
ROYAL A~!L'.::,:~;:~ ~.,~ FAE~LIS~,'I.~t~i" 
I:fiB E D  ~ O  R D .  

M I N I S T R Y  O F  S U P P L Y  

A E R O N A U T I C A L  R E S E A R C H  C O U N C I L  

REPORTS A N D  M E M O R A N D A  

\ a 

Operational Formulae for Response 
Calculations 

/" S. NEUMARK, Techn.Sc.D., F'.R:Ae.S. 

© Crown copyright z958 

LONDON : HER MAJESTY'S STATIONERY OFFICE 

1958 
PRICE I7S. od. N~T 

R .  ~ & M .  N o .  3 0 7 5  
. (is,oct) 

A.R.O. Technical R e l ~  



Operational Formulae for Response Calculations 
By f '  

/ 
S. NtUMARK, Techn.Sc.D., F .R.Ae.8.  

COMMUNICATED BY THE DIRECTOR-GENERAL OF SCIENTIFIC RESEARCH (AIR), 

MINISTRY OF SUPPLY 

Reports and Memorazda No. 3 0 7 5  * 

Juze, 1956 

Summary. The paper presents systematic tables of formulae whose purpose is to facilitate the operational solution 
of response problems reducible to linear differential equations with constant coefficients m~d with simple forcing functions. 
The formulae enable the user to find operational equivalents of a wide class of simple functions and, inversely, to find 
functional equivalents of a great number of operational expressions, in the most rapid and direct manner. In such a 
way,  it is possible to reduce to a minimum the usual heavy algebraical work involved in response calculations. The 
tables include only such functions whose operational equivalents are algebraic fractions, b u t  these cover a wide field 
of practical applications. Operational fractions of the 1st, 2nd, 3rd and 4th order are treated in a comprehensive way, 
so that  all possible particular cases are included. Additional tables make it possible to reduce every fraction of 5th or 
6th order to a combination of fractions of lower order. 

The introductory text  describes the method of deriving the formulae and explains how to use them in solving response 
problems. A number of examples are appended which show the advantages of the tables and give solutions of several 
typical problems. 

1. I~troduction.--Response calculations for mechanical, electrical and processing systems, with 
various sorts of controls, have become indispensable in many branches of engineering. They 
appear prominently in the modern theory of control and servo-mechanisms. In aeronautics, 
response problems made their appearance almost immediately after the fundamentals of aircraft 
dynamic stability had been established. Now, such problems become increasingly important, 
and more and more complicated cases must be dealt with, to enable us to understand and assess 
handling properties and structural loadings of aircraft. 

The complexity of problems, often involving large numbers of elements and degrees of freedom 
and also various kinds of non-lin.earities, has led to a rapid development of differential analysers 
and simulators. The old analytical methods may seem inadequate or obsolete. There remains, 
however, a multitude of problems of great practical importance, which are definitely suitable for 
analytical treatment, and for which the use of costly analogue computors is neither justified nor 
indeed the most appropriate. This applies especially to linear problems (strictly: problems 
leading to linear differential equations with constant coefficients, of not very high order). Such 
problems often admit of comparatively concise and elegant analytical solutions which, if properly 
handled, may yield simple practical rules and criteria. 

The usual analytical method for linear problems is the operational calculus. The advantages 
of operational treatment have been best described by H. Jeffreys 2 : ' The operational method will 
give the answer in a page when ordinary methods take five pages ; also, it gives the correct answer 
when the ordinary methods, through human fallibility, are liable to give a wrong one '. Never- 
theless, even the operational method, when applied to anything above the level of simple textbook 

* R.A.E. Report  Aero. 2570, received 18th March, 1957. 



examples, usually involves serious algebraical work, consisting mainly of the resolution of opera- 
tional fractions of higher order into partial fractions. The procedure is quite elementary, of 
course, but tedious and often exasperatingly long. Many workers in this field try to compile 
their own sets of auxiliary formulae, so as to avoid repeating identical or similar drudgery over 
and over again; but such efforts are usually of limited scope and seldom become available to 
anybody but the originator. There is  no lack of publications* containin~ more or less spacious 
tables of operational formulae, but  they invariably tend to develop more ~'n width than indepth ,  
i . e . ,  there is a tendency to include a great number of higher transcendental functions, while the 
simple algebraic operational fractions (most often needed in practice) are never treated in a 
really comprehensive way. I t  is here that  extensive tables of formulae may serve a useful purpose. 
The present paper is an effort in this direction. 

The principle of the operational calculus (in its simplest form as required here) is as follows. 
A function F(3) is replaced by its operational equivalent 9 (D), defined by Carson s formula: 

(I) 
t / t 0  

If F(3) is an ' e lementary '  function ( i .e . ,  either an integer power of 3, or an exponential, or 
sine or cosine, or any linear combination of such functions and their products), then ~0(D) is a 
rational algebraic fraction in D ,  the order of the numerator never exceeding that  of the 
denominator. Inversely, any such operational fraction corresponds to a certain 'e lementary  
function ' of the type described. Suppose that  a sufficient number of operational equivalents of 
various functions are known. A linear differential equation (relating, e .g . ,  an unknown function x 
and an independent variable 3), with constant coefficients and with arbitrary initial conditions, 
can then be solved in an extremely simple way. The original equation is replaced by an operational 
' subsidiary equation ', algebraic and rational in D (in the manner described in section 3). The 
latter is then solved for x ,  whose operational expression is thus found, and the problem is reduced 
to finding the function of 3, equivalent to this operational expression. The method can also be 
applied to an equation with a forcing function, in which case this function must be replaced by its 
operational equivalent, in the subsidiary .equation. Finally, a system 6f n linear differential 
equations with n unknown functions x ,  y ,  z ,  . . . can also be solved in a similar way. We have 
then n subsidiary equations, linear in x ,  y ,  z ,  ., algebraic and rational in D, which must be 
solved for x, y, z , . . .  in the usual way, and then the operational solutions in{erpreted as functions 
of 3. 

The interpretation of the operational solutions usually requires the tedious procedure of 
resolving complex fractions into simple ones for which the functional equivalents are available. 
Here, a great simplification may be obtained by use of tables as presented in this paper. They 
enable the user to find the functional equivalents of a great number of operational expressions 
(or inversely) in the most direct and rapid way, thus avoiding the  complicated algebraic work. 
Our tables include only operational expressions in the form of rational algebraic fractions, but 
these cover an enormous field of the most common applications. The essential feature of the 
tables is that,  up to a certain order, all possible forms of fractions are dea r  with, including all 
the various combinations of real, imaginary, complex and zero roots (also multiple roots) in the 
denominators, and the most general form of the numerators. 

The derivation of the tables is explained in section 2. Section 3 recapitulates the procedure of 
producing subsidiary equations, which is essential for solving the response problems correctly. 
The procedure is well known, but  it was thought advisable to include this section, so as to avoid 
misunderstandings and to enable the user to solve his problems without referring to textbooks, 
in which it is often difficult to find simple working instructions, usually hidden in the maze of 
theory. This is particularly important  because of the unfortunate existence of two very similar, 

b u t  not identical, operational methods, commonly referred to as the method of Heaviside and 

* See, for example, Refs. 5, 6, 9. 
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of Laplace transform, respectively. The fundamental formula (I) corresponds to the original 
Heaviside's treatment, while the Laplace transform is usually defined 4 by" 

'w(P) = e -p* F(r) d r ,  . . . . . . . . . . . .  (II) 
0 

the only difference being that  the factor p is missing in (II). The confusion is made worse by the 
fact that  some authors 8 do include this factor but  still use the term ' Laplace transform ' The 
definition (I) has been adopted here because it has the advantage that  9(D) and F(,) have the 
same dimensions; also, if F(r) = 1 (unit step function), we have , ( D )  1, while ~(p) = I /p ,  
which seems unnatural.  I t  is hoped that  the use of the letter D instead of p (following Ref. 1) 
will help to avoid misunderstandings. I t  may be mentioned that  all formulae of this paper may 
be employed by readers used to the nomenclature of the Laplace transform in the form (II); it 
will suffice to divide every operational expression ~0(D) by D and then replace D by p, while 
t h e  function F(r) remains unchanged. 

The Appendix contains a number of examples with complete solutions and discussion. I t  is 
hoped that  they will be useful, not only as a help to beginners, but  also because several examples 
t reat  response of simple typical control units as often encountered in practice. 

A grateful acknowledgment is due to Mrs. J. Collingbourne who has checked all formulae and 
helped in working out the examples. 

2. Derivation of Tab l e s . - -The  general formula (I) is not convefiient for deriving operational 
equivalents of ally but  the simplest functions. There exist, however, several simple rules which 
facilitate the procedure by indicating how to build up operational equivalents gradually, starting 
from the simplest cases. The only rules needed within the scope of the present paper are  as 
follows: 

If the operational equivalent of Fff) is ~0(D), then the operational equivalents of several related 
functions may be obtained as shown below" 

Funct ion  Operational equivalent 

,f(r) 

e Fff) 

(cos J r  q- i sin J r ) F ( r )  

- D , . . . . . .  ( a )  

D 
D + R ~ ° ( D - t - R ) '  . . . . . . .  (b) 

D 
D -  i J  i J ) ,  . . . . . .  ( c )  

D{~o(D)- F(o)}, . . . . . .  (d) 

9 ( D ) / D  . . . . . . . . .  (e) y Fff) dr 
0 

Also, if the operational equivalents of F,(r) ,  F & ) ,  F~(r), . . . are 9,(D),  9=(D), 9~(D), . . . ,  
respectively, and al, a2, a~, . . . are arbitrary constants, then:  

the operational equivalent of alF~(z) + a~F=ff) + aaF&) . . . t . . . . . . . . .  (f) 

is a~o~(D) q- a~9~(D) + aa~a(D) J 
The proofs of the above rules, based on the definition (I), may be found in textbooks on 

operational calculus, and are omitted here. 
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I t  is easily seen that  the above rules lead immediately to all formulae of the fundamental 
Table 1. Thus, for instance, each of the formulae (2 to 7) is obtained by applying the rule (e) 
to the preceding formula. Formulae (8 to 14) are derived from (1 to 7) by applying the rule (b) 
in each case but, alternatively, the rule (a) may be used to derive (9) from (8), (10) from (9), etc. 

Formulae (15 to 22) have been obtained from (1 to 4) by applying the rule' (c), and in each 
case a single operation yields two formulae at one stroke. For example, applying the rule (c) 
to (2), we find that  the operat ionalequivalent  of ~(cos J r  + i sin J~) is: 

D 1 D ( D  + i J) ~ - D(D ~ - - i f )  + 2 iJD 2 
D --  i J  D --  i J - -  (D~ + f f )  ~ - (D~ + f f )  ~ 

and, separating the real and imaginary parts, we get (16) and (20) at once. Alternatively, (16) 
may be obtained from (15) by applying the rule (a), and so on. 

Finally, the formulae (23 to 30) have been derived from (15 to 22) respectively, by applying 
the rule (b), but alternative derivations by means of the rules (a) and (c) are available for checking. 

Each group of formulae in Table 1 may,  of course, be extended indefinitely, introducing higher 
powers of ~. The formulae given are, however, more than sufficient for all ordinary purposes 
and for deriving the subsequent tables. 

By inspecting Table 1 it is seen that  the operational equivalents of all simple functions of the 
type considered are algebraic al fractions in D, the denominator being in each case an appropriate 
power of one of the factors D, D q- R, D 2 + j2, or D ~ - / 2 R D  q- (R ~ + J') ,  and the numerator 
being a polynomial ill D, of the order never exceeding that  of the denominator. By combining 
various formulae according to the rule (f), it is possible to obtain every algebraical fraction (the 
order of the numerator never exceeding that  of the denominator), and hence the way is open to 
find the functional equivalent of an arbitrary operational fraction, and to at tempt  a systematic 
tabulation. The procedure adopted here consisted of two steps • firstly, Table 2 was compiled, 
giving functional equivalents of simplest operational fractions, i.e., those whose denominators 
were powers of only one of the factors D, D - /  R, D ~ + f f  or D = +  2 R D  + H (where 
H = R '~ + J~), and the numerators were either constant or single powers of D ; a n d  secondly, 
we have derived Table 3, giving functional equivalents of the most general operational fractions 
of the 1st, 2nd, 3rd and 4th order. 

The derivation of Table 2 was comparatively easy. Formulae  (31 to 37) are simply i.nversions 
of (1 to 7). In each of the eight subsequent groups, it was always possible to fred one formula 
directly by inspection of Table 1, e.g., the formula (48) is simply an inversion of (11). All 
remaining formulae of each particular group could then be obtained by simple differentiation or 
integration, i.e., by applying the rules (d) and (e). Only the last four groups (formulae 73 to 94) 
required some little more effort. For example, (75) was derived by combining (17) and (20) so 
as to obtain a fraction with the numerator D 2 ; then the remaining formulae of the group (73 to 79) 
could be found immediately by differentiation or integration. The tabulation has included all 
simple operational fractions up to the 6th order. 

Table 3 required much more effort. This table consists of four groups, including operational 
fractions of the first four orders. In each group there are a number of operational fractions with 
various types of factorized denominators, including all possible combinations of real, imaginary, 
complex and zero roots, also all cases involving multiple roots. It  was found that  there were 
two different types of fractions of the 1st order, six of the 2rid order, eleven of the 3rd order, and 
twenty-five of the 4th order, and all these had to be tackled ill turn. The procedure was simple 
whenever the denominator was a power of one of the factors D, D - / R ,  D 2 - / f f  or D ~ + 2 R D  + H 
because, ill such cases, the functional equivalents could be determined by combining appropriate 
formulae of Table 2. For example, the formula (100) was obtained directly by combining (80, 
81, 82); similarly, (118) is a simple combination of (47 to 51). I f ,  however, the denominator 
contained different linear or quadratic factors, the fraction had to be resolved into simple 
fractions, whose functional equivalents were then found in  Table 2 and combined into the final 
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fornmla. The algebraical work was complicated in many cases, and extensive checks were made 
to ensure reliability of all results. In many cases simple checking formulae are given in the 
table, as they may be helpful for the user. 

Table 3 could be continued to include operational fractions of 5th, 6th and higher orders. 
This would require, however, an immense amount of work. For instance, there would be forty- 
three different forms of fractions of 5tti order, and eighty-four of those of 6th order, and the 
corresponding formulae would be increasingly complicated.  I t  was found impossible to perform 
such an enormous task. Instead, the reader will find Tables 4 and 5, which contain a compara- 
tively small (but sufficient) number of formulae for reducing every fraction of 5th or 6th order 
respectively, t o  a combination of fractions of lower order. The latter can be dealt with by using 

Tab le  3 or 2. 

3. Use o f  Tables fo r  Response C a l c u l a t i o m . - - W e  consider only problems which reduce to the 
solution of a linear differential equation with constant coefficients, or of a system of simultaneous 
differential equations of the same type. The forcing function (if any) in each equation must be 
one of those appearing in Table 1 (or any linear combination of such functions). 

