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Summary.—A method is developed for designing the centre portion of a cambered and twisted swept-back wing to
have the same chordwise load distribution at all spanwise stations. For this purpose the downwash field induced by
a doublet distribution of constant spanwise strength in the chordal plane of a constant-chord wing is determined for
incompressible, sonic and supersonic main-stream flow. Since-the downwash has a logarithmic singularity at the
centre section in the chordal plane itself, an approximate method is suggested to satisfy the boundary condition at the

. surface of the thick wing. Numerical examples illustrate the influence of the angle of sweep, the wing thickness and
the load distribution. They show in particular that the required shape does not vary much with Mach number. A rela-
tively rapid change of twist and camber with the spanwise distance from the centre section is required as shown by
calculated results for sonic flow. There is some reason for using the camber and twist designed for the centre section
of the isolated wing also for wing-fuselage junctions.

1. Iwntroduction.—This note deals with the problem of determining the shape of a lifting
swept-back wing with a given spanwise and chordwise load distribution. It is known that the
flow in the centre region of a swept wing is highly three-dimensional and therefore differs con-
siderably from that on a two-dimensional wing, which implies that the section shape (camber
and twist) at the centre of the wing must differ from that at stations away from the centre if a
given chordwise load distribution is required everywhere. It is the aim of this note to determine
the camber and twist at the centre part of a swept-back wing when the load distribution is given.
The design of such a wing with a load. distribution which is constant along lines parallel to the
leading edge is of practical interest since, together with a properly chosen thickness distribution,
such a wing may have straight and fully swept isobars, whereas otherwise the benefit of sweep
is largely lost over the central part of the wing. '

With this type of load distribution, a mathematical difficulty arises if linear theory is applied
in -its standard form such that the boundary condition (of zero normal velocity at the wing
surface) is satisfied in the chordal plane instead of at the wing surface. Constant spanwise load
distributions lead to a singular behaviour of the downwash induced at the centre-line of the
wing as can easily be seen in the case of subsonic flow where the load distribution under con-
sideration can be represented by straight vortex lines which have a kink at the centre section.
This implies that, in the present case, we cannot calculate the induced velocities at the position
of the singularities and add the velocity increments due to the thickness distribution of the
wing afterwards. We must take account of the wing thickness and of the load distribution
simultaneously and satisfy the boundary condition at the surface of the thick cambered wing.

*R.A.E. Report Aero. 2591, received 5th November, 1957.
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An approximation to the correct procedure is obtained by calculating the downwash induced
by a plane sheet of vortices or doublets at points which are displaced from the sheet by half the
local wing thickness. Though we depart in this respect from the usual linear theory, we still

make the assumption that thickness, camber and twist are small so that it is justified to use the
linearized potential equation.

The flow at subsonic, sonic and low supersonic speeds is considered to study the effect of the
free-stream Mach number. To isolate the centre effect in incompressible flow we consider only
wings of infinite span (¢.e., constant chord), which implies the absence of trailing vortices.
A restriction to infinite wings is, of course, not necessary with sonic or supersonic main flow.
In the case of a supersonic main stream, only wings with subsonic leading edges are treated.

The downwash field which is induced at the centre section by a plane sheet of doublets with
constant strength along the span is calculated in Section 2 for a supersonic main stream, in
Section 3 for sonic main stream and in Section 4 for incompressible flow. In Section 5, the
assumptions inherent in the approximate method for calculating the normal velocity induced
at the surface of the thick cambered and twisted wing are discussed. Some numerical examples
are given in Section 6 to illustrate the effect of the free-stream Mach number, of the chordwise
load distribution chosen, and of the wing thickness and the angle of sweep. The variation of
the section shape with spanwise distance from the centre section is calculated in Section 7 for
sonic main flow. In Section 8, it is shown that a similar singular behaviour of the downwash
occurs in the junction of a fuselage and a-swept wing as in the centre section of the isolated wing.

A few load distributions which avoid the singular behaviour of the downwash are considered
in Section 9.

2. The Downwash Induced in Supersonic Flow.—2.1. General Relations—Let x, vy, z be a
right-handed system of Cartesian co-ordinates with the origin at the leading edge of the céntre
section, the x axis taken in the direction of the undisturbed stream and y spanwise. The wing

chord ¢ at the centre section of the wing is taken as unity throughout. The undisturbed stream
has a velocity ¥V, and a Mach number M, and g = /(M * — 1). - :

Our aim is to determine the shape z(x, ¥) of a wing of given plan-form and given load distri-
bution. The wing surface is a stream surface which can be calculated if the velocity field is
known. In this note, the linearised boundary condition

oz(x, V) _ v,(%, ¥, 2) ' (1)
Y 72 S .. .. .. .. ..

will be used to determine the wing shape (see Section 5). The downwash v, can be calculated
by determining first the perturbation velocity potential ¢ which satisfies the equation of motion
and satisfies the boundary condition at the wing imposed by the given load distribution. The
velocity component v, is then determined by differentiation with respect to z.

- With a surface doublet distribution in the plane z = 0 and supersonic main stream the per-

turbation velocity potential ¢, which satisfies the linear potential equation, is determined as
the * finite part ’ of (see, e.g., Ref. 1, p. 445)

_ bolx', ') — do(x', 3/) Lo ‘
$(x,y, 2) = o JJ\/{@‘ Y By — y ) — dx’ dy' | .. | (2) .

where the integration has to be carried out over the part of the doublet distribution lying within
the Mach fore-cone from the point %, y, z : .

(0 — &) > By — ') + g%
x> %,

The suffices ; and ; denote the upper and lower surfaces of the wing, ¢.e., of the doublet distri-
bution, We introduce the load coefficient I(x, ) : )
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Ux, ) = — AC,(x, y)
= — {CpU(x) y) - C?L(x’ y)}
_ Z{ny(x, Y)  a(x, y)}

VO VO
2 [3gu(n,y)  ulm ) - ’
pfed _wdl L

Integrating equation (2) by parts with respect to ' and takmg the finite part * we obtain for
a wing with subsonic leading edges the equation :

7 | W) —x) . .
<f>(x,y,2)—4nJJ{(y VY T A — 2 — Ly — 3] +z2}]dx ay.. .. (4

Thus, for given load distribution /(x, ), the potential ¢ can be determined by -integration.
Differentiation with respect to z gives the downwash v, and by another integration (equation (1)),
the shape of the stream surface, 7.e., the required shape of the aerofoil, is obtamed

We deal in this section only with the centre section of the wing. For—th1s :

_ 2V, l(x y )(x — x’) '
X,0,2 p ax' dy'. .. .. 5
The integral is to be taken over the part of the wing for which ' > Oand x — &' > g4/ (v + 2%).

