
LI b r ARY 
R O Y A L  AI ~'','~,~ - -~-,',':' ':-f" LS FA BLIS'-'-~ '~i c-,''* 1~ 

. a  

R. & M. No.  3077 
(19,8~0) 

A.R.O. Technical Report 

M I N I S T R Y  OF SUPPLY 

A E R O N A U T I C A L  RESEARCH COUNCIL 

REPORTS AND M E M O R A N D A  

Methods for Determining the Wave 
Drag of Non-Lifting Wing-Body 

Combinations 
By 

L. M. SHEPPARD 

© Crown Copyright z958. 

LONDON : HER MAJESTY'S STATIONERY OFFICE 

1958 
TE'N S H I L L I N G S  NET 



Methods for Determining the Wave Drag 
Non-Lifting Wing-BodyCombinations 

By 
L. M. SH~.I'PARD* 

of 

COMMUNICATED BY THE DII~ECTOI~-GENEr.AL OF SCIENTIFIC RESEARCH "(ATR) 
MINISTRY OF SUPPLY 

Reports and Memoranda No. 3o77I 
A p r i l  1 9 5 7  

Summa~y.~The area-rule, moment of area-rule and transfer-rule methods for estimating the wave drag Of wing-body 
combinations are discussed. It  is pointed out that the moment of area rule and the transfer rule are different forms 
of the area rule, and that the transfer rule expresses the interference wave drag in a simple form. The existing methods 
of wave-drag estimation are restricted t o  combinations with bodies having continuous surface slope a n d h e r e  an 
extension to combinations with bodies having discontinuous surface slope is given. This paper is concerned with the 
theoretical methods and their associated numerical techniques and no numerical results .or particular applications 
are presented. 

1. Introduction.--Important problems in the design of eransonic and supersonic aircraft are 
the calculation of the wave drag of the configuration and the design of the fuselage so that  the 
overall wave drag is a minimum for 'certain specified conditions. Solutions of these two problems 
can now be found by using the area rule. The justification of the area rule at transonic speeds 
depends solely upon experiment. 

Originally the area rule was applicable at sonic speed only and, in this form, is due  to  
Oswatitsch, Whitcomb 1 and Lord. ~ Whitcomb I based his formulation of the sonic area rule 
upon an experimentally verified equivalence between wings and bodies at sonic speed; it was 
shown that there does exist a marked similarity between the shock wave patterns around a 
wing-body combination and that  body of revolution which has the same cross-sectional area 
distribution. This result is clearly of a non-linearised nature since shock waves are considered. 
A different form of the sonic area rule is due to Lord ~ who used the supersonic linearised theory 
to derive an expression for the wave drag ; thus quantitative theoretical comparisons can be made 
between the sonic wave drags of different configurations. The design of optimum wing-body 
combinations with minimum sonic wave drag has been examined by Lord s, 4 while the calculation 
of the sonic wave drag has been simplified remarkably by Eminton and Lord 4. 

The extension of the area rule to supersonic speeds is due to Jones 5 and Whitcomb, who have 
made the implicit assumption that  the effect of the interference velocity potential on the wave 
drag is negligible. Several aspects of this extension have been examined by Lord 6 and WarrenE 
An important presentation of the mathematical basis of the area rule has been given by Ward s, 9,10, 
who also suggested an alternative form, which is described as the transfer rule. A special case 
of the supersonic area rule, called the moment-of-area rule, was given by Baldwin and Dickey 11, 
whose result has been obtained independently in a different form. It  is interesting to note that  
.the supersonic area rule could be deduced directly from a wing drag result obtained by Hayes 1~ 
m 1947. 

* Attached scientist from the Weapons Research Establishment, Salisbury, South Australia. 
t R.A.E. Report Aero. 2590, received 12th June, 1957. 



A comprehensive summary of American work on the wave drag of wing-body combinktions 
has been given recently by Lomax and Heaslet ~3. This paper 1~ and the references cited therein 
contain important theoretical analyses of the wave drag of configurations under conditions for 
which the area rule is not applicable. The area rule applies to combinations of non-lifting thin 
wings and slender bodies, which can be represented solely by surface source distributions with the 
source strengths proportional to the local surface slopes in the streamwise direction. In certain 
circumstances these source distributions may be discontinuous and it appears that, in so far as 
the use of the area rule for the estimation of wave drag is concerned, discontinuities in source 
distributions give rise to difficulties only when they occur along straight lines inclined such that  
the component of free-stream velocity normal to the line is supersonic (or sonic), in the case of a 
wing, or when they occur around the circumference of a cross-section of a body. Such discontinuous 
source distributions are not discussed by Lomax and Heaslet ~ and so some consideration is given 
to them in this report. The cases of lifting configurations, which require the introduction of 
surface doublet distributions, and combinations with non-slender bodies, which can be treated 
by using axial distributions of multipoles as well as simple sources, are discussed in detail by 
Lomax and Heaslet a~ and are not considered here. Further information on configurations 
incorporating non-slender bodies is given in Ref. 14. 

This present report is concerned only with theoretical methods  and their associated numerical 
techniques and no numerical results or particular applications are given. In Section 2 a summary 
is presented of the theoretical methods for estimating the wave drag of configurations to which 
the area rule does apply, namely combinations of wings and bodies with continuous source 
representations, and the problem of body design for low total wave drag is also discussed; the 
sonic area rule, supersonic area rule, moment of area rule and transfer rule are treated separately. 
In Section 3 extensions are given of the area and transfer rules to configurations incorporating 
bodies represented by discontinuous source distributions. The appropriate numerical techniques 
are described in Section 4. Since this report is concerned with idealised combinations of wings 
and bodies, Section 5 contains some remarks of a more practical nature and it is indicated how 
the methods developed for wing-body combinations may be applied to aircraft. F ina l ly ,  the 
main conclusions of the report are given in Section 6. 

2. Combi~at¢ons with Bodies R@resented by Continuous Source Distributions.--2.1. So~,¢ic Area 
R~le.--Before preceeding with a description of the area rule and its alternative forms a statement 
of the sonic area rule will be given, since this is a simple special case of the general area rule and 
thus provides a useful introduction to it. 

2.1.1. Estimation of wave drag.--Consider a non-lifting configuration o f  unit length and let 
S(x), 0 <~ x <~ 1, be the axial distribution of cross-sectional area. The area distribution S(x) 
must be such that  S'(x) (=  dS/dx) is continuous and S'(O) -- 0 ----- S'(1). Then the sonic wave 
drag D is given by 

D_ I log 
q 2~ 0 0 -- ' . . . . . . . .  

where q is the kinetic pressure and S"(x) denotes d2S/dx 2. An alternative expression for the sonic 
wave drag when S"(x) is continuous is given by Legendre 15 in the form 

q 2~ 0x,(1 - - x , )  ~ 0 0L x , - - x 2  A 

This form has the advantage that it is non-singular, introduces only S'(x) and shows that  the 
drag is positive. A mote general form of this result when S"(x) is not continuous is more complex, 
although equation (1) remains valid as it stands. 

The development of the area rule began after the work of Whitcomb ~ who obtained experimental 
verification of the importance of the cross-sectional area distribution at transonic speeds. How- 
ever, the physical interpretation of the sonic wave drag given by equation (1) requires further 
elucidation and must depend upon experiment unless an adequate non-linear theory, which 
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is applicable to the transonic range, can be found. Following the suggestions of Lord s, the sonic 
wave drag of a wing-body combination may be interpreted physically as a measure of the sudden 
transonic drag rise of the configuration, when such a drag rise can be defined. 

I t  is worthy of note tha t  the usefulness of equation (1) is greatly enhanced by the fact tha t  
the linearised theory predicts zero lift-dependent wave drag at M = 1. Thus equation (1) is 
not restricted to non-lifting configurations since it gives the total sonic wave drag of a lifting 
configuration (for a discussion of lift-dependent wave drag, see for example, Lomax and Heasletla). 

2.12. Design for low wave drag.--The design of a wing-body combination with low sonic wave 
drag requires the determination of optimum area distributions whose associated wave drag, 
given by equation (1), is a minimum. Lord and Eminton have investigated this problem and 
presented op t imum area distributions for a number of specified conditions. Thus in order to 
obtain low sonic wave drag it is necessary to alter the body, and possibly the wing also, so t ha t  
the  cross-sectional area distribution becomes an optimum, or near optimum. A simple example 
of an optimum area distribution is that  of a so-called Sears-Haaek body, which is pointed at. 
both ends and has minimum wave drag for given length and volume. 

2.2. Area Rule.--2.2.1.  Estimation of wave drag.---The area-rule method of estimating wave 
drag is due to Jones 5 and Whitcomb. However, the derivation of the area rule requires the use 
of an assumption even though the wing-body combination is represented by  source distributions 
only. The assumption is that  the effect of the interference velocity potential on the wave drag is 
negligible, i.e., the perturbation velocity potential of a wing-body combination is assumed to be 
equal to the perturbation velocity potential of the isolated exposed wing together with the 
perturbation velocity potential of the isolated body. 

I t  is convenient to define an elemental area distribution. Consider the family of parallel Mach 
planes inclined at the Mach angle to the body axis and such that  the orthogonal plane containing 
the body axis is inclined at the angle 0 to the ' plane of the wing '. A given family of Mach planes 
cuts the wing-body combination obliquely and thus defines an oblique sectional area distribution 
s(x, O, M), where M is the Mach number under consideration. The cross-sectional area distribu- 
tion S(x,O, M) = s(x, O, M) sin if, where ff is the Mach angle, is defined to be an elemental area 
distribution. Its associated wave drag is given by  equation (1) as 

q - -2~  S'(x~,O,M) S"(&,O,M) log ]x~--&[ d & d & ;  . . . .  (2) 

where S"(x, O, M) denotes ~2S(x, O, M)/~x ~ and it is assumed that  S'(x,  0, M) is continuous 
everywhere. When M = 1 it is seen tha t  all the elemental area distributions are the same, being 
equal to the cross-sectional area distribution. 

