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Summary.—The paper presents systematic tables of formulae whose purpose is to facilitate the operational solution
of response problems reducible to linear differential equations with constant coefficients and with simple forcing functions.
The formulae enable the user to find operational equivalents of a wide class of simple functions and, inversely, to find
functional equivalents of a great number of operational expressions, in the most rapid and direct manner. In such a
way, it is possible to reduce to a minimum the usual heavy algebraical work involved in response calculations. The
tables include only such functions whose operational equivalents are algebraic fractions, but these cover a wide field
of practical applications. Operational fractions of the 1st, 2nd, 3rd and 4th order are treated in a comprehensive way,
so that all possible particular cases are included. Additional tables make it possible to reduce every fraction of 5th or
6th order to a combination of fractions of lower order.

The introductory text describes the method of deriving the formulae and explains how to use them in solving response
problems. A number of examples are appended which show the advantages of the tables and give solutions of several
typical problems. :

1. Introduction.—Response calculations for mechanical, electrical and processing systems, with
various sorts of controls, have become indispensable in many branches of engineering. They
appear prominently in the modern theory of control and servo-mechanisms. In aeronautics,
response problems made their appearance almost immediately after the fundamentals of aircraft
dynamic stability had been established. Now, such problems become increasingly important,
and more and more complicated cases must be dealt with, to enable us to understand and assess
handling properties and structural loadings of aircraft.

The complexity of problems, often involving large numbers of elements and degrees of freedom
and also various kinds of non-linearities, has led to a rapid development of differential analysers
and simulators. The old analytical methods may seem inadequate or obsolete. There remains,
however, a multitude of problems of great practical importance, which are definitely suitable for
analytical treatment, and for which the use of costly analogue computors is neither justified nor
indeed the most appropriate. This applies especially to linear problems (strictly : problems
leading to linear differential equations with constant coefficients, of not very high order). Such
problems often admit of comparatively concise and elegant analytical solutions which, if properly
handled, may yield simple practical rules and criteria. '

The usual analytical method for linear problems is the operational calculus. The advantages
of operational treatment have been best described by H. Jeffreys®: * The operational method will
give the answer in a page when ordinary methods take five pages; also, it gives the correct answer
when the ordinary methods, through human fallibility, are liable to give a wrong one ’. Never-
theless, even the operational method, when applied to anything above the level of simple textbook

* R.A.E. Report Aero. 2570, received 18th March, 1957.



examples, usually involves serious algebraical work, consisting mainly of the resolution of opera-
tional fractions of higher order into partial fractions. The procedure is quite elementary, of
course, but tedious and often exasperatingly long. Many workers in this field try to compile
their own sets of auxiliary formulae, so as to avoid repeating identical or similar drudgery over
and over again; but such efforts are usually of limited scope and seldom become available to
anybody but the originator. There is no lack of publications* containing more or less spacious
tables of operational formulae, but they invariably tend to develop more in width than in depth,
e.¢., there is a tendency to include a great number of higher transcendental functions, while the
simple algebraic operational fractions (most often needed in practice) are never treated in a

really comprehensive way. Itis here that extensive tables of formulae may serve a useful purpose.
The present paper is an effort in this direction.

The principle of the operational calculus (in its simplest form as required here) is as follows.
A function F(r) is replaced by its operational equivalent ¢(D), defined by Carson’s formula :

tp(D):Df:oe—DTF(r)dr. R O

If F(r) is an ‘elementary * function (i.c., either an integer power of 7, or an exponential, or
sine or cosine, or any linear combination of such functions and their products), then ¢(D) is a .
rational algebraic fraction in D, the order of the numerator never exceeding that of the
denominator. Inversely, any such operational fraction corresponds to a certain ‘ elementary
function * of the type described. Suppose that a sufficient number of operational equivalents of
various functions are known. A linear differential equation (relating, e. g£., an unknown function %
and an independent variable v), with constant coefficients and with arbitrary initial conditions,
can then be solved in an extremely simple way. Thé original equation is replaced by an operational
“ subsidiary equation ’, algebraic and rational in D (in the manner described in section 3). The
latter is then solved for », whose operational expression is thus found, and the problem is reduced
to finding the function of =, equivalent to this operational expression. The method can also be
applied to an equation with a forcing function, in which case this function must be replaced by its
operational equivalent, in the subsidiary equation. Finally, a system of # lLinear differential

