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Summary.—A description is given of an arithmetical method for obtaining solutions for steady incompressible viscous
flow at low Reynolds numbers in the form of expansions in powers of the Reynolds numbers. The method has been
used to find a solution for the flow past the mouth of a two-dimensional static hole. The pressure in the hole is
determined and it is shown that the disturbance to the flow caused by the hole produces an error in the pressure
recorded in the hole. The error is positive and if it is expressed in non-dimensional form, 7.e., (pressure error/3pU%),
its magnitude decreases with increasing Reynolds number for the range for which the solution is valid. The theoretical
results are compared with experimental results obtained for the error in the pressure recorded by a circular static hole.

1. Method—(Note: In what follows, for convenience, the usual convention is reversed and a
dash indicates that a variable is dimensional while the absence of a dash means that a variable
is in non-dimensional form).

The Navier-Stokes equations for the steady flow in two-dimensions of an incompressible
viscous fluid may be written:

oot 1 awlacl 31/)’3@") .
2 2 > .
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VA = e e @
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where V= (ax/z -+ ay’2> )

v is the kinematic Viscosify, »' the stream function defined by

r 81/"’ ' 31/1' ’
n — *— a—.y-; , U = a—x, . .. .. PN . (3)
and ¢’ is the vorticity '
, ay’ du’ _ A
C_a—x'_;W' e .. .. e (4)

(#', v’) are the rectangular components of the velocity ¢’ in the directions of the axes of x’
and y’ respectively. :
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The equations (1) and (2) may be rendered dimensionless by the substitutions

!

x :Lx,y':L_y,u':Uu’v’:Uv,q':Uq

U Lo .. (5)
Qp' — UL’(,U, C’ = z‘é‘,pl = %pUZP

where x, y, #, etc., are dimensionless variables corresponding to «’, y', u', etc., Uis a representa-
tive velocity and L a representative length. The equations then become

s R (23

where : R = U;—L , a Reynolds number.

It is proposed to expand ¢ and y in the form

[ =10, + 0,R + 6,R? + 6,R® 1 ....

(6)
v =y, + 4 RF-4,R*+ AR 4. ...

Here ¢, v, represent the values of {, » in the solution of V% = V% = 0, and the é’s and 4’s are
numerical coefficients and are functions of position. Substitution of these expansions in equations
(la and 2a) gives, on rearranging,

V%, + RV, + RIV%, L RPV%, 1- . ... 7

—r(2 2 tnn

and ,
Ve, + RVA, + R*V32A, 4 R*V324, - ...

={, -+ R + 8,R* - 6,R* + . ..... J
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The coefficient of R**! in expansions (6) has no effect on the coefficient of R*, and equation (7)
may be separated into a series of pairs of equations:

~

VZC}Z — O ]
, (1)
Vi, =&, A
. . dy, 9L, yy, ach)
2 —_— P 8 o8 _rthR _°R
RV, = R( ax 9y dy x (i)
RV, — Rs, | : Fee (8
sy, — gof 2 80 _ 39, 35, o, % _ 24y o)
RV, = R ( dx dy dy ox - x dy dy x (i)
R*V?4, = R%,
and so on. J

When ¢,, », have been obtained as functions of position from equations (8(i) ) it is possible to
proceed to determine é;, 4, as functions of position from equations (8(ii) ). The process may be
continued as far as is desired, since all the functions required for the solution of any pair of
equations will have been determined from the solutions of the equations previous to it.

2. Nuinerical Solutions—The equations (8) may be solved by a numerical process similar to
that employed for the Navier-Stokes equations’. The continuous field of flow is replaced by a
- rectangular mesh and finite difference approximations to the equations are employed to calculate
values of the functions ¢, é,, 6, ...., v, 45, 4, .... at the discrete points of the mesh. The
finite difference approximations to equations (8) used in the problem described below were:

Cho = Chm \l ' )

”? . e .. . .. . o (1)
¢h0:lem—§ChoJ .

= Com — Tlé[(‘sm - 510)(3 — D) + (815 — 51D)(C e A)
+ (“_C)(AIB_AID)-'{‘ (b_d)(Alc“AlA] . (iii)

Az(]:AZm_ 020

etc. J

where {;, is the value of ¢, at the centre of a square of side 2% recalculated from the corner values
and ;,, is the mean of these corner values. The small letters represent ¢, values and the capital
letters u, values at the mesh points as shown in Fig. 1. The method of solution is one of
reiteration. Assumed values of {,, v, are placed at the mesh points and they are progressively
improved at each point by use of equations (9(i) ). When ¢, v, have been determined in this »
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way, to the desired degree of accuracy, the factor i [(@ — ¢)(B — D) + (b — d)(C — A)] is cal-
culated for each point and equations (9(ii) ) are then used to obtain values of 4, 4, in a similar
fashion. The process can be continued to give as many terms as desired in the expansion of ¢
and v; however, there is a practical limit to the number of terms which can be obtained because

of the increasing complexity of the factor to be determined for insertion in the right-hand side
of the first of each pair of equations.