Therefore

|

x x'ftan @
. Vet , U, y) dy ,
¢W“@—QELAW'MJ 7+ AV — 1) —

0

;\c—ﬂz W)/ { (3272 —p%2 | i

27 (" + 2 \/{ X — &) — By — gt

0
‘where x, is determined by the equation

ﬂxl___ . 2 22,
oty = @ — w)t — B e e (7)

and @ is the angle of sweep of the 1ead1ng edge '

2.2. Constant Load Distribution.—The aim is to determine explicit formulae for the downwash
in those cases where the load distributions vary linearly along the chord. Therefore, we consider

the two distributions :
ix,y) = A = const, S . .. . . .. .. (8)

lx,y) = B{x — |y| tan ¢). e . . » . . (9)

Applying the transformations :
By = 4/{(x — x')* — p%*} sin &
}=tan?d ,



we obtain

N ay’ _ b=
, (v + 25 A/ {(x — &')F — B2 — % (v — &)z Bz

For .y = ¥'ftan ¢

t]_:

for

t

px' , .
v [tan®e{(x — x")? — B%*} — p%'%)’

3= VAl — 2 — )

= 0.

For constant load distribution, the potential function is thus given by the relation : -

X, 0,2
1 e Hle x') o
T 2 Jo tan' za/[tan* @{ (v — — B} — 7 @',
Differentiation with respect to z gives for the downwash the relation :
U, 0,2)  ¢.(%,0,2)
Av, — AV,
- E tan® o x'(x — x') I
4 2 ; (x* 4 2° tan® p)4/[tan® {(x — — B zz} B2x?]
*1 2.7 W,
+ o : Pl — %) =
. 2n ., {(x — %) — B}/ [tan® p{(x — ')? — B%%} — p*x'%]
__/i+tan2¢—ﬁ%'xl dx' |
T4 2n \/[tan o{(¥ — x')* — %"} — p*'%
tan® g xx - 2% tan® (p

2n Jo ( ‘2 -+ 2% tan® (p)\/[tan qj{ ¥ — x — p% 2} ﬁlezl dx

/32 ‘ 1 ) dx’
+o =82 J ;

(x — Bz — x")4/[tan® o{(x — «')* — p%*} —

0

52 1 . . dxr. . ' ,
Tt J o Bz — )/ Tt p{(x — 2 — B} — PR
_ V(tan’e — 67 pV{a* 4 (tan*p — 4% 2 }
D Sxtang — /(tan'y — F)/(¢ — 47
_~tan2<p ‘ xx’ -+ 2* tan? t,v

2n Jﬂ (¥"* 4 2* tan® )4/ [tan® p{(x — x)— B2y — BixF] ax
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Let the following notation be introduced :

%1 )

dx’
1= 12 2 9 P ‘/2 9.9 2,2',-- e 11
] ‘o(x + Ztan? @) v/[tan® {(v — #')* — £*%°} — p%""] (1)

*1

x' dx’ ‘
2 = 2 2 2 2 e 2,2 2,727 ° < 12
.] do(x +ztan<p)\/[tan<p{(x—x)-—ﬂz}—ﬂx] (12)

These integrals can be determined in closed form as shown in the Appendix. The final relation
for the downwash then becomes :

3,(%, 0, 2) __4/(tan’¢ — B o B/ {x* + (tan’¢ — B%)2%}

AV, o 2n gxtanqp—«/(tanzqo—ﬁz)\/(xz—ﬂ%”)
—ta;;‘”(szJrz%tanéqp]l). RN I T:

In the examples of practical interest, z € x, for most of the wing ; for this case equation (13)
can be simplified considerably by using only the first-order terms with respect to z for J, and J2

as given in the Appendix. , :

This yields :

v(%, 0,2 tanéJ 2| . +/(tan*¢ — £7) B
AV, — 2o B2 T 2 Blang — yan'y — 5
4 terms of order * log [zl S . . . .. (14).

This equation shows that the downwash becomes logarithmically infinite for z— 0.

2.3. Linearly Varying Chordwise Load Distribution.—For the load distribution of equation (9)
we obtain for the potential function and the downwash the relations '

$(*,0,2) Lo La s
BV, ..—,8{(’5 fz)* — % } .

L™y o Py
+ i JD %’ tan z,\/[tanz (,D{(?C L xl)g — ﬂzzz} ——"—:-ﬂzx'z] dx

_ tang Jxl z tan ¢(x — ¥’} — 4/[tan? qa{(x'—' %) — 5222} — p*x'% «

2n 2 O_g tan <p(9; — x’) -+ +/[tan’ p{(x — x’)f — B%*} — p7

x — x + \/{(x — x’j2 — ﬂézz} ,
X x — x5 — A/{(x — &) — g} dx

% 28y v — {lx— %) — p)
5
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v(%, 0,8)  ¢.(%, 0, 2) i

e =l L gy
_ tan®y E ’ X — & : ax’
2 || Viar e o = =

_ﬂj 1 . ) xlz(x : X’) .
+ 2% ‘[0 {(x — x/)z — B }\/[tal’f (p{(x - x/)z — ﬁzzz} . /3296'2] dx

X

tan ¢ ™ tan p(x — %) — y/[tan® p{(x — #')* — g%} — g
— -1 log dx
4o tan g(x — x') + 4/[tan® p{(x — ¥')? — By — px'%]
_tang [N w0
L R Vi (e Ly o
ptang U w—w
2 | V-2 -7
LBt L tang k(R — g
=it g, V) - alog T V(& — g
4/ (tan®p — g% BV A{x* + (tan*p — g%z}
+ 2 % log tan x — 4/(tan®p — %4/ (x® — p%2)
. f;iz ; _1, Ztang .
T og A V{x* + (tan*p — p%)z%}
__tan4<p22 o ‘ X — % ) i
27 . (x" -+ tan® p2*)4/[tan?p {(x — 2')* — B} — Bx'?] A

Expressing the integral again by means of the integrals J, and Je as defined in equations
(11) and (12), the final relation for the downwash reads :

A%, 0, z t 2 2,2\
e RS
tan g X+ /(5" — %)
— '——4% X log % — ’\/(752_ 5222)
y/(tant g — BY) BV {5 + (tan® — 227}
-+ o % log tan gx — +/(tan’p — p%) 4/(x* — %)
— £ z sin™" lang |
2 V{x" + (tan*p — p%2"}
tan* A
—S AL =) L s




This relation can again be simplified for z € x :

U,(%,0,2) tang % log %] /3 tan v,
%

BV, = 2 2

V(tan*y — %) - g
T e POy ltanty —
2 p2 7
— W z + terms of order 2* log [7] . . . . (16)

3. The Downwash Jor My = 1~For a free-stream Mach number equal to unity, the analysis
is very much simpler. The potential function ¢, resulting from the linearized potential equation,
is given by :

" v ([ wy) ..

where the integral is to be taken over that part of the wing for which " < x. Equation (17)
is the limiting form of equation (4) for # — 0. In particular, for the centre section of the wing,

x  pa’ftang ,
¢(x,o,z)=§;sz Z(,f+yz)d . .. .. ... .8

0

In view of the simple relation for the potential function for sonic main-stream Mach number,
we can treat chordwise load distributions which are more general than those of the previous .
section. We still consider the case of constant spanwise load distribution

i(x,y) = ix — [y| tang) |
—1(&). .. L o)

It is useful to introduce ¢’ and 3’ as independent variables into equation (18) :