Hayes TM and Heaslet, Lomax and Spreiter 16 obtained a result which applies to wings on ly  but  
its application to wing-body combinations follows immediately from the assumption that  the 
effect of the interference velocity potential on the wave drag is negligible*. The wave drag of 
the configurat!on therefore can be expressed in the form 

D = 27 jo D(O, M) dO , . . . . . . . . . . . . . . . .  (3) 

i.e., the wave drag of a wing-body combination at a Mach number M is the mean of the wave 
drags associated with all the elemental area distributions. This is a complete statement of the 

* In  a private communicat ion L. E. Fraenkel  has shown tha t  this assumption is valid for small values of the ratio of 
body  radius to wing chord. This condition m a y  be derived by  considering a configuration with a circular cylindrical 
body  and then  observing tha t  the impor tant  parameter  of an interference flow field is BR,/c where B = ~/(M 2 --  1), 
R, is a typical  body  radius and c is the wing-root chord. Thus the interference velocity potential can be neglected 
for small values of BR,/c because its effect vanishes when R, = 0 and when B ----- 0 (i.e., M ---- 1). When the above 
condition is not satisfied the error introduced by  the neglect of the interfererfce velocity potential  is not  known. 
However,  it is possible tha t  the error will not  be large because tile interference velocity potential  can be neglected 
also when the ratio BR,/c is large, any  interference effects vanishing when c = 0 or B = oo. 
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area rule originally given by Jones 5. Ward 8 has derived the same result by using operational 
methods, while Graham, Beane and Licher 17 have also given this result. When M = 1, equations 
(2) and (3) reduce to the sonic area-rule result, equation (1). 

It  is important to note that  the derivation of the area rule (equation (3)), required all the 
elemental area distributions to be such that  S'(x, O, M) is continuous everywhere. Nevertheless, 
provided that  almost all the elemental area distributions satisfy this requirement the wave drag 
may still be given by equation (3). This condition is much less restrictive than the original one*. 

An elemental area distribution of a thin-wing-slender-body combination can be written in the 
approximate form S(x, O, M) = S(x) + Sw(x, O, M),  where S(x) is the cross-sectional area distri- 
bution of the body and Sw(x, O, M) is the contribution from the exposed wing. The wing is taken 
to lie in the plane z = 0 (see Fig. 1) and its thickness at the point. (x, y) is denoted by T(x, y). 

Consider any Mach plane cutting the axis at the point x = xl. Then this Mach plane cuts the 
wing obliquely along an area which, when projected on to the plane x = xl, defines the area 
Sw(x, O, M). This projection may be regarded as a projection on to a plane normal to the wing 
followed by a projection on to the plane x = xl. The former projection defines an area equal 
to the wing thickness integrated along the line in which the Nach plane cuts the wing, i.e.,- 
x -- xl = y tan v where tan ~ = cot/~ cos 0. I t  follows that  

Sw(x, O, M) = f T(x + Yl tan v, Yl) dyl.  
T#O 

Heaslet, Lomax and Spreiter 16 obtained this result in an equivalent form. 

The above result applies to a wing lying in the plane z = 0. However, its extension to a more 
general wing is not difficult and follows immediately from the definition of an elemental area 
distribution. The general result, which includes the previous result as a special case, can be 
written in the form 

• Sw(x, O, M) = f T(ff) d r ,  
T#O 

where an element of the wing plan-form is denoted by dx dr, a general point in the co-ordinate 
system of Fig.. 1 is denoted by R = (x, r), R = (x + Be0 r, r), where B = cot #, ro is the unit 
vector (cos O, sin 0) and 0 is defined by y = r cos 0, z = r sin 0. 

2.2.2. Design for low wave drag.--The problem of reducing the supersonic wave drag of a 
wing-body combination with a given wing was examined first by Jones 5. At sonic speed, a body 
may be modified so that  the equivalent body, which has the same cross-sectional area distribution 
as the wing-body combination, is an optimum with the same total volume, i.e., the modified body 
is formed by shaping the optimum equivalent body in the region of the wing. At higher speeds 
the wing may be influenced by, and may itself influence, a larger part of the body. Thus the 
corresponding optimum equivalent body shaping extends outside the region of  the wing and 
may be shown to be over that  part of the body within the Mach diamond of the wing. Details 
of this drag-reduction procedure are given in section 2.4.2. where the transfer rale is discussed. 

Another problem of interest is that  of reducing the wave drag of a general configuration and 
this has been discussed by Jones 5 in a qualitative form. All the elemental area distributions 
should be such that  their associated wave drags are as low as possible. The design of combinations 

* Since this report was completed, Lock TM has shown that the wave drag of a rectangular wing can be found using 
the area rule (equations (2), (3)). Thus the smoothness condition that S'(x, O, M) be continuous everywhere appears 
to be unnecessary for the wing of a configuration. 



satisfying this requirement appears to be very difficult except in certain special cases ; for example, 
at low supersonic speeds only a small number of elemental area distributions are required and 
so an iteration method can be used to obtain a modified configuration with low wave drag. 

In the case of an isolated wing it is interesting to use the area rule to determine the optimum 
thickness distribution for minimum wave drag, the plan-form and volume of the wing being 
given. A particular case of this problem was first examined by Jones 1° who showed that  if the 
plan-form is elliptic then the wing section must be parabolic-arc biconvex with thlckness/chord 
ratio proportional to local chord. However, Graham, Beane and Licher 17 have used the area 
rule to obtain the same result and have shown that all the elemental area distributions represent 
Sears-Haack bodies (i.e., bodies of minimum wave drag for given length and volume.) The 
result for the wave-drag coefficient of the optimum wing of elliptic plan-form is 

~A~B ~ ~A~B~/~  

where CD is based upon the wing plan-form area 

A is the aspect ratio of the wing 

*0 is the thickness/chord ratio at the wing root. 

Also , o  = (32V)/(~Ac3), where-V is the volume of the wing and c is the wing-root chord. 

2.3. Moment of Area Rule.--2.3.1. Estimation of wave drag.--The moment  of area-rule method 
is due to Baldwin and Dickey ~, who expanded the wave drag in a series o.f powers of 
B~--  - (M s -  1). The results presented later in this section are similar and were obtained 
independently of Baldwin and Dickey ~ whose results will be described first. 

T h e  first step towards a series solution in ascending powers of B ~ was made by Adams and 
Sears ~° who developed a ' not-so-slender'  wing theory by obtaining an expansion up to the first 
power of B ~, the term independent of B ~ being the slender-wing solution. These results emphasise 
the fact that  the series solution is actually an expansion in ascending powers of B2k ~ where k is 
the slenderness parameter introduced by Adams and Sears ~°. For example, in some wing problems 
k may be defined as the aspect ratio. 

Before proceeding with a description of the moment  of area rule developed by Baldwin and 
Dickey 11, it is necessary to obtain an alternative form of equation (1). Using the substitution 
x = ½(1 -- cos ~), 0 ~< x ~< 1, S'(x) is expressed as a Fourier sine series in the  new variable ~ ; 
namely 

S'(x) = ~ A,~sinn~, 0 ~< ~ ~< ~ .  

Substituting this series in equation (1) shows that  the wave drag is given by 

D 7~ oo 
- -  ~. nA,,~ . 

q 

Therefore, using similar substitutions equation (3) can be written as 

q s o ,~=1 

where A,(O. M) is the Fourier coefficient appropriate to the elemental area distribution S(x, 0, M). 
Baldwin and Dickey n expanded the Fourier coefficient A,,(O, M) in a series of powers of 
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B ~ =  (M ~ -  1) and it is found that,  within the usual order of approximation, the wave drag 
of a configuration with the wing in the plane z = 0  (see Fig. 1) depends solely upon the moments 
of area defined by 

= s(x)  + t T(x, Y) d y  
d T.~ 0 

and 
f f  

M,(x) = | T(x, y) yi dy, i even, i >~ 2,  
d T#O 

where S(x) is the cross-sectional area distribution of the body and, in the notation of Fig. 1, 
T(x, y) is the wing thickness at the point (x, y). Clearly, Mo(x) is equal to the cross-sectional 
area distribution of the wing-body combination and M~(x) is equal to the distribution of the 
cross-sectional polar moment of inertia of the wing. 

The final result for the wave drag may be written in the form D/q = ao + a=B ~ -/O(B~), where 
a0 depends upon Mo(x) and a~ depends upon both Mo(x) and M~(x). The higher terms in this 
series are more complex and so, as Baldwin and Dickey *t have stated, the method is simple to 
apply only at low supersonic speeds. Nevertheless, within this speed range it does offer a simple 
qualitative method for reducing wave drag; a useful requirement is that  the moment of area 
distributions be as smooth and ' slender '  as possible. I t  is suggested that,  in general, it will be 
sufficient to consider only Mo(x) and M~(x). 