equations with # unknown functions x, y, z, . . . can also be solved in a similar way. We have
then # subsidiary equations, linear in %, ¥, %, . . ., algebraic and rational in D, which must be
solved for %, y, 2, . . . in the usual way, and then the operational solutions interpreted as functions
of 7. 4

The interpretation of the operational solutions usually requires the tedious procedure of
resolving complex fractions into simple ones for which the functional equivalents are available.
Here, a great simplification may be obtained by use of tables as presented in this paper. They
enable the user to find the functional equivalents of a great number of operational expressions
(or inversely) in the most direct and rapid way, thus avoiding the’ complicated algebraic work.
Our tables include only operational expressions in the form of rational algebraic fractions, but
these cover an enormous field of the most common applications. The essential feature of the
tables is that, up to a certain order, all possible forms of fractions are dealt with, including all
the various combinations of real, imaginary, complex and zeéro roots (also multiple roots) in the
denominators, and the most general form of the numerators.

The derivation of the tables is explained in section 2. Section 3 recapitulates the procedure of
producing subsidiary equations, which is essential for solving the response problems correctly.
The procedure is well known, but it was thought advisable to include this section, so as to avoid
misunderstandings and to enable the user to solve his problems without referring to textbooks,
in which it is often difficult to find simple working instructions, usually hidden in the maze of
theory. This is particularly important because of the unfortunate existence of two very similar,
- but not identical, operational methods, commonly referred to as the method of Heaviside and

* See, for example, Refs. 5, 6, 9.



of Laplace transform, respectively. The fundamental formula (I) corresponds to the original
Heaviside’s treatment, while the Laplace transform is usually defined* by :

w . .

ap(p):f e Fle)dv, .. .. .. .. .. .. ()
N 0 - .
the only difference being that the factor p is missing in (II). The confusion is made worse by the
fact that some authors® do include this factor but still use the term ‘ Laplace transform *. The
definition (I) has been adopted here because it has the advantage that ¢(D) and F(z) have the
same dimensions ; also, if F(r) = 1 (unit step function), we have ¢(D) = 1, while p(p) = 1/,
which seems unnatural. It is hoped that the use of the letter D instead of p (following Ref. 1)
will help to avoid misunderstandings. It may be mentioned that all formulae of this paper may
be employed by readers used to the nomenclature of the Laplace transform in the form (II) ; it
will suffice to divide every operational expression ¢(D) by D and then replace D by p, while .
‘the function F(z) remains unchanged.

The Appendix contains a number of examples with complete solutions and discussion. It is
hoped that they will be useful, not only as a help to beginners, but also because several examples
treat response of simple typical control units as often encountered in practice.

A grateful acknowledgment is due to Mrs. J. Collingbourne who has checked all formulae and
helped in working out the examples. , '

2. Derivation of Tables.—The general formula (I) is not convenient.for deriving operational
equivalents of any but the simplest functions. There exist, however, several simple rules which
facilitate the procedure by indicating how to build up operational equivalents gradually, starting
from the simplest cases. The only rules needed within the scope of the present paper are as
follows : :

If the operational equivalent of F(z) is ¢(D), then the operational equivalents of several related
functions may be obtained as shown below : ‘

Function Operational equivalent
a (¢(D)
<F(x) _Dﬂ)in, W
ek F(z) P D+ R )
, DFR? S
.. D .
(cos J= + ¢sin Jo)F(z) | | D_——Uqa(D—z]), . . . (c)
F'(d) - Dig(D) — FO)}, .. . .. (@
fTF(r)dr | oDYD. .. .. .. .. (@
i} .
Also, if the operational equivalents of Fi(z), Fu(7), Fs(r), . . . are (D), @u(D), ¢s(D), - . -,
respectively, and a,, @,, @, . . . are arbitrary constants, then:

the operational equivalent of a,Fy(v) + a,F,(z) + asFs(z) . . .
is @:1(D) + a,95(D) + asps(D) . . .