Let us consider, for simplicity, one equation of the 3rd order" 

dax d~x dx (III) 
d-- ~ + K~ ~ + K I  ~ + KOx = Fl('c) , . . . . . . . .  

where x is an unknown function, of ~, and FI(,) the forcing function ; and let the initial conditions 
be x = Xo, dx /d ,  = :~o, d2x /d*~= 20, at ~ = 0. The equation (III) can be transformed into 
operational form by applying the operation (I) to each term. Suppose tha t  ~0~(D) is the operational 
equivalent Of F~(T), and X = ~0(D) that  of x(,). Applying the rule (d) of section 2 three times, 

we find that  • 
the operational equivalent of dx/dT is D X  - -  Dxo, 

the operational equivalent of d2x/d~ ~ is D2X - -  D~xo - -  D2o , 

the operational equivalent of d3x/d'c ~ is DaX - -  D3xo - -  D 2 2 o -  D2o , 

and substituting these expressions into (III), we obtain the subsidiary equation in the form " 

(D ~ + . K 2 D  ~ -+- K I D  + K o ) X  --~,~(D) + Xo( Da + K~ D~ -~- KID) @ 2°(D2 @ K~D) @ x0 9 • (IV) 

The procedure of obtaining the subsidiary equation is thus" 
(i) TO replace x by X ,  dx/&c by D X ,  d~x/dT: ~ by D~X,  etc., and write the left-hand part  of 

the equation as a product of X by an appropriate polynomial in D 
(it) To replace the forcing function by its operational equivalent 

(iii) To add on the right terms accounting for initial conditions, formed in such a way;  x0 is 
multiplied by the left-hand polynomial in D less the constant term, and 20, 20, etc., 
multiplied by shorter polynomials obtained each time by dropping the next term and 
dividing by D. 

I t  remains then to solve the subsidiary equation (IV) for X, whereupon we obtain" 
x = +  o(D + K D) +  o(Z) + K D) +  oZ) . (v) 

= + K ~ D  ~ + K 1 D - / K o  ' " 

which is the operational equivalent of x, in the form of an algebraic fraction. This must be 
interpreted by using the appropriate tables. In our case Table 3 is sufficient if the order of the 
fraction does not exceed 4 but, if the order is 5 or 6, Table 4 or 5 must also be used. 

A similar method may be applied to solve a system of n simultaneous differential equations 
with n unknown functions x, y, z, . . . of a single independent variable ,. All equations are then 
transformed into operational form by applying the operation (I) term by term. Let the symbols 
X, Y, Z, . . . denote operational equivalents of x, y ,  z, . . . ,  respectively. The left-hand part of 
each equation becomes a linear combination of X, Y, Z, . . . ,  multiplied respectively by appro- 
priate polynomials in D; on the right, we write the Operational equivalent of the respective 
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forcing function, and add products  of initial values Xo, 2o, ~o, • •., Yo, Yo, ~o, • •., etc., by polynomials 
formed in the  same way as described above. We obtain ~ subsidiary equations, l inear in 
X, Y, Z, . . . and, by solving them algebraically for X, Y, Z, . . . (preferably by  using deter- 
minants) ,  we find the operat ional  equivalents  of x, y, z . . . .  , which must  then  be in terpre ted  by 
making  use of the  tables. 

Several examples are given in the  Appendix,  and the  reader will find tha t  the solution of 
problems by  this me thod  is ext remely  simple and rapid. It  m a y  be ment ioned  tha t  there  is 
really no need to write X instead of x, etc., in subsidiary equations, as there is never  a risk of 
confusing the  operat ional  equivalent  wi th  the  function itself. 

4. Addi t ional  R e m a r k s . - - T h e  following remarks  may  not  be superfluous: 

(a) In  our tables, all exponentials  are wri t ten in the  form e -R~, e-~L etc., the  exponents  being 
assumed to be negative. The reason is tha t  systems normal ly  encountered in engineering are 
(or should be) stable, so tha t  the  real parts of the stabil i ty roots are usually negative. The 
formulae can, of course, be used when one or more exponents  are positive, which simply means 
writ ing R instead of (-- R) etc., bo th  in the  function and in its operational  equivalent.  

(b) I f  a power series in T is required for any function F(r) whose operational  equivalent  ~(D) 
is known, then  the  easiest way is nsually to expand ~(D) as a power series in 1/D, simply by  
dividing the  numera to r  by the denominator ,  and then to interpret  by  means  of the  formulae 
(31 to 37) of Table 2. 

(c) The initial value of F( , ) ,  for ~ = 0, can be found by let t ing D tend  to infinity in the expansion 
of ~o(D) men t ioned  above or, which comes to the same, in the  fractional expression of 9(D). 

T h u s ,  we have • 

F(o) ----- l im ~o(D) (or simpler F(o) = ~(oo)) (VI) 
D - - ~ c o  . . . . .  

In  view of the  nota t ion  used in Tables 3, 4, 5, the initial value of every function appearing in 
these tables is equal to a. 

(d) A relation analogous to (VI) also exists for the limit of F(z) w h e n ,  tends to infinity, if such 
a limit exis ts .  We have then"  

lim F(~) = 9(o) (or simpler F(oo) = 9(o)) (VII) 
~ - - ~ o o  . ~ . . . .  • 

and it is seen tha t  this l imit is always equal to the  ratio of the  constant  terms of the  numera to r  
and denominator  of the  operat ional  fraction. This formula is very  useful in practical applications. 
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T A B L E  1 

Operational Equivalents of Simple Functions 

r 
Function F(T) Operational equivalent ~(D) Number 

1 

T 

T 2 

T 3 

T 4 

T 5 

T 6 

e-R~ 

e -R~ 

.g2 e-Rv 

T3 e - R v  

T4 e - R v  

T5 e-~R~ 

~6 e - R ,  

cos J r  

"g COS J ' g  

"c 2 COS J . v  

~a COS J r  . 

sin J~  

s inJ~ 

r2 sin J .  

~a sin J ,  

1 

l ID 

2/D 2 

6/D a 

24/D 4 

120/D 5 

720/D 6 

D/(D + R) 

D/(D + R) ~ 

2D/(D + R) 3 

6D/(D + R) 4 

24D/(D + R) ~ 

120D/(D + R) 6 

720D/(D + R) v 

D 2 

D 2 + j2  

D(D 2 __ j2) 

(D~ + J~)= 
2D2(D ~ --  3 j  ~) 

(D 2 + j2)a 

6D(D ~ _ 6j2D~ + .[4) 
(D ~ + j2)~ 

J D  
Dz + j2 

2JD 2 

(D~ + J~? 
2 jD(3D ~ _ j2) 

(D ~ + j~)a 

24jD2(D ~ _ j2) 
(D 2 + j~)4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 
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T A B L E  1--continued 

Func t ion  F(*) 

e -/~v cos J r  

r e -  Rz COS J r  

~2 e -Rv  COSJT 

r a e -  ~ cos  J r  

e - ~  sin J r  

z e -~* sin J r  

z 2 e -:~r sin J r  

z ~ e -~* sin J r  

Opera t iona l  equiva lent  

D(D + R) 
D 2 + 2 R D +  (R 2 + J z )  

D{D 2 + 2RD + (R ~ --J~,)} 
{D 2 + 2RD + (R 2 +J2)}2 

2D(D + R){D ~ + 2RD + (R 2 --  3J2)} 
{ 0  2 + 2RD + (R ~ + j2)}a 

6D{D 4 + 4RD 3 + 6(R 2 - - J 2 ) D 2  + 4R(R ~ -- 3J2)D + (R ~ -- 6RU2 + Ja)} 
{D 2 + 2RD + (R 2 + j2)}a 

J D  
D 2 + 2 R D + ( R  ~ + J z )  

2JD(D + R) 
{D ~ + 2RD + (R ~ + J2)}= 

2JD{3D ~ + 6RD + (3R 2 - -  j2)} 
{D 2 + 2RD + (R 2 + j2)}a 

24JD(D + R){D 2 + 2RD + (R 2 --J~)} 
{D 2 + 2RD + (R 2 + j2)}4 

Number  

23 

24 

25 

26 

27 

28 

29 

30 
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TABLE 2 

Functions Equivalent to Simple Operational Expressions 

Operational 
expression 

~(D) 
Equivalent function F(~) Number 

1 

1/D 

1/D ~ 

, 1 / D  a 

1/ D ~t 

1/D ~ 

1/D ~ 

R/(D + R) 

D/(D + R) 

R~/(D + R) ~ 

D/(D + R) ~ 

D~/(D+ R) ~ 

Ra/(D q- R) a 

D/(D + R) a 

D~/(D + R) a 

Da/(D + R) a 

R4/(D + R) ~ 

D/(D + _~)~ 
D~/(D + R) ~ 

Da/(D + R) ~ 

D~/(D + R) 't 

RS/(D + R) 5 

D/(D + R) 5 

D~/(D + R) 5 

Da/(D + R) 5 

.D4/(D + R) 5 

DS/(D + R) 5 

1 

T 

~2/2 

~ / 6  

T4/24 

z5/120 

z6/720 

1 - -  e - 2 ~  

e-Rz 

1 - -  (1 + Rz)  e -~t* 

e-R~ 

(I - R~) e-~ 

1 - (1 + R~ + ½ R ~ )  e - ~  

T2 e - J~-r 

(~ - ½R~2) e - ~  

(1 - -  2R~ + ½R~,~) e -~*  

1 - (1 + R~ + ~-R2~ ~ + ~ R ~ )  e -R-  

~ a  e -  Bz 

( ~  - ~ R ~ )  e - ~  

(~ - R~2 + ~-R~ ~) e - ~  

(1 - -  ZR~ + ~ R ~  - -  }R~.a) e - ~  

1 - -  (1 + R z  + ½R% 2 + { R %  8 + ~ R ' z  4) e - ~ *  

~¥-g4 e - R z  

(½~ - ½R~ + ¢ ~ R ~ )  e - ~ ,  

(-~ - -  ~ R ~  + ~ R ~  -~ - -  ¢~Ra-~) e - ~  

31 

32 

33 

-34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

9 



TABLE 2--continued 

Operational 
expression 

~(D) 
Equivalent function .F(z) Number 

R6/(D + R) ° 

D/(D -+- R) ~ 

D2/(D + R) ~ 

Da/(D + R) ~ 

DS(D + R)G 
D~/(D + R) ~ 

D6/(D + R) ~ 

f f / (D ~ + JZ) 

D/(D ~ + 7 2) 

-. De/(D ~ + J~) 

j4/(D ~ _4_ j2)~ 

D/(D ~ + J2) 2 

D=/(D 2 + J~)a 

Da/(D 2 + JZ)~ 

D~/(D 2 + J~)~ 

j6/(D= + j2)3 

D/(D ~ + j2)3 

D~/(D 2 + J~)a 

D3/(D = + ff)a 

D~/(D 2 + J~)a 

D~/(D ~ + j2)a 

D"/(D~ + J~)~ 

1 - (1 + R; + ½R~r~- + -~R~r3 + 9~R4r~ + ~½,R~r~) e -~;  

~ z  -5 e -IR~ 

( ~ r  ~ -- ~½~R~ 5) e-a* 

(~r3 - g~Rr~ + ~½~R'~ ~) e-~ 

(½r2 _ ½Rr~ + ~R~r4 -- ~½~R~r~) e-~* 

(r -- 2Rr ~ + R2r a -- {Rat 4 + ~½~R~r 5) e - ~  

(1 - -  5R~ + 5R2r 2 - -  ~Rar a + ~R~r  ~ - -  i½vRSr 5) e -B~ 

1 -- cosJT 

sin Jr 
J 

cos J r  

1 -- cos J .  - ½Jr sin J r  

1 ( s i j J r  . c o s J ~ )  
273 

sift J r  
½~ j 

} (~ cosJ~ + s i j  -J---!  ) 

cos J r  - ½Jr sin J r  

_ _  (1 - -~*-J~r~) cos Jr - ~J~ sin Jr 

( 3 - J 2 r 2 )  =TsinJ* arcosjrl 

sj~ j 

l sinJ~ } ! (1 + j2r~) r cos Jr 8j2 j 

~ (r2 cosy~ + a~ s i ~  - - -~)  

~lSrCOSJr+(a--ffr2) SijJ----* I 
(1 -- ~J%=) cos J r  -- -~ J r  sin J r .  

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

10 



T A B L E  2 - - c o n t i n u e d  

Operational 
expression 

~(D) 
Equivalent function F(r) Number 

H 
D ~ + 2RD + H 

D 
D ~ + 2RD + H 

D ~ 
D e + 2RD + H 

H a 
(D ~ + 2RD + H) ~ 

D 
(D e + 2RD + H) z 

D ~ 
(D ~ + 2RD + H) ~ 

D ~ 
(D ~ + 2RD + H )  n 

D ~ 
(D ~ + 2RD + H) ~ 

H a 
(D ~ + 2RD + H) a 

D 
(D e + 2RD + H) a 

D ~ 
(D ~ + 2RD @ H) a 

.D a 
(D ~ + 2RD + H) a 

D 4 

(D ~ + 2RD + H) a 

D 5 

(D ~ + 2RD + H) a 

D 6 

(D ~ + 2RD + H) a 

R sin J r )  .e- ~ 1 -  cos J r  + f 

e_~, sin J___5 
J 

2j  ~ - ~ cosJz e -R* 

1 Rr cos J~ + (J~r - R) si-j-J[} e - ~  
2J~ 

1 l ( H - 2 R ~ ) , c o s J v + ( H - 2 R J ~ , ) s J j J ~ - l e - a ~  
2J ~ 

1 
-- * f {J~( 4R= ~-j~[12J= R ( 3 H - - 4 R  ~) ) cos J r  + - - H ) r - - R ( 3 H  -- 2Re)} si~J-~ 1 e -~* 

x 

~r v2 ]~ (15H ~ _ 20R~H + 8R 4) + + 47 cos + 

e-Rv 
J 

Sj  4 (3--JZT~) j 

- - {  sinJ~ I e - ~  1 (3Rv -- j%2) cos J ,  + (RJ~r ~ + J2-c - 3R) ~ - -  sJ~ 

{2RJ2v 2 --  ~H + 2R=)z} cos J .  + 
8J, 

+ {(H + 2_R ~) --  2RJ2* + Je(H -- 2R2)* ~} si-~J -z I " - 1  e-~v 

s j - -  ~ {aRH~ + J~(H -- 4R~)r~} cosJ~ - 

-- {3RH -- 3J2Hz + J2R(3H - 4R2)~ ~} sinJy~ e_R~ - y - j  

L I {4RJ2(2R2 -- H)~e + (5H~ -- 16R2H + 8R4)~} COS j r  + 
v d t _  

+ {3H 2 -- 4RJ2(aH -- 2Re)~r -- J2(He -- 8R2H + 8R~)z ~} s-J%-J ~ I e-:~z 

12ReH + 16R,t) z ~ } COS j r  
v d 

L .  

- -  {R(15H = -- 20R2H + 8R 4) + J=(7H 2 -- 44R2H + 32R4)~ - -  

- J e R ( S H ~  - -  2 0 R ~ H  + 16R~)~e) sin J ; ]  e - ~  

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

1i 



TABLE 3 

Functions Equivalent to General Operational Expressions in Form of Fractions 
with Denominators of 1st to 4th Order 

(1) Fractions with denominators linear in D 

Operational expression 9(D) Equivalent function F(r) Number 

a D + b  

D + R  

a D + b  

D 

~ +  - 

a + b r  

95 

96 

(2) Fractions with denominators quadratic in D 

Operational expression ~(D) Equivalent function F(~) Number 

a D  s + bD + c 

(D + R ) ( D  + r) 

a D  ~ + bD + ' c  

(.D + r) ~ 

a D  s + bD + c 

D s + f f  

a D  s + bD + c 

D s + 2 R D  + H 

a D  s + bD + c 

D ( D  + R) 

a D  ~ + bD + c 

D 2 

c a R  - -  b + c / R  e _ R . _ _  ar - -  b + c/r e -~'~ 
R r  + R - - r  R - - r  

2 + +2 

H + { ( a - - H ) c o s J T - - ( a R - - b + ~ - ) s i ~ - ~  

a + b~: + -~c. s 

e - 2 ~ .  

