed, this is determined by the roots* of

24 BA+C =0

where, as before, the dashes denote that the velocity derivatives have been neglected and the
bar denotes the mean of the values of (B’), and (C’), which correspond to the start of the
manoeuvre (usually steady level flight, » = 0) and the final steady acceleration.

Since B’ is comparatively large and apparently does not vary greatly from one helicopter to
another the time taken to reach a steady acceleration depends almost entirely on C’'. We can
therefore take — dC,,[de = (i5/u)C" as the definition of manoeuvre margin so that

H _ dc—m _ 'L_I_B C/ _ ,L_B

- dOC o 2//52 (C )nl _|_ (C )nz

where (C'),; is the value of C’ corresponding to the acceleration in the steady manoeuvre and
(C"),.» is the value of C’ corresponding to the acceleration at the start of the manoeuvre.

|

b

Therefore in terms of stick position to trim
_ MR, dB, ’ 0,
Hm - QH [(%)nl tc (1 + %1)(1 —|_ ?{;)
(neglecting the small term (1/2,)(94,/0«).

For the manoeuvre started from level flight

Hmz%[(%),,l(l—l—%l)—l—(%)o tc'(lv—%—aa—?)}, N S UL

where (dB,/dn),, is the slope of the curve B, against # at # = n, and (dB,/dn), is the slope at
n=0.

+ (G2l 1 4 w14 52)

Equation (145) gives the manoeuvrevmargin in terms of measured values of stick position to
trim in pull-outs. The larger the value of H,, the more rapidly the helicopter will reach a steady
acceleration following a rapid stick movement.

Numerical examples of control response in Section 8.4 show the relation between H,, and the
nature of the helicopter response.

* Strictly speaking, this remark refers to a quadratic whose coefficients have not been non-dimensionalised. However,
since our reference speed is the rotor tip speed (assumed constant, see Section 2), the non-dimensional coefficients are
proportional to the dimensional values and they too will be a direct measure of the manoeuvrability. If we had used
the forward speed as our reference speed the non-dimensional coefficients would have acquired a variation with speed
which had nothing to do with the stability.
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A similar analysis could have been made for the helicopter in a steady turn, but if the pitching
rate in the pull-out is ¢ for a given excess acceleration ng, the corresponding rate in the turn is
g[1 + {1/(# + 1)}] so that in the turn dB,/dn will not be proportional to (C’),. Thus, if control
measurements are made in a turn a correction will have to be applied to relate them to the
manoeuvre margin as defined above. This is an important disadvantage in helicopter work
because # can seldom be made to exceed about 0-8 in helicopter manoeuvres, so that the difference
between the rates of pitch in the two cases is considerable. Also, at low speeds. (C’), depends
almost entirely on m,, which therefore must be estimated very accurately in order to obtain an
accurate correction. In practice there is the further disadvantage that if the pilot keeps the
rotor r.p.m. reading constant, the rotor speed relative to the air will be increased or decreased
by the rate of turn according to the direction in which the turn is made. In tight turns this
difference could be considerable and the mean value should be taken of measurements taken in
- turns made in both directions. '

Tests at the Royal Aircraft Establishment show that it is not difficult to obtain satisfactory
measurements in pull-outs thus avoiding the difficulties above associated with the turn. In
addition, the range of measurements can be extended to negative values of # obtained from
push-overs. ‘

8.3. The N.A.C.A. Criterion.—A method of assessing the handling qualities of a helicopter,
based on pilots’ experience, is expressed in the N.A.C.A. * divergence requirement . This states
that a helicopter can be regarded as having satisfactory control response if the normal-acceleration-
time curve becomes concave downward within two seconds following a rapid backward movement
(step control input) of the stick. Expressed mathematically the requirement is that 7 = 0 for
some value of ¢ in the interval 0 < ¢ < 2, where # is the number of excess g units.

Now from equation (130)

— 2p1B1(p + T
w = 7 e .. .. .. . .. 146

B+ B3+ (49
where

T
Fl'_'lu2 7/.3 ZB]__I— v,

the derivatives with respect to 4 having been made zero, i.e., the speed changes in this short
time interval are assumed to be negligible.

There are two cases to consider :
(1) When the roots of 42 4 B’A 4+ C’ = 0 are real
(2) When they are complex.