Beginning from equatons (2) and (3) it has been shown that,  for a configuration of unit length, 
the wave drag is given by 

q - o o log 

+ ½ - ~  {~,~(&)} ~-~ {~,~(&)} log Ix~-- x~[ d&d& + O(B~), .. .. (4) 

where %, ,(x), J i ,  a(x) are generalised moments of area defined by 

1 Ri+2(x, O) cos 40 dO 
- i + o 

1 ff~R~'~(x, 0) sin 40 dO 
0 

where r = R(x, 0) is the equation of the cross-section at the station x. I t  is assumed that  the 
series in equation (4) is convergent and that  all necessary continuity and differentiability con- 
ditions are satisfied. Furthermore, since the body is slender it is important  to note that  the 
expressions for the generalised moments of area can be simplified. Within the usual order of 
approximation, the contribution of the body can be neglected for all %,~, ~,~( i  # 0). Thus in 
equation (4) the body contributes to the wave drag only in so far as does S(x), the cross-sectional 
area distribution of the wing-body combination. For a wing symmetrical about the planes 
0 = O, ~/2 (see Fig. 1) the generalised moments of area can be written in the simpler forms 

~'i,a(x) = 0 ,  Z odd, 

Y,,a(x) ---- O, all ,~, 

and since ~ ,  0(x) is the i th  moment of area, it follows that  ~ ,  0(x) = M~(x)~ 
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Thus equation (4) becomes 

B 2 
D = D{S} -J---4 [D{S + M('} -- D { S } -  D{M('}] -}- O(B4), . . . . . .  (5) 

Wahere D{S}, D{M('}, D{S + M('} denote the wave drag o f ' b o d i e s '  with the cross-sectional 
red '  distr ibutions S(x), M('(x), S(x) + M('(x) respectively and it has been assumed tha t  

M(H(x) is continuous everywhere. At first sight this condition seems to limit very seriously the 
applicability of equation (5) but  it is not unduly restrictive sincel for example, i t  is satisfied by  
an unswept, tapered wing with straight edges and biconvex section of constant thickness ratio. 
Moreover, the condition is satisfied by  the optimum second-moment distribution given in Section 
2.3.2, although it is not satisfied by the Jones elliptic wing discussed in Section 2.2.2. When 
the wing is defined numerically, equation (5) has the serious disadvantage tha t  the wave drag 
cannot be determined very accurately since it  is necessary to carry out two successive numerical 
differentiations in order to calculate M2"(x). 

The importance of equation (5) lies in the fact that  it reduces the calculation of the wave drag 
of a ' not-so-slender ' configuration to the calculation of the wave drag of three ' bodies '. Thus 
numerical evaluation of the wave drag is considerably simplified and can be carried out using 
the methods of Section 4.2. However, it should be emphasised tha t  both S'(x) and M("(x) must 
be continuous everywhere before equation (5) can be used. Therefore the Fourier-series method 
described earlier in this Section may be used, the substitutions being 

x = ½(1-- cos g) , 0~<x~<  1, 

S'(x) = ~ A,, sin n9 
n = l  

and 

M21;r(x) = ~ B, ,  sin n9 • 

Equation (5) now becomes" 

D 
q 91: n = l  V'T ~ = 1  

I t  will be noticed tha t  only the coefficients B,, for which the corresponding coefficient A,, is non- 
zero appear in the wave drag. Thus this form of the wave drag is useful when most of the A,, 
vanish. I t  is especially useful when the area distribution S(x) is an optimum distribution with 
a finite Fourier series. For example, the Sears-Haack body has A,, = 0, n # 2. 

2.3.2. Design for low wave drag.--It has already been emphasised tha t  the main usefulness of 
the moment of area rule is as a qualitative design procedure for low supersonic speeds. Baldwin 
and Dickey 1~ have examined the use of the method in designing configurations with minimum 
wave drag under specified conditions. The procedure used isa  step-by-step optimisation technique 
whereby successive terms in the series solution are optimised one after the other. Thus a unique 
set of moment distributions is found. 

The optimum set of moment distributions for minimum wave drag, the lengths and the 
' v o l u m e s '  being fixed, is given by Baldwin and Dickey 11. In this context the 'vo lume " is 
the p t h  moment ' volume '* of the configuration defined by 

V~ = f'P M/x)  dx , 
0 

* The p t h  momen t  ' v o l u m e '  does not  have any  physical  significance unless 15 ~ 0 when it  is the  ac tua l  volume of 
the  configuration. 
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where lp is the length of the p th  moment distribution, i.e., l0 ---- t, the length of the combination 
and, for p ~> 2, Ip = l~, the length of the projection of the wing on the body axis. The result is 
tha t  the optimum moment distributions which vanish at x = 0, Ip, are 

[- / 
Z 
z , / 2  ] J L \ 

peven ,  O~<x~<Ip 

and tha t  the wave drag of the optimum configuration is given by 

_ _ FM (I, 1 ,_ _ / 2 ) _  D _ 4 1 1 s [ M o ~  ll2)-] +16537.5 L l~ ~ j B~ I + O(B~) . 
q 

I t  will be noticed tha t  no term in B ~ appears in this result. 

Since all the terms in the above expression for the wave drag are positive, it has been pointed 
out by  Baldwin and Dickey 11 tha t  the wave drag of a configuration, which is optimum for their 
conditions, must increase monotonically with increasing Mach number and be very large when 
the second term is very much greater than the first term, i.e., 

(Mo(Z/2)ZZ  
B ---  0 ]" 

Thus the Mach number indicated by this relation can be used to find an obvious upper limit to 
the range of applicability of the optimum technique. This emphasises once again the restriction 
of the method to low supersonic speeds and therefore that  it is necessary to consider only the 
first few terms of the series solution. Baldwin and Dickey 11 have pointed out tha t  the step-by-step 
optimisation technique fails at higher supersonic speeds because it eliminates all except positive 
definite terms in the expression for the wave drag. I t  appears tha t  a more realistic optimisation 
procedure, based on equation (5), will be obtained if the term in B ~ is negative instead of zero 
as in the above procedure. The fact tha t  the term in B 2 can be negative is shown readily by  
considering an unswept wing, such as the Jones elliptic wing discussed in Section 2.2.2. 

Experimental confirmation of the usefulness of the moment of area rule for wing-body com- 
binations has been given by  Baldwin and Dickey 11. Firstly, the optimum area distribution was 
found and then an optimum second moment distribution was obtained by  adding bodies of 
revolution near the wing tips while modifying the body to retain the optimum area distribution. 
The tests involved an unmodified configuration, one with the optimum area distribution as well 
as one with both the optimum area distributions and, it will be noted, an optimum, lengthened 
second moment distribution. By  considering the difference between the wave drag of the wing- 
body combination and the wave drag of the body alone the agreement between theory and 
experiment was found to be good over the Mach-number range M = 1.0 to M = 1.4, for an 
elliptic wing of aspect ratio 2. At M = 1.4 the moment of area-rule model had a slightly lower 
wave drag than the unmodified configuration. Thus the sonic area rule is extended to low 
supersonic speeds by  using the moment of area rule. However, because 12 has been increased 
without changing M~(0), these experimental results d o n o t  justify anything more than the use 
of smooth, ' slender ' second moment distributions. 

I t  will be noted tha t  the above technique requires the addition of bodies to the wing. This is 
in contrast to the method described in Section 2.2.2, whereby the main body only was shaped 
for minimum wave drag. Thus it would be desirable to examine combinations with subsidiary 
bodies near the wing tips by  using the methods applicable at any supersonic speed, namely, 
the area rule and the transfer rule. The problem of shaping such subsidiary bodies is examined 
in Section 5.2.2. 



2.4.  
Ward s, 9, ~0, who has based his considerations upon the drag of source distributions. 
obtained by Ward I° is that  

D 1 
q - -  2= ; f  T"(R1)T"(R2)cosh-* ( [ & -  &] 

( * * -  .q  
f f ' , > Vcl , ex= 

Transfer Rule.--2.4.1. Estimation of the wave drag.--The transfer rule method is due to 
The result 

where d~, d~  

RIJ ~2 

PI~ ['2 

T" 

. . . . . .  (6) 

denote elements of area of the wing surface 

denote points on the wing surface (i.e., using Fig. 1, R is the vector (x, y, z)) 

denote the vector distance of the elements d~,, d~,~ from the body axis (i.e., 
using Fig. 1, r is the vector (y, z)) 

denotes a"T/ax", T being the wing thickness, 

and the integrations are to be taken over real values of the integrands. Ward ~° has not placed 
any restrictions on the validity of equation (6) bu t  it is valid only if the effect of the interference 
velocity potential on the wave drag is negligible. 

I t  is 0t interest to note that  if the three terms of equation (6) are denoted by D~, Dw~ and DB 
respectively, then equation (6) can be written in the form D = Dw+ DwB q- DB, where Dw is 
the isolated exposed wing wave drag, DwB is the interference wave drag and Dz is the isolated 
body wave drag. Following Ward 1° the interference wave drag Dw~ can be expressed in a simpler 
form and a useful alternative to equation (6) derived. Put  

1 f dV, . . . . . . . .  (7) A(x) = ~ V{B=r,=_ (x--  &)2}, . .  . .  

where dV, = T(R1) d~, is an element of volume of the wing and the integration is over that  part  
of the wing for which I x - -  x~l ~< B[r,]. This shows that  A(x) vanishes outside the Mach 
diamond which encloses the wing. Furthermore, Ward s shows tha t  equation (7) can be used for 
wings carrying slender bodies (e.g., tip tanks). 

Using equation (7) and assuming that  ~A/~x is continuous for all values of x, equation (6) can 
be written as 

1 ( Ix1-  x21 
q 

1 f f  A"(xl)A"(x2)log ([& -- x2l) d& d& +N 

ff [S't(Xl) -{- A t t ( X l ) ] ~ . ~ t t ( X 2 )  @ A/t(~2) ] log ([.5~ 1 - -  X2]) 'dxl d X  2 (S) 
2~ 

where A"(x) denotes ~2A/~x2. This result enables the interference wave drag to be expressed in 
the simpler form 

Dw. - -  It X - -  (o) 
q 

Thus DwB depends upon Mach number since A (x) does. 
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The transfer rule is the name suggested by War& for the wave drag result given by equation (8). 
Therefore A(x) will be referred to as the transferred area distribution of the wing. I t  follows 
from equation (7) that  the transferred area distribution can be determined by spreading each 
element of volume of the wing over the x axis according to the law dV~/~/{B~r~ ~ -- (x -- xd~}. 
Hence a volume element at the point (xx, r~) contributes to the transferred area distribution only 
within the range x~ -- B I rl I < x < x~ + B I r~ l- In addition, the volume of a body with the 
cross-sectional area distribution A (x) is equal to the volume of the wing. 