97 

98 

99 

100 

101 

102 

(3) Fractions with denominators cubic in D 

Operational expression 9(D) Equivalent function F(r)  Number 

a D  a + bD 2 + cD + d 

(D + R~)(D + R2)(D + R~) 
A + B 1 e - ~ l  * + Bs e - ~ *  + B3 e - ~ * ,  

where : 
d 

A - -  R 1 R s ~ 3 ,  B 1 = 

aRz  2 - -  b R  s + c - -  d / R  s 
B s =  : ' 

aR12 - -  b R  1 + c - -  d / R  1 

(R~- -  R2)(R 1 -  R~) ' 

aR82 - -  bR~ + .  c - -  d / R  3 
B a = (R  3 - -  R~)(R 3 - -  R2) 

Check" A + B I + B  2 + B  3 = a .  

103 
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T A B L E  3 - - c o n t i n u e d  

(3) F r a c t i o n s  w i t h  d e n o m i n a t o r s  c u b i c  i n  D - - c o n t i n u e d  

Operational expression 9(D) Equivalent function F(z) Number 

a D  3 + bD 2 + cD + d 

(D + R)(D + r) 2 

where: 

A - -  

a D  ~ + bD ~ + cD + d 

(D + r) a 

a D  3 + bD ~ + cD + d 

(D 2 + j2)(D + r) 

a D  ~ + bD 2 + cD + d 

(D ~ + 2 R D  + H ) ( D  + r) 

C __ 

E = 

A + B e  - g * + ( C + E z )  e - r , ,  

d B = a R 2 - - b R + c - - d / R  
R r  ~ '  (R  - -  r) 2 

a(r 2 - -  2Rr )  + b R  - -  c + d - -  -~ 

( R  - r)~ 

ar ~ - br + c - -  d / r  

R - - r  

Check: A + B + C = a , B R  + Cr - -  E = a ( R  + 2r) - -  b .  

d + d  

where : 

A - -  

A + B c o s J r + c S i ~ J r + E e  -r~ 

d B = a J2  + br - -  c - -  r d / f f  

U ~ '  J~  + r~ 

C =  ( b - - a r ) J  2 + c r - d  a # - - b r + c - - d / r  
j ~  + r~ , E = j 2  + r 2 

Check: A + B + E = a ,  C - - E r = b - - a r .  

sin J z ~  e _ ~  ~ E e - ~  A + B c o s J r + C ~ - /  + , 

where : 
A - -  d B = a ( H - -  2Rr )  + b r - -  c + d ( 2 R  - -  r ) / H  

r H  ' H - -  2 R r  + r 2 

C = a ( 2 R 2 r - -  R H - -  rH)  + b ( H - -  Rr)  - -  c (R  - -  r) + 

H - -  2 R r  + r 2 

+ d ( 2 R  ~ - -  R r  - -  H ) / H  

H - -  2 R r  + r ~ 

E = 
ar 2 -  br + c - -  d /r  

H - -  2 R r  + r ~ 

• Check: A + B + E = a ,  C - - B R - - E r = b - - a ( 2 R + r ) .  

104 

105 

106 

107 
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TABLE 3--continued 

(3) _Fractions with denominators cubic in D--continued 

Operational expression 9(D) Equivalent function F(T) Number 

aD s + bD 2 + cD + d 
D(D + R) (D + r) 

aD s + bD ~ + cD + d 

D(D + r) ~ 

aD s + bD ~ + cD + d 

D(D 2 + j2)  

aD s + bD ~ + cD + d 

D(D 2 + 2 R D  + H) 

aD s + bD 2 + cD + d 

D~(D + R) 

aD s + bD ~ + cD + d 

R r  ~ + R r  --  d R~r~ ] + 
aR --  b + c/R - -  d /R z e _ ~  _ 

R - - r  

ar - -  b + c/r - -  d/r 2 e - '~ 
R - - r  

~ (~ ~) l(~_ ~+~ ( ~ ~) le-~ + f i - - - ~  + ~ rS ] -  a r - - ' b + - r - -  ~ r 

y ~ + S +  ~ -  cosj~+ b -  j 

d 6 ~ + (~- ~-~) + l(~-~+ ~ )  co~;~- 
~ - ~ -  ~t ~i~-~ I e-~ -- (\aR -- b + - ~  H~ 

ff~ + ~ ~ + 1~2 + ~ + 

( ~ ~ ) e - ~  

a + b~ + ½c~ + -~d~ s 

108 

109 

110 

111 

112 

113 
D 3 

(4) Fractious with denominators quartic in D 

Operational expression 9(D) Equivalent function/;(z) Number 

aD 4 + bD ~ + cD ~ + dD + f 
(D + R1)(D + R2)(D + Rs)(D + R4) A + B1 e-~l~ -/- B2e -~2" + Bs e-~3" + Bae -~¢¢ , 

where : 
aRt  s - -  bR12 -t- cR1 --  d + f i R  1 A - -  f B I :  

R1R2R~R ~ ' ~ : R ~ ( R  7 - -  R j ( I ~  - -  R4) 

and analogous formulae for B.,, B s, Ba. 

Check: A + B  1 - t : B 2 + B s + B 4 = = a .  

114 

14 



T A B L E  3--continued 

(4) Fractions with denominators quartic in D - - c o n t i n u e d  

Operational expression ~(D) Equivalent function F(~) 

A + B 1 e - ~ l  • + B= e-R= ~ + (C - -  Ez)  e -,'*, 

where : 

A =  f 
R1R=r ~ , 

B I_= aR1 e -  bR12 + c R  1 .  d + f i R  1 ,  . 
(R1 -- ~ ) ~ 1  Z ~ ) f f  (analogous for B2), 

ar e - -  br 2 + cr - -  d + f i r  
E =  

(R~ - ~)(R~ - ~,) ' 

C(Rx - -  r)2(R~ - -  r) ~ = ar~{r ~ - -  2r(R~ + R2) + 3R~R~} + 

+ br{r(Rx + R2) - -  2RxR~} + c(R~R~ - -  r ~) - -  d(Ra + R 2 - -  2r) -- 

( 3 - - 2  R I + R 2  R1R2~ 
~ f 7 + - T j "  \ 

Check: A + B  I + B  2 + C = a .  

a D  4 + bD e + cD 2 + dD + f 

(D + R1)(D + R2)(D + r) 2 

a D  4 + bD e + cD 2 + d D  + f 

(D + R)~(D + r)~ 

a D  4 + bD e + cD ~ - d D  + f 

(D + R ) ( D  + r) e 

A + ( K  - -  Lv) e - ~  ~- (k - -  l .)  e -r~ , 

where" 

A -  f 
R2~ "2 , 

+ 2bRr  - -  c (R  + r) + 2d - -  f ( 3R  - r) ~gR2(R 3r) 
K =  

( R  - -  r) e 

a R  e -  bR  2 + c R  - -  d + f i R  

(R  - -  r) ~" 

and analogous formulae for k, I. 

Check: A + K + k = a ,  L + l + K R + k r = 2 a ( R + r ) - - b .  

A + B e -R~ + (C + E z  - -  {-Gz 2) e - ~ ,  

where : 
A - -  f B = aRe - -  bR2 + c R  - d + f / R  

R r  e '  (R  - -  r) e " 

- -  3 R r  + # )  + bR 2 -  c R  + d - -  ~ (R ~ -  3 R r  + 3#) a f ( 3 R  2 

C =  

E =  

( R - - r )  e 

f ( 2 r -  R) ar2(3R - -  2r) -- br(2R - -  r) + c R  - -  d + rN 

(R - r) 2 

ar 8 - -  br ~ + cr - -  d + f 
G =  r 

R - - r  

Check: A + B + C = a ,  

A R t  + E ( R  - -  r) - -  G = c - -  2br + 3 a # .  

Number 

115 

116 

117 
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' T A B L E  3--continued 

(4) Fractions with denominators quartic in D - - c o n t i n u e d  

Operational expression ~o(D) Equiva len t  function F(T) Number  

a D  4 + bD a + cD 2 + d D  + f 

(D + rp 

a D  ~ + bD a + cD 2 + d D  + f 

(D + R~)(D + R~)(D 2 + j2) 

a D  4 + bD a + cD ~ + d D  + f 

(D + R)2 (D 2 + j2) 

( )I  f Z" 3 e-rZ - -  ~ ar a - br 2 + cr - d + 7 

A + B 1 e-a1  ~ - -  B 2 e-a~ * + C cos jz  - -  E s in j~  j , 

where : 

f B1 aR1 a - -  bR12 + c R  1 - -  d + f i R  1 
A - -  RIR2 j2 ,  = (R~ - -  R2)(R~ 2 + j2) . ,  

B.a = aR2a - -  bR22 + cRz - -  d + f i R  2 . 
(R~ - -  R~)(R2 ~ + y )  ' 

C = (j2 _ R~R2)(aj2 _ c + f / j z )  + (R~ + R2)(bj 2 - -  d) 
(R12 + d2)(R~2 + y) 

E = Jz(R1 + R2)(aJZ - -  c + f / j e )  -- ,  ( j z . - -  R I R 2 ) ( b j  2 - -  d) 
(t~12 + j2)(/{22 + j2) 

Check: A + B  1 - B  2 + C = a ,  

A R  1 - -  B.,.(R 1 - -  R2) + CR1 - -  E = b - -  aR~ .  

A + (B --  B%) e - ~  + C c o s j ,  - -  E s i n j ,  j , 

where : 

A - -  f B '  = aRa - -  bR2 + c R  - d + f / R  
R~j~ , R 2 + j2 ' 

B = aR2(R2 + 3j2) - -  2bRj2  + e(j2 - -  R2) + 2 d R  - - f ( 3  + f i / R  2) 

(R~ + j2)~ 

C = (j2 _ RZ)(aj2 _ e + f / j z )  + 2 R ( b j  ~ - -  d) 
(R~ + j~)~ 

E = 2Rj~(aJ~ - -  c + f / j z )  _ (j~ _ R ~) (bjZ _ d )  
(R~ + j,~)~ 

Check: A + B + C = a , B R  + B" + E = 2 a R - -  b .  

118 

119 

120 
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T A B L E  3 - - c o n t i n u e d  

(4)  F r a c t i o n s  w i t h  d e n o m i n a t o r s  quar t i c  i n  D - - c o n t i n u e d  

Operational expression 9(D) Equivalent function F(.) Number 

aD ~ + bD ~ + cD ~ + dD + f 
(D + R~)(D + R2)(D ~ + 2rD + h) 

aD ~.+ bD 3 + eD 2 + d D  + f 
(D + R)2(D ~ + 2rD + h) 

sin j r ]  e -'~ 
A + B l e - ~ t * - - B 2 e - a 2 ~  + l c o s j . + n ~ - /  , 

where : 

A -- f "  ' /  B 1 = aR13 --  bR12 + cR1 -- d ~ f / R  1 
R1R2h ' ( R 1 -  R.z)M 1 ' 

Bz = a R ~ 3 - - b R e  2 ~- cR~ -- d +j/R,~ 
(R~ -- Re)Me 

M~M,z! = a{h ~ -- hR~R 2 -- 2rh(R~ + Re) + 4reR~R,z} + 

+ b{h(Rx + R.z) --  2rR~R2) + e(R~R 2 --  h) + 

" + d ( 2 r - -  R ~ - -  R2) + f l l --  (R~- -  2r)(R'z--  2r) l 
h 

M~M~n ----- a{--  h2(Rx- + R 2 + r) + 3hR~R2r + 2#h(R~ + Re) -- 

--  4R~R2r 3} + b{h 2 --  R~R2h -- rh(R~ + R2) + 

+ 2R~R2# ) + e{h(R~ + R 2 -- r) --  R~Rer) + 

+ d{(R~ --  r)(R,2 --  r) + r e --  h) + 

l " r ( R ~ - - 2 r ) ( R ~ - - 2 r ) }  ' + f 3 r - -  R x -  R ~ -  

and 

M~ = R~ 2 -- 2rR~ + h ,  M. z-= R~ ~ -  2rR e + h .  

Check: A + B ~ - - B  e + l = a ,  

B~R~ --  B~R~ + rl --  n : a(2r + R~ + Re) --  b . 

n sin J*l e -rr , A + ( B - - B % ) e - ~ +  / c o s ] ' ~ +  ~ - /  

where : 

A -- [ B '  = aR3 -- bR2 + cR - d + f / R  
R~h ' M ' 

M2B = aR2(R e --  4Rr  + 3h) + 2bR(Rr --  h) + c(h --  R ~) + 

+ 2d(R -- r) - - f ( 3  -- 4r/R + h/Re) ,  

M2l = a{h ~ -- h R ( R  + 4r) + 4R2r 2) + 2bR(h -- Rr) + 

+ c(R 2 -  h) --  2 d ( R - -  r) + f { 1  --  (R -- 2r)e/h); 

M2n = a{-- h2(2R + r) - / h R r ( 3 R  + 4r) -- 4Rer ~} + 

+ b{h ~ --  h R ( R  + 2r) + 2Rer ~} + c{h(2R -- r) --  R~r} + 

+ d{(R -- r) ~ + r ~ -- h} + f { 3 r - -  2 R - -  r(R --  2r)~/h}, 

and 

M= 

Check : 

R, e --  2Rr  -[- h .  

A + B + l = a ,  B R + B ' + r l - - n : 2 a ( R + r ) - - b .  

121 
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T A B L E  3--continued 

(4) Fractions with denominators quartic in D l c o n t i n u e d  

I 
Operational expression ~o(D) Equivalent  function F(z) N u m b e r  

aD ~ + bD a + cD 2 + d D  + f 
(D~ + y)(D= + j~) 

aD ~ q- bD a + cD 2 + dD + f 
(D~ + j2)2. 

aD 4 + bD a + cD 2 + dD + f 
(D ~ + 2 R D  + H ) ( D  ~ -[- jz) 

aD ~ + bD a + cD 2 + d D  + f 
(D ~ + 2 R D  + H ) ( D  2 + 2rD + h) 

~ 2  + j z  _ j~-~ aJ  2 - c + cos J ,  + (bJ ~ - d) - -  

- -  ( a f i - - c  + ¢ )  c o s j * - -  ( b j 2 - - d )  si;j~- I 

sin J~ 

J 

+½1(b+dz)-- (aj2--c+¢)'vlsinj j 
( A + L c o s J z + N s i ~  e - ~ @ l c o s j ~ + n  J , 

where : 

A =  f__ 
H i 2 '  

QL = a { H ( H  - - j ~ )  + 4R2j  2} - -  2 b R j  ~ - -  c (H - - j z )  + 

+2dR +f(1  _4R~ +j~) 
H ' 

Q N  = aR{j~(3H - -  4R~) - -  Ha} + b{H(H - -  j~) + 2R~: °-} - -  

- -  c R ( H  + j2) + d(2R2 - -  H + j~) + f R  ( 3  4 R 2 - ~  JZ) , 

Ql = (j~ - -  H)  (ajZ - -  c + f )  + 2R(bj2 - -  d) , 

Qn = - -  2Rj~ (aj2 - -  c + f ) + (jZ - -  H)(bj2 - -  d) , 

and 

Q = ( j ~ -  H)~ + 4R% 

Check: A + L + l = a , N + n - -  R L  = b - -  2 a R  . 

( 7 ( 
where : 

QL = a { H ( H  - -  h) + 4 R ( R h  - -  rH)}  - -  2b(Rh - -  rH) - -  

- -  c (H - -  h) + 2 d ( R  - -  r).-[- ~ { H  - -  h - -  4 R ( R  - -  r)},  

(?N = a{ (aH - -  4R~)(Rh - -  r / t )  - -  H~(R - -  r)} + 

+ b{H(H - -  h) + 2 R ( R h  - -  rH)}  - -  

- -  c{(H + h ) R  - -  2rH} - -  d{H - -  h - -  2 R ( R  - -  r)} + 

+ ~ { R ( ~  - h) + 2 (R  - r) (H - -  2R~)} ,  

(analogous expressions for 1 and n) 

A = "-f-f and Q = (H --  h) ~ + 4(R --  r ) (Rh  - -  rH) 
H h '  " 

Check: A + L + I = a , N + n - -  R L  - -  rl = b - -  2a (R  + r) . 