V x prlr—&)ftan @ dy'
$(x,0,2) = —OZJ LE" J m , A&’
2n . . ¥4z

Performing the integration over y’:

bz, 0, 2) = ;/—n J (g) tan =5 gy

, ztang

Differentiation with respect to z leads to the following relation for the downwash :

v(¥,0,2 1 o (x — &) tan ¢ .
2.0 v__ZnJZ(E)(x—é’)2+zztan2qadf' @)

We assume that the load distribution can be written as a polynomial in £ :

y |
()= S af™ . @



/(&) can then also be written as a polynomial in (x — &

N
(&) = 3. b (x)(x — &) R Ce e e (22)
with the coefficients : | | |
Bo(%) = % a0 = () (23)
b(x) = g (— D" @ as. .. (24)
Inserting equation (22) into the downwash equation (20), we obtain :
v,(%, 0, 2) _ tang oty ' B , ‘
Ve — 2a b"(x)J (x — &) + 2 tan’g as

tan ¢ T ey ,
s e J &+ Aty

R tfg(]f % bm(%)Jv (X o El)m—l dfl

27'5 =2
0
tang , : N = (x — &)t
_ tan® ' ,
Ty, Pty 2 ) f (v — &)+ 2 tan*y
tan @ 1 o 2% tan® 14
= 5 by(x) 4 log x* -+ 2% tan® g
tan al
_ 2%90 by (x) <x — ztang tan™ z tan (p)
_tang § b (%)9ﬂ
Zn s m m

+ term of order 2* log ||

tan ¢ Z* tan® @
= 1
dn OB + tan’g ()

z tan?® % N
— ? tan— — 3 na,x*?
2n z tan @ »=1

t N n ’_1’”'
B anrpz[i( )

27"6 n=1] m=1 V124

(;:)} a,x"
+ term of order 2* log |z| . S S .. (25) .

For the special case of linearly Varying load distribution
I(¢) = A + B&', .. . .. .. .. .. (26)



we obtam RN :
(4 + Bx) log xz'z'tan .

(%, 0, 2) _ tan g

Ve A5 + 2P tan2¢ A
| @f tan® -1
|- o Bx — o 2B tan Ttang” (27)
Forz € x:
v,(x,0,2) tang 2 tan® @
Ve — 4n (4 + Bx) log 22 -+ 2 tan®e
tan ¢ tan® ¢
-+ o Bx — 1 2B
4 terms of order 2. .. . .. .. .. .. . (28)

This result agrees with the limit as § — 0 of equations (14) and (16).

4. The Downwash in Incompressible Flow.—In the general case of a wing with varying spanwise
load distribution in incompressible flow, the wing and its wake can again be represented by a
doublet distribution in the plane z’ = 0. By this method we obtain for the velocity potential
in incompressible flow the equation (se¢, for example, Ref. 1, p. 227) :

o [ dew.y) = bl ) o
9”(%,% Z) - Ar J\J ,\/{(x ___~xr)2r+ (y_y,)2+zz} dx dy,

where the integral has to be taken over the whole doublet distribution, ile., wing and wake.
Introducing the load coefficient /(x, ¥), equation (8), and integrating by parts with respect to
%', we obtain the relation :

[ ) T —— o
A= ” O LR e e ey e R

~ where the integral has to be taken over the wing area only. This equation is similar to equation
(4) for supersonic flow, so that the downwash at the centre section of a swept-back wing with
constant spanwise load distribution has the same singular behaviour.

However, it is easier to determine the downwash in incompressible flow by making use of the
fact that a representation of the wing and its wake by a vortex distribution leads to precisely
the same result as the representation by doublets (see Ref. 1, p. 239). We consider a wing.of
constant chord, with straight leading edge, infinite span and constant load distribution along
lines parallel to the leading edge. This wing can be replaced by straight semi-infinite vortex
lines parallel to the leading edge with the circulation ' : ;

I'=yadn, .. . . . .. .- .. (30)

— Z(x: y) VO o . . o

where Y= Gcosg e SR . o . .. (31)

dn = cos ¢ dx’.. . e . .. (32)

~ We make use of the Biot-Savart relation for the velocity field induced by a straight vortex line :
” - S :

v(P):m(cosﬁ%—cosﬁvz), . . . . . . (33)



where ¥, and ¢, are the angles between the vorticity vector and the radius vectors from the
point P to the end-points of the vortex line and 4 is the normal distance of P from the vortex line.
The velocity vector is normal to the plane through P and the vortex line. '

For a point (¥, 0, 2) and a semi-infinite vortex line from x = y =z = 0 swept by an angle ¢ :
d = /(¥ cos’p + 29,

xsing .
RV
cos B, = — 1, ‘

so that the velocity component parallel to the z axis :

yan X COS @
dv, = — ! (1 4 cos #,) ¥
_ &y dx'V, «x cos (p’ __sin gx
o 8 x* cos’ g + 2* T A (x* + 2%

'Thus we obtain for the downwash induced by the load distribution over the whole  wing,
equation (19),

wnod 1 [ x—¢ [ simg—g) ],
oo 4”C°S¢J ) e ) | ) ¢ O

[}

+The integral can be split into the following three integrals : -

v,(%,0,2) 1 B ¥ — &

= — ") — ~d
V, 47 cos g Joo 1) (x — &)+ (/cos® )

1

_ sin ¢ 2 ag’
4n cos ¢ IR V{x — &)? 4 22}

sin ¢ ! , zz/coézw /
" cosg ( ) =T T @eos o) Vil — 7 T
=fo+Ji+T5. .. .. .. e .. (35)

The first term, [, is the downwash induced by an infinite sheared wing. The second term, J,,

has for small z a singularity like /(x) log z. The third term, J;, has a value proportional to /(x)
for small z.

For a linearly varying load distribution

I(&") = 4 + Bé&, . . .. .- . .. e o (26)
the integrals have the values :
N 1 A + Bx lo x* 4 (2*/cos? )
Jo=— 4ot cOSp 2 Bt (2*/cos? ¢)
2z = z[cos ¢ ,
"—B—“Bcoswtan\ x(l—x)—(zz/cosch)}’ .. .. (36)
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. sing [ A (%% + zz) 4 x
Jo=— 47 cos_;z [(A + Bx) log V{1 — 2?42 — (1 — %)

+B\/{(1;x)Z.J}zZ}_B\/(xwf)},.. ¢ 74

1
" 4w cos g X

Js

{A + Bx, {3/ (82 + ) + wsing} [/{(1 — #)* + 2} + (1 — %) sing]
2 /(2 —wsing [v/{(1 — %)+ 22} — (1 — ) sing]

_B-%_ ian Ztang

oS @ \/{(1 — x)* 4 2%}

P ., Ztang ]{
+ B o5 7 tén V7 A . . . . . (38)
The values for z small compared with x, 1 — x, and 1 are

. 1 X%
}ir_l)lﬂ]s-——m@{(A—I-BX)lOgI__x——B}, .. .. . - (39)
I Jo=— -2 L4 L Balo Wl—% | p_ opy (40)
s Y7 dacose g 2 ! e
. 1 1+ sing ‘ ' .
}Eﬁ]s_%cosqj(a+Bx)log~———1_sin(p. .. . . .. . (41)

5. Approximate Method of Satisfying the Boundary Condition at the Surface of the Wing.—
The boundary condition that the aerofoil surface is a stream surface, i.e., that the total velocity
component normal to the surface is zero, can be written in the form :

dx:dy:dz =V, V,: V,.
The projection of the stream surface on a plane y = const is thus given by the relation :

dZ(x, y) — VzO + vz(x) y; Z) ) ) (42)
dx on_,_‘vx(x’y,z), .- ' e “ . . « . R «

where z = z(x, y) determines the aerofoil surface, V,, and V,, are the components of the free
stream velocity V, with respect to the x and z axis and v, and v, are the perturbation velocities.