Taking the first case, let the roots be 1, and 1,, and since 4, + 4, = — B’ and 1,4, = C’, then
(see Appendix IT)
s~ _]j_ A+ T . o ix
0 =08y o+ gt o o O Bt 287, £ C °

£ 21—}_]1 At 2’2_}_[' AT '
o + Ai(Ay — lz)el Ao(Ay — Ay) o o ot T .. (147)

and since z, = 0 we also have
wW=—Zw—Zz.B,

or in non-dimensional form

= 25,5,

1 i .
A nz——t—,(zww—[—zBIBi), e .. .. .. .. .. .. (148)
so that : ‘ : 7
___Z_BLB_l £ A AT AT Ay + I YR
n = tc’ §Zw|:c/+al(ll_lz)el —“mez:l—l— 1% . e . (149)



Therefpre, differentiating twice,

_ 251812, (Mt + 1) eMth Ay(Ay + 1) oot /é

= . _ (150)
¢ Ay — Ay Ay — Ay
~and when #% = 0 we have
M(Ay + T) ettt = 2,2, + T) e/}
giving for the time ¢/, ;
Ao(As + 1)
t= log, 5+ . 151
T dy S LIy + 1) (151)
When the roots are complex we write ‘
P2+ B'pCl = (p—r +is)(p —r —1s),
so that
Z?—)—zBlBl E_ rp—7 _’_32+72‘|‘F7
IR I e e R L
and the transformed equation is
71/2
D _ #nib r—°¢ [Fscosit-—— (7 + s* 4 I) sins—f—n
C’ s t ~ t
and therefore '
rt/f
B e [Fscoss—t—(rz—{—sz—}-Fy)sin—S;t]g——zil-z—g—l. (152)
£,'C’ s 7 : t)
Differentiating equation (150) twice and equating 7 to zero as above, we obtain
P s(I' 42
{=-tan™! o _(_ - 1),7 (153)

The N.A.C.A. requirement is satisfied if the right-hand side of either of equation (151) or (153)
is less than 2. Equations (151) and (153) could be expressed in terms of B” and C’ but the forms
given are much simpler. :

It will be seen that the term I', which may conveniently be called the  control parameter’
remains in the final expressions (151) and (153). The physical reason for this is that for the
helicopter a control movement supplies a considerable force as well as a moment and the motion
following a control movement will depend upon how much each degree of freedom is initially

excited. If there were no force, i.e., if 2z, = 0, as for the fixed-wing aircraft, I'— o and we
would simply have ’

Ao
‘=R,

t=">tan— (f_f) :
¢ 7
showing that for this case the motion, except for amplitude, is independent of the nature of the
control, as we would expect, because the aircraft could only be initially disturbed in pitch.

or

We can easily find values of B" and C’, and therefore of 4, and 1,, or » and s, which satisfy
the requirement. However, there are also the parameters f and I to consider, but we can avoid
f as a fourth parameter by considering the quantities B'/#, C'/#* and I'f#. Accordingly, a diagram
(Fig. 23) has been constructed showing C’[#* plotted against B'[f for the complete range of It
such that on the hatched side of the curve (for the appropriate value of I'f#) the values of B'[{
and C’/#2 do not satisfy the N.A.C.A. requirements whereas on the other side they do.
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Fig. 24 shows the boundary for the Sikorsky S-51 together with the calculated values of B’/?
and C’[ for the tailless and tailplane cases (strictly speaking, since I" varies with u there should
be three boundaries corresponding to each value of g, but the variation is so small that the three
curves practically coincide and only the mean curve has been drawn).

The Figure shows that the tailless S-51 does not satisfy the N.A.C.A. requirement at any speed
and that the manoeuvrability, judged from this diagram becomes progressively worse as the
- speed increases. When the S-51 is fitted with a small tailplane (see Section 5.5.7), the N.A.C.A.
requirement is satisfied throughout the speed range and the manoeuvrability rapidly improves
with speed. -

For most helicopters B’/f will be between 1 and 2 for x# > 0-1, while I'/# will rarely be less
(numerically) than — 1, so that to satisfy the N.A.C.A. requirement adequately C’/#* should be
at least 08 for the lower values of I'/f and 0-4 for values of I'/{ — 5 to — . In other words,
the larger the ratio of control moment to control force the easier it is to satisfy the N.A.C.A."
requirement.* (The value of I'/ for the S-51 is about — 4). To achieve this, m, and/or #, must
be very much larger than is normally the case for the tailless helicopter and the fitting of a
tailplane seems the only simple solution. If an autopilot were fitted, B’ and C’ would contain
additional derivations with respect to 6 and 6, which of course could be varied to meet the
requirement without the need for a tailplane. :