123 
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TABLE 3--continued 

(4) _Fractions with denominators quartic in D--continued 

Equivalent function P(z) Operational expression ~o(D) 

aD ~ + bD z + cDe + dD + f 
(D 2 + 2rD + h) e 

aD 4 + bD z + cD 2 + dD + f 
D(D -~ Rx)(D + R2)(D + R3) 

aD ~ + bD a + cD a + d D  + f 
D(D + R) (D + r) e 

aD 4 + bD ~ + cD e + dD + f 
I ) (D  + r p  

A + i ( B  + B % c o s j z  + (C + c % )  s i n j z l  e - ~  W -  ' 

where: 

A _  f B = a  f 
ha ' h e ' 

2j2B ' = a t (4#  --  3h) +b(h - -  2r e) + cr - -  d + f r /h  , 

2jaC == ar(2r~ - -  3h) + bh - -  cr + d + f r  (2ra - ' 3 )  
\ h 2 

2C' = a(4r a - -  h) - -  2br + c --  f / h .  

Check: Br - -  B '  - -  C = 4ar - -  b; 

2C'r - -  B 'h  - -  Ch = (2ar - -  b)(2r e + h) + cr .  

A* + B + C le=~1 ~ + C a e - ~  ~ + Cse -~3~, 

where" 
A - -  f B _  d f (1  1 + 1 )  

R1R@~'  R1RaR3 R1RaR~ --R1 + R2 -R3 

C~ aR~2 - -  bR~ + c --  d/R~ + f /R~ 2 

(R 1 -- Ra)(R 1 -- R3) ' 

and similar formulae for Ce, C3. 

Check: B + C  I + C . + C  a = a .  

A~ + B + C e -R* + (E + GT) e-"*, 

where : 

Rr  e-' R #  Rr  e " 

aR a - -  bR + c - -  d /R + f i r  2 
C =  (R - r)~ 

a #  --  br + c - -  d/r + f / r  e ' 
G 

R - - r  

E = ar(r - -  2R) + bR - -  c + d(2r -- R)/r  ~ +f (2R  -- 3r)/r 8 
(R - -  r) ~ 

Check: B + C + E = a ,  A + B R  + E ( R  - -  r) + G = b - -  2ar. 

r--az - -  - - ~ + f i ) -  ( 2 a r - - b + r 2  

( + ½  a # - - b r + c - -  r + f i  z2 e-~'~ 

~+ 

Number 

127 

128 

129 

130 

19 
(71632) B 2 



T A B L E  3- -cont inued  

(4) Fractions with denominators quartic in  D - - c o n t i n u e d  

Operational expression g(D) Equivalent function F(z) Number 

aD 4 + bD a + cD 2 + d D  + f 
D ( D  q- R ) ( D  2 q_j2) 

Az + B + C e -n* + E cosj r  -- G sin j r  
j , 

where : 

A - - f  B =  d _  f 

a R  ~ - bR  + c - -  d / R  + f i R  ~ 
C =  

R ~ + fi 

E - -  aj~ + bR  - -  c - -  d R / j  2 + f / j2  
R 2 + fi 

G = aRj2 - -  by2 - -  c R  q- d + f R / j  2 
R 2 + fl  

Check: B + C + E = a ,  A - - C R - - G = b - - a R .  

a D  a + bD 3 + cD 2 + dD + f 
D ( D  + R ) ( D  2 + 2rD + h) 

a D  4 + bD 3 + cD 2 + d D  + f 

D2(D + R)(D 4-r) 

A r + B  

where : 

A - -  

C =  

M l =  

M n  = 

sin j r  I e_r~ + C e - ~ +  l c o s y T + n  y. / , 

R h  ' R h  R h  + ' 

a R  2 - -  bR  + c - -  d / R  + f i R  ~ 

M 

d (2~ - R) +--f a(h - -  2Rr) + bR - -  c + -h ha (h + 2 R r  - -  4r~), 

a ( 2 R #  - -  h R  - -  hr) + b(h - -  Rr) q- c (R  - -  r) + 

+ _d (2r~ _ R r  - -  h) + f2 {2r~( R - -  2r) q- h(3r - -  R)} 
h 

and 

M = R 2 - -  2 R r  + h .  

Check' B + C + I = a ,  A + B R + l ( R - - r )  + n - = b - - 2 a r .  

½AT 2 + B~ + C + K e - ~ * -  k e - ~ ,  

where : 

R r  R r  " R r  ' 

+ 

a R  --  b q- c / R  - -  d / R  ~ + f / R  ~ 
K =  

R - - r  

ar - -  b + c/r - -  d / #  + f i r  ~ 
k =  

R - - r  

Check: C + K - - k = a .  

131 
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TABLE 3--continued 

(4) Fractions with denominators quartic in D--continued 

O p e r a t i o n a l  express ion  9(D) E q u i v a l e n t  func t ion  F(z )  N u m b e r  

a D  ~ + bD a + cD ~ + dD + f 

D2(D + r) a 

a D  4 + bD a + cD ~ + d D  + f 
D~(D a + ja) . 

a D  4 + bD a + cD ~ + d D  + f 

DZ(D 2 + 2rD + h) 

a D  ~ + bD z + cD a + dD + f 

Da(D + R)  

aD  4 + bD a + cD ~ + d D  + f 
D 4 

f .3 - >  > r~ r 41 ~# +7~  r +  + 

~2 +j~vq- 7a-- + a- -?+ cosjx+ 

+ (b _ a~/d ] sin y~7 

e_r~, sinjT 1 ½A~ a + B ~ + C +  Zcosj~+n~=-/  

where  : 

A f B '~ 2f~ 
h '  h h °"' 

c 2dr f a  
C - -  h h a + (4#  - -  h) , 

c 2dr f (4r ~ h ) ,  
l = a - -  tt + h a h a - -  

cr d (era _ h) + f r  a (3h - -  4#)  n =  - -  ar + b - -  -~ + ]fi h " 

Check :  C + l : a , B - -  lr + n = b - -  2 a r .  

+ + 

+ R 2 + R a  + a - - ~ . q  Ra 

a + br + ½cz 2 + {-dr 3 + ~ f z  4 

134 

135 

136 

137 
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TABLE 4 

O p e r a t i o n a l  F r a c t i o n s ,  w i t h  D e n o m i n a t o r s  O u i n t i c  i n  D ,  R e d u c e d  to S i m p l e r  F r a c t i o n s  

(A) No  a p p a r e n t  zero roots  in d e n o m i n a t o r s  N u m b e r  

D e n o m i n a t o r  w i t h  a t  least  one  single real  root  : 

aD 5 + bD ~ + cD 3 + dD 2 + f D  + g k D  a iD ~ + b~D ~ + q D  2 + d tD + f~ 

(D + R ) ( D  a + B D  ~ + CD ~ + E D  + G) - D + R + D a + B D  ~ + C D  e + E D - i - G  ' 

where  : 

k = aR2 - -  bR + c - -  d / R  + f / R  z - g / R  3 f~ - g / R  , 
R e - -  B R  + C - -  E / R  + G / R  ~ ' 

dl f -  f l  - -  kG d - -  d 1 - -  k E  bl __ c - -  c 1 - -  kC 
- -  R ' c l  - -  R ' R ' a l  - -  

b - -  b 1 - -  k B  

R 

C h e c k :  k + a 1 - -  a .  

D e n o m i n a t o r  w i t h  a doub le  real and  a t r ip le  rea l  r o o t :  

aD ~ + bD ~ + cD 3 + dD e + f D  + g a iD ~ + biD + c 1 aDD 

(D + R)e (D + r) 3 : -(D -~- R ~  + D + r 

where  : 

ar ~ - -  br 3 + cr ~ - -  dr + f - -  g/r 
q : g /r3 '  ca = (R  - -  r) ~ ' 

beD teD 

- -  + ( D  + r )  ~ + ( D  + r) 3 '  

g ( s t -  R ) ,  b e (R -- r) 3 = 2ar3(r --  2R) + bre(3R --  r) --  2cRr + d(R + r) -- 2 f  + 

a 2 ( R - r )  ~ = a # ( 6 R  ~ - 4 R r + # ) - 3 b R e r + c R ( R + 2 r ) - d ( 2 R + r )  + 3 f - - ~ ( R  2 - 4 R r + 6 r  2), 

a 1 : a - -  a 2, b I = b - -  3 a r - -  ae(2R - -  r) - -  b,~. 

D e n o m i n a t o r  w i t h  a pa i r  o5 i m a g i n a r y  roo t s  and  a t r ip le  rea l  r o o t :  

b2D caD aD 5 + bD ~ + cD 3 + dD ~ + f D  + g _ a lD 2 + blD + cl a2D + (D + r) ~ + (D + r) 3 
(D ~ + J2) (D + r) 3 - -  D 2 + J~ + D +-mr - -  ' 

where  : 

ar 4 -  br 3 + cr ~ - -  dr + f - -  g/r  
cl : g/r 3 , c~ : j ~  + r2 , 

g 
b~(J ~ + r~) ~ : - 2ar~(2J ~ + r 2) + br~(3J ~ + r ~) - -  2c r J  ~ + d ( J  ~ - -  r ~) + 2 f r  - ~ (J~ + 3r~), 

a,2(J 2 + re) 3 = ar~(6J ~ + 3J2r ~ + r 4) - brJ~(3J e - r e) + cJZ(J 2 - 3#)  + dr(3J  e - r e) - 

g 
_ f ( j 2  _ 3#)  - r3 (J~ + 3J~r ~ + 6r 4) , 

a 1 = a - -  a2,  b 1 = b - -  3ar  + a~r - -  b~. 

139 
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, T A B L E  4 - - c o n t i n u e d  

(A) No apparent zero roots - -cont inued Number 

Denominator with a triple real root and any two remaining roots : 

baD c2D 
aD z + bD 4 + cD 3 + dD 2 + f D  + g aiD ~ + bID + q a~D + (D + r) ~ + (D + r) 3 '  

(D z + 2 R D  + H ) ( D  + r) 3 = D 2 + 2 R D  + H + D + r 

where : 
ar 4 - -  br 3 + c #  - -  dr + f - -  g/r. 

el = g/r3, c,2 = H - -  2 R r  + r ~ ' 

b~(H - -  2 R r  + #)~ = - -  2ar3(2H - -  3 R r  + # )  + 6#(3H -- 4Rr  + # )  + 2cr(Rr - -  H ) +  d(H - -  # )  - -  

• g (H--4Rr+3#) 2 f ( R  - -  r) - -  f i  

a2(H - -  2Rr  + re) ~ = a # { 6 H  2 - -  H r ( 1 6 R  - -  3r) + #(12R 2 --  6Rr  + r~)} -- br{3H ~ - -  H r ( 6 R  + r) + 4R2r ~} + 

+ c(H ~ --  3 # H  + 2Rr 3) --  d{H(2R  - -  3r) + r 3} + f ( 4 R  2 - -  6Rr  + 3r ~ - -  H) - -  
1 

- -  ~ff{H g 2 _ 3 H r ( 2 R  - -  r) + 2r2(6R 2 - -  8 R r  bc 3#)} , 

a 1 = a - -  a,z, b 1-= b - -  3ar - -  a~(2R - -  r) - -  b 2. 

(B) Single or multiple zero roots in denominators 

Denominator with a single zero root and any non-zero remaining roots : 

aD 5 + bD 4 + cD 3 + d D  ~ + f D  + g _ 
D ( D  4 + B D  3 + CD 2 + E D  + G) 

g/GD + D ~ + B D  3 + CD ~ + E D  + G 

Dehominator with a double zero root and a triple real root: 

D~(D + r) a - -  D~- + - -  r4  D +  r 4 r 5] 

( d 3 f  6g) D 
+ a - - ~ +  r4 ~ D + r  

( d 2 f  3g) D 
- -  2 a r - - b + ~  7 + ~ - 4  ( D ~ _ r ) ~ +  

+ a r 2 - - b r + c - - r + f i - - -  ~ ( D + r ) 8  

142 
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T A B L E  4--cont inued 

(B) Multiple zero roots--continued 

Denominator with a triple zero root and a double real root : 

a D ' + b D ~ + c D ' + d D ' + f D + g  g/# ( f  2g~ 1 (d 2f  3g~ 1 
D3(D + r)~ - =  Da + f i - -  -~l-D~ + r ~ r ~ + V/ -D + 

d 2f 3g D +  c- -  4 
+ -  

(D + r) ~ 

3f 4g) 
r ~ 

Denominator with a triple zero root and a pair of imaginary roots : 

D3(D ~ + J2) D 3 + + -- ~ + 

aD2 + (b-- j~,  + ~ )  D + ( c - - ; 2 )  

D 2 + ] 2  

Number 

145 

146 

Denominator with a triple zero root and any two remaining roots : 

Da(D 2 + 2RD + H) D a + ~ ] ~ + H 2 + g ~ q-. 

+ . . . .  H ] -H~ H ~ 
D e + 2RD + H 

Denominator with a quadruple zero root and a single real root : 

a D S + b D 4 + c D a + d D 2 + f D + g  g/R ( f  g@ 1 ( d  f ga)  1 

+ R 2 + R 3 ~ + R 2 + R a 

+ a - - ~ + ~  R a + R  ~ D + R  

R ~ + + 

147 
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T A B L E  5 

O p e r a t i o n a l  F r a c t i o n s ,  Wi th  D e n o m i n a t o r s  S e x t i c  i n  D ,  R e d u c e d  to S i m p l e r  F r a c t i o n s  

(A) No a p p a r e n t  zero roots  in  d e n o m i n a t o r s  N u m b e r  

D e n o m i n a t o r  wi th  a t  leas t  one single pa i r  of i m a g i n a r y  roots  : 

a D  ~ + bD ~ + cD ~ + d D  ~ + f D  a + g D  + k a~D ~ + b~D a~D ~ + b~D ~ + e.~D ~ + d a d  + f~ 

(D a + . ] ~ ) ( D  ~ + B D  a + C D  a + E D  + G} - -  D ~ + J2  + D ~ + B D  ~ + C D  2 + E D  + G ' 

where  : 

( j ,  _ cja + ~)~ + j a ( ~ y  _ E)a 

b~ = (b J4 -- dJ2 + g)(J~ - CJa + G) --J=(aJ ~ - cJ a + f - k/J~)(BJ a -- E) 

(j~ - cj~ + c)a + ]~(BJ~ -- E)2 

a~ = a - -  a 1,  b~ = b - -  b 1 -  Ba~ , fa = k / J  a,  

ca = e - -  a J  a - B b l  + (J= - C)a~ , d~ = d - -  bJ  a + ( j2  _ C)b~ + (17] a - -  E)a~ .  

Check : Gb 1 + Jad  a = g .  