The proofs of the above rules, based on the definition (I), may be found in textbooks on

(/)

~ operational calculus, and are omitted here.
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It is easily seen that the above rules lead immediately to all formulae of the fundamental
Table 1. Thus, for instance, each of the formulae (2 to 7) is obtained by applying the rule (e)
to the preceding formula. Formulae (8 to 14) are derived from (1 to 7) by applying the rule (5)
in each case but, alternatively, the rule (a) may be used to derive (9) from (8), (10) from (9), etc.

Formulae (15 to 22) have been obtained from (1 to 4) by applying the rule (c), and in each
case a single operation yields two formulae at one stroke. For example, applying the rule (c)
to (2), we find that the operational equivalent of z(cos Jv + 4 sin J7) is:

D 1 DD+414])* DD*— J* + 2]D?
D—4f D—4] — (D*+ " (D* + J7)?
and, separating the real and imaginary parts, we get (16) and (20) at once. Alternatively, (16)
may be obtained from (15) by applying the rule («), and so on.

Finally, the formulae (23 to 30) have been derived from (15 to 22) respectively, by applying
the rule (), but alternative derivations by means of the rules (4) and (c) are available for checking.

Each group of formulae in Table 1 may, of course, be extended indefinitely, introducing higher

powers of v. The formulae given are, however, more than sufficient for all ordinary purposes
and for deriving the subsequent tables.

By inspecting Table 1 it is seen that the operational equivalents of all simple functions of the
type considered are algebraical fractions in D, the denominator being in each case an appropriate
power of one of the factors D, D 4 R, D* 4 J* or D* - 2RD 4 (R® 4 J?), and the numerator
being a polynomial in D, of the order never exceeding that of the denominator. By combining
various formulae according to the rule (f), it is possible to obtain every algebraical fraction (the
order of the numerator never exceeding that of the denominator), and hence the way is open to
find the functional equivalent of an arbitrary operational fraction, and to attempt a systematic
tabulation. The procedure adopted here consisted of two steps : firstly, Table 2 was compiled,
giving functional equivalents of simplest operational fractions, ¢.e., those whose denominators
were powers of only one of the factors D, D+ R, D*+ J* or D*+4 2RD 4 H (where
H = R* ++ J?), and the numerators were either constant or single powers of D; and secondly,

we have derived Table 3, giving functional equivalents of the most general operational fractions
of the 1st, 2nd, 3rd and 4th order.

The derivation of Table 2 was comparatively easy. Formulae (31 to 37) are simply inversions
of (1to 7). In each of the eight subsequent groups, it was always possible to find one formula
directly by inspection of Table 1, e.g., the formula (48) is simply an inversion of (11). All
remaining formulae of each particular group could then be obtained by simple differentiation or
integration, .c., by applying the rules (d) and (¢). Only the last four groups (formulae 73 to 94)
required some little more effort. For example, (75) was derived by combining (17) and (20) so
as to obtain a fraction with the numerator D*; then the remaining formulae of the group (73 to 79)
could be found immediately by differentiation or integration. The tabulation has included all
simple operational fractions up to the 6th order.