8.4. Numerical Examples of Control Response.—Fig. 20 shows the response of the Sikorsky S-51,
with and without tailplane, to a sudden backward displacement .of the stick producing a change
of cyclic pitch of § deg. ' ‘

A peculiarity of the helicopter will be noticed in the curves of normal acceleration. A sudden
displacement of the stick produces a sudden normal acceleration which is due to the force produced
by the change of rotor incidence. This initial acceleration increases with u since 9¢,/9« increases
numerically with x. Moreover, this initial acceleration immediately starts a small vertical
velocity tending to reduce the acceleration until the overwhelming effect of pitching has had
time to build up and increase the acceleration in the usual way.

Although there is considerable pitching at the lower values of u there is very little normal
acceleration since the thrust change is small, i.e., 37,/0a is small at low 4. For the tailless helicopter
at high p the acceleration buids up rapidly and for the cases x = 0-2 and u = 0-3 shows Lttle
sign of diminishing even after 3 seconds. This is confirmed by the results of some unpublished
flight tests made by Burle and Challener on the Stkorsky S-51. Also, numerical values sub-
stituted in equations (151) and (153) show that the N.A.C.A. criterion is unsatisfied in these cases.
Thus the conventional helicopter of the Sikorsky S-51 type can be considered to have poor
manoeuvrability characteristics, particularly at the higher values of u, where it is most un-
satisfactory. ' -

The fitting of a tailplane provides a great improvement and it can be seen from Fig. 20 that
in this case the divergence requirement is satisfied adequately. In Fig. 20 the acceleration-time
curves are plotted together with their appropriate values of manoeuvre margin. As was to be
expected, the unsatisfactory acceleration curves of the tailless case are associated with small
and negative values of the manoeuvre margin while the higher positive values indicate satisfactory
time histories. It should be pointed out that the response characteristics are calculated for three
degrees of freedom and include speed variation so that a negative value of C’ (calculated on the
basis of no speed change) does not necessarily mean complete divergence as, for example, the
curve for H, = — 0-0008 shows, Nevertheless, even in this case, the prolonged growth of
. acceleration is undesirable.

A comparison of the coefficients C and C’ is shown in Fig. 21 and it is seen that their values are
always very close. The coefficient C of the stability coefficients may therefore be taken as a good
indication of the manoeuvring characteristics of the helicopter.

* One might immediately think of off-set hinges as a means of increasing this ratio. Unfortunately, m,, would almost
“certainly increase as well and so result in even worse manoeuvrability.
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9. Conclusions.—(a) Theoretical values of the rotor force and flapping derivatives are compared
with wind-tunnel tests and, in general, quite good agreement is obtained, except that an empirical
correction must be applied to the flapping derivatives. However, there is physical justification
for the correction. '

(5) A theoretical analysis is made of the relation between the static stability and the stick
position to trim in forward flight. It is shown that, as in the fixed-wing aircraft case, the
stick position to trim is directly related to the coefficient E in the stability quartic.

(¢) A manoeuvre theory is developed analogous to that of the fixed-wing aircraft and it is
found that the coefficient C in the stability quartic gives a good indication of the handling
characteristics of the helicopter.

(d) A typical tailless helicopter fails to satisfy, at least at the higher speeds, the N.A.C.A.
¢ divergence requirement " and it is shown that at these speeds the manoeuvre margin is negative.
This is largely due to the fact that m, is positive and becomes numerically larger with increasing
p. It is difficult to see how any cha,nge in rotor design Would improve the characteristic
appreciably for a single-rotor machine.

(¢) The helicopter manoeuvring qualities can be vastly improved by the addition of a relatively
small tailplane. With a tailplane, the sign of ,, can be reversed and also the value of m, can be
considerably increased.

(f) The principal risk with a tail is that the term £ in the stability quartic may become negative
at high u, leading to a divergence. It may be possible to avoid this tendency by reducing the
drag of the helicopter, which has the effect of reducing the tilt of the disc and hence the tendency
of the derivative z, to become positive at high u.