In ordinary linear aerofoil theory, this condition is approximated by the following condition

in the chordal plane, z = 0:~ .
dz(%,y) Ve + v, v, 0) :
o= 7, . . ce e . . . (43)

This means that the assumptions are made that the 'Velocity component v, does not vary much
between the chordal plane and the wing surface, that the velocity increment v,(x, y, z) is small
compared to the x component of the free-stream velocity, V,,, and that the angle between the

main-stream direction and the plane z = 0 is small so that V,, can be approximated by V,.
11



In our case, we are still entitled to make the second and third- assumptions, provided the
load is finite or zero at the leading and-trailing edges. But equations (35), (37) and (40) show
that the downwash at the centre section, y = 0, becomes logarithmically infinite when z — 0.
This 1s also true at sonic speed, as can be seen from equations (25), (27), (28), and in supersonic
flow, as follows from equations (13) to (16) and the singular behaviour of the integrals J, and J,
for z— 0. This implies that an infinitely thin wing, which gives the required load distribution
(constant along lines é = x — |y| tan ¢ = const) would have a singular behaviour of its surface
slopes at y = 0. Such a wing cannot be represented by a plane sheet of vortices or doublets.

At this point, we must remind ourselves that our aim is to design wings of finite thickness.
Thin cambered wings and thickness distributions are designed separately and subsequently
superimposed only when this implies a simplification, which it does not in the present case.
To represent cambered and twisted wings of finite thickness requires a source-sink distribution
and a doublet or vortex distribution within the wing or at its surface, such that after super-
imposing the parallel main flow the wing surface is a stream surface. The flow outside the wing
must be free of singularities but a singular behaviour of the flow inside the wing is of no
importance. We do not attempt to solve the problem fully since this would involve source
and doublet distributions on curved surfaces, but we expect to obtain a reasonable approximation
by retaining plane sheets of singularities. :

To solve this problem, let us first consider an iteration process by which we can obtain_an
exact solution for the two-dimensional case by means of singularities. The procedure is similar
to that described in Section 3-5 of Ref. 2 for determining the flow past a thin air intake with
axial symmetry. To determine the flow around a thin wing with given load distribution, we can
start with a plane vortex sheet in the plane z = 0, superpose a flow parallel to the plane z = 0,
and determine the stream surfaces as shown in Fig. 2. Some stream surfaces cross the vortex
sheet and have a discontinuity of slope there (see also Fig. 3-8 of Ref. 2). For the next step in
the iteration process we choose an approximate shape for the aerofoil, e.g., the stieam surface
#¥(x) through the leading edge obtained in the first step. With the singularities on this surface,
we calculate a second approximation for the aerofoil shape and so on until the sheet with the
vortices and the stream surface coincide. -

Let us now compare this final result with the approximate one obtained from the plane vortex
sheet through the leading and trailing edges of the wing. The velocity components normal to
the sheet induced by the curved sheet do not differ much from those induced by the plane sheet
at the same distance from the sheet, as long as the curvature of the curved sheet is not too large.
An approximation to the aerofoil is thus obtained by calculating the velocity component normal
to the plane sheet at the sheet and by superposing a parallel flow at the incidence o, to the
sheet (see Fig. 2). The velocity components normal to the plane sheet are, of course, the same
as the velocity components v,(x, 0) which a sheet in the plane z = 0 induces in the plane z = 0.
The angle o is found from the relation

ar =tan™' {— z(x = 1)}. .. .. . . .. .. . (44)
The aerofoil surface can be determined from ' i
- xv,(x’, 0) , o
z(x)-—Jo 7. ax’, .. . o .. . .. (45)

if the incidence «; is small so that the velocity component V, cos «, parallel to the sheet can be
approximated by V,. -

That the error due to the neglect of the curvature of the sheet is small, for practical values
of the maximum camber, f, has been shown, e.g., in Ref. 8 by comparing the exact velocity
component V(x)/V, along circular-arc aerofoils (f = 0-02 and 0:04) in a flow parallel to the
chord, with the approximate one. - ' I
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Equation (45) is usually a better approximation than the stream surface z*(x) through the
leading edge obtained in the first step for the plane sheet in z = 0 (see also Fig. 3-4 in Ref. 2).
The velocity components induced by the plane sheet in 2 = 0 on-the stream surface 2*(x) usually
differ more from those induced on z = O than the difference due to ignoring the curvature of
the sheet, unless «, is rather small.

"With thick cambered wings in two-dimensional flow, the iteration process could be similar
to that for thin wings.” We can start with a source distribution and a vortex distribution in
the plane z = 0, *superpose the flow parallel to the x axis and determine the stream surface-
passing through the stagnation line. In the next step the singularities are placed on the mean
surface, z%(x), of the stream surface obtained in the first step and so on until a stream surface
is obtained which contains all singularities inside it. Whether the sources and vortices are to be
placed on the same surface or not is here irrelevant. As an approximation to the singularities on
the final mean surface we. can again take plane sheets through the leading and trailing edges, as
long as the curvature of the mean surface is not too large. Neglecting the curvature of the
sheets will involve only small errors in the velocity components. In the two-dimensional case
the velocity components due to source and vortex sheets do not vary much with the distance
from the sheets in the neighbourhood of the sheets except near the edges of the sheets. This
can be seen, e.g., from equation (36), since [, gives for incompressible two-dimensional flow
the v, velocity induced by a vortex sheet in z = 0 of linearly varying strength. This implies
that we can calculate the velocity components either on the sheet itself (as is done in ordinary
linear theory) or at a distance equal to half the local wing thickness. ' This approximate procedure
ensures that, for the ordinary range of wing thickness and maximum camber, there are no
singularities outside the stream surface. '

Let us now return to our three-dimensional problem. The iteration procedure would lead
to a mean surface which is curved in planes y = const as well as in planes ¥ = const. Assuming
again in this case that neglecting the curvature of the sheet of singularities does not involve
large errors in the velocity components, we represent for the calculation of the centre section.
the curved sheet by a plane sheet through the line ¥ = z = 0 and the trailing edge of the centre
section. The only important difference from the two-dimensional case is that for the centre
section, y = 0, we calculate the velocity component v, induced by the vortices at the surface of
the thick wing and not at the plane z = 0. This refinement, which would be of negligible
importance for the two-dimensional wing, is essential when. a singular behaviour of v, occurs
at the plane z = 0, i.e., when the velocity v, varies considerably with the distance z. It is a
legitimate means of evading the singularity since we have to satisfy the boundary condition
at the surface of the thick wing anyway.