The work of Jones 5 suggests an alternative method for calculating A(x). Attention is con- 
centrated upon a point on the x-axis rather than a poifit on the wing. Then it is implicit in the 
work of Jones 5 that  A(x) must be equal to the mean wing elemental area distribution. This 
result can be verified for a wing lying the tile (x, y) plane bu putt ing dV1 = T(RI) dx~dy~ and 
changing the variable of integration x~ in equation (7) from x~ to 0 = cos -~ { (x~-  x)/Byl}, 
0 ~< 0 ~< =. Thus the double integration in equation (7) is replaced by an integration with respect 
to y,  followed by  an integration with respect to 0 and, using Section 2.2.1, it can be shown that  

1 ST(X, 0 M) dO A ( x )  = , , 

where Sw(x, O, M) defines a wing elemental area distribution. 

Now, returning to a consideration of the interference wave drag Dw~, the wave drag, given by 
equation (8), is written in the form 

D = D w  + D { S  + A } -  D { A } ,  . . . . . . . . . .  (10) 

where D{S + A}, D(A} denote the wave drag, given by equation (1), associated with the area 
distributions S(x) + A(x), A(x), and Dw is the wave drag of the exposed wing. Equation (10) 
shows that  the interference wave drag can be expressed as DwB = D{S + A} -- D { S } -  ,D{A}. 
For a slender wing, Dw = D{A} to the order of approximation considered and so D = D{S -1- A}, 
vchich is the standard result of slender-body theory. 

However, equation (10) is not in a form suitable for computation since Dw is the wave drag 
of the exposed wing, not the wave drag of some suitably chosen gross wing. Denote a suitably 
chosen gross wing by W0 and the portion blanketed by  the body by A W = W0 -- W. Further- 
more, denote the body source representation by Q~, the wing source representation by Qw and 
so on. Then, the fundamental  assumption that  the interference velocity potential can be neglected 
shows that  the source distribution representing the wing-body combination is Q = Qw + Q~. 
Therefore Q = Qwo + QB -- Q~w, where Q~w is the source distribution representing the portion of 
the gross wing blanketed by the body. Thus Q~w does not necessarily represent a slender body 
although A W is a low-aspect-ratio wing. But, QAw can be incorporated with the slender-body 
source distribution QB, i.e., for the purposes of wave drag evaluation Q~w may be replaced by the 
equivalent slender-body source distribution Q~A, where A A is the (transferred) area distribution 
of the blanketed wing A W. The wave drag of the configuration can now be simplified and 
ec~uation (10) becomes 

D = Dwo + D{S + A} -- D{A + AA},  . . . . . . . .  (11) 

it being assumed that  AA'(x) is continuous everywhere. This result is advantageous when 
Dwo is known from existing results in supersonic wing theory. 

An alternative method of changing equation (10) into a form suitable for computation is to 
replace Dw by DWN, the wave drag of the net wing. To construct the net wing, the segments of 
the exposed wing are placed together to form a continuous wing. This procedure is not un- 
reasonable because Dw = DWN at M -= 1, oo. The fact tha t  Dw ~ DWN at other Mach numbers 
seriously limits the accuracy of any results obtained by  setting Dw = Dw~v in equation (10). 
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I t  has been pointed out tha t  the moment-of-area rule is applicable at low supersonic speeds and, 
since this method is useful, it is desirable to investigate the transfer rule at such speeds. From 
the results given in the previous discussion it will be seen that  a simpler expression for the 
transferred area distribution of the wing system is required. This is readily found at M = 1 since 
the transfe/red area distribution is then equal to the cross-sectional area distribution of the wing. 
At low supersonic speeds the transferred area distribution A (x) can be replaced by a distribution 
derived as follows. 

Consider a narrow streamwise strip of the wing at a distance R from the axis and with the 
cross-sectional area distribution ~(x). I t  has been shown that  A(x) is equal to the mean wing 
elemental area distribution and so, denoting the contribution of the streamwise strip to A (x) by 
bA (x), it follows that  

dA (x) = ~ ~(x --  B R  cos 0) dO 
o 

or 
2 ~a/~ 

aA(x) = ~Jo , ½{~(x -- B R  cos O) + ~(x + B R  cos 0)} dO . 

Thus, when B R  = 0, dA (x) ----- V(x) and A (x) is equal to the cross-sectional area distribution of 
the wing. -When B R  is small the integrand is almost constant and may be replaced by  
½{~(x -- B R  cos ~/4) + N(x + B R  cos ~/4)}, since 0 = ~/4 is a mean value of 0 in the range of 
integration, i.e., 

B R  

and, if 7x"(x) is continuous everywhere, 

aA(x) _ + 

(this last result may be derived by expanding A (x) in ascending powers of B~R~). 

Therefore, ~it low supersonic speeds where B R  is small, the simplified procedure for calculating 
A (x) is to transfer an element of wing cross-sectional area d¥ ~, situated at the point (xl, rl) by 
placing elements d~112 at the points Ix -- xl[ = Bit1] X/2. This procedure can be applied easily 
and quickly. 

2.4.2. Design for low wave drag.--The problem of determining the optimum fuselage when the 
wing is given has been examined by Ward 9,10. From equation (10), it follows tha t  the wave drag, 
at a given Mach number, will be a minimum when the wave drag, D{S - / A } ,  of the ' body ' with 
the cross-sectional area distribution S(x) -k A(x) is a minimum. Thus the problem has been 
reduced to an equivalent slender-body problem which can be treated using the methods given by 
Lord and Eminton. For a given wing and Mach number, the optimum body can be found but 
i t  will be noticed that  the new exposed wing usually differs slightly from the given wing. 
Following Ward 1° this difference is taken into account by combining it with the body. However, 
since the effect on the body shape is small, this additional refinement can be neglected if it is 
desired to simplify the analysis. 

The application of this procedure at low supersonic speeds can be compared with the moment- 
of-area rule method, which is described in Section 2.3.2. The area-rule and transfer-rule methods 
consider configurations with fixed wings and derive a body shape which, it will be noted, varies 
with Math number. On the other hand, the moment-of-area rule considers variations in wing 
geometry, such as the addition of bodies near the wing tips, and derives one body shape for the 
entire low supersonic Mach-number range. 

A more general minimum drag problem arises if, for example, only the wing plan area, span 
and volume are fixed as well as the body length and volume. Such problems have not been 
examined in the literature although Ward 9 has made some relevant comments, when the Mach 
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diamond enclosing the wing lies within the body length. H e  shows that  the wave drag Of a 
wing-body combination subject to these restrictions cannot be reduced to that  of the Sears-Haack 
body with the same total  volume and length. This result does not necessarily imply tha t  the  
wave drag cannot be reduced to a low value. 

I t  is suggested by Ward 9 t ha t  the fuselage should always be designed sufficiently long for the 
wing system to be included within its Mach diamond, i.e., S(x) is chosen so that  it is non-zero 
wherever A (x) is non-zero. 

An important class of optimisation problems has been examined by Lomax and Heaslet 13, who 
have investigated the optimum fuselage design for a range of Mach numbers, the wing being 
fixed (it has been shown earlier in this Section that  D{S + A} is then the only term depending 
on the fuselage). Lomax and HeasleP 3 consider in effect the minimisation of the integral 

{s + A} d i n ,  D 

where M~ ,<. M. ~< M,~ is the range of Mach number being examined and f(M) is a weighting 
function appropriate to the particular design problem. For ~xample, if transonic acceleration is 
important  thenf(M) can be chosen to emphasise the transonic contribution to the above integral. 

Let D {S + A} denote the ' mean '  value defined by 
q 

-- = f (M) {S + A} dM. .~ '~ f (M)  dM 
q J M  l / g/I,Z 1" 

Then, using the double integral of equation (1) it can be shown that  

D {s + A ) -  (A} = D {S + {X} . 

Therefore, for a fixed wing (i.e., A (x) fixed), minimising (D/q){S + A} is equivalent to minimising 
(D/q) {S -~- z{}. This latter problem is of the same type as that  already considered earlier in this 
section and so the minimisation can be carried out directly once the ' m e a n '  A(x) has been 
calculated.  The simplicity of this procedure is noteworthy. 

Lomax and Heaslet *a have solved only the case for which the optimum area distribution is a 
cylinder, i.e., S(x)+ eg(x)= constant. The present analysis has generalised this particular 
result to arbitrary optimum area distributions, which include the constant (or cylindrical) area 
distribution as a special case. Furthermore, as pointed out by L omax and Heaslet la, the present 
analysis can be applied to minimising expressions .of the form 

i=1  

which consider the wave drag at a discrete number of Machnumbers  only. Here A~s~ is the 
transferred area distribution appropriate to the Mach .number M~. The definitions of ' mean ' 
values follow exactly as in the above analysis. 

The result for D {S -1-- A} obtained above, namely 
q 

{s + (S + 

can be used to derive an expression for Cv, the mean value of the wave-drag coefficient of a 
wing-body combination throughout a Mach-number range. From equation (10) it follows that  
CD = C/)w -t- Cv{s+a} - -  CD/~} , where all the wave-drag coefficients are based upon the same 
reference area. 
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3. Configurations Represented by Discontinuous Source Distributions.--3.1. Isolated l /Vings.~ 
Ward ~° has shown that  the wave drag associated with a discontinuous surface source distribution is 

ff D -- P° cosh -I dQ(RI) as2 dQ(R ) . . . .  (12) 
4 z  ~ ~ I r , -  r .  I ' 

Where s0 is the free-stream density 

poQ(R) is the source density at the point R = (x, y, z) 

r is the position vector in a plane x = constant, i.e., r = (y, z) 

dS dx denotes a general volume element, 

the co-ordinates (x, y, z) are chosen as in Fig. 1 and the integration is over real values of the 
integrand. Furthermore, since Q(R) is a discontinuous functiop, of x the above integral is a 
double Stieltjes integral which must be written in this form. I t  is possible to replace dQ(R) by 
Q'(R) dx only when Q(R) is a continuous function of x. 