D e n o m i n a t o r  wi th  a t  leas t  one double  rea l  root  : 

a D  6 + bD 5 + cD 4 + d D  ~ + f D  2 + G D  + k _ a l D  a + b lD 

(D + R)~(D 4 + B D  8 + C D  2 + E D  + G) (D + R)  2 

where  : 

a2D ~ + b2D 3 + caD ~ + d2D + f2 

+ D 4 + B D  3 + C D  a + E D + G  ' 

a A  + b ~ - -  c[3 + dy  - -  f ~  + gO - -  k P  

°a l  = (R  4 -  B R  3 + C R  2 -  E R  + G) a ' 

- -  a .  + b E - -  c9, + d~ - -  fO + g P - -  k K  
b 1 = R ~ 

(R 4 -  B R  3 + C R  ~ - -  E R  + G) a 

A =  R 4 ( R  ~ - -  2 B R  ~ + 3 C R  ~ - -  4 E R  + 5G) , 

fl : R 2 ( R  4 -  C R  2 + 2 E R  - 3G) , 

= 3 R  4 - 2 B R  3 + C R  2 -  G ,  

1" = 5 R  2 - 4 B R  + 3C - 2 E / R  + G / R  2 

a 2 = ~ -- 01 

: R ~ ( B R  3 - -  2 C R  2 + 3 E R  - -  4G) , 

r = R ( 2 R  ~ -  B R  8 + E R  - -  2 G ) ,  

0 = 4 R  8 - -  3 B R  2 + 2 C R  - -  E ,  

K = 6 R  - -  5 B  + 4 C / R  - -  3 E / R  ~ + 2 G / R  ~, 

b~ = (b - 2~R) + (2R -- B)a~ -- b~, 

ca = (c - 2bR + S~R~) + (2R --  B)bl --  (SR 2 -- 2 B R  + C)al,  

d a = (d - -  2oR  + 3 b R  ~ - -  4 a R  3) - -  (3R 2 - -  2 B R  + C)b~ + (4R ~ - -  3 B R  ~ + 2 C R  - -  E )a~ ,  

A = k/R~. 

Check : b i g  + daR ~ + 2 f ~ R  = g .  

149 
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T A B L E  5 - - c o n t i n u e d  

(A) No  a p p a r e n t  zero r o o t s - - c o n t i ~ u e d  N u m b e r  

D e n o m i n a t o r  f ac to r i zed  in to  a q u a d r a t i c  and  a qua r t i c  w i t h  no c o m m o n  roots  : 

a D  ~ + bD 5 + cD 4 + d D  3 + f D  ~ + g D  + k al D~ + b iD a. D4 + b~ Da + ce De + d2 D + fa 

(D ~ + 2 R D  + H ) ( D  ~ + B D  3 + C D  2 + E D  + G) = D a + 2 R D  + H + D 4 + B D  a + C D  e + E D  + G ' 

where  : 

a A  + b~ - -  c~  + dv  - -  f d  + gO - -  k P  - -  a~ + b~ - -  c~ + d~ - -  fO + g I ' - -  k K  
al = H(O e -  ~5I ~) ' bl = 0 ~ -  d F  ' 

A = H ~ - -  2 B R H  a + C H a ( 4 R  a - -  H)  - -  4 E R H ( 2 R  ~ - -  H)  + G(H  e - -  12R~H + 16R ~) , 

= B H  3 - -  2 C R H  a + E H ( 4 R  e - -  H)  - -  4 G R ( 2 R  e - -  H ) ,  

7 = 2 R H a - -  B H2 + E H -  2 G R ,  

0 = 4 R ( 2 R  e - H ) - B ( 4 R  ~ -  H)  + 2 C R - -  E ,  

= H 3 - C H  2 + 2 E R H  - G(4R  a -  H): 

6 -= H ( 4 R  e - -  H)  - -  2 B R H  + C H  - -  G ,  

H 1  ~ = (H a - -  1 2 R 2 H  + 16R 4) - -  4 B R ( 2 R  e - -  H)  + C ( 4 R  ~ - -  H)  - -  2 E R  + G ,  

H 2 K  = 2 R ( 3 H  e - -  16R~H + 16R ~) - -  B ( H  ~ - -  12RaI-I + 1 6 R  a) + 4 C R ( 2 R  e - -  H)  - -  E ( 4 R  e - -  H)  + 2 G R  

az = a - -  a l ,  b e = (b - -  2aR) + (2R - -  B)g  1 -  b~, f~ = k / H ,  

c a = {c - -  2 R b  + (4R 2 - -  H)a}  + (2R - -  B)b~ + (H - -  4 R  e + 2 B R  - -  C ) a l ,  

d e -= {d - -  2 R c  + (4R 2 - -  H)b  - -  4R(2R °- --  tJ)a} + (H - -  4 R  2 + 2 B R  - -  C)bl + 

+ {4R(2R e - -  H)  - -  B ( 4 R  e - -  H) + 2 C R  - -  E}a~.  

Check : b~G + d~H + 2 f e R  = g .  

D e n o m i n a t o r  w i t h  two  t r ip le  real  roots  : 

a D  6 + bD 5 + cD a + d D  3 + f D  2 + g D  + k 

(D + R)3(D + r) ~ 

where  : 

a i D  b iD c lD 
= A  + D+----R + ( D +  R)  e + ( D +  R) ~ + 

aaD b2D c~D 

+ D + - ~ r  + ( D + r )  a + ( D + r )  a '  

(R  - -  r)Sal = a R 3 ( R  e - -  5 R r  + 10r a) - -  6bRer  a + 3 c R r ( R  + r) - -  d ( R  a + 4 R r  + r ~) + 3 f ( R  + r) - -  

k (10R e 5 R r  + # ) ,  - % + ~  - 

k ( 4 R - -  r ) ,  (R - -  r )4b1= aR4(5r  - -  2R) + bR3(R  - -  4r) + 3cR2r - -  d R ( R  + 2r) + f ( 2 R  + r) - -  3g + 

(R - -  r)3q = a R  5 - b R  a + c R  3 - d R  2 + f R  - g + k / R  , A = k /RSr  ~, 

a n d  ana logous  f o r m u l a e  for  a v b e, c 2. 

Check :  A + a l + a e = a , A ( R  + r) + b l + b e + alr + aeR = b - 2 a ( R  + r) . 
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TABLE 5 - - c o n t i n u e d  

(A) No a p p a r e n t  zero roo t s - -con t inued  N u m b e r  

D e n o m i n a t o r  w i th  a single a n d  a q u i n t u p l e  roo t :  

a D  6 + bD 5 + cD ~ + d D  2 + f D  2 + g D  + k A D  

(D + R ) ( D  + r) 5 - -  D + R + 

where  : 

A ' aR5 - -  bR~ + c R a  - -  dR2 + f R  - -  g + k / R  

(R - r)~ 

dl f - -  f t  - -  5At4  d - -  d 1 - -  l O A f  3 
- -  R c ~ =  R ' 

el D5 + b i d  ~ + c lD ~ -b daD ~ + f l D  + gl 

(D + r) 5 

k g - -  g l  - -  Ar5 
gl = ~ ,  f~ = R ' 

c cl l O A f  2 b - -  b 1 - -  5 A r  
bl = R ' al =- R 

Check:  A + a ~ = a .  

(B) Single  or m u l t i p l e  zero roots  in  d e n o m i n a t o r s  

D e n o m i n a t o r  w i th  a single zero a n d  a q u i n t u p l e  root  : 

a D  s + bD ~ + cD 4 + d D  3 + f D  2 + g D  + k 
D ( D  + r) 5 

h/r e a D  s + (b - -  k / # ) D  4 + (c - -  5h/r~)D a + (d - -  IOk/r~)D 2 + ( f  - -  lOk/r2)D + (g - -  5k/r) 

D + (D + r)~ 

D e n o m i n a t o r  wi th  a s ingle zero, single real  a n d  a double  pa i r  of a n y  o the r  roots  : 

a D  6 + bD 5 + cD ~ + dD 3 + f D  2 + g D  + k A B D  at D~ + bi Ds + ci Dz + d i D  + f l  

O ( O  + R ) ( D  2 + 2rD + h) 2 ~- -D + D + R + (D 2 + 2rD + 1@ " 

where  : 

A = k B = aR4 - -  bRa + cR2 - -  d R  + f - -  g / R  + h / R  z g - -  A h ( h  + 4Rr)  
R h  2 '  (R 2 - -  2 R r  + h) ~ , f l  = R 

dl = f - -  f l  - -  2 A  (Rh  + 2rh -~ 2 R r  ~) - -  B h  ~ d - -  d~ - -  2A (h + 2 R r  + 2#)  - -  4 B r h  
R ' cl = R ' 

bl = c - -  c I -  A ( R  + 4r) - -  2 B ( h  + 2#)  
R 

b - -  bl - -  A - -  4 B r  
~1 ~ -  R 

Check:  B + az = a .  

153 

154 

155 
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T A B L E  5--continued 

(B) Multiple zero roots --continued 

Denomina tor  with a double zero, single real and triple real' root : 

aD 6 + bD ~ + cD ~ + dD a + f D  ~ + gD + ]~ 
D2(D + R)(D + r) a 

where : 

k g , 3 R + r  
' Rr3 ' 

A B 
D2 + Z )  + - -  

CD aiD 3 + biD ~ + clD + d 1 
D + R + (D + r) a 

aR a -  bR 2 + cR --  d + f i R  --  g /R  z + k /R  a 
C =  

(R - r) a 

dl = f -  3Ar(R  + r) --  B # ( 3 R  + r) d - -  dl - -  A ( R  + 3 r )  - -  3 B r ( R  -b r) - -  Cr ~ 
R ' cI = R ' 

b~-= c -- c l -  A --  B ( R  + 3r) - -  3Cr ~ b bl B --  3Cr 
R ' a i =  R 

Check: a l + C : a .  

Denomina tor  with a double zero and a double pair  of any  other roots :  

aD G + bD ~ + cD ~ + dD a + f D  ~ + gD + k A B 

D~(D ~ + 2rD + h) 2 = ~ +-D + 

aD ~ + (b --  B)D 3 + (c --  A -- 4Br)D ~ + {d -- 4Ar --  2B(h + 2r2)}D + { f - -  2A(h + 2r z) - -  4Brh} 
+ (D ~ + 2rD + h) z ' 

k g 4kr 
A-----]~,  B - - h 2  h3 ' . 

Denomina tor  with a triple zero and triple real root :  

aD 6 + bD 5 + cD ~ + dD ~ + f D  ~ + gD + £ 
Da(D + r) 3 

A B .C aD ~ + ( b - C ) D  e + ( c - B - 3 C z ) D  + ( d - - A - - 3 B r - - 3 C # )  
D -~  + -D 2 + D + (D + r) a 

A = k  B = r a  r 4 ,  C = r a  r~ + 7 "  

Number  

156 

157 

158 
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A P P E N D I X  

Examples of Solutions of Differential Equations and Response Problems 
by Using the Formulae of Tables 1 to 5 

The purpose of the following examples is to show how to apply the formulae correctly, to exhibit 
advantages in avoiding all the usual drudgery of resolving operational expressions into partial 
fractions, and "finally to give a few interesting analytical discussions of response problems thus 
solved. Very simple, trivial or well-known problems have been excluded, but greatly complicated 
ones have also been avoided. 

The introductory examples 1 and 2 treat  simple differentiation and in±egration; examples 
3 to 5 ordinary differential equations ; examples 6 to 11 some response problems which may find 
immediate application in aeronautics or other branches of engineering. In all these examples 
the order of operational fractions never exceeds 4, but example 12 shows some applications of 
the more complex formulae of Tables 4 and 5 (fifth and sixth order fractions). 

Example 1 .~F ind  the third derivative of the function 

R (1.1) 

Let us denote by ~0(D), ¢1(D), 92(D) and ~03(D) the operational equivalents of F(r),  F'(~), F"(~) 
and F" ( r ) ,  respectively. Combining the formulae (24) and (28) of Table 1, we find 

D 3 ~(D) = + 4RD2 + (4R~ -- H)D 
(D ~ -[- 2RD + H) ~ (A.2) 

We now use the formula (d) of section 2 and, as F(0) ---- 0, we obtain 

q~(D) = D4--t- 4 R D ~  + (4R~ - -  H ) D ~  
(D ~ + 2RD + H) ~ ' (1.3) 

and it is seen.that F'(0) = ~(oo) = 1. Applying (d) again, we get 

F~(D) = - -  H 3D8 --k 4 R D  ~ + HD . . . . . .  (A.4) 
(D ~ + 2RD + H) 2 . . . . .  

We have F"(O) = ~0~(oo) _-- 0 and, applying (d) once more, we obtain 

q~3(D) = -- H 3D4 + 4RD8 + HD~ 
(D 2 --[- 2RD + H) ~ . . . . . . . . . .  (A.5) 

To determine F~H(~), we look for an appropriate formula in Table 3, which is (127), and putt ing 
a = 3 ,  b = 4 R ,  c = H , d = f = 0 ,  wef indA = 0 ,  B = 3 ,  B ' = - - 2 R ,  C = - - 3 R ,  C ' = R  2 - J 2 ,  
and hence 

) - 

If the first and second derivatives were also required, we could apply (127) to (A.3) and (A.4), 
which would yield 

F'(~) = (c°s j~  + R -- 2 - -  R~) / 1 
j s inJ~ e -R~ . 

(A.7) 
j s i n J ,  e -R* 
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and all results can be obviously checked by  direct differentiation. The advantage of t h e  
operat ional  me thod  is tha t  the  3rd derivat ive could be found wi thout  determining the  1st and 
2nd ones. Simple differentiation by  use of operators is seldom shorter than  the  usual process, and 
cannot  be generally recommended.  The reader may  notice, however,  tha t  each group of formulae 
in Table 2 contains a series of successive derivatives, and hence this table may  often be useful 
for rapidly finding derivatives (or integrals) of such functions as appear therein. 

Example 2 . - - F i n d  the integral  I = F(~) dr, the in tegrand F(~) being the function (A.1) of 
0 

the  previous examplel 

Applying the  formula (e) of section 2, we find the operational  equivalent  of I :  

~oz(D) qJ(D) _ D ~ + 4 R D  -+- (4R ~ -  H) . . . .  (A.8) 
- -  D (D 2 q- 2 R D  + H) 2 ' "" "" 

and then, pu t t ing  in (127) a = b = 0, c = 1, d = 4R, f = 4R = -- H, we obtain at once 

= H~ q- H~ • - -  cos Jr  + R 3 H  H a4R 2 + . H  R 2 T --J--sin j r  e_R~ . (A.9) 

This can be checked immediately by direct differentiation but, to determine the integral I by 
usual methods, without using operational formulae, would be a rather laborious procedure. 

If the upper limit of integration were assumed to be (oo) right from the start, only the constant 
term A of I would have to be determined, and we would obtain 

Te -R~ cos J r  + R  3 R ~ _ j 2  0 ~- sin J r  dr --  (R 2 + j,)2 . . . . . . . . . . .  (A.10) 

Example 3.--Solve the  system of s imultaneous differential equat ions 

dx dy + j ( y  _ x) = 2aJ cos J r ]  
d7 + ~-~ . . . . . . . .  (A.11) 

dy dx t ""  dr cZr J(Y +x)=2aJs i  n Jr 

assuming initial conditions x = y = 0- at r = 0. 

We follow the  instruct ion of section 8, find the  operational  equivalents  of forcing functions 
from formulae (15) and (19) of Table 1, and obtain the  following subsidiary equat ions:  

(D --  J )x  + (D + J ) y  = 2aJ D=-- ~ j~ . .  . .  (A.12) 

2 D ' ' '  " "  

--  (D + J )x  + (D -- J ) y  = 2aJ - ~  T 7  ~ 

The main de te rminant  of these equations is 2 ( D ~ +  J=) and hence, if there were no forcing 
functions, we would have to deal with a simple u n d a m p e d  oscillating system, o f  natural  f requency 
J .  As the  forcing functions are simple harmonic  of the  same frequency, we have a case of 
resonance, which it would not  be too easy to solve by  usual methods.  Solving the  subsidiary 
equations, however,  and interpret ing by  means  of the  formula (124), we obtain at once 

- [ L D~--- 2JD=-=-J~Dq t x = j = Jr (cos  j r  - sin J r )  = 0(cos 0 - sin 0) 
a (D ~ + y )~  J 

F D ~ + 2JD ~_ --__ffD l (A.13) 
Y- = J  = J ~ ( c o s J r  + sin J r )  = 0(cos 0 + sin 0) ' 
a (D ~ + y~)= ] 

where 0 = Jr ,  for abbreviation. 
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The solution is i l lustrated in Fig. 1'. I t  is seen at  once t ha t  x = 0 for 0 = ~(~ q- n), and 
y = 0 for 0 = ~(~ + n), when n is an a rb i t ra ry  positive integer. I t  is also found easily t ha t  
the  curves of x/a and y/a are both  contained in the angle between two straight  lines from t h e  
origin, of the slope ___ @2 against  0. The curve x/a touches the  upper  l imiting line at an infinite 
number  of points corresponding to 0 = ~(7/4 + 2n), the  lower one similarly at 0 = ~(~ + 2n). 
The same applies to the curve y/a, for which the  points o f  contact  occur at 0 = ~(~ + 2n) and 
0 = ~(5/4 + 2n) respectively. 