_ This method is similar to the method of calculating the velocity distribution at the surface
of slender bodies of revolution by means of sources on the axis. The term »v, (where v, is the
radial velocity component), which occurs in the boundary condition, is regular at the axis and
is therefore taken at the axis instead of at the surface, but the axial component, v,, being singular
the axis, is taken at the surface. -In our case, the 9, component due to the doublets, being regular
at z = 0, is taken at 'z = 0 ; v,, being singular at z = 0, is taken at the surface.

 The velocity v, is calculated at a distance z, from the plane z — 0, where =

2= ) = Sl y) —alx Y] . . . .. (46)
determines the thickness distribution, and not at the distance z, and z, of the upper and lower
surfaces of the aerofoil. In a proper representation of the cambered thick aerofoil the distance
between the surface and the position of the singularities is, at least approximately, z,.

- To summarize : we calculate first the velocity v,(x, o, z) which a sheet of doublets in z = 0
induces at z = 2, ; then determine :

zqujﬁ%%ﬁw T (')

v 0
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and write z(x, 0) in the form

z(%, 0) = — tan azx -+ z,(¥, 0) - .. . . . .. (48)
with , . :
tan ap = — 2(x = 1, 0). .. . . .. .. .. .. (49)

%(¥, 0) gives the camber line and «;, the twist for the centre section of the wing. This procedure
gives a solution correct to the first order. Second-order terms are ignored, e.g., the interference
between thickness and camber terms (i.e., source and vortex distributions), and the effect of
the varying twist and camber along the span (i.e., the curvature of the vortex sheets).

6. Calculated Examples—6.1. Effect of the Free-Stream Mach Number M,—Some typical
calculations have been made for a wing with 55-deg sweep of the leading edge and an RAE 101
thickness distribution of thickness/chord ratio 0-045. The load distributions chosen were :

() = 0-4 — 0-3¢, =x — |y|tang .. .. ., e (50)
I(&) = 0-5(1 — ¢&). .. . (51)
The total load is the same for the two examples, C,(v) = 0-25.

‘The downwash v,(x, 0, #) induced at the surface of the wing is plotted in Figs. 3 and 4 for
three different Mach numbers. For M, = 0 and finite load at the leading or trailing edges, -
the downwash is logarithmically infinite at these edges. Such a logarithmic singularity occurs
also on the two-dimensional wing with finite load at the edges. For M, = 1, the downwash at
the leading edge is zero for sections with rounded noses ; it is finite for sections with sharp but
non-cusped edges. At the trailing edge v, is logarithmically infinite for finite load at the
trailing edge and it is finite for zero load. For supersonic flow the downwash is zero at the point
for which x* = fz,(x*) and the points upstream, 0 < x < #* ; at the trailing edge the downwash
1s again logarithmically infinite for finite load and finite for zero load. Since the determination
of the downwash near the leading edge is not very accurate by the present method, we have
calculated the values of v, for x > 0-02 at M, = 0 and M, = 1-2, and have extrapolated the
#(x) values obtained by integrating the v, calculated over the range 002 < x < 1-0 by a smooth
curve. The resulting mean surfaces and the camber lines are plotted in Figs. 3 to 5. The angles
of twist, «r, are quoted in Figs. 3 and 4.

Figs. 3 to 5 show that the downwash distributions and the resulting section shapes are sur-
prisingly similar for incompressible flow and supersonic main stream. That the result for sonic
speed lies roughly between the two others was to be expected since we get the same limit for
the potential equation, equation (17), when we approach M, = 1 from the supersonic range as
when we approach it from the subsonic onet.

Since the calculations for M, = 1 are much simpler than for M, # 1, this similarity between
the results at M, = 1 and low supersonic speeds can be made use of, if one requires a qualitative
answer about the effect of varying certain parameters, e.g., the type of loading, the plan-form,
or the thickness distribution of the wing.

1 For subsonic flow, by means of the Prandtl-Glauert analogy

b5, 3, 9) = ;;qsu(x, By, B2)

the potential equation reads instead of equation (29):
2V J J W', ') [ x— % ] v gt
O ) B il B e I B - - dx' d
I A ) [ S RV (e TR o A
with B =1l — Mp).
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The section shapes z(x) obtained for the chosen load distributions (se¢ Figs. 3 and 4) are com-
posed mainly of a twist term and of only a small camber term. This implies that neglecting the
chordwise curvature of the vortex sheet in our approximate method should be justifiable. The
amount of the spanwise curvature of the mean surface can be obtained from the results quoted
in Section 7.

6.2. Effect of the Load Distribution.—The effect of altering the chordwise load distribution
is illustrated in Fig. 6. The distribution has been varied between a constant one and one
decreasing linearly to zero at the trailing edge. The total load is the same for the three cases.
‘The twist varies by only 6 per cent of its total value, but the shape of the camber-line and the
maximum camber depend very much on the load distribution. The same holds for all Mach
numbers as shown by Fig. 5 and a comparison of Figs. 3 and 4. '

Sometimes a modification of the resulting camber-line may be required. Such a modification
imposes the question of how much the load distribution would be altered. An estimate of this
variation may be obtained by determining from the modified camber-line the required change of
the downwash at a few chordwise positions and solving the resulting system of linear equations
between the downwash at M, = 1 and the coefficients «, in equations (21) and (25).

6.3. Effect of the Wing Thickness—Retaining the thickness distribution but altering the
thickness/chord ratio, we obtain for a fixed load distribution from the approximate relations .
(14) and (16) for supersonic flow the relation '

V(x5 tfc)  ux i dfc)

Vs Vs

¢ t
+ 4 —{—Bx)%%glogt:—/cc

tlc — tyfc tan®p — B*

- — B 1o i z(tofc) -

For aerofoils of pracﬁcal interest this relation can be approximated by :

v(x; tfe)  v(x;tfc)

Vo Vo

tan ¢ tle :
o logto/c. .. .. .. .. . .. (52)

+ (4 + Bx)

The same relation is obtained for M, = 1 by equation (28) and for M, = 0 by equations (35),

and (39) to (41). The variation of the downwash with the thickness/chord ratio is thus to a

first order independent of the Mach number and proportional to the load distribution. In
particular, "

tan ar(¢/c) = tan 'ocr(to/c)

_ tang 1_3 tlc
o (A + 2) logt—o/c, .. .. - (53)
and
. tane B A
2.(% 5 tfe) = z,(x ; tofe) — -QI;—(PE Ogto/—/cc x(l — %), . 'e ‘e r (54)



For M, = 1 the downwash has also. been calculated for various thickness/chord ratios by the
exact equation (27). The resulting angle of twist is compared in Fig. 7 with approximation (53)
and thé camber-lines in Fig. 8. with approximation (54). f,/c = 0-03 was taken for the basic:
solution.. . . . o S