I t  follows directly from equation (12) that  the wave drag of a wing is given by  

 0U2( ( / Ixl-  x21 D - -  4• 3 1 J ~ c ° s h - ~ \ B T r ( - - r o l ] d T ' ( R 1 )  _ ,  "" "" (13) 

where dx dr denotes an element of area of the wing, T(R) denotes t h e  wing thickness at the 
point R, and the integration is over those parts of the wing for which the integrand is real. This 
result has been given by  Ward% When the wing'has rounded subsonic leading edgesit  is modified 
by the addition of a leading-edge ~ drag force. Such forces are examined in Section 5. 

I t  is Of interest to note that  Ward 1° has suggested that  equations (12) and (13) should be 
modified when the total source strength is not zero, i.e., the body is not  closed. Such a modifica- 
tion is needed to allow for the base drag term. Equation (13) gives the external wave drag of 
a wing, except for the base drag, whether the total  source strength is zero or not. This result 
can be proved most easily if the sources are included in the equation of continuity and the 
aerodynamic forces are calculated by the method of Ward 21. 

A particular form of the result, equation (13), has been given by LighthilP 2 for a plane wing 
with polygonal streamwise sections. The wave drag of a wing lying in the plane z = 0 (see Fig. 1) 
is found to be 

D _ 

where the discontinuities in T '  occur along the lines x = c,(y) and are of magnitude 2/Ua,,(y) 
( n =  1 , 2 , 3 , . . . ) .  

Ward 8 has observed tha t  equation (13) is exactly equivalent to the wave-drag result obtained 
. by  integrating the pressure distribution over the wing plan-form. Furthermore, in view of the 
usefulness of the sonic, area rule, the result as M--> 1 in equation (13) is of interest. In many  
cases the presence of discontinuities in T '  implies tha t  the linearised theory yields infinite wave 
drag at M = 1 but  there are cases for which it yields finite wave drag at M = 1. This point 
has been discussed by Heaslet, Lomax and Spreiter 16 and by  Lord, Ross and Eminton% It  
would appear that  the wave drag is finite at M = 1 when the rate of change of the cross-sectional 
area distribution is continuous everywhere. 
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3.2. Isolated Bodies . - -The  wave drag of a slender body which can be represented by a discon- 
tinuous surface source distribution has been given by Fraenkel and Portnoy ~. The surface 
slope ~ is discontinuous on a finite number of contours C~(i = 1, 2, . . . ,  ~) lying in planes x = & 
and separated by distances of magnitude 0(1), the body length being 0(1). Then, within the 
usual order of approximation, the wave drag of this body is given by 

D 1 1 

1 (AS,)~log 2 

where ~, 

(A,b,,), 

A~ 

ASI'  

" "-]- ii=l ~Ci [(~,,)~=~,_ Aw --  (A4~,)~ n,=~+] dr , . . . . .  . (14) 

is~that portion of the slender body perturbation velocity potential which can 
be determined from the two-dimensional incompressible cross-flow 

is the increase in ~ at the point of discontinuity x = & 

denotes the discontinuity in the surface slope at the point x = x~ 

denotes the discontinuity in S'(x) at the point x = & 

denotes the finite part of a double Stieltjes integral taken over all values of xl 
and x2 from just upstream of the body nose to just downstream of the body 
base 

and tile integration in the third term is, over the contour C~. 

Fraenkel and Portnoy 2~ ~ave shown that  the wave drag, given by equation (14), remains 
unchanged if the stream direction is reversed. Furthermore, the variation of the wave drag 
with Much number depends solely on the discontinuities in S'(x) and does not depend upon the 
cross-sectional shape. The case when the body profile is discontinuous has been examined by 
Fraenkel and Portnoy ~-~ but no applications of the result to engine intakes have been given. 
Finally, it should be mentioned that  the result obtained by Ward ~° differs from equation (14) 
and is not correct for a slender body ofarb i t ra ry  cross-sectional shape. 

The effect of cross-sectional shape on the wave drag of a slender body can be investigated using 
equation (14). The presence of the third term in equation (14) shows t h a t  the cross-sectional 
shape at and within the neighbourhood of a discontinuity in surface slope is important  and 
that  therefore the wave drag of slender bodies does not depend solely on the cross-sectional 
area distribution. I t  follows tha t  the wave drag is independent of the cross-sectional shape 
away from the discontinuities. Ward 1° has pointed out that  the wave drag is a maximum for 
the body of revolution. Bodies of elliptic cross-section have been examined by FraenkeP 5 who 
has shown that  the wave drag of the equivalent body of revolution is greater by an amount 

2g~ i:l 
where e is the eccentricity of the elliptic cross-section. I t  was pointed out by FraenkeP 5 tha t  if 
the cross-section is ' nearly ' circular, in the sense that  e --- 0(#/~), where t is the thickness ratio 
of the body, then the wave drag, which is 0(# log t), will not change to this order. Hence it may  
be assumed that  most slender bodies of practical importance have a wave drag independent of 
cross-sectional shape. 
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The form of equation (14) for a body of revolution was given first by  LighthilP 6 and, for a body 
with radius R~ at the point x~, is found to be 

1 1 

1 

-I- R?(d i) log 2 . .. (15) 
~=1 BR~ ' " . . . . . .  

where the integrations are Riemann integratidns ignoring the points at which S"(x) is undefined 
and the first three terms are the expanded form of the finite part  of the double Stieltjes integral 
given in equation (14). The last term in equation (15) gives the result that  the wave drag of a 
slender body with discontinuities in S'(x) is infinite at M = 1 according to this theory. Also, as 
already noted, it follows from equation (14) that  equation (15) gives the wave drag of a slender 
body which has circular sections at and within the neighbourhood of the discontinuity contours C,:. 

3.3. WingiBody Combinations.--An extension of the area rule and the transfer rule to con- 
figurations incorporating bodies with discontinuities in surface slope is given below. The cross- 
sectional Shape of the body is arbitraiy. 

Consider the flow field on a circular cylindrical control surface at a large distance from the 
combination. Then the wave drag is to be found by calculating t he  rate of flux of momentum 
across this surface. Heaslet, Lomax and Spreiter 16, for example, have shown that  the perturbation 
velocity potential due to the wing alone, at a given angular position 0 on the control surface, is 
the same as that  associated with the appropriate wing .elemental area distribution. Let the 
effect of any interference velocity potential on the wave drag be neglected~. The flow field on 
the control surface is then taken as the sum of the perturbation velocity potentials due to t h e  
body alone and to an appropriate wing elemental area distribution so that,  at a given angular 
position on the control surface, the source distributions representing th  e body and the appropriate 
elemental area distribution are superimposed. The wave drag may be written as 

1 fl D{s sw(x, o, M)} D = -~  . dO , .  . . . . . . . . .  (16) 

where D{S + Sw(x, O, M)} is interpreted by examining the flow field near the axis, i.e., 
D{S + Sw(), O, M)} denotes the wave drag of a ' combined'  slender body. This combined'  
body is a stream surface of the discontilmous surface source distribution Q~, representing the 
isolated body, and the continuous source distribution defined by Sw'(x, O,.M). Since almost a l l  
the Sw'(X, O, M) are continuous everywhere those disconrinuous source distributions associated 
with the discontinuous Sw'(x, O, M) are omitted from the integral in equation (16). 

Using equation (12) the wave drag of the ' combined ' body can be expressed as 

D{S + S.,(x, O, M)} = D{S} + D}Sw(x, O, M)} 

poU ( BICI ') aSlag~(R.) Sw"(~~, o, M) d,x~., 3 1 f  cosh-1 (1 1" 

where D{S}, the isolated body wave drag, is given by equation (14) and D{Sw(x, O, M)}, the Wave 
drag associated with Sw(x, O, M),  is given by equation (1), within the usual order of approximation. 

t This assumption is not valid for slender wing-body combinations when the source distribution representing the 
body (and/or the wing cross-sectional area distribution) is discontinuous within the region of the wing because 
equation (14), derived by Fraenkel and Portnoy 24, cannot be obtained by neglecting the interference velocity potential. 
The assum ?tion is valid for any other type of slender wing-body combination. 
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Following Ward's analysis 1° for slender bodies of revolution the inverse cosh in this result is 
expanded in terms of logarithms. The unknown body source density QB(R) is eliminated 
by noting that  the total source strength in a plane x = constant is equal to US'(x), where S(x) 
~s the cross-sectional area distribution of the body 1°. Since S~v'(x, O, M) vanishes at its end 
points, it can be shown quite simply that  the wave drag of the ' combined'  body becomes, within 
the usual order of  approximation, 

D{S -~- Sw(x, O, M)} = D{S} 4- D{Sw(x, O, M)} 

poV~_f c 
2~ log Ix, -- x2 ] dS'(xl) Sw"(x2, O, M) dx~ . . . . .  (17) 

Equations (16) and (17) provide a generalisation of the area rule, equations (2) and (3), to com- 
binations incorporating bodies with discontinuities in surface slope. 

The transferred wing area distribution A (x) is equal to the mean wing elemental area distribu- 
tion, i.e., 

1 (== 
A (x) = ~ J o  Sw(x, o, M) do.  

Thus, using equation (17), equation (16) becomes 

= D{S} + Dw poV f f log aS'(x,) (18) D 
2~ I ~ " " 

where D{S} is given by equation (14) and Dw by equation (13), for example. This result is the 
extended form of the transfer rule, equations (8) and (10). 

Equation (18) implies that  the interference wave drag Dw~ is give n by 

which is the generalisation of equation (9). I t  should be noted that  the interference wave drag 
Dw~ ".is independent of the cross-sectional shape of the body. The result for the interference wave 
drag can be derived directly from equation (12) with Q(R) ---- QB(R) + Qw(R) ; Qw(R) = UT'(R).  
It  is necessary to use Ward's integral equation ~° for the transferred area distribution A(x). 