(g) A more comprehensive investigation into all aspects of adding a tailplane is required.
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LIST OF SYMBOLS

a Lift slope of blade section
ar Lift slope of tailplane .
a, Angle between rotor-disc axis and no-feathering axis.. Positive for backward
tilt of disc
A Area of rotor disc (ft?
Ay Area of tailplane (ft?)
b Number of blades
B Coefficient of A* in stability quartic
B Pitching moment of inertia
B, Longitudinal cyclic-pitch application
c Blade chord
C Coefficient of 22 in stability quartic
Co Pitching-moment coefficient of helicopter
Cony Pitching-moment coefficient of helicopter fuselage including tailplane
D Coefficient of 1 in stability quartic ‘
D, Drag of fuselage at 100 ft/sec
eR Distance of flapping hinge from axis of rotation
E Constant term in stability quartic ‘
hR Distance of c.g. below rotor centre (this should include the increase in
_ effective rotor height due to coning angle a,, say £Ra,)
b = hcosa,—Lsina, " |
H Rotor force component (Ib) in plane of disc. Positive backwards
ho o= 2
‘ pSA(QR)*
H, H,6 H, Coefficient in response equations
iz = B|WR*g (Pitching-inertia coefficient)
I, Moment of inertia of blade about flapping hinge
I, Moment of inertia of rotor about axis of rotation
F, ~ Centrifugal force of one blade
F
Jo = A@Ry |
IR Distance of c.g. from rotor hub axis (ft). Positive for forward c.g.
l, = lcosa, -+ hsina, ’
iR~ Distance of tailplane from c.g. F
M Pitching moment (Ib ft)
M, Pitching moment due to rotor (Ib ft)
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M,, M, etc.

m,, M, etc.

N o

A

©

TR

< = R -

2

= g

Wo, Wi, W,
. X

X, X,, etc.
Ky Zs etc.
Z

Z,, 2, etc.
2 2o, €lC.

&p

HMae N 0 IO R =2

LIST OF SYMBOLS—continued

Pitching-moment derivatives oM [ou, 00 [ow, etc.

Dimensionless pitching-moment derivatives (see Section 2)
See equations (19) to (24)

Rate of pitch of helicopter (= 6) (radn/sec)

Rotor radius (ft)

bejm R (Solidity of disc)

Rotor thrust (Ib). Component of rotor force perpendicular to disc
T

psA(QR)?

Non-dimensional unit of time

W
gpsAQR

Time (sec)
Increment of forward-flight speed in disturbed motion (ft/sec)

Forward speed in steady flight

Ii;{lT (Tail-volume coefficient)

Induced velocity (ft/sec)

Increment of normal velocity in disturbed flight (ft/sec)
Weight of helicopter

Coefficients in response equations

Force along «x axis

“Force derivatives 8X/du, 0X /0w, etc.

Dimensionless force derivatives
Force along z axis

Force derivatives 0Z/ou, 02 /aw, etc.
Dimensionless force derivatives

Incidence of rotor disc, angle between flight path and tip- path plane,
positive for backward 'tilt of disc

Incidence of helicopter, angle between flight path and plane perpendicular
to rotor-hub axis, positive when axis is inclined backward
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X

Ve

 gpsAR

LIST OF SYMBOLS—continued

Incidence of no-feathering axis, angle between flight path and plane
perpendicular to no-feathering axis

Incidence of helicopter. Used for derivatives
Angle of inclination of flight path to horizontal, positive when climbing

pacR*
I,

Lock’s inertia coefficient

¢ Control parameter ’ ,u2 £ o4y
ZB %51

Profile-drag coefficient of rotor-blade section
Angle of downwash at tailplane

Stick movement in radians

Angle of pitch of helicopter from flight path
Blade pitch angle (radn)

(V sin «p, — ;)] QR (Coefficient of flow through rotor disc, positive for flow
upwards through rotor. Also, root of stability quartic)

M

1p
V cos ap
QR

w

(Tip-speed ratio)

(Relative-density parameter)

_
7]

Air density (slugs/ft?)

Time in aerodynamic units = #/7 sec
Wy

3}

Angular velocity of rotor (radn/sec)
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APPENDIX 1
Calculation of Parameters of Helicopter Derivatives

In order to calculate many of the helicopter derivatives it is necessary to know several of the
helicopter parameters such as 8,, 4, ap, etc. The method used in this report for calculating the
numerical examples given is outlined below.

We assume that the rotor thrust equals the weight at all speeds in level flight and from estimates
of the tuselage drag we can calculate the incidence of the disc for

d01u'2 —'— hc

. Z, ’ .

where d, has been defined in Section 5.3.1. For the time being we take %, as 1ud, as the full
expression involves 6, and 2 which we have yet to find.