6.4. Effect of the Angle of Sweep.—Comparison with an Approximate Formula for the Downwash
wn Incompressible Flow.—Downwash distributions (divided by tan.¢) for various angles of sweep
are plotted in Figs. 9a and 9b for the case of incompressible flow. The corresponding section
shapes, the angles of twist and the camber lines are given in Figs."10, 11 and 12. The level of
the downwash and with it the angle of twist increase with increasing angle of sweep. The same
is true for sonic.and supersonic flow. A simple approximation for the variation of the downwash
with the angle of sweep can be derived for sonic speed by equation (28).. For small values of z :

v,(x ; (p)r o v,(x.; ¢ = 45°)

v, T
‘ \ + Bx
Q.. =

- 4 tangplogtang 4 (55)

To obtain a simple method for calculating the chordwise and spanwise load distributions on
swept wings with given geometry in incompressible flow, an approximation. to' the downwash
induced by a given load distribution was used in Refs. 4 and 7.. As a start, the downwash at the
centre section of a swept wing of infinite aspect ratio with constant spanwise load distribution
(s.e., the case considered in this note) was approximated by (see, for example, Refs. 4 to 7):

1
vix,0) 1 | y(&) a8 y(x)
Vo ZnJ Ve x— & " 22V, (56)
with < R
c=mtang, . .. .. . .. . .- (57)

where the vortex strength y(x) and the load distribution are related by equation (81). Equation
(56) approximates the downwash at the position x of the-centre section by the sum of the
downwash on the two-dimensional wing and a term proportional to the local vortex strength,
7(%). Such a form, as a crude approximation, is also suggested by equations (35) and (39) to (41).
Js is the downwash of the corresponding sheared wing and the term in [, which becomes most
important for z— 0 is proportional to the local load and [; is proportional to the local load.

- The approximation (56) has been derived in Refs. 4 to 7 for wings of moderate sweep (p == 45
deg), wings of a thickness/chord ratio of about 0-1 and for the vortex distributions of the flat plate

o J(5)

and for the elliptic vortex d15tr1but1on
y(&) = const \/{1 — (1 =28

It is, thérefore, of interest to see how good an approximation‘ equations (56) and (57) are for
other cases, e.g., for wings with higher angles of sweep, for thinner wings, for different load
distributions. With the special load distribution

1(&) :2(:os<ng—> =4 + B¢,

Vo
equation (56) reads : |
viv,0) 1 x -
V, ~ dmcose {(A + Bx) log 7. — B F m tanp(d + Bx) } L8
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The downwash distributions calculated by equations (35), (39) to (41), and by approximation
(58), are plotted together in Figs. 9a and 9b. The section shapes, the angles of twist and the
camber-lines determined from the various downwash distributions are plotted in Figs. 10, 11
and 12. For moderate angles of sweep the differences in the angles of twist are tolerable for a
crude approximation. The shapes of the camber-lines differ more than the angles of twist, as
is to be expected. The approximation (58) becomes less valid with increasing angle of sweep.
fExpressing 71)3 as given by equations (35), and (39) to (41), in the form of equation (56), we obtain
or o the value :

o 4x(1 — x) B — 2Bx 1+ sing
cr_smzp{log = _I_A—i—va}—.lOg—”ﬂl-sinqa' .. .- (59)

The large discrepancy between the approximate formula (58) and the exact results for large
angles of sweep is due to the fact that ¢ = = tan ¢, ejuation (57), tends to infinity as 2/(1 — ¢/3=)
for ¢ — L, wwhilst ¢ by equation (89) tends to infinity as 2log {F=(1 — ¢/§7)}

The original approximation for ¢ (see Ref. 4) was

. ; % 1+ sing A :

o =2nsingo log———l—sinqo’ . .. .. .. . (60)
where o* was taken to be independent of x. o* is a function of the thickness/chord ratio. A com-
parison of equations (59) and (60) leads to the relation

a*(t/c):o*(tolc)-—i—lo % P <3}

Téking o¥(ty/c = 0-1) = 1:0, we obtain the approximation :

o*(@le) =1 — % log (10¢/c). .. .. .. .. .. .. . (62)
The approximation for v, obtained by equations (56) (60) and (62) is also plotted in Figs. 9a
and-9b, and the resulting section shapes, angles of twist and camber-lines in Figs. 10, 11 and 12.
The angles of twist agree surprisingly well with the exact values but there are large differences
in the shape of the camber-lines between the approximate and the exact solutions. However,
the angle of twist is the more important term, as illustrated in Fig. 10. The results in Figs. 10
to 12 are, of course, affected by the particular chordwise loading and section shape chosen and
are, therefore, not necessarily general. Other cases are considered in Ref. 7.

It may be mentioned here that experiments at low speed have proved that a wing with
approximately constant spanwise load distribution can be obtained by the present simple method.
A cambered and twisted 45-deg swept-back wing has been designed by applying equations (56)
and (57) so as to have the flat-plate load distribution over the whole wing. The measured pressure
distributions at the centre section and at a spanwise station away from centre and tip agree
within the accuracy of the experiment (see Ref. 6). '

7. The Shape of the Aerofoil at Stations away from the Centre S ection.—The downwash induced
by a plane sheet of doublets and hence the required slope of the wing varies, of course, with the
distance from the centre section. To show this variation, we consider the case of sonic main
~ flow since it is so much simpler to calculate than the cases of subsonic or supersonic main flow.
We may expect that the results will hold qualitatively also for M, # 1, as was true for -the
centre-section. A - .
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- We apply equation (17} to the load distribution
lx,y) = A + B(x — |y]| tan ¢) (83)

and a constant-chord swept-back wing. Integrating with respect to y", differentiating with

respect to z and integrating with respect to #’, we obtain for points in front of the trailing edge
of the centre section, x << 1: - A . :
| v,(%, ¥, %) tan ¢ (x -+ y tan ¢)® 4 z* tan® ¢
= — 1
v, S [{A + B(x + y tan ¢)} log tan? p(y* + 29

X — tan ®)* 4 2* tan®g -
tan® p(y* 4 2%)

+ 2Bz tan ¢ <tan‘1 v ytang + tan™! w) — 4BxJ .. (64)

+ {4 4 B(x — y tan <P)}A10g(

Ztan ¢ ztan ¢
and for x > 1:

v(%, ¥, 2) _ taﬁ ® (¥ 4+ v tan qo}z -+ Ztan® g
Ve 8z {{A TB@ -y tan #)} log (x — 1+ ytang)® + 22 tan®e

(x — ytan @)® -+ 2% tan? g
+ {4 + B(x — y tan ¢)} log (x(_ 1 iytali«p)z + #tan’ g

) L X +ytang ¥ —ytang
-+ 2Bz tan q:<tan EEe—— - + tan B ”
N ax =T+ ytang L,x—1—9ytang
tan ctang T fan tang > - 48]. . (65)
The limit of v,(x, v, 2) as z tends to zero is finite for y =% 0.
x<<1: '. »
v,(%, ¥, 0) tang | ¥+ ytang
IS A R L A D] T yEene
7 o [{ F Bl tan )} log 2 EE
: x — 3y tang )
+{A+B(x—ytanw)}logm——ZBx:|, .. (66)
x> 1: '
v,(%, ¥, 0) tan ¢ : X+ ytang
ALI® At S 4 BN O
D [{ + Bl +y tan o)} log SR
‘ L - x—Yytang '
+ {4 -}—B(x y‘tan(p)}logx_ 1 —ytanrp—ZB:]’ .. . (67)
For stations far away from the centre seétién, Yy = oo, we obtain from equation (67)
0,(6, z=0)  tang ‘ £
= {(A+B§)1og1_§—3}, e .. .. »(68)
where -

f=x —ytane.