In Section 2.4.1 it was shown that  the wing-body combination can be replaced by an equivalent 
combination made up of a suitably chosen gross wing W0 and a modified body which is denoted 
by B -- A A, where A A denotes the (transferred)area distribution o f  the portion of the gross 
wing blanketed by the body. I t  is assumed that  S'(x) is continuous where AA(x) is defined and 
that  AA'(x) is continuous everywhere as otherwise the source distribution representing the 
modified body is not equal (in the wave-drag sense) to that  representing the body less blanketed 
wing, i.e., Q(B-~A)-/-~QB-~w. The generalised form of equation (11) follows from equation (18) 
and can be shown to be 

D ": Dwo + D{S + A} --  D{A + AA} ,  . . . . . . . .  (19) 

where D{S - / A }  denotes the wave drag of a ' combined'  body, i.e., 

D{S + A} = D{S} + D{A} Pog~ ~ f " 2u J~ log Ix, -- x~[ dS'(x~) Sw (x~, O, M) dx~ . 

4. Numerical Evaluation of Wave Drag.--In the previous sections attention has been concen- 
trated upon giving the theoretical methods rather then the practical application of these methods. 
The present section is intended to give a brief description of the numerical methods that  have 
been developed for evaluating wave drag. I t  will be seen tha t  these methods have been developed 
for isolated wings or isolated bodies but their application to wing-body combinations is not 
difficult because the results obtained for the wave drag of wing-body combinations require only 
the evaluation of wing and ' b o d y '  wave drags. 
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4.1. Isolated Wings.--There has been a large number of investigations in the field of supersonic 
wing theory and no at tempt will be made to summarise them here. However, it is sufficient to 
notice that  the results for wave drag have been found by integrating pressure distributions. 
Also, the wing plan-forms are straight-edged and the Wing sections simple shapes. A summary 
of the results obtained has been given by Bishop and Cane ~7. Some results for sonic speed have 
been obtained by Lord, Ross and Eminton. ~3 using the sonic area rule. 

From the results given in Section 3.1 it is suggested that  equation (13) be used to calculate 
the wave drag provided that  the pressure distribution is not required. Otherwise it would 
probably be better to determine the pressure distribution first and then the wave drag. If the 
pressure distribution is required it can be found using the method of Thomson 28. 

Nevertheless, it is apparent tha t  the area rule (equations (2) and (3)) offers.an alternative 
method for calculating the wave drag of an isolated wing. However, a difficulty arises if any 
straight lines, along which the wing planar source distribution is discontinuous, are inclined so tha t  
the component of free-stream velocity normal to the line is supersonic (for example, along sharp 
edges the source distribution is discontinuous). But, since almost all the wing elemental area 
distributions have source representations continuous everywhere, the wave drag may be calculated 
using these elemental area distributions only and it may not be necessary to use the results of 
Section 3.2 for bodies with discontinuous source representations. Lord ~9 has pointed out tha t  
a numerical application of this procedure to wings with supersonic edges is not satisfactory. 

The area-rule method is particularly useful for wings with curved plan-forms and  has been 
'used by Lord and Bennett. Details may be found in Refs. 30 and 31. 

4.2. Isolated Bodies.---Recently a number of authors have investigated numerical methods for 
evaluating the double integral of equation (1), i.e., methods have been developed for calculating 
the wave drag of slender bodies without discontinuities in surface slope. The more general case 
when the source representation is not continuous will be examined later in the present section. 

There are two main methods for evaluating D{S}, equation (1), namely, the Fourier-series 
method and the optimum method of Eminton 31. Considering a body of unit length, the 
Fourier-series method relies upon expressing S'(x) as a sine series in the new variable 

= cos -1 (1 -- 2x). The disadvantage of this method lies in the determination of S'(x), which 
requires a numeric~il differentiation of the cross-sectional area distribution S(x). Furthermore, 
it is not clear how many terms in the Fourier series are required to give reasonable accuracy in 
the answer for the wave drag. 

The difficulties of the Fourier-series method can be overcome most satisfactorily by  using the 
method of Eminton 4, 3~ for evaluating the double integral of equation (1). This method depends 
upon some results in the theory of optimum area distributions and details can be found in the 
papers cited 4,31. The given area distribution is replaced by the optimum area distribution with 
minimum wave drag for a large number of fixed areas at equally spaced points along the body. 
Thus the evaluation of the wave drag, given by  the double integral of equation (1), requires 
only a knowledge of the areas at a large number of points, usually nineteen, along the body. 
The derivative S'(X ) is not required for this method. 

Slender bodies with discontinuous source representations cannot be treated in general, but  
can be treated provided that  the cross-section is circular at and within the neighbourhood of a 
discontinuity in surface slope, i.e., the wave drag is given by equation (15) and depends upon the 
cross-sectional area distribution only. 

A numerical procedure was developed first by Dickson and Jones a2, who utilised a transforma- 
tion of equation (15) whereby Fourier series could be used directly to evaluate the integrals 
involved. This approach would be expected to have a counterpart in the theory of optimum 
area distributions if such optima could be .found for this more general case. Eminton is 
investigating an extension of the optimum method to the present problem, thus determining the 
optimum area distribution with minimum wave drag (equation (15)) for prescribed values of 
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AS,' at the points x -.  x~where the cross-sectional area is S(x~) (i -- 1, 2 , . . .  n). It  appears 
that  a simple and illuminating extension may be possible and that  the optimum method will 
be extended to the evaluation of equation (15). However, since the method of Dickson and 
Jones 3~ seems to be the only published method and since their report 3~ may not be generally 
available, their method will be summarised here. 

Consider a body of unit length and introduce the function P(x) defined by 

/ . .  ! 
P ' ( , )  = S 6 )  - ~ ~ S ,  + x ~ & ' ,  x; ~< x ~ . % 1 .  

/ = I  / = 1  

The function P(x) is chosen by Dickson and Jones 3~ because P'(x) is continuous everywhere. 
Now introduce the Fourier-series variable $ = cos -~ (1 -- 2x) and put 

co 

P'(x) = ~ A,, sin m~,  

so that equation (15) becomes 

Dq 2_ ~.\~1 [ " zl&,) °'_ " 

1 " 2 
BR, 

-1- ~ mA,. 2 -/  AS, ~ [_(2m) 2 1] 
i = l  ~ , t = l  

-1- A S~' A,. cos m ~  
i = 1  11 1 

+ -1 - l o g  (1  - + . ,  x ; }  
Yg , = 1  j = l  

+ I x ,  - ' "" "" 

where x~ = 1(1 -- cos %) and =R, 2 = S(x,). This •result is in a somewhat different form from 
that given by Dickson and Jones a'. 

4.3. Wing-Body Combinations.--In Sections 2 and 3 it has been shown that  the calculation of 
the wave drag of a wing-body combination can be reduced either to .a wing problem together 
with two ' b o d y '  problems by using the transfer rule or to a number of ' body '  problems by 
using the area rule. Hence the numerical methods for wings and bodies given in Sections 4.1 
and 4.2 enable the wave drag of a wing-body combination to be found. Procedures for calculating 
the transferred area distribution of the wing are described in the Appendix. 

5. Some Miscellaneous Remarks.--5.1. Configurations with Round-Nose Wing Sections.--Ward 10 
has  pointed out that the results of linearised theory are incorrect if the Wing of the Wing-body 
combination has rounded edges where T'(R) is infinite. Nevertheless, the linearised-tlheory 
result for wings with rounded subsonic leading edges can be obtained by allowing for the effect 
of the leading-edge singularity in the way suggested by Jones3L The result obtained is that  to 
the existing result (equation (6), for example), there must be added a leading-edge drag F per 
unit length given by 

F ~r cosaA 
~- - [1 - (M cos AT] 1 " '  

where q is the kinetic pressure, A is the local sweepback angle of the leading edge, and r is the 
local nose radius. .  

18 



It  should be noted that  this result is restricted to wings for which there are no abrupt changes 
in the curvature of the leading edge. Moreover, the result shows that  the linearised-theory wave 
drag of a wing with a rounded leading edge is infinite if the leading edge is sonic (i.e., M cos A -- 1). 
This infinite result for a wing with a sonic leading edge is obviously incorrect and emphasises the 
fact that  the linearised theory is not satisfactory for wings with rounded edges. Thus, in the 
absence of rion-linear theory, experimental results are required for determining the wave drag of 
such wings. However, since the transfer rule separates the wing wave drag from the total  wave 
drag of a wing-body combination, it can be used to estimate the interference Wave drag. 

5.2. Systems of Wings and Bodies.--The discussion s o  far has been restricted to wing-body 
combinations, although it could also have been given for wing-system-body-system combinations. 
The wing system includes wing-like elements of the configuration as well as any subsidiary bodies 
situated on these elements while the body system is essentially axial and may include fins and 
tailplanes. Since the area rule, moment of area rule and transfer rule are all equally applicable 
to systems of wings and bodies as to wing-body combinations, no essentially new problem is 
introduced. 

5.2.1. Arrangements Of bodies.--Arrangements of bodies have been examined by Friedman 
and Cohen 3~ and Rennemann 35. In both cases the analysis does not use any o f  the methods 
given in .Section 2 but  such an analysis could be carried out using either the area rule or the 
transfer rule. Rennemann 35 has examined the shape of a body of revolution in the pressure field 
of a larger body and has shown that  the optimum shape for minimum wave drag can be calculated 
sufficiently ~ exactly by ignoring the larger body, i.e., the Sears-Haack body based upon the given 
length and  volume is the best body shape to use for the smaller body. 

Friedman and Cohen 3~ have used this result to examine the positioning of auxiliary bodies 
alongside a main body. For two-body or three-body systems the most favourable location is 
where the maximum cross-section of the auxiliary body is just upstream of the Mach cone from 
the tail of the main body while tile least favourable location is within the Mach diamond enclosing 
the main body. These conclusions are not absolutely definite and so a further analysis of this 
problem may.be  needed. 

A suggested application of an analysis of the above type is as follows : Firstly, consider the 
main and auxiliary bodies of the given system and position these for minimum wave drag at the 
Mach number under consideration. Secondly, bs) assuming that  the wave drag of these bodies is 
considerably greater than the wave drag of a wing system, it follows that  the next step is to 
introduce a wing system containing these bodies and shape all the bodies according to tile nature 
of tile wing system. This latter procedure can be carried out using the methods discussed in 
Section 2. Details are given in Section 5.2.2 below. 