2 is now (V sin «;, — v,)/2 R where v;, the induced velocity, is given for a range of # and disc
loading w in Fig. 25. The value of v, given in this figure has been calculated on the assumption
that it is constant over the disc and that the rotor thrust is equal to the helicopter weight. No
tip loss has been taken into account but if in a particular case it is considered that the thrust is
produced only between » = %, R near the root and » = BR near the tip then the values taken
from Fig. 24 should be divided by B? — %%~ We can now, if we wish, find a more accurate value
of %, but it will probably make little difference to «,. The no-feathering axis incidence is

OCD:

Lyp == Gp ~—

2p(4B9 + A)(1 + )

B + §u? ’
where the term 1 + 1z is the empirical correction factor (see Section 5.4.2.). Given the c.g.
position with respect to the shaft (rotor-hub axis) we have

and

a; =

hy= hcosa, — Isin «;

l, = 1lcosa, -+ hsin e,
where
) as = (xﬂf _!_ Bl )
and B, can be obtained from equation (137) of Section 8.2 with C,, = 0.

We obtain 6, from the equation for ¢, viz.,
4 2 3 2 1 1 2,,2
0, =g{5’50<3 +gnt) (B —QB“)}.
B ¥ B3 — 5B) T I’

We have now all the necessary quantities for estimating the derivatives. A specimen set of
results for the Stkorsky S-51 is given in Table 1.

APPENDIX II
Calculation of Constants in Response Equations

An ‘excellent account of computing methods for stability and response calculations has been
given by Hopkin in Ref. 16. We shall give here the methods he uses for solution of the response
equations except that whereas he describes his method for the general case we shall apply it for
equations of degree four or less as equations of higher degree will not result from the work in
this report.
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The Laplace transform solution of the variables, #, w and ¢, defining the helicopter motion,
in Section 8.1 are typically in the form

g(p) _ g(p)

Ty, Say

P4 f(P)

where # is either 4, @ or 4 and 4 is the stability quartic expression.

X =

The roots of f(p) are then 0, 4,, 4,, 15 and A,, and transforming back

_gl) | Selh)
= T2

where f'(p) is the derivative of f(p) with respect to p. Now when the roots of f(p) are real
-the values of g(1,)/f'(%,) are easily found, e.g., by Horner’s method. of which a good account is
to be found in Ref. 17. 'When the roots are complex, however, straightforward substitution is
laborious and the technique is as follows.

Let the quadratic factor be p* +ap + g = (p — 7 —1s)(p — 7 4 1s). Since the work of
this report will not result in frequency equations of higher degree than a quartic we can write

g(P) = G’ + Gop® + G1p + G
F(p) = SFsp* + 4F,p* + 3Fsp* + 2F,p + I
= 5p ++ 4Bp® + 3Cp* + 2Dp + E

and we use the scheme

C, = 5F;
Cs =Gy |G = 4R =y
Co = Gy — aCs Cy = 3F, — «Cy’ — pC,’
Cr= Gy — oCy — BCy|Cy' = 2F, — «Cy' — BCY’

and we now calculate
H=G,+7C, — pC,| L = F, +vC," — BC,’
K =sC, M = sC,’

_ 3(L* + M?)
N.B.—In the case of 6,

C3 - G3 - O .
- The complex roots result in terms of the type

e”(C cos st -+ S sin s7) ,

where
C— HL + KM
$(L* 4 M)
S HM — KL .
$(L* + M)

If only one oscillation is present, as is often the case with the single-rotor helicopter, we can
calculate C and S quickly as follows:

42



Any variable %, w or ¢ will be in the form
x =K, + K, el + K, eh + 7 (C cos st + Ssin st) ,
where

) glhs)
K=89 g8k g _ &)
T F0) T m |
We also know, or can easily calculate, the initial value of %, x,, say, and its first derivative #,
Xy, say. '

Then
%= Ko+ K; + K, + C
%, = K2, -+ Ky + Ss + Cr
Therefore C=—(K,+ K, + K,),
since x, is, in our case, always zero, i.e., # = w = 6 = 0, when ¢{ = 0, and

S=1tn— Cr — Kty — Kn).