The same result is obtained for an infinite sheared wing, with a lﬁad distribution /(¢) = A 4+ B¢,
by considering the subsonic flow around the two-dimensional Wing normal to the leading edge:

118



For the load distribution (¢§) = 0-4 — 0-3%, the downwash has been calculated at the stations
y == 0-025,0-05,0-1,0-2, by equations (64) to (67). The results, plotted in Fig. 13, show that the
difference between the downwash at the surface of the wing, z = 2, and the downwash in the
chordal plane, z = 0, is negligible for y > 0-1. The resulting camber-lines and angles of twist
are plotted in Figs. 14 and 15. The angle of twist changes rather rapidly along the span. It was
suggested in Ref. 7 that the distortion of the load distribution at and near the centre section
from that further out on the wing, and in particular the shift of the aerodynamic centre, of a
flat swept-back wing at incidence follow a law containing only the spanwise co-ordinate y in terms
of the local chord and the angle of sweep, as follows :

z(y);N/{1+<zﬂta;}¢y>2}—2nf@%’y. (89

Fig. 15 shows that the angle of twist obtained by a calculation for M, = 1 varies in a similar
fashion. The rapid change of the angle of twist implies that the spanwise curvature of the
aerofoil mean surface is not small near the centre of the wing. This means that our approximation
of replacing the actual curved mean surface by a plane one with the local angle of twist leads to
* results near the centre which may be less accurate than for the two-dimensional wing or for
stations further outboard.

. Tt is known from experiments (see¢; for example, Fig. 25 in Ref. 8) that in incompressible flow
the pressure distribution over a flat swept-back wing at incidence is such that at and near the
centre of the wing a normal pressure drag is produced which decreases along the span. This

_pressure drag is partly cancelled by thrust forces at the wing tips such that for a wing of finite
aspect ratio the total remaining drag is equal to the vortex drag, plus a contribution caused by
the viscosity of the flow.

A-normal pressure drag occurs also near the centre of cambered and twisted wings with constant
spanwise load distributions in incompressible, sonic and supersonic flow. The sectional drag
coefficient for a thin wing of constant chord is related to the pressure distribution and to the
wing shape by the equation

Col9) = Culy) arly) — f i) e

] %18

The numerical results of Figs. 3, 4, 14 and 15 show that, for the load distributions considered,
the angle of twist is much larger than the maximum camber for stations near the centre. This
means that the term C,a, gives the main contribution to the drag and that the spanwise variation
of the pressure drag is similar to the A(y) curve.

It was found from Figs. 3 and 4 that the section shape at the centre section does not vary
much with the free-stream Mach number. As. a consequence the sectional pressure drag at the
centre section is nearly the same for incompressible and low supersonic speeds. However, we
cannot draw any conclusions regarding the value of the total drag of a finite aspect ratio wing
since the forces at the wing tips vary considerably with the free-stream Mach number.

8. Wing-body Combinations with Constant Spanwise Load Distribution Over the Wing.—The
singular behaviour of the downwash on the chord-line of the centre section is not a property
of the isolated wing but occurs also at the junction of a fuselage and a swept wing which has
(in the presence of the fuselage) the same chordwise load distribution at all spanwise stations
right up to the junction,
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This can be illustrated by considering a cylindrical fuselage at zero incidence in mid-wing
position. The wing is cambered and twisted so that the load distribution (x, v) is constant, = .4,
over the whole wing. The discontinuity in the velocity potential

A$(x, ) = $u(x, y) — ¢u(x, y)
is then determined by equation (8). Thus

ZL%)‘Q)—) = A3(x — xpp)

= AL(x — |y| tang) . ce e - . . (70)

To determine the downwash field we apply slender-body theory, 4.c., we determine, for each
cross-sectional plane x = const, the two-dimensional flow which satisfies the boundary condition
(70) for the velocity potential. We assume that the loading is small, 4.e., that camber and twist
are small so that a cross-section through the wing can be approximated by a straight line. We
consider only the cross-sections in front of the trailing edge of the wing-body junction.

A

The two-dimensional problem is best solved by transforming the plane x = const,

L=y 4z

into a { plane by the transformation
- R? '
P 71
(=1 : (71)

so that the body contour, [¢]| = R, is transformed into the slit § = 0, |2| < 2R. The wing is
transformed into the straight line |§| < s(x) — R*/s(x), Z = 0, where s(x) = x/tan ¢. Points on
the original and the transformed wing contour are related by

y =7 + V(7 + 4RY} . L

The transformation does not alter the value of the discontinuity in the velocity potential so that
by equations (70) and (72) :

Ad(¥, ZVO=O;x) :%{Zx— 7l tan g — tan g 4/ (5% + 4RY} . .. e o (73)

The flow which satisfies equation (73) induces at 7 = 0 the downwash :

G g0 _ 1 J 244(3)(Vy _dy'

-y - -t

Vo 27

A : ' @y’
— 1 ——— 1 =,
+8n: an¢fﬂ{\/(j7'2—l—4R2)+ }&—y



-which gives -

—”:——ta,n(pl:{l—k _5} }10g 5/2_-
7, _ V(7 + ARy [ 8 F g

Y
2 {1 TVF T 4R2>} log 2R

— 2log {y/(5* + 4R + 5}

b 29°%* 4 4R*(§* + §°) + 2954/ (§° + 4R\ (5° +- 4R2)J
1 s .. (74
TV ARy 7 (74)

The v, velocity in the original plane is related to 7 in the transformed plane by the mapping
ratio |d§/d¢| _

Q

%, 2 = 0) = 3 dc‘

ac

(1+— 7 y"z—oj. R (75)

By equations (74) and (75) we obtain for the downwash in the ng—body junction, |y]
the value

7. | =g, tan lim 5 — log 2R

This has the same singular behaviour as at the centre section of an isolated wing. We note
that for R = 0, i.e.,, § = v,5 = s = x/tan ¢, the value of v, by equations (74) and (75) agrees
with that of equation (66), as is necessary because for M, = 1 linear theory and slender-body

‘theory give the same results. Introducing the spanwise ordinate y* =y — R, we obtain for
the limit R — o : § = 2y* and by equations (74) and (75)

[y =R z2=0_ 4 { y_ v<52+4R2>+§}. (78

7)z('%,' y*: 0) . i{{. y*z

—~V0 =i tan ¢ log R e
;. P — y*¥ tan®g
=~ tan @ log

y* tan® ¢
Which also agrees with equation (66).