The method described above has similarities to that used by Thom and Klanfer? to obtain a

solution for the potential function in compressible flow in the form of an expansion in powers
of the Mach number.

3. Boundary Conditions.—At a solid boundary v is us'ually known, but the value of { must

be calculated from the pattern of flow in the vicinity of the boundary. The formula used here
is that due to Woods?®:

3(pr — ¢
(:E:—(‘@W-—w’f)——;, O ¢ (1)

where 7, vz are the values at E, a point on the boundary, and ¢z, v the values at a point, F,
in the flow distant s from E (Fig. 2). Substitution of the expansions (6) for £ and  in equation
(10) gives: ‘

S+ Royp -+ R6pp + ...t
3

:7;,]:5 (u)hF + RAIF + RZAzF + ...... —_ whE)

- %(ChF + R61F + R262F ‘I“ e )

(Note that on the boundary vz = v,z).

The equation can be separated into

3 1 A
Chp = o (‘PhF - 1l’hE) __z'chF
3 1 - .. .. .. .. 11
51E=%72A1F“§51F : (11)
etc.

J

which enables boundary values for each term in the expansion of ¢ to be determined.
The validity of solutions obtained by the method described above is discussed in the Appendix.

4. Vaiscous Flow Past a Two-dimensional Static Hole.—The method described above was used
to obtain a solution to the steady viscous flow past a two-dimensional static hole in the side of a
channel, shown in Fig. 3. The representative velocity U of the substitution (5) above was taken
as the centre-line velocity in the undisturbed flow and the representative length L as the width
of the mouth of the static hole. The solution has been continued far enough to give the co-
efficients d,, 4, of R*in the expansions of ¢ and y and to give a reliable estimate of the magnitude
of é;, 4;,. Numerical values obtained for the first three terms are recorded for the part of the
field near the static hole in Figs. 4, 5 and 6. The grid used had eight squares to the width of the
slot. The sharp corner at the edge of the slot presents a difficulty and further subdivision of
the mesh in the immediate neighbourhood of the sharp corner would be required to give the details
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of the flow in that area. However, the advance from a coarser mesh (four squares across the
mouth of the slot) to the present mesh made little difference to the solution except in the
immediate vicinity of the corner and altered the magnitude of the integrals for pressure by less
than 5 per cent. It is considered that further subdivision would have little effect on the solution,
except at the corner itself. '

The first term of the solution, which is in fact the solution for V% = 0, gives a pattern which
is symmetrical about the line BAB’ of Fig. 3. The next term, in R, destroys this symmetry,
being itself anti-symmetrical about BAB’. The term in R? is symmetric about BAB’, that in R®
anti-symmetric, and so on. The streamlines for the V*y = 0 solution are drawn in Fig. 7a.
In Fig. 7b the dividing streamline across the mouth of the static hole is drawn for R = 0 and
for R = 5, to illustrate the destruction of the symmetry about BAB” when R 5 0.

5. Pressure in Static Hole—In Ref. 1, equations are obtained by integration of the Navier-
Stokes equations along lines x = constant, y = constant, which enable the difference in pressure
at points in the fluid to be calculated. The corresponding equations in non-dimensional form are

p— b=t — g+ 5| dy—2[ way (12
2 1 1 2 R lax L .« P .. P
for integration between points 1 and 2, on a line ¥ = constant, and
2 (*a 4
PA_pszqaz__%z_RJ35§dx—{—2f3dex )

for integration between points 3 and 4, on a line y = constant. These equations were used to
evaluate the pressure difference between points O and B (Fig. 3). The point O was taken at
such distance from the slot (OA = 2L) that the flow there was practically the undisturbed flow.
The result obtained by taking account of the first three terms of expansion (6) was

by — po= R0 4 0-187 — 0-00046R — 0-00144R*. .. .. (14)

If the slot had caused no disturbance of the flow:
d 8-00
(PB — po)undisturbed - (PA — pﬂ)undisturbcd = OA ‘8_€C = T .
Let (pB - PO) - (PB - p())undis;urbed = AP:

then 44 is the error in the pressure recorded in the static hole due to the disturbance caused in
the flow by the hole itself.

Ap = O—]'gl + 0-187 — 0-00046R — 0-00144 R*. .. .. .. (15)
Also
PB—ﬁAEA'p:O-082—0-00144R2. .. .. .. .. .. (16)

It is of interest to note that if the integrations for pressure take account of only the first terms
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of expansions (6) (z.c., the V*y = 0 solution), equations (15) and (16) become respectively,

Ap:(%sl+0-354 ....... s
A% =0-196, .. .. .. ... ... . (e

which differ from the result obtained if, in equations (15) and '(16), R is made negligibly small.
This would seem to be an example of what Birkhoff* calls an  asymptotic paradox .

To the accuracy of the present solution the fluid is stationary in the lower half of the slot.

Thus, the pressure has a constant value across the bottom of the slot, the value being given
by equation (15). “

6. Effect of Depth of Slot.—It was found that for a slot of half the depth of that drawn in
‘Fig. 3, the magnitudes of 4p, 4’p were not appreciably different from those given above. It is
considered, however, that a further reduction in the depth of the slot would cause the magnitudes
of 4p, 4’p to be changed by an appreciable amount.