The exact turning values of x and y can be found by  determining the  first derivatives (directly, 
or mul t ip lying the  operat ional  equivalents by  D and re-interpreting) : 

1 

Ja 
The variable x becomes 
so tha t  

d~:--dx (1 --  0) cos 0 --  (1 q- 0) sin 0 )  

J dy (1 + 0 )  cos0 + ( 1 - -  0) s in0  
d r - -  

(A.14) 

max imum or min imum for an infini ty of values 0,,, making  dx/& ---- O, 

tan0"~ 1 --  0'" (4 ) --1 + 0 , ~ '  or 0 , ,~= tan  -- 0 . . . . . . . . .  (A.15) 

whence the turning values become 

x,,~_ 1 - -Si l l  20,~ ~ / (  20"~ 2) 
a --  cos 0,~+ sin 0,,, = q- 0,,, ~ ,  1 T ~,,,, , . . . . . .  (A.16) 

the  first three being x, Ja - " -0 .213 , -  3.595, 7.895, at 0,~-~ O. 128~, ~(~ + 0. 113), ~(7/4 + 0.056) 
respectively. Fureher turn ing values occur for values of %, exceeding only sl ightly 11~/4, 15~/4, 
19~/4, etc., the  differences becoming rapidly  very  small, and the  turning values themselves 
being almost equal to + 0,,,V'2. The turning points  get gradual ly  nearer and nearer to the  
consecutive points of contact  with the  l imit ing lines, as seen in Fig. 1. 

Similarly, y becomes max imum or min imum for all values 0,, making  dy/d-c = O, i.e., satisfying 

0:÷1 ( 4 )  t a n 0 , ~ = 0 , , _  1 '  or 0 ~ = c o t  0, ,--  . . . . . . .  (A.17) 

and the  turning values are 

. . . .  a --  sin 0,, --  cos 0,~ ----- -+2 0" 1 + 0,~]'  "" • • 

the first three being y,,/a -"- 1-618, --  5.728, 10.11 at 0,, ~ a(~- + 0. 197), ~(5/4 + 0.075), 
~(9/4 + 0. 044) respectively. Fur ther  turn ing  values are again very  near  to the  consecutive 
points  of contact  with the l imit ing linesl 

Exam~ble 4.--Solve the differential equat ion 

d4x - dax 14 d2x 14 dx ] 
d~ ~ + 6 ~ + d• + dr + 5x = 0 

with J . . . . . .  (A.19) 
Xo=2o=0, 2o=2, ~/o=--8 (at,=O) 

and the  equat ion:  
d,y ay 
dr '  + 6 ~ +  1 4 ~ +  1 6 ~ + 8 y = 0  

wi th  J . . . . .  (A.20) 
Y o = 2 o = O ,  Y o = - - 2 ,  Y o =  10 ( a t r = O )  
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The  subs id ia ry  equa t ions  are respec t ive ly :  

(D 4 -[- 6D 3 + 14D ~ -I- 14D + 5)x = 2(D ~ + 6D) --  8D, .. .. (A.21) 

(D 4 -I- 6D ~ + 14D ~ -]- 16D -1- 8)y = --  2(D ~ + 6 D ) +  IOD, . .  (A.22) 

and  the  solut ions  become  (using fo rmula  122 af ter  factor iz ing quartics) : 

[ 2 D 2 +  4D ] e -~ e -2~ (A.23) 
x = ( D +  1 )~ (D  ~ + 4 D + 5 )  = ~ - -  s i n ~ ,  . .  . .  

- -  2D 2 - -  2D e -2. e -~ . . . . .  (A.24) 
Y = ( D - / 2 ) = ( D  ~ + 2 D + 2  = T  --  sin 

The  two solut ions  are ve ry  similar, t h e  two  exponent ia l s  be ing s imply  in te rchanged .  This  
difference accoun t s  for a different  behav iou r  of two funct ions ,  t he  former  reaching  only  one 
m a x i m u m  x ..... --- 0. 2855 at  ~ ~ 1. 444 and  t h e n  subs id ing  to 0 w i t h o u t  oscillation, while the  
l a t t e r  reaches  first y~,~ ~ --  0. 1750 at  ~ ~ 1.064, t h e n  Ym~ ~ 0. 0156 at  ~ ----- 3 .885,  and  la ter  
pe r forms  a decay ing  oscillation. The  funct ions  and  their  der iva t ives  are i l lus t ra ted  in Fig. 2. 

Example 5 . - -So lve  t he  fol lowing sys t em of s imul t aneous  differential  ec ua t ions  : 

d' x dx @ 
dT:~+4d74-, 2 X - - 4 d T +  2 y = O  

+ 4 dY ay o 4 d~ x + d'c" ~ + = 

The  subs id ia ry  equa t ions  are 

wi th  Xo = 3 ,  2o ----- 0 ,  

Yo --= 0 ,  3?o ---- 6 

( a t  = O) 

. . . .  ( A . 2 5 )  

(D ~ q- 4D + 2)x --  (4D --  2)y  = 3(D 2 q- 4D) 

(4D if- 1)x q- (D ~ --  4D q- 3)y = 18D , . . . . . . . .  (A.26) 

the main determinant being (D ~ + 4)(D ~ q- I), so that the solution consists of two undamped 
simple harmonic oscillations, of frequencies 1 and 2. The appropriate formula is (123), and the 
solutions become : 

x = ( D  ~_{_4)(D 2_k 1) = 1 0 c o s ~ - - 7 c o s 2 ~  

6D 3 q- 21D" + 24D]  . . . . .  (A.27) 
Y l =  7 cos~ + 6 s i n  ~ --  7 cos 2~ 

Example 6 . - - D e t e r m i n e  t he  response  of a s imple ' exponen t i a l  de lay  un i t  ' (of gain fac tor  G 
a n d  t ime  cons t an t  t) to  a finite parabol ic  i n p u t  of du ra t i on  2vl and  m a x i m u m  value  A (parabolic 
impulse) .  F i n d  the  pos i t ion  and  m a g n i t u d e  of t he  m a x i m u m  o u t p u t ,  for va ry ing  t i m e  cons tan t s  
t a nd  ,1. 

The  parabol ic  i n p u t  I ,  i l lus t ra ted  in Fig. 3 (small inset  diagram.) seems to  be a good first 
a p p r o x i m a t i o n  to a ' s m o o t h  to-and-f ro  impulse  ' as of ten  used  in prac t ice  (e.g., an o rd ina ry  push-  
pull  s t ick m o v e m e n t  appl ied  in flight tes ts  of aircraft) .  Such  an i n p u t  is r ep resen ted  by  the  
s imple  fo rmula  

I----- A ( 2 ~  ~ )  ~ , for 0 < ~ < 2T~, . . . . . . . .  (A.28) 

so t h a t  Ima.~ = A at  ~ = ~1, and  for r > 2~  t h e  i n p u t  r emains  equal  to  0. The  law governing 
t he  o u t p u t  x of our  un i t  is t h e n :  

G X "-~ d'ff] : f = A ~-1 ~12 , fOr  0 < T < 2 T 1 ,  , . . . . .  ( A . 2 9 )  

( G x f f - t ~  = 0 ,  f o r t  > 2 ~ t  . . . . . . . . .  (A.30) 
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Let us consider one simple particular case first, viz . ,  t = O. 
proportional gear, and we have, for 0 < ,  < 2,1 

I 
x = G '  the maximum being ~ -- 

In this case the unit is a simple 

In the general case, it will be convenient to introduce the auxiliary notation 

R = 1It = G / k ,  . . . . . . . . . . . .  (A.32) 

where R may be termed 'damping  factor '  of the e.d. unit. The equation (A.29) can then be 
writ ten-in the following operational form (replacing the input function in the right-hand part 
by its operational equivalent by means of formulae 2 and 3 of Table 1): 

R ) x  2A ~ D  -- 1 .. (A.33) 
- -  D ~ 312 ~ . . . . . . . . . .  

0 < ,  < 2,~) will be found immediately by using formula (112) of 

k ( D  + 

and the solution (valid for 
Table 3: 

I 2A ~ID -- 
x = k~l~ D ~ ( D  + 

where, for abbreviation, we 

1 I 2A l ~z 2 (1.34) ~R) - -  k R z l  2 (1 + z t ) ( z - -  1 + . e  -~) - -  , . . . .  

have introduced auxiliary symbols" 

z = R ~ ,  z~ = RT:~ = "q/t . . . . . . . . .  (A.35) 

Similarly, the first derivative of x will be (using formula 101) 

d x  I 2A ~ 1 D - - 1 ]  2 A  l ( l  + z~)(l  _ e_~) _ z I . . . . . . . . .  (A.36) 
d ,  ~ k ,~  2 D ( D  + R )  - -  kz~ ~ 

Initially, both x and dx/d~: increase from 0 to positive values. However, at z = 2,~ (end of 
input), we have 

2A -t- e-2~1)(zl- tanhzl)  > 0 " "(dx) x~ - -  k R z ~  2 , ~ ~ = - -  Rx~ < O ,  (A.37) 

so that  d.x /d ,  has changed sign, and x must have reached a maximum before the input has ceased. 
If the maximum occurs at z~ ---- RT:,,,, then z,, must make (A.36) equal to 0, hence 

z,~ . . . . . . . .  (A.38) 
1 + Zl--  1 _ e_~,~ . . . . . . . . .  

If z~ is known, this equation can only be solved for z,,~ by trial and error, or by any other approxi- 
mate method. I t  is easily seen, howewer, tha t  there is only one solution for z,, (whatever the 
value of zl), and tha t  

z~ < z,, < 2z~ ,  . . . . . . . . . .  ... (A.39) 

so tha t  the maximum occurs during the second half of the input duration. A few sample response 
curves (for z~ = 1, 2 and 3) are shown in Fig. 31, where the ordinate is conveniently chosen as 
x /2 .  The thick parts of the curves correspond to (1.34), while the continuing thin parts have been 
obtained by solving (A.30), the solution being obviously 

x = x~ e -R(~-~) . . . . . . . . . . . . . . .  (A.40) 

To obtain general characteristics of the response for variable R and ~, it is convenient to 
tabulate zl and z~ from (A.38), whereupon the ratio z,,/zz = ~,,/,~ can be plotted against z~ (Fig. 3b). 
A simple formula for xm,~ may be obtained by combining (A.34) and (1.38), as follows: 

A z,~(2 z,~) . . . . . .  (1.41) 
x ~  k R  zl  - -  ~ . . . . . . . . .  

This Call be presented ill tWO alterllative forms, comparing the maximum output obtained here 
to either of the corresponding maxima in two particular limiting cases • 
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(a) L i m i t i n g  case R --+ oo . - -This  is equivalent  to t ---- 0, if G is supposed to be a given constant  
(cf. A.32). The case has been considered a l ready (proport ional  gear wi th  no delay), and the  
respective m a x i m u m  has been given by  (A.31). We have  thus  

xm~ _ z,, (2 --  z"i (G assumed constant)  . . . .  (A.42) 
Z: \ Z:] "" " " 

(b) Limi t ing  case R = O, i.e., t ----- o0 and G = 0, the  assumpt ion being now tha t  k is a given 
constant .  The equat ion (A.29) then  becomes 

k ~  ---- I = A ; (0 < ~ < 2r~) . . . . . . . .  (A.43) 

our uni t  becomes a simple integrator ,  and  we obtain 

A-q (-P ~8)  
x = ~ -  ~ 3 ~  ~ . . . . . . . . . . . . . . .  (A.44) 

In  this case the  m a x i m u m  outpu t  x*, reached at r ---- 2~,  becomes 

4 AT~ 
x* --  (A.45) 

3 k ' " . . . . . . . . . . . . . . .  

and  we get f rom (A.41) and  (A.45) 

Xmax 3 z" (2  - -  z"] . . . . .  (A.46) 
- -  . 

X* 4Zl  Zl \ Z l /  
(k assumed constant)  . 

The formulae (A.42) and (A.46) are i l lustrated by  curves in Fig. 3b, where  an addi t ional  curve 
represents  the rat io Xe/Y~, obta ined  by  combining (A.37) and (A.31), and all quant i t ies  are p lo t ted  
against  zl = Rr~ ---- rdt .  This rat io of two t ime constants  is seen to be the  only pa rame te r  on 
which  the  form of the  response depends. 

E x a m p l e  Z - - C o n s i d e r  the previous problem (example 6), replacing the  parabolic input  by  one 
propor t ional  to ~e -~* . 

We may write the formula for input : 

I = w e - ~  , d l / d r  = v(1 --  r~) e -'~ , . .  . . . .  (A.47) 

so t h a t  v is the  initial  ra te  of increase of I .  The input  is i l lustrated by  a small inset d iagram in 
Fig. 4b. The m a x i m u m  value A of the  input  occurs at 

~1 = 1 7  . . . . . . . . . . . . . . . . . .  (A .48 )  
and  is obta ined as 

A - -  v T 1  v - -  • • . . . . . . . . . . . . . . . .  (A.49) 
e e f  

The input  increases originally from 0 to A, in a way  ra ther  similar to t ha t  of the  parabolic input  
(Fig. 3b) but ,  ins tead of falling back to 0 at ~ = 2~1, it  decreases slowly, reaching 0 at infinity. 
The differential equat ion for the  ou tput  is now, for all positive values of 

( t dx~  e-~ G x +  d C = I - - - - w  . . . . . . .  

Let  us consider again the  simple par t icular  case t ---- 0 first. 
gear, and we have  

/ /ma~ 
X = ~ ,  the  m a x i m u m  being ~ - -  G --  

. . . . . . . .  (A.50) 

The unit is a simple proportional 

A 
G '  at  ~ ----- ~ . . .  . .  (A.51) 
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In the general case, we introduce again the auxiliary notation (@ A.32) 

R = l i t  = G / k ,  . . . . . . . . . . . .  (A.52)  

and the operational form of equation (A.50), using formula (9), will be 

v D  . . . . . .  (A.S3) 
k ( D  + R ) x  = (D  + r) ~ . . . . .  

The solution will be found immediately, by  applying formula (i04) : 

v 

X [ =  k (D + R ) ( D  _f_ r) - -  k ( R  - -  r) ~ 

and, similarly, 

dr - - k ( D + t Y ) ( D - ¢ - r )  ~ - -  k ( R - - r )  2 { R - - r ( R - - r ) z } e  . . . .  R e  -R* . (A.55) 

A few sample response curves are shown in Fig. 4a, the ordinates being x/2 ,  and the abscissae 
z = R-c, by analogy with example 6 and Fig. 3a. The sample curves correspond again to the 
values 1, 2 and 3 of the parameter z~ = Rr, (cf. A.35), and may be compared with those of Fig. 3a. 
The ascending parts do not differ much, but  the following decrease of the output is, of course, very 
much slower in  Fig. 4a. The exact maxima and their location can be determined as follows. 
Supposing tha t  the maximum occurs at z,, = R,,,, and introducing for abbreviation 

~, = ( R  - -  r)~,, = z,,~ 1 1 (A.56) , . . . .  , . . . . . . . .  ° 

we equate (A.55) to 0, and the condition for maximum output is obtained in the form 

1 ) " - -  e -~ or zl = 7 . (A.57) 
zl ' 1 -- e -v . . . . . .  