Table 3 required much more effort. This table consists of four groups, including operational
tractions of the first four orders. In each group there are a number of operational fractions with
various types of factorized denominators, including all possible combinations of real, imaginary,
complex and zero roots, also all cases involving multiple roots. It was found that there were
two different types of fractions of the Ist order, six of the 2nd order, eleven of the 3rd order, and
twenty-five of the 4th order, and all these had to be tackled in turn. The procedure was simple
whenever the denominator was a power of one of the factors D, D + R, D* -+ J?or D* 4 2RD + H
because, in such cases, the functional equivalents could be determined by combining appropriate
formulae of Table 2. For example, the formula (100) was obtained directly by combining (80,
81, 82); similarly, (118) is a simple combination of (47 to 51). If, however, the denominator
contained different linear or quadratic factors, the fraction had to be resolved into simple
fractions, whose functional equivalents were then found in Table 2 and combined into the final
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formula. The algebraical work was complicated in many cases, and extensive checks were made
to ensure reliability of all results. In many cases simple checking formulae are given in the
table, as they may be helpful for the user. ‘

Table 3 could be continued to include operational fractions of 5th, 6th and higher orders.
This would require, however, an immense amount of work. For instance, there would be forty-
three different forms of fractions of 5th order, and eighty-four of those of 6th order, and the
corresponding formulae would be increasingly complicated. It was found impossible to perform
such an enormous task. Instead, the reader will find Tables 4 and 5, which contain a compara-
tively small (but sufficient) number of formulae for reducing every fraction of 5th or 6th order
respectively, to a combination of fractions of lower order. The latter can be dealt with by using
Table 3 or 2.

3. Use of Tables for Response Caloulations.—We consider only problems which reduce to the
solution of a linear differential equation with constant coefficients, or of a system of simultaneous
differential equations of the same type. The forcing function (if any) in each equation must be
one of those appearing in Table 1 (or any linear combination of such functions).

Let us consider, for simplicity, one equation of the 3rd order :
a az a
T;+Kz%§+K1£+KOx:F1(1), O ¢ 08

where % is an unknown function of =, and Fy(v) the forcing function ; and let the initial conditions
be ¥ = %, dxjdv = %, d*x|dr® =%, at ==0. The equation (III) can be transformed into
operational form by applying the operation (I) to each term. Suppose that (D) is the operational
equivalent of Fi(r), and X = ¢(D) that of x(r). Applying the rule (@) of section 2 three times, -
we find that : :
the operational equivalent of dx/dv is DX — Dx,,
the operational equivalent of d*x/d<" is D*X — D*xy — Diy ,
the operational equivalent of d®/d7® is D°X — Dixy — Dy — Diy
and substituting these expressions into (IIT), we obtain the subsidiary equation in the form :
(D* + K,D* + K,D + K)X = ¢:(D) + %(D? + K,D* -+ K,D) + %(D* + K,D) + &D . (IV)
“The procedure of obtaining the subsidiary equation is thus:
(i) To replace x by X, dx/dv by DX, d*x[d=* by D*X, etc., and write the left-hand part of
the equation as a product of X by an appropriate polynomial in D
(ii) To replace the forcing function by its operational equivalent
(iii) To add on the right terms accounting for initial conditions, formed in such a way; %, is
multiplied by the left-hand polynomial in D less the constant term, and #,, %, etc.,
multiplied by shorter polynomials obtained each time by dropping the next term and
dividing by D.
Tt remains then to solve the subsidiary equation (IV) for X, whereupon we obtain:

X — (p(D) — (Pl(D) -+ xo(Ds + K,D* + KlD) + x‘)(Dz + KzD) + %D

D+ K,D* + K,.D + K, ’
which is the operational equivalent of x, in the form of an algebraic fraction. This must be
interpreted by using the appropriate tables. In our case Table 3 is sufficient if the order of the
fraction does not exceed 4 but, if the order is 5 or 6, Table 4 or 5 must also be used.

A similar method may be applied to solve a system of # simultaneous differential equations
_ with # unknown functions #, v, 2, . . . of a single independent variable 7. All equations are then
transformed into operational form by applying the operation (I) term by term. Let the symbols
X, Y, Z, ...denote operational equivalents of ¥, ¥, 2, . . ., respectively. The left-hand part of
each equation becomes a linear combination of XY, Z, ... multiplied respectively by appro-
priate polynomials in D; on the right, we write the operational equivalent of the respective

5
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forcing function, and add products of initial values x,, %, %, . . - Yo Yo, Yo, - - -, €tc., by polynomials
formed in the same way as described above. We obtain # subsidiary equations. linear in
X, Y, Z, ... and, by solving them algebraically for X, V, Z, . . . (preferably by using deter-
minants), we find the operational equivalents of ¥, y, 2, . . . , which must then be mterpreted by
making use of the tables.