This result is comparable to the fact that the distribution of the streamwise velocity com-
ponent v, at the junction of a cylindrical fuselage and a swept wing with symmetrical section,
both at zero incidence, is similar to that at the centre section of the corresponding isolated wing.
This theoretical result has been confirmed by experiments. The body acts in both cases like a
reflection plate. '

It has sometimes been argued that, when determining the shape of the aerofoil section at the
junction of a fuselage and a wing with constant spanwise load distribution, one need not take
account of the singular behaviour of the downwash in the plane z = 0, since the stations near
the centre of the isolated wing are buried within the fuselage. Equatlon (76) shows that this
reasoning is fallacious. As a first approximation to the camber and twist required in and near
the junction we may take the wing shape at and near the centre of the isolated wing.
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9. Wings Without the Singular Behaviour of the Downwash at the Centre Section.—The question
arises whether the singular behaviour of the downwash at the centre section of the chordal
plane cannot be avoided. For a wing witha discontinuity in the leading edge, this is only possible
by relaxing the condition of constant spanwise load distribution. ' ‘

To obtain the full benefit of a swept plan-form the isobar pattern must have a minimum sweep
over the whole wing. This condition can be satisfied by an isobar pattern with varying sweep,
provided that, near the centre section, the isobars are more highly swept than further out on the
wing. Such an isobar pattern may be obtained by a suitable choice of the load distribution.

For the centre portion of the wing the load distribution could be similar to that on a plane
delta wing at incidence or to that on a delta wing with conical flow, cambered and twisted so
as to have no singular behaviour of the downwash in the wing plane. Due to the conical conditions
the isobars of such a wing all run into the apex. This may cause rather sudden changes of the
pressure at stations somewhat away from the centre section. The adverse pressure gradients

are probably so high that the real viscous flow is likely to separate near the apex, so that such
a design does not seem to be desirable.

More favourable pressure gradients can be obtained with a load distribution such -that the
various isobars end at different spanwise positions at the leading edge. However, this implies
zero load at the centre section of the wing. Such a design has the disadvantage that for a given
total lift coefficient the outer wing has to be more highly loaded than for a constant C () design ;
‘this requires a thinner or more highly swept wing for a given critical Mach number. Further-

more, the vortex drag of a wing with zero load at the centre section is very much larger than
for a wing with constant C,(y).

10. Concluding Summary.—The mean surface of a swept wing with constant chordwise load
distribution along the span cannot be calculated by applying the ordinary linear theory, due
to a singular behaviour of the downwash at the centre section.. This difficulty can be overcome
by applying the approximate procedure of calculating the downwash induced by a plane sheet
of doublets at a finite distance equal to the wing thickness. Explicit formulae for the downwash
in supersonic, sonic and incompressible flow have been worked out for linearly varying load
distributions. The differences in the mean surfaces for low supersonic and sonic main flow are
relatively small, so that the effect of varying the load distribution can be studied for the much
simpler case of sonic main flow. The section shape, determined for sonic main flow, requires a
rather rapid decrease of the twist and a noticeable variation of the camber-line across the span.
The sections calculated for the centre of a swept-back wing can also be used as an approximation
to the section shape at the junction of the wing with a body. A few load distributions have been
considered which vary in such a way along the span that. they produce a regular behaviour of
the downwash at the centre section.  However, the corresponding wings have some undesirable
properties, such as large adverse pressure gradients or large vortex drag. Therefore, it seems

worthwhile to investigate experimentally the properties of a wing with constant spanwise load
distribution designed according to the suggested procedure. ‘ :

LIST OF SYMBOLS

X, ¥, 2 Rectangular co-ordinates, x axis dlong the centre-section chord, y spanwise
: z positive upwards ‘ :

I

x— |y| tan ¢

¥ + 1z, complex co-ordinate

e vy
l

Il

¥ 4+ 4%, co-ordinate in transformed plane
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Vi Vs

Ju Je
Jo Jo Js

Suffices :

LIST OEF"1 SYMBOLS——contm%ed

S‘ee equation (7) and Fig. 1
Aerofoﬂ—sectioﬁ ordinate ,
1(z,(x) — z(x)), ordinate of thickness distribution
1(zy(%) + 2(%)), ordinate of camber-line
Wing chord

Wing thickness

s(x), 10(:@1 wing span

Span in transformed plane

Body radius

Angle of twist .

Angle of sweep

Velocity of main stream

Component of V, in direction of the axes

Velocity increments in direction of the axes

M_ach pumber of the free stream

\/(IM 0?_” ID
Velocity potential
bv — b

Pressure coefficient

— {Cpu(%,y) — Cpul®, y)}, load coefficient

Local lift coefficient

Circulation

Strength of vortex distribution

Sectional drag coefficient

See equations (8), (9) and (26)

See equation (56)

See equation (60)

Integrals (see equations (11) and (12) and the Appendix)

Integrals (see equation (35))

Upper surface

Lower surface
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APPENDIX

Explicit expressions are required for the following two integrals :

]1=

- dx’

*1
L (x"* + 2 tan? ¢)

Vit p{(c — ¥ — 2} — g

x" dx’

]2 N Jo (_x'z + #* tan?® (P) \/[tanz <P{(x — x’)z ——.ﬂzzz} — ﬂlez] ’

With the notation :

__xtan®e
 tan?q — g®

__Ptang

oo VAR 2 (tantp — gY)

"~ tan®p — B*
and introducing the transformations :
% — A = Bcoshu

%
t — —
= tanh 5

and using the value of , given by equation (7), the integral Ji can be written as :

— 241

—9
Ji= 4/(tan®p — ﬂz)f

" yit — 2082 1 ¢

dat
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with o
'J} =
J —

E =

By pértial fractions :

J1

(4 — B)* + 2 tan? @
A® — B® 4 22 tan? ¢
(4 + B)* + 2* tan® ¢

4+ B
4 —-B"

ast + a,

- 2 < — ag + a, >dt
/(tan® g — p%) J4, e+ at 4 a v — af + a

— 2 {'}’ + a. Io vh' — @to + @
/(tan®p — B%) | daas rh’ 4 @ty + a,

Y — s -1 ?50'\/(4“2)’ — ﬂlz)

tan
+ 20,4/ (day — a,%) ytqz — }
with
@y = — /[2{8 + +/(ep)}]
@y = 4/ (ey) '
oy
2T %ma, | 2a,
—
4= 2a,
In a similar way, we obtain :
— 92 R |
Je= v/ (tan?p — g% J, ytt — 268 + & @
0
— — 2 a_slo vl — by + a,
Vitan®e — |2y T ° vht + ady + a,
20y — a4 tan-t t/ (dasy — a,?)
7y (dayy — a®) vh' — ay
with
# = — (4 — B)
A=A4 -+ B
a; = A" =V
T 2aa, 2ay
Ay
A = ?7%
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Since in practice z ¢ x for most of the wing, it is adv1sab1e to express the integrals J; and
J: as power series in z. -This leads to the result : : BN B

_ w2 2 8
Ji= xztan’e ta@wlog 2%
. 2. pe
—_ V(tanty — F) + terms of order z
tan ¢
; .
]2 —_— 1 10 LZl —_ E_it .

xtan ¢ 2x 9;2 2

L terms of order 2%
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Fi1c. 1. Notation.

OO <ot
e STREAM Line Ve

FINAL
FIRST STEP - . STREAM LINE

APPROXIMATE
METHOD

\@"v@——@__

SECOND STEP

FINAL RESULT

F1c. 2. Sketch of an iteration procedure for determining the aerofoil surface and of an approximate method.
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