If z~ is known, this equation can only be solved for ~ (and thus z.~) by  approximate methods, 
there be ing only one solution (whatever the value of zl). It  is easily proved tha t  z,,~ > z~, i.e., 
the output reaches its maximum later than the input. To obtain general characteristics of the 
response, i t  is convenient to tabulate z~ and z,,, against ),, whereupon Z,,,/zl = ~,,~/~ can be plotted 
against z~ (Fig. 4b). A simple formula for x z  may  be found by combining (A.54) with (A.56 and 
A.57), as follows : 

v~, e_~,~/~ = ArT, e~-~,,/~ . . . . . . . . . . .  (A.58) 
k R ( R  - -  r) k R ( R  - -  r) 

This can be presented again in two alternative forms, comparing the maximum output obtained 
here to either of the corresponding maxima in two limiting cases: 

(a) L i m i t i n g  case R -+oo (Thus t = 0, if G is supposed to be a given constant (@ A.52)). The 
case has been considered already, the respective maximum output being (A.51), so that  we have 

Xmax __ ~/r el-",,~/zl = Z"el-Z,,,/"~ (G assumed constant) . . . . . . .  (A.59) 
R -- r z~ 

(b)' L i m i t i n g  case R = 0 (Thus t = oo and G = 0, the parameter k being now assumed to be a 
given constant). T h e  equation (A.50) becomes 

dx  e_~, (A.60) k ~  = I =  w ; . . . . . . . . . .  
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our uni t  is a simple integrator,  so t h a t  we obtain (cf. formulae 40 or 98) 

V V 

x = k ( D + r )  '~ = k 7  ~ 1 - - ( 1  + r , ) e  -~  , . . . . . .  (A.61) 

and the m a x i m u m  output ,  reached when z -+oo, becomes 

x* v e2A ~ 
= kr ~ - -  kv . . . . . . . . . . . . . .  (A.62) 

We then get fi'om (A.58) and (A.62) 

Xma.: ~J t2 
x* - -  R ( R  - -  g )  e _ . , , ~ / .  1 = Zl ~z''' e-",~/'l . . . . . .  . . .  (A.63) 

The formulae (A.59) and (A.63) are i l lustrated by  curves ill Fig. 4b, t h e  abscissa being still 
zl = R , ,  = ,~/t, the only parameter  on which the form of response depends. 

Example  8 . - - F i n d  the response of a simple exponent ial  delay nni t  (of gain factor G and t ime 
constant  t) to a simple harmonic  (sinnsoidal) input  of ampli tude A and periodic t ime T. In  
part icular ,  find whether  there  is al ly t rans ient  overshoot of the  output  max ima  over its u l t imate  
s teady ampli tude.  

The differential equation for the  ou tpu t  x, 

( t G x + d~] = A s i n  2 ,~ , /T  . . . . . . . . . . . . . . . .  (A.64) 

can also be writ ten,  pu t t ing  

R =  1 / t =  G / k ,  and j = 2 ~ / T  . . . . . . . . .  (A.65) 

in the  following form, more convenient  for using our tables" 

(dx ) 
k -~ + R x  = A sin j~ . . . . . . . . . . . . . . .  (A.66) 

or in the  operat ional  form" 
D 

k (D + R)x  = A j  D~ + f f  . . . . . . . . . . . . . . . .  (A.67) 

The solution is found by  making  use of (106) • 

F D 1 A j  (e_R ~ j~ R s i n j , )  (A.68) X R ) j  k ( R  ~ - -  c o s  + . .  

or, pu t t ing  for abbreviat ion 

o = j , ,  R / j  = T i g h t  = s ,  x* = A / G ,  . . . . . .  ( A . 6 9 )  
ill the  simpler form 

S 
X 7__ X *  - -  ( e  - sO 1 + s ~ - -  cos 0 + s sin 0) . . . . .  (A.70) 

Similarly, the  first derivat ive becomes 

7~dx --_ ix*  1 +s s ~ (s cos 0 + sin 0 --  s e -s°) . . .  (A.71) 

If the  t ime constant  t were ~- 0, i.e., s --~ oo, we would have to deal wi th  all ord inary  proport ional  
gear, and the output  x would be s imply x* sin j , ,  wi th  the  ampli tude x*. In  the  general case, 
the  output  is not  simple harmonic  (because of the  exponent ial  te rm in the  solution) but  after a 
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sufficiently long t ime (with r -+co and 0 -+co) the  t ransient  exponential  t e rm becomes vanishingly 
small and we have, with gradually improving accuracy, s teady-state  oscillations expressed by  

dx  s (s cos 0 + sin 0) . . . . .  (A.72) x-----X*l +s s ~ ( s s i n 0 - c ° s 0 ) ' ~ - j x * l  + s  ~ 

The max ima  and min ima  then  occur a l ternately for an infinite series of values of 0 which may  be 
denoted  by  0 and for which 

t a l l 0 = - - S ,  s i n 0 =  +s /%/ (1  + s ~ ) ,  c o s 0 = - /  1 / % / ( 1 + s  ~) . . . .  . (A.73) 

The consecutive values of O form an ar i thmeticalprogression,  and we m a y  write O = n= --  tan  -1 s, 
where 0 < t an  -1 s < ½=, and max ima  correspond to odd values of n. The turning values of the 

1 the  max ima  again corresponding to odd values of n. The phase input  occur when 0 = n= --  ~=, 
delay of the  ou tput  is therefore ½= --  t an  -~ s = t an  -1 2=t/T .  The s teady-sta te  ampl i tude is 

s A A 
2 = x* . . . . . .  (A.74) 

%/(1 + s G%/(1 + ?t  kV(R + ? )  

A few illustrative curves of the output,  represented convenient ly  by  

x _ 1 (e -'° --  cos 0 + s sin 0) . . . . . . . .  (A.75) 

and including the  early t ransient  stage are given in Fig. 5, for several values of 2z~s, or Tit .  It  is 
seen that ,  during the  t ransient  stage, the  min ima of x have smaller values than  2, but  the  max ima  
are bigger, the overshoots increasing as s fallsl The exact t ransient  turning values x,,, occur for 
the  values 0,,~ satisfying the  equat ion (from A.71) 

s cos 0,, + sin 0,, = s e -~°., , . . . . . . . .  (A.76) 

which can only be solved by trial  and error, or other  approximate  methods,  whereupon the  
turning values themselves,  and the  correspondong overshoots, may  be found from 

x,,_2 = %/(1 + s ~) sin 0,,. . . . . . . . . . . . .  (A.77) 
X S 

The greatest  overshoots occur when s = 0, or R = 0, in which case the  solution is 

A (1 -- cos 0) = 2(1 -- cos 0) . . . . . . . .  (A.78) X-- - -~  

and the  overshoot is obviously 100 per cent. In  this particular case our uni t  becomes a simple 
integrator  ; there is a s teady oscillation r ight  from the  start, but  the  mean  value is ;?, instead of 0. 

The inset dfagram in Fig. 5 gives the  ratio ~/x* against 2~s or T/ t  (cf. A.74). This graph seems 
to imply  tha t  there  is no ou tput  when s = 0, but  in this case, wi th  k finite, we have x* = oo, 
Y~---- A /k j .  

The reader m a y  consider the  analogous c a s e w h e n  the  input  is proport ional  to cos j r ,  ins tead 
of sin j r .  He will find similar results, except t ha t  the  overshoots are practically negligible. 

E x a m p l e  9 . - -De te rmine  the  response of an undercri t ical ly damped  oscillator (complex delay 
unit) to a step input,  and find the .maximum output  overshoot over its final s teady value. Also 
determine the  response of a system consisting of two such oscillators in series to a step input,  
and find whether  the  overshoot ill such a sys tem may  be greater than  in the  case of a single 
oscillator. 

For a single oscillator we have 

d~x dx  
d_e2 + 2R- f~  + H x =  A H ,  . . . . . . . . . .  (A.79) 
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where H - -  R ~ = j2  > 0, J is the  na tura l  f requency of the  oscillator, R its damping  factor, and  
A denotes the final s teady 'output.  B y  using formula (80) or (100), the  response is obta ined in 
the form 

w E ( ) A - - D  2 - / 2 R D + H  = 1 - -  c o s J ~ - C - ~ - s l n J ~  e -R~, . . . . . .  (A.80) 

and the der ivat ive 

1 dx H e_R~ s i n J ~  . . . .  (A.81) 
A d ~ - - J  . . . . . . .  

The turn ing  values occur at  J~,~ -- n~ (where n = 1, 2, 3, . . .) and are 

x,, 1)"-1 e .... R/] = 1 + (--  . . . . . . . . . .  (A.82) 

The  m a x i m u m  overshoot  (for n = 1) is 

~inax 
A 1 = e -~R/j . . . . . . . . . . . . . .  (A.82a) 

A specimen response curve (for R/J = 0- 2, H/ff = 1.04) is t raced  in Fig. 6a, the  overshoot  being 
53 .4  per cent. Fig. 6b gives the graph of the  percentage overshoot against  the  ratio R/J, the  
greatest  value being 100 per cent  for R = 0. The overshoot  decreases rap id ly  when  R/J rises, 
and  becomes only 4- 3 per cent  for R/J = 1. Beyond  tha t  value, the  overshoot  becomes pract ica l ly  
negligible and  it disappears complete ly  for R/J = oo, i.e., J = 0, H = R ~ (the case of critical 
damping).  In  this par t icu lar  case, we obtain,  using formula (40), 

x [ R2 l l dx 
A - - ( D + R )  ~ = 1 - -  (1 +R-c) e-R*', A d z - -  :R2ze-R~' . .  . .  (A.83) 

and it is seen t h a t  the  ou tpu t  increases monotonica l ly  from 0 to its u l t imate  s teady  value. The 
a l te rna t ive  case of overcri t ical  damping  (when H < R ~ and  the  t ransfer  funct ion D 2 + 2RD + H 
has two real roots, say --  rl and  --  r~) is also easily solved by  means  of formula  (97) : 

x I rlr~ 1 --r~ l d x  rlr2 ( ) = = --  e -~2~ --  e -~1~ (A.84) (D + r~)(D + r2) 1 + r~ e-~l" e -~  ~ 
r l - -  r~ ' A dT r l - - r 2  

and  the  ou tpu t  is seen again to increase monotonical ly ,  wi th  no overshoot.  

The above simple problem is well known  and has various applications. In  part icular ,  its 
solution represents  the  rise of incidence (or normal  acceleration) of an  aircraft,  following a sudden 
elevator  displacement.  

Let  us suppose now t h a t  the  ou tpu t  of the  oscillator is fed as an input  into another  similar 
oscillator, wi th  an analogous t ransfer  funct ion (D ~ + 2rD @ h), the  constants  r, h differing, in 
general, f rom R, H.  We have then  two oscillators in series, and t h e  final ou tpu t  (obviously 
independen t  of the  order in which  the two oscillators follow each other) will be given by  the .  
following operat ional  formula :  

x 
[ Hh 1 (A is final s teady  output)  . . . . .  (A.85) 

A - - ( D  ~ + 2 R D + H ) ( D  ~ + 2 r D + h )  

The solution is obta ined  direct ly f rom formula (126) : 

~ - =  1 + ~  a c o s J z + 2  + ~ -  a ' c o s j z - /  ~-s in j~  e -~, 

where : 

a = H --  h --  4R(R -- r ) ,  b = R ( H  - -  h)  + 2(R -- r ) ( H  - -  2R~), ' . .  (A.86) 

a '  = h - -  H + 4 r ( R  - -  r) , b '  = r ( h  - -  H )  - -  2 ( R - -  r ) ( h  - -  2r~), 

0 = ( H -  h) ~ + 4(R - ~ ) ( R h -  ~H) 
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but this solution applies, only if both oscillators are undercritically damped, i.e., H > R ~, 
h > r 2, and not in resonance, i.e., R # r, or H # h. An analogous solution for the derivative 
dx/d, can be readily obtained but, in view of its complexity, it would not be of much use for 
determining the overshoot. Of several alternative cases, let us consider only one, viz., when 
r = R, h = H, i.e., the oscillators are in resonance, both as to frequency and damping (still 
assuming H > R"). We obtain, using (83) or (127), 

3H -- 2R ~ H~ sin J~ 

and similarly 

1 d x l  H ~ D  1 H2 ( ) 
A d,  -- (D 2 + 2 R D  + H) ~ --  2 j  3 s i n J } - J ~ c o s J ~  e -R* 

In Fig. 6a, two additional curves have been plotted, one of which shows the response according 
to (A.86), with assumed ratios R / J  = r/j = O. 2, j / J  = 0-5, the other one a similar response in 
the case of resonance, the ratio R/J  being still 0- 2. I t  is seen that  in both cases the first overshoot 
is considerably greater than with a single oscillator, the former ~ curve showing ~ 80 per cent, 
the latter ~ 110 per cent overshoot, as against 53.4 per cent for a single oscillator. The higher 
overshoots occur, of course, with considerable delays relative to the lower one especially, when 
the second frequencyj  is lower than the first oneJ.  (It should be noticed that  all curves are plotted 
against the same abscissa J~.) The mat ter  is of considerable practical interest, e.g., for an 
aircraft with power-operated controls, where the power uMt may often behave as a complex 
delay unit. A complete analysis of overshoots for all possible combinations of frequency and 
damping ratios (3 independent parameters) would be rather involved. In  the case or resonance, 
however, the analysis is simple. The turning values occur at J~ = 0, the angle 0 being one of 
the consecutive roots of the equation 

tan 0 = 0, . . . . . . . . . . . . . . . .  (A.88) 

i.e., 01 = 4-493, 0~ = 7.725, 03 = 10.904, etc., and the maximum overshoot, corresponding to 
01, is found to be 

x . . . .  1 = -  1 0 1 +  012 . . . .  ( A . 8 9 )  
A + 01 + 2- . . . . .  

The corresponding graph is given in Fig. 6b where it may be compared with tha t  referring to a 
single oscillator. 

Example 10.--Determine the response of an undamped oscillator, of frequency J = 2=/T, 
to a finite parabolic impulse of duration 2~1 and maximum value A. In particular, find the 
turning values during the transient stage and the final steady amplitudes. 

The differential equation for the output x, while the input lasts, is 

d~x (2 T ~ ) dT-- ~ + j2x  = A ~ ~ (0 < v < 2vl) . . . . . . . .  (A.90) 

or, in operational form, 
(D 2 + j2)x _ 2A ~1 D - -  1 . . . . .  (A.90a) 

T12 D 2 . . . . . . .  . 

Before solving this equation, let us remark that ,  if the oscillator was subject to a step input of 
magnitude A, the response would oscillate about its mean value A / J  ~, with ~ 100 per cent 
overshoot or undershoot, so tha t  the maximum would be 

x * =  2A/J  2 , . . . . . . . . . . . . . .  (A.91) 

and this i s a  convenient value for comparison in the following analysis. 

39 



The solution of (A.90) is obta ined  immedia te ly  by  using formulae (135) and  

[ 2A ~ I D - - 1  I x* 
x : ~12 D ~ - ~ r 2 )  = 0 1 2 - [ ( 1 - c o s 0 )  + 0 1 ( 0 - - s i n 0 ) - - } 0  2 ] ,  . .  

dx [ 2A -qD--  1 ] J X * [ o l ( l _ c o s O ) _ ( O _ s i l l O ) ]  
v = ~  - -  ~1 ~ D ( D 2 + 2 2 )  = 012 , .. .. 

where,  for abbreviat ion,  

0 = 01 = . . . . . . .  