7. Comparison of Results with Experimental Values.—In Fig. 8 the value of Ap of equation (15)
is plotted as log 4p against log R (curve ‘a’). On the same diagram is plotted the function
suggested by Ray® as giving the error in the pressure measured by a circular static hole:

"F(R) = 0-58R 3/,
Ray’s F(R) is defined by

A s
F(R) = — P
%P(d, 8y,> ’
where d’ is the diameter of the static hole. Since most of his experiments were made with hole

diameters quite small compared to the half-width of the channel, {4’ (5u'/ 3y')} approximates to
the value U, where U is the velocity of the flow at a distance 4’ away from the wall.

Hence

F(R) = 5%2 approximately,

which is the same expression as was used to obtain 4p:

ap— A7

714

However, here U is the velocity at the centre-line of the two-dimensional channel, since the
width of the slot in the solution of this paper is one half the width of the channel.

It would seem more reasonable to take

A !
API = P 8%1 >
3p U<d' )




which takes some account of the shape of the velocity profile near the static hole as well as of
the velocity itself. If this latter form is used, F(R) of Ref. 5 is altered relatively little, as shown
in Fig. 8, but 4p, = 34p. Log (4p/2) is plotted on Fig. 8 also, as curve ‘b’

In comparing the theoretical with the experimental results, account should be taken of the
fact that the theoretical analysis is for a two-dimensional static hole. The valile of 4p for the
three-dimensional case of a circular hole could be expected to be smaller than in the two-
dimensional case by a factor which might be expected to be approximately one half. These
tentative three-dimensional values are shown as curve ‘ ¢’, which is a plot of log (45/4).

The curve ‘ ¢’ is considerably removed from the extrapolated value of Ray’s function, F(R).
However, it must be recorded that the theoretical results presented are for laminar flow and are
considered to be valid only for 0 << R << 1; Ray’s results are almost entirely for turbulent flow
and were obtained in the range 3 < R < 1000. It is possible that as in the. case of resistance
to flow in a pipe there should be two different functions for 45, one for laminar and one for
turbulent flow, connected by a range of transition values.

LIST OF SYMBOLS

P Stream function in viscous flow
¢ ~ Vorticity
»  Kinematic viscosity
q Local velocity of flow
u, v Rectangular components of ¢ in thé direction of x and y respectively
. [ a2 92
VE. The Laplacian operator (29—922 + 53—;)
R Reynolds number

A representative velocity

L A representative length
4p Error in the pressure recorded in a static hole due to the disturbance caused in the
flow by the hole itself.

The addition of a dash to the symbol for a variable indicates that the variable is in dimensional
form while the symbol without a dash represents a variable which is in non-dimensional form.
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APPENDIX

Validity of Solutions

The Navier-Stokes equations for steady flow in two dimensions of an inconipreséible viscous
fluid may be written (in non-dimensional form) -

138 1 0 2
X_Qa—i:_ﬁvzu_l_%é%—l_v%" . .. . .o (17

12 1 b d
Y——Z—gz—]—evzv—l—uéz—[—v(%. (18)

Where X, Y, are in non-dimensional form the components of the external forces acting on unit
mass of the fluid {X’ = (U?/L) X}. On eliminating $ we obtain

20X Y 1 _, (81/) o p 8C>
—@—E—FVC— ————— . .. .. .. (19

In the solution presented in this paper it has been assumed that

X oY
5&_%:0. .. .. .. .. .. . .. .. (20)

The correctness of the solution obtained is determined by how accurately the values of ¢, v
obtained fulfil this condition when substituted into equation (19). The solution has been
obtained in the form (6):

=10+ 0R + 6,R+ 6,R + ......

Y =y, + 4R + AR AR ..
8

(6)



Inspection of Figs. 4, 5 and 6 will show that everywhere ¢, and 4, are respectively of the
orders £,/50 and £,/500 or less, and that 4, and 4, are respectively of the orders v,/500 and v,/5000
or less. It is known also that 8;, 4, are of the order one-tenth 4, 4, respectively. Consequently,
for R < 1 the solution presented in Figs. 4, 5§ and 6 should be a good approximation to the final
solution for ¢ and .

At the same time the condition (20) above has been satisfied to the same degree of accuracy,
for (0X/ay — 3Y/ax) differs from zero by an amount

1 2_(31,)’35 awag)
RV \@man o)

which has a magnitude

dy, 99 oy, 96 811 L) oA, 99, aAd, 3¢ od, a¢ )]
2 2y __ |tk 72 ¥R 72 1 7% o T 225k 72 ok
R [V % < T x Yy dy ox 0% ay dy ox

for the solution taken as far as the terms in R®. This is known to have a magnitude of the same
order as that of d,, 4,. It is considered therefore that the solution of Figs. 4, 5 and 6 is valid
for R <1. It may be valid for somewhat higher values of R, but this could be determined
only when more terms in the expansions of ¢, y are known.
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