5.2.2. Combinatio~cs with low wave drag.---Consider, for example, the problem of shaping and 
positioning a number of subsidiary bodies such as external stores on the wing of a configuration 
so that  the overall wave drag is a min imum.  To a first approximation the most important  effect 
of a change in the wing system will be in the wave drag of the auxiliary bodies alone and the 
interference wave drag between them and the wing (this result assumes that  the su.bsidiary- 
bodies are not close to the body and to each other ) . By considering separately each subsidiary 
body and thewing,  the interference problem can be treated by using equation (10) and so, for a 
given wing, it follows that  the variable wave drag term will be. D{A1 + 5 v} where Al(x) is the 
transferred area distribution of the wing system, less the appropriate subsidiary body, on to the 
auxiliary body axis a n d  N(x) is the cross-sectional area distribution of the subsidiary, body. 
Thus tile optimisation procedure for each subsidiary body has been reduced to mmlmlslng 
D{A1-]-kv} subject to certairi prescribed conditions. Finally the optimisation procedure is 
completed by examining the main body, which is shaped using the transfer-rule procedure given 
in Section 2.4.2. 
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In many applications it may be necessary to repeat this optimisation procedure because any 
variation in Al(x), due to subsequent modifications of other subsidiary bodies, is not considered 
when minimising D{AI q- ~Y}. Thus repetition may be essential in those cases where the applica- 
tion of a symmetry condition implies that  there will be corresponding changes in Al(x) for any 
alteration to ~(x). However, no repetition at all will be necessary if each subsidiary body does 
not influence, or is not influenced by, any other subsidiary body. 

It  will be noted that  this optimisation procedure examines firstly the subsidiary bodies and 
then the main body.  But, since the subsidiary bodies may require a repetition of the procedure 
it is recommended that  the whole wing system be considered before any shaping of the main 
body is investigated. 

The most important example of wing-system-body-interference occurs when there are two 
subsidiary bodies only. In this case the assumption that  the bodies are not ' close ' to each other 
is unnecessary since the wave drag can be found by breaking clown the wing system into a number 
of simple wing-body problems. I t  can be shown that  the interference wave drag for the isolated 
wing system consists of three terms: the interference wave drag between each subsidiary body 
and the wing (two terms) together with that  between the two subsidiary bodies. The last term 
is evaluated by selecting one subsidiary body as a ' main ' body and then applying the transfer 
rule, equation (10). I t  is this body-body interference term which would be neglected, sometimes 
without justification, by  the simplified optimisation procedure presented for a general wing 
system. However, although the inclusion of this term does make any optimisation procedure more 
complex, it does enable, also, estimates of the wave drag of the complete configuration to be made. 

5.3. Problems Associated with I~#akes and Exhausts.--The presence of engine intakes and 
exhausts within an aircraft has not been considered in the previous discussions which are applic- 
able only to ideal configurations with no intakes and exhausts. I t  will be shown that  the use of 
two simplifying assumptions enables the total external .wave drag to be estimated. As well as 
the wave drag arising from the pressure forces acting upon the external surface of the aircraft 
it is necessary now to consider the external wave drag due to the pressure forces acting upon 
the pre-entry and post-exit stream tubes. The pre-entry stream tubes extend from infinity 
upstream to each engine intake and separate the air flowing into the intakes from that  flowing 
around them while the post-exit stream tubes extend from each engine exhaust to infinity down- 
s t ream and separate the high-speed gases flowing out of the exhausts from the air which passes 
over the external surfaces of the configuration, i.e., the pre-entry and post-exit  stream tubes 
separate the external flow from the internal engine flow: 

Thus, in principle, an effective ' solid'  combination, inchlding all the pre-entry and post-exit 
stream tubes can be found. The methods of wave drag estimation presented in Sections 2 and 3 
are not necessarily strictly applicable to this ' s o l i d '  configuration because large perturbation 
velocities would be associated wKh any regions of large ' surface'  slopes on either the intake 
cowls or the pre-entry and post-exit stream robes. Nevertheless, part of the following discussion 
is based upon the linearised theory and an approximate method for treating engine intakes and 
exhausts is described. 

The usual method of calculating the total  external wave drag requires i t s  division into three 
components: the external wave drag proper, which is associated with the actual external surfaces 
of the aircraft; the pre-entry wave drag, which is associated with the pre-entry stream tubes; 
the post-exit wave drag, which is associated with the post-exit stream tubes. The external wave 
drag proper cannot be  evaluated directly and therefore it is convenient to use the linearised 
theory methods of Sections 2 and 3 in order to calculate it for an internal flow in which all the 
pre-entry and post-exit stream tubes are of constant cross-sectional area. But, since the pre-entry 
and post-exit Stream tubes are not of constant cross-sectional area, in general, there are a number 
of terms to be added before the actual external wave drag proper is found. The largest of these 
additional terms is likely to be that  associated with the flow over the intake cowl and can be  
estimated using existing techniques for isolated intakes. The remaining additional terms are 
neglected since they are assumed to be small. 
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I t  is suggested tha t  calculations of external wave drag be carried out using this assumption 
together with the additional assumption tha t  the we-ent ry  and post-exit wave drags can be 
estimated by  examining each intake-engine-exhaust system in isolation. There is, however, one 
case for which these assumptions may not be required. For slender bodies, the linearised theory 
techniques of Fraenkel and Portnoy "4 and Ward ~1 would enable the intake problem to be solved 
exactly, provided tha t  the intake has sharp edges and there is no spillage around these edges. 
The treatment of an exhaust upstream of the tail is difficult because of the high-speed exhaust 
gases. For arbitrary configurations the assumptions are necessary and, since they may give 
rise to incorrect wave-drag estimates, an investigation of the problems involved in treating 
engine intakes and exhausts may be desirable. 

5.4. Non-limar Effects.--Since the present report deals with the linearised theory, non-linear 
effects are not examined.  Confining attention to ~ the transfer rule, it is seen that  only the inter- 
ference wave drag need be considered, ~ince the linearised-theory results for the isolated wing 
and body wave drags can be modified by using correlations between experiment and linearised 
theory as a guide to the magnitude of any non-linear effects. Furthermore, h'om the form of 
equation (10) it appears that  satisfactory modifications may be able to be carried out by  
modifying only the transferred area distribution A (x). 

However, at the present time, the estimation of non-linear effects must be based upon known 
effects on isolated wings and isolated bodies. The above suggestion is purely tentative and is 
intended to emphasise the need for some satisfactorsr method of estimating non-linear effects on 
the wave drag of wing-body combinations. - 

In the transonic range, non-linear effects on wave drag have been examined by  Owatitsch and 
Keune 3~ for low-aspect-ratio wings. In the supersonic speed range the effects of strong shock 
and expansion waves have not been considered except in certain particular cases such as two- 
dimensional wings. 

5.5. Boundary-Layer Correc~ions.--An important  aspect of wave-drag calculations for a specific 
configuration is the determination of corrections that  allow for the boundary-layer displacement 
thickness. Consider a slender body whose wave drag is given by the double integral of equation 
(1). In equation (1), S"(xl) may be regarded as a surface slope term and S"(x2) as a local pressure 
term. Warren has pointed out that  the nature of the boundary-layer correction to the wave 
drag D{S} requires careful consideration because only the local pressure term is altered. Let 
~(x) be the increment in S(x) due to the boundary-layer displacement thickness. Then the wave 
drag is given by equation (1) with S"(x d unaltered and S"(x2) replaced by S"(x~) + ~"(x2). But, 
since the boundary layer correction is small, it can be shown that  the wave drag is given approxi- 
mately by  D{S + ½~}. Similar considerations apply to equation (13) which gives the wave drag 
of a wing. Thus, in order to obtain an effective solid body, half the boundary-layer displacement 
thickness is added everywhere to the profile of a wing-body combination. 

6. Comlusion.--The wave drag of a combination of a thin wing and a smooth slender body 
can be estimated subject to the usual limitations of linearised theory and, it should be noted, 
subject to the validity of the assumption tha t  the interference velocity potential is negligible. 
For smooth combinations, which are aerodynamically slender, the wave drag is given by the 
sonic area rule, which states tha t  the wave drag depends only on the axial distribution of cross- 
sectional area. For smooth combinations which are ' not-so-slender ', it is necessary to use the 
moment of area rule, which states that  the wave drag depends upon the axial distribution of tile 
second moment of area as well as upon the cross-sectional area distribution. For arbitrary 
combinations the wave drag is given by. the supersonic area rule, which expresses the wave drag 
as the mean of the wave drags associated with the so-called elemental area distributions. If the 
wave drag of tile isolated wing of an arbitrary configuration is known, it is convenient to use 
the transfer rule, which expresses the sum of the body wave drag and the interference wave 
drag in a simple form. 
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The methods of wave-drag estimation can be interpreted to yield practical methods of designing 
for low wave drag under prescribed conditions. For a given wing, the general problem of designing 
a body so.that  the combination has low wave drag throughout a range of Mach number can be 
solved. The method of designing the body is simple at all Mach numbers, but  the possible 
benefits of an optimum design decrease quite rapidly with increase of Mach number. The achieve- 
ment of low wave drag is facilitated by allowing the wing to be altered, an example of which is 
the design for low wave drag according to the moment of area rule. 

Previous discussions of the methods of estimation of the wave drag of wing-body combinations 
have been confined to combinations with smooth slender bodies. Here an extension of these 
methods is given for the cases when the combinations incorporate bodies with discontinuities in 
surface slope. 

All the theoreiical methods presented here require suitable numerical techniques for their 
practical application and it is found that  t he  existing techniques are very satisfactory. 