APPENDIX III
More Exact Calculation of Auto-Rotation Derivatives

A far more reliable way of estimating the rotor derivatives in auto-rotation than by interpolation
(as suggested in Section 5.6) is to use the graphical method of Section 5.2.2.1 for calculating
ot,/ou. We must first calculate 6, (for trim) for a given value of 4 and then express ¢, and 4, from
equations (62) and (63) in terms of 4 only. We choose two or three values of 1 close to the value
which gives the steady flight ¢, and calculate the corresponding values of £, and a,. Also, from
equation (65) and the relatlon a,; = ap — @, we can calculate the appropriate values of L ppe
We now have sets of values of £, 4, and o,, for fixed 6, and u. Keeping 0, fixed we calculate
similar sets of values ot £, @; and «,; tor slightly dlfferent values of x, say ¢ + du and p — g,
where dp is about 0-05 (smaller if x itself is small). The results are plotted as shown below. There

TRIM

Zaf

will be a 51m11ar diagram of a,, against «,;. Thus AB[26u = 9¢,/ox and the slope of the straight
line g (trim) is 0f/6x. Care must be taken to choose the correct (trim) value of «,, when
measuring AB. In a similar way we calculate 84,/8u and 9a,/6«. This method fails for very low
¢ as both sides of equation (65) approach infinity.
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TABLE 1
Sample Caleulation of Derivatives—Sikorsky S—51 (Tailless Case)
W = 4,800 1b £ = 20 radn/sec s = 0-06 £, = 0-082
Drag at 100 ft/sec = 300 1b do = 0-116 1z = 0-091
R =241t h=0-25 =20 QR = 480 ft/sec
Tip-loss factor B =: 0-97 0 =0-016 16/y 2 B* = 0-0755

|4 h, %p. o v, Ve, 2 6, 6,
ft/sec | (approx.) (radn) (deg) (ft/sec) (ft/sec) {radn) (deg)
0 0 0 0 0 25-1 0 —0-052 0-176. 10-1
0-05 24 0-0002 —0-006 —0-34 18-6 —0-1 —0-039 0-158 9-1
0-10 48 0-0004 —0-019 —1-09 12-4 —0-9 —0-028 0-143 8-2
0-15 72 0-0006 —0-040 —2-29 8-2 —2-9 —0-023 0-138 7-9
0-20 96 0-0008 —0-067 —3-84 6-2 —6-4 —0-026 0-147 8-4
0-25 120 0-0010 —0-102 —5-85 4-9 —12-2 —0-036 0-173 9:9
0-30 144 0-0012 —0-144 —8:26 4-2 —20-7 —0-052 0-210 12-0
. a,° 0%, B, —a, o da,[ 0w da,/ou
§80 + 1 {corrected) (dejg) (deg) {deg) #y b (corrected) (corre/cted)
0 0-175 0 0 0 0 0-25 ] 0 0-372
0-05 0-165 1-03 —1-37 0-14 | —0-20 0-25 | —0-0009 0-004 0-356
0-10 0-157 1-97 —3-06 0-27 | —0-82 0-25 | —0-0036 0-015 0-335
0-15 0-155 2:95 —5-24 0-40 | —1-89 0-25 | —0-0083 0-0376 0-319
0-20 0-164 4-14 —7-98 0-54 | —3-20 0-25 | —0-0140 0-079 0-317
0-25 0-187 5:84 —11-69 0-67 | —5-18 0-25 | —0-0226 0-125 0-333
0-30 0-219 8:05 —16-31 0-81 | —7-45 0-25 | —0-0325 0-192 0-351
&, a, day at, day ot Big 0, . 8ay’
—éz a tc —a-lu,— 25} 5“; tc 3/; [27) a—oc f = 6 tc— 3 f aq
0 0 0 0-0305 0 0 0 1-83 1-17 —0-044
0-05 0-041 | -4-0-26 | 0-0292 ~—0-0016 0-0003 —0-00025 1-64 1-36 —0-051
0-10 0-093 0-15 | 0-0275 —0-0022 .| 0-0012 —0-00177 1-49 1-51 —0-057
0-15 1+ 0-154 | 4+0-03 | 0-0262 —0-0012 00031 —0-00617 1-43 1.57 —0-059
0-20 0-218 | —0-08 | 0-0260 +0-0054 0-0065 —0-0146 1-53 1-47 —0-056
0-25 0-282 | —0-15 | 0-0273 0-0153 0-0102 —0-0288 1-80 1-20 —0-045
0-30 0-347 | —0-22 | 0-0288 -+0-0317 ' | 0-0158 —0-0500 2-18 0-82 —0-031
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