1 1 0 ) .  

(A.92) 

(A.92a) 

(A.93) 

I t  m a y  be not iced that ,  for ~ = 0 (hence 0 ---- 0) bo th  x and v are 0. 
is to find the  values of x and  v at the  end of the  input ,  i.e., for ,~ = 2,i ,  0~ 

The next  interest ing point  
= 201" 

x, = 2x* sin 01(sin 01 --  01 cos 01) (A.94) 
0 1 2  . . . . . . . .  

cos 01(sin 01 --  01 cos 01) v~ = 2Jx* 
012 

. . . .  (A.94a) 

Once the  input  has ceased, i.e., for 0 > 201, the  differential equat ion for x is s imp!y 

d2)c x~ I d~ 2 + f i x  = 0 (~ > 231) wi th  x = at ~ = 2~i . . . .  
V = V  e 

or, in operat ional  form, 

( O  2 + y ) x  D %  + . . . . . . . . . . . .  

and the  solution becomes (cf. formulae 15, 19, 99) 

¢c = x~ cos (0 --  0,) + .~ sin (0 --  0,) 

or subs t i tu t ing  (A.94, A.94a) and  simplifying, 

x = 2x* sin 01 --  01 cos 01 sin (0 --  01) (0 >~ 201) 
0 1 2  " • • 

The mot ion  is obviously harmonic ,  wi th  the  ampl i tude  

2 = 2 x *  sin 01--__01cos 01 
0 1 2  . . . . .  " . . . .  

(A.95) 

(A.95a) 

(A.96) 

(A.96a) 

(A.97) 

We  m a y  observe now tha t  the  form of the  response (apart  from scale), bo th  for the  dura t ion  
of the  input  and after, depends on one pa rame te r  only, 

01 = Jr1 = 2~ v l /T ,  . . . . . . . . . .  (A.98) 

propor t ional  to  the  ratio of t ime constants  31 and  T. 

A remarkable  feature  of the  present  problem is t ha t  the s teady  ampl i tude  (A.97) m a y  sometimes 
become nil, i.e., t h a t  the  ou tpu t  m a y  stop s imul taneously  wi th  the input .  This will happen,  i n  
fact, for an infinite n u m b e r  of values of 01, viz., those satisfying the  equat ion 

sin 01 --  01 cos 01 = 0 ,  or t an  01 = 01 . . . . . . . . .  . .  (A.99) 
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I t  is so because the expression (sin 01 -- 01 cos  01) happens to be a common factor of formulae 
for xe and v~ (see A.94 and A.94a)~. The well-known equation (A.99), which we have encountered 
already in example 9 formula (A.88) has an infinite number of solutions" 

3 
01 = g ~  -- 0.219 = 4 .493,  

o r  
5 

~ - - 0 . 1 2 9 = 7 . 7 2 5 ,  

7 
or ~ a -- 0. 092 = 10.904, etc., 

the subsequent solutions being slightly smaller than, but differing less and less from, 9~/2, 1 la/2, 
etc. 

In Fig. 7a, several sample response curves (for some chosen values of 01) have been traced, 
the ordinate x / x *  being plotted against 0. The thick parts of all curves correspond to (A.92) 
and the thin ones to (A.96), the points of junction marking the end of the input in each case. 
Small values of 01 (e.g., ~ / 4 ,  a/2) apply when the duration of input 231 is only a fraction of the 
natural  period T of the oscillator. With large values of 01 (e .g. ,  10 or 15), the input lasts over 
several periods, and this results in several oscillations of the thick parts of the curves. The curve 
corresponding to 01 = a/2 is an example of a case in which vo = 0 but  x~ ~ 0,. so that  2 = x~, 
and the point of junction gives a turning value. Finally, the curve corresponding to 01 = 4-493 
is the simplest example of the output  stopping simultaneously with the input. I t  may be noticed 
tha t  all maxima of x / x *  within the duration of input are less than 1 (although some are near 
enough to 1), and both maxima and minima are positive; xe may, however, be either positive or 
negative and, of course, the subsequent turning values are alternatively (+  2) and (-- 2). 

I t  remains to find a general-way to determine the positions and values of the maxima and 
minima during the transient stage. Denoting by 0~,, = J %  the relevant values of 0, the equation 

' for 0,,, is obtained by making (A.92a) equal to zero, i . e . ,  

01(1 -- cos 0,,~) -- (0,, -- Sill 0,,,) = 0 . . . . .  . . . .  (A.100) 

For a given 01, this equation can only be solved by approximate methods. The best way, 
however, is to write it ill the form 

01 = 0,, - -  sin 0,,, . . . . . .  (A.100a) 
1--COS0,,i ' " . . . . .  

and plot 01 against 0 .... as shov~l in Fig. 7b. I t  is seen that  only one 01 corresponds to each 0,,i, 
but the inverse is not true. For a given 01 there may be one, or three, five, seven values of 0,,,, 
etc., their  number increasing as 0~ increases. The minima of the curves in Fig. 7b are easily found 
to lie on the straight line 0,,~ = 201 andsa t i s fy  (A.99) ~.. As obviously 0,,, must b e  ~< 201, it follows 
tha t  the minute arcs of the curve below that  straight line do not give any real turning values and 
should be considered as meaningless. 

Substituting (A.100a) into (A.92), we obtain, after some considerable simplification, the 
following formula for turning values of x" 

(A.101) \ o,,, - -  sin 0,,, ] ' . . . .  
U Q 

and this confirms, in a general way, tha t  all transient maxima and minima must  be positive. 

t I t  may  be noticed tha t  x, (but not v,) becomes 0 also when sin 01 = 0, and v~ (but not  x,) becomes 0 when 
cos 01 = 0;  in both  cases the response continues indefinitely after the input  has ceased. 

++ Of two other straight lilies marked in Fig. 7b, the one 0,,~ = 301 is tangent  at the origin, and tha t  0,~ = 01 
(corresponding to tan  0~/2 = 0.J2) intersects the curve at points for which the output  attains a turning value when 
the input  is maximum. 
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To complete the illustration of this example (rather more complicated than the preceding ones), 
Fig. 8a presents graphs of x d x *  and 2/x* according to (A.94) and (A.97) respectively, and Fig. 8b 
graphs of the few transient turning valnes x,dx* calculated from (A.100a) and (A.101). The 
abscissa is 01 in all cases. As regards Fig. 8b, it should be mentioned that,  for 01 < ~/2 the 
output  has no maximum in the transient region (cf. Fig. 7a). As 0~ increases, more and more 
turning values make their appearance, but  the illustration does not go beyond the third maximum. 

E x a m p l e  11.--Determine the response of a simple oscillator, with any amount of damping, to 
an instantaneous pulse (Dirac's pulse, or delta-function input). Find the maximum output. 

I t  may  not be superfluous to recollect the definition of Dirac's pulse. Suppose any dynamic 
system is subject to a step input of magnitude a a t ,  = 0, and the response is represented by  
a f (~ ) .  If a subsequent negative step input of magnitude (-- a) is applied at ~ ---- ~i, then the 
final response, from ~1 onwards, will be 

a f ( ~ )  - a / ( ~  - ~1) = a~1 f ( ~ )  - - f ( ~  - -  ~1) Vl . . . . . . . .  (A.102) 

L e t  us now suppose that  ,~ decreases while a increases, in such a way that  a,1 = const = A, 
say, so tha t  the total impulse is constant ,  while its duration becomes smaller and ult imately 
tends to 0. In the limiting case the response becomes 

F(~) = A/ ' (~)  (r > 0) . . . . . . . . . . .  (A.103) 

Hence the operational equivalent of such an input is A D. A finite impulse of strictly zero 
duration is, of course, physically impossible. Nevertheless, F(r) represents, with a fair approxi- 
mation, the response to a ' rectangular ' impulse of magnitude A, of very short duration. 

In the case of an oscillator, the subsidiary equation will be 

k (D  2 + 2 R D  + H ) x  = A D ,  . . . . . . . . . . . . . .  (A.104) 

k being an arbitr£ry constant factor. We have to consid.er five cases : 

(a) Undercritical damping: H -- R~ = f f  > 0, the solution being from (100) or (81, 82) : 

A e-R  sin yr.  A (cos jr  - R sinyr) x = ~ j  ' d r - - k  y . . . . . . . . .  (A.lO5) 

There are an infinite number of turning values, and the first (and highest)maximmn occurs at 
r .... where Jr,,  = tan -I J / R ,  sin Jr , ,  = J / ~ / H ,  so that  

X m a  X - -  

(b) Supercritical damping" H -- 

D ~ + 2 R D  + H = 

where r~ = 

fi @ f2 

and the solution is, from (97), 

X 

A e-(R/j)  tan -1 (J/R). 
k V H  "" 

R 2 < 0 .  We have then 

( D + r~)( D + r~), 
R + v ' ( R  ~ -  H ) ,  

2 R ,  

. . . . . . . .  (A.106) 

= R - -  x / ( R  ~ - -  H ) ,  } , . .  /"2 

J rlr~ = H 

[ = A  D 1 A .(e_~, e_~V,) 
(D -¢- r~)(D + r~) - -  k(r~ - -  r~) 

dx  A 
d* - -  k(rl - -  r~) (rl e - ~  - -  r~ e -~2~) 
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The only m ax imum occurs at , .... where e (~*-'2~,,, = rllr2, and 

_ A _  _ k & (  R + - 

(c) Critical damping" H = R ~, in Which case (formulae 98 or 41, 42) 

[ A D 1 A e-R~" dx A ( 1  Rr) e-R~ 
x - - k ( D + R )  ~ = k  ~ ' d r - - k  " "" 

The only m a x i m u m  occurs at  r,,, = 1/R, and 

A 
X~ax = ekR . . . . . . . . . . .  

• ° (A.109) 

(A.110) 

(A.111) 

(d) Zero spring constant"  H = 0, the  solution being, from (101), 

[ A 2 2  ] A (1- -e-2R' )  and the m a x i m u m  value °f  x is x -- k D 2 R D  - - 2 k R  

A (at r = oo) 
2 l 2kR . .  ( A . 1 1 2 )  

(e) Zero damping" R = 0, H = .[3, and then the solution, from (99) or (66, 67) becomes 

x [  A D ] k_~s in j r  dx A A 
- - k D = + J ' ~  = ' d r - - k c ° s J r ;  x .... - k  J . .  (A.113) 

The solut ions (a) to (d) are i l lustrated by  five response curves in Fig. 9a, corresponding to the  
following values of the  convenient  parameter  .v 'H/R" 

0 ,  0 . 6 ,  1,  2 . 1 2 5 ,  4-0625.  

In  all these cases R > 0 and Rr  is a convenient  abscissa. The figure shows how the response 
varies a t  constant  R wi th  vary ing  H. In  case (e) the  response would be represented b y  a simple 
sine curve, but  the  convenient  abscissa would be J r .  ,- 

Fig. 9b gives the  graph of the  m a x i m u m  outpu t  ratio Xmax/2 against  v ' H / R .  

Example 12 . - -F ind  functions Fl(r),  F~(,), F'(r), equivalent  to the  following operat ional  
expressions 

9I(D) 2D5 + 13D4 + 39Da + 59D~ + 37D + 2 . .  (A.114(i)) 
= ( D  ~ + 4 D + 5 ) ( D +  1) 3 ' "" "" 

3D 6 + 7D 5 + 12D * q- 17D a q- 14D ~ q- 9D q- 2 
~ ( D ) =  (D ~ + 2 D + 2 ) ( D , q _ D  a + 2 D  ~ + 3 D q -  1) ' "" (A.114(ii)) 

 o(D) = 

respectively. 

5D 6 q- 60D 5 if- 285D 4 q- 675D 3 q- 836D ~ q- 477D -4- 54 
(D -4- 3)a(D q- 1) 3 
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(i) In  the  first case we apply  formula (142) of Table 4, wi th  R = 2, H = 5, r = 1, a --  2; 
b = 13, c = 3 9 ,  d = 5 9 ,  f = 3 7 ,  g = 2 ,  and  we obtain c ~ = 2 ,  c ~ = 2 ,  b 2 = 3 ,  a s =  1, a ~ =  1, 
b~ = 1, so t h a t  

D 2 -~ D q- 2 D 3D 2D 
~o~(D) ---- D2 q- 4D q- 5 q- D -t- 1 -t- (D q- 1) 5 -t- (D -t- 1) a . . . . . . .  (1.115) 

a direct check being easy. 

= 8 + 

Using now formltlae (100) and (8, 9, 10), we ge t  

9 
e - 2 ~  . . . cos ~ --  ~ sin ~/ q- (1 @ 33 q- ~2) e-~ . .  (A.116) 

(ii) In  the  second case we apply formuia  (151) of Table 5, wi th  a = 3, b = 7, c = 12, d = 17, 
f =  14, g = 9 ,  k = 2 ,  R =  1, H = 2 ,  B =  1, C = 2 ,  E = 3 ,  F =  1, and  we obtain A = 12, 

= 4 ,  / ~ =  10, y = 8 ,  d = 3 ,  0 = - -  1, F = - - 5 / 2 ,  K = - - 2 ,  and hence a ~ = 2 ,  b ~ =  1, 
a s =  1, b 2 = 2 , f ~ =  1, c ~ =  1, d 2 = 3 ,  s o t h a t  

2D 2 + D  D ~ - ~ 2 D  8q- D 2 q - 3 D q -  1 
~%(D)=D2q_2D+2 q-D 4q-D aq-2D 2q-3Dq- 1' "" . .  (A.117) 

a direct check being again simple. I t  remains to factorise the quar t ic  denominator ,  

D 4 + D  a + 2 D  2 + 3 D +  1 =  ( D +  1) (D + 0 . 4534) (D 2 - 0 . 4 5 3 4 D + 2 . 0 6 6 )  . .  (1.118) 

and  to use (100) and (121), and the  solution is 

F~(r) = (2 cos r --  sin r) e - * +  1 - - e  -* 

q- 0"4606e -°'4s34~ q- (0.5396 cos 2. 1949T q- 0.0395 sin 2. 1949T)e °'2~7~ . . .  (A.119) 

(iii) In  the  th i rd  case we apply formula  (152) of Table 5, wi th  R = 3, r = 1, a = 5, b ---- 60, 
c = 2 8 5 ,  d = 6 7 5 ,  f = 8 3 6 ,  g = 4 7 7 ,  k = 5 4 ,  and  we obtain  A = 2 ,  a ~ =  1, b 1 = 2 ,  c t = 3 ,  
as = 2, b~ = 3, c~ = 4, so t ha t  

D 2D 3D 2D 3D 4D 
cps(D) ---- 2 q- D q- 3 q- (D q- 3) 5 q- (D q- 3) 3 q- D q- 1 q- (D -¢ 1) 2 q- (D q- 1) ~ 

and, using (8, 9, 10) twice, we get the final answer" 

(A.120) 

( 3) F3(~) = 2 q -  1 q - 2 v - k ~ 2  e-a~q_ (2q-33q-2T 2) e -~. . .  ( A . m l )  
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FIG. 2. Solution of example 4. 
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FIGS. 3a and 3b. Response Of simple delay unit to 
a parabolic input of finite duration (example 6). 
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FIGS. 4a and 4b. Response of a simple delay unit 
to an input proportional to T e - =  (example 7). 
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FIG. 5. Traflsient response of a simple delay unit to a sinusoidal input- -Sample  
curves (example 8). (Inset: Variation of the steady amplitude with the ratio of 

time constants.) 
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FIG. 6a. Response to a step input into damped 
oscillatory systems (complex delay units) in series, 
compared to the case of a single unit (example 9). 
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FIGS. 7a and 7b. Response of an undamped 
oscillator to a finite parabolic input (example 10). 
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