No numerical results or particular applications are described but since most of the methods 
discussed in this report are somewhat idealised some miscellaneous remarks are made to help in 
their application to practical aircraft. In particular, it is pointed out that  the present method 
of allowing for the air which passes through the engines of an aircraft is far from satisfactory 
and a more adequate procedure is essential. 

aO, (g2 

A 

AMi 

Adx) 
 A(x) 

A J~ 

A,,( o, M) 
B 

C 

C~ 

CD 

D 

NOTATION 

Coefficients of B °, B 2 in series expansion of D 

U/2 multiplied by discontinuity in T' along the line x = c;,(y) 
Aspect ratio 

Transferred area distribution appropriate to the Mach number M~ 

Transferred area distribution (equation (7)) 

Transferred area distribution of wing system on to axis of subsidiary body 

Contribution of streamwise strip of wing to A (x) 

(Transferred) area distribution of portion of gross wing system blan'keted by 
the body 

Fourier coefficient in expansion of S'(x) using the variable 

Fourier coefficient in expansion of S'(x, O, M) using the variable ~ 

{M ~ -- 1}~/= 

Fourier coefficient in expansion of M,,'(x) using the variable ~0 

Wing-root c h o r d  

Defines line along which discontinuities in T' occur 

Generalised moment of area (see Section 2.3.1) 

Contour lying in the plane x = x, and along which the body surface slope 
~7 is discontinuous 

Wave-drag coefficient D/qS, S being an appropriate area 

Wave drag 
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NOTATION--con t inued  

Wave drag of ' b o d y '  with the cross-sectional area distribution S(x) and 
the prescribed shape 

Wave drag associated with an elemental area distribution 
interference wave drag 

Wave drag of body less portion of gross wing blanketed by the body 
Eccentricity of elliptic cross-section 

Mach-number function used in Section 2.4.2 

Leading-edge drag force per unit length due to curvature of wing section 
Integral defined in Appendix 

Slenderness parameter 

-(2N + 1) 
Length of wing-body combination 

Length of pth moment of area distribution 
Mach number 

nth moment of area distribution 

Number of discontinuities ill S'(x) (also asubscript) 

Number of elements into which streamwise strip of wing is divided 
Modified form of S(x) (see Section 4.2) 

Kinetic pressure .vp0U ~ 

Source distribution 

Source distribution representing A A (x) 

1/po multiplied by the source density at the point R 

Radial co-ordinate (Fig. 1) or leading-edge nose radius 
Vector (y, z) 

Unit vector (sin O, cos 0) 

Distance of body from axis 

Radius of body of revolution at the points of discontinuity x ---- xi, x~ 
Typical body radius 

Position vector (x, y, z) or (x, r) 

Position vector (x + B r0 r, r) 

Defines cross-section of configuration at the station x or/axis 

Increment in S(x) due to boundary-layer displacement thickness 
cosec l+ S(x, O, M) + 

Cross-sectional area distribution of body (and also of wing-body com-bination) 
Constant value of S,, 

Constant element of 7'(x) in the range X,, ~< x ~< X~c_,, 

Elemental area distribution 

Generalised moment of area (see Section 2.3.1) 
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NOTATION--con t inued  

Element of area used in sense that  dS dx is an element of volume 

Increase in S'(x) at a point of discontinuity x = x~ 

Body thickness ratio 

Wing thickness at the point (x, y)~ R 

Free-stream velocity 

Wing volume 

pth  moment volume of the configuration (see Section 2.3.2) 

Element of volume 

Wing 

Suitably chosen gross wing 

Wo -- W 

Rectangular Cartesian co-ordinates (see Fig. 1) 

Points at which body surface slope is discontinuous 

One of 2N division points for the area distribution 7~(x), X1 <~ x K X~N 

Body surface slope relative to free-stream direction 

Increase in ;~ at the point of discontinuity x = x~ 

tan -1 (z/y) (see Fig. 1) 

Angle of leading-edge sweepback 

Mach angle (----- sin -1 (l/M)) 
d ' 

tan -1 (B cos 0) 

Free-stream density 

Element of area of the wing surface 

Wing-root thickness ratio 

Element of arc length on the contour C~ 

cos -1  (1 - 2x) 

cos -1 (1 -- 2x~) 

That  portion of the slender-body perturbation velocity potential which can 
be determined from the two-dimensional incompressible cross-flow 

Increase in 6~ at the point of discontinuity x = x~ 

Cross-sectional area distribution of a body, or a streamwise wing strip, at 
a distance R from axis 

Element used in the sense that  d ~  dx is an element of wing volume 

Subscripts denoting different members of a family, e.g., M~(x) is the i th  
moment of area 

Subscripts denot ing  transferred area distribution, body, wing,, gross wing, 
net wing respectively 

Subscripts usually applied to variables of integration 

Denote derivatives with respect to x, e.g., S'(x) = ~S/~x 

Denotes a '  mean '  value, e.g., _/i(x) 
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APPENDIX 

Numerical Procedures for  Calculating the Mean or Transferred 
Area Distribution of a Wing 

Since the  t r ans fe r  rule  has  b e e n  r e c o m m e n d e d  for w a v e - d r a g  ca lcu la t ions  it  is adv i sab le  to  
deve lop  a s imple  n u m e r i c a l  p r o c e d u r e  f o r  ca lcu la t ing  t he  m e a n  or  t r a n s f e r r e d a r e  a d i s t r i bu t ion  
A(x) (see e q u a t i o n  (7)). The  e l emen ta l  a rea  d i s t r i bu t ions  (Sect ion 2.2.1) cou ld  b e  c a l c u l a t e d  a nd  
t h e n  t he  m e a n  found .  This  m e t h o d  has  t he  a d v a n t a g e  t h a t  all t i le e l emen ta l  a rea  d i s t r i bu t i ons  
ca l cu l a t ed  for  a g iven  Mach  n u m b e r  can  be  i n c o r p o r a t e d  in ca lcu la t ions  for h igher  Mach  n u m b e r s  ; 
howeve r ,  i t  is l ike ly  to  b e  use fu l  on ly  w h e n  a smal l  n u m b e r  of e l emen ta l  a rea  d i s t r i bu t ions  are 
r equ i r ed  to  r e p r e s e n t  t he  wing.  A n u m e r i c a l  p r o c e d u r e  deal ing  w i t h  on ly  the  m e a n  a rea  dis tr i -  
b u t i o n  has  b e e n  g iven  b y  Faget37; a simple d e r i v a t i o n  of this  m e t h o d  is p r e s e n t e d  below.  
Sufficient  deta i ls  are  g iven  for  t he  m e t h o d  to  be  u sed  w i t h o u t  re fe rence  to  F a g e t ' s  p a p e r  '~7, wh ich  
m a y  n o t  be  r ead i l y  avai lable .  

F i r s t ly ,  t he  wing  is d iv ided  in to  a n u m b e r  of s t r e a m w i s e  s t r ips  so t h a t  t i le c ros s - sec t iona l  a rea  
d i s t r i bu t i on  of each  s t r ip  defines a b o d y  wh ich  is to  be  p l aced  a long the  centre- l ine  of the  str ip.  
T a k e  one of these  bod ie s  and  let  i ts  d i s t ance  f rom t he  axis  b e  R and  its  c ross-sec t iona l  a rea  
d i s t r i bu t i on  b e  ~/~(x). T h e n  T ( x )  is r e p l a c e d  b y  a n u m b e r ;  N ,  of f inite o v e r l a p p i n g  e lements ,  
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each of constant cross-sectional area. Let the nth element, having the cross-sectional area S,,, 
extend from x = X, to x = XI~_,, (n = 1, 2 , . . . ,  N ;  K = 2N + 1). Thus T(x) vanishes outside 
the range X1 ~< x ~< X2N and 

N 
,Z~(x) - ~ ,  S, , ;  s,,. = S for X;,. ~< x ~< X,~ . . . .  (K  = 2N + ] ) .  

Faget 37 chooses the areas S,~ so that  they are equal to each other. Now, equation (7) can be 
written as 

 A(x) = 1- t 
Jxi V{ B2R - (x - 

where ~A (x) is the contribution of a streamwise strip to the transferred area distribution A (x). 
Therefore 

S N 
(}A(•) = ~-,~1 _l','f 

where, for X~_,, ,-- B R  <~ X~ - / B R  

q-s in  -1 ~ , X , - -  B R  < x <~ XI ,_ , , - -  B R  

sin-~ ( X K c ~ R  X) + sin-i  ( x B ~ "  ) , X~(_n --  B R  <~ x <~ X,~ q- B R  I , , =  

sin- '  X~ X + 2 '  X ,  + B R  <~ x <~ XK_ n @ B R  

and, for X.v_,, --  B R  >~ X~ + B R  

2-+  sin -~ " , X , , -  B R  <~ x <~ X,, + B R  

I , , =  ~ ,  X,, + B R  <~ x <~ X x _ , , - -  B R  

sin_ , X~: x Jr- ~,  X K _ , , -  B R  <~ x <~ XI(_,, + B R  

(Note that  I,, is defined for X,, --  B R  <~ x <~ X,:_,  + B R  and that  I,, = 0 when x = X,, -- BR,  
X K _  n -Jr- BR).  

The function I,,/~ given here can be expressed in terms of inverse cosines ; then it is identical 
with one of Faget's functionsaL Further details of the numerical procedure for evaluating A (x) 
may be found in Ref. 37. The fact that  I,, is symmetrical about x ---- I(X, + X~_,,) may enable 
the  calculations to be simplified. 

In any application of Faget's procedure ~7 it is not recommended that  N be large or that  a 
large number of streamwise strips be taken. For example, the width of the streamwise strips 
may conveniently be chosen to be of the same order as the body diameter while the value of N 
used will depend upon the wing section shape. Furthermore, the approximation to A (x) obtained 
by this procedure can always be improved since the end points of the transferred area distribution 
are defined exactly by the Mach diamond enclosing the wing system. The volume condition 

is also useful. 

At low supersonic speeds the procedure can be simplified and, from Section 2.4.1, it follows that  

This result is valid when B R  is ' not-so-small '. When B R  is small it becomes $A (x) ~ T(x), 
which is the slender-body result for ~.A (x). 
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System of co-ordinates for wing-body combination. 
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