Several examples are given in the Appendix, and the reader will find that the solution of
problems by this method is extremely simple and rapid. It may be mentioned that there is
really no need to write X instead of %, etc., in subsidiary equations, as there is never a risk of

confusing the operational equivalent with the function ifself.

4. Additional Remarks.—The following remarks may not be superﬂudus:

(@) In our tables, all exponentials are written in the form e~%, e, etc., the exponents being
assumed to be negative. The reason is that systems normally encountered in'engineering are
(or should be) stable, so that the real parts of the stability roots are usually negative. The
formulae can, of course, be used when one or more exponents are positive, which simply means
writing R instead of (— R) etc., both in the function and in its operational equivalent.

(b) If a power series in 7 is required for any function F(z) whose operational equivalent ¢(D)
is known, then the easiest way 1s usually to expand ¢(D) as a power series in 1 /D, simply by
dividing the numerator by the denominator, and then to interpret by means of the formulae
(31 to 37) of Table 2.

(¢) The initial value of F(z), for v — 0, can be found by letting D tend to infinity in the expansion
of (D) mentioned above or, which comes to the same, in the fractional expression of ¢(D).
- Thus, we have :

F(o) = g_lgo o(D) (or simpler F(0) = ¢(w0)) . .. .. (VD)

In view of the notation used in Tables 8, 4, 5, the initial value of every function appearing in
these tables is equal to 4. :

(4) A relation analogous to (VI) also exists for the limit of F (v) when = tends to infinity, if such
a limit exists.. We have then : '
lim F(r) = ¢(0) (or simpler F(w) = ¢(0)) , .. .. (VII)
T—>0 '
and it is seen that this limit is always equal to the ratio of the constant terms of the numerator
and denominator of the operational fraction. This formula is very useful in practical applications.

REFERENCES :
_ No. Author Title, etc.
1 L. W. Bryant and D. H. Williams .. The application of the method of operators to the calculation of
o the disturbed motion of an aeroplane. R. & M. 1348. July, 1930.
2 H. Jeffreys .. .. .. .. Operational Methods in Mathematical Physics. Cambridge Univer-
sity Press. 1931.
3 P. Humbert - . . .. Le Calcul Symbolique. Hermann & Cie. 1934.
4 H.S. Carslaw and J. C. Jaeger .. .. Operational Methods in Applied Mathematics. Oxford University
: ' Press. 1941, .
5 N.W. McLachlan and P. Humbert .. Formulaive Pour Le Calcul Symbolique. Gauthiers-Villars. 1941,
6 M. F. Gardner and J. L. Barnes. . .. Transients in Linear Systems. Vol. 1. Chapman and Hall. 1942.
7 H. Jeffreys and B. S. Jeffreys .. . Methods of Mathematical Physics. Cambridge University Press.
' 1950.
8 W. Bollay .. .. . .. .. Aerodynamic stability and automatic control (Appendix A:

Method of Laplace Transforms). J.A4eSci. Vol 18. p. 606.
September, 1951.

9  Staff of the Bateman Manuscript Project Tables of Integral Transforms. Vol. I. McGraw-Hill. 1954,
8



TABLE 1

Operational Ecjm'vozle%ts of Stmple Functions

Function F(z)

r

Operational equivalent o(D) Number
1 1 1
T 1/D 2
72 2/ D? 3
73 6/D3 4
74 24/D* 5
Al 120/D8 6
78 720/ D8 7
e~ Bz D/(D + R) 8
v e~ B D/(D + R)? 9
7% g~ fr 2D/(D + R)? 10
73 g~ &7 6D/(D + R)* 11
7t e—fr 24D/(D + R)® 12 .
75 e~ &7 120D/(D + R)® 13
78 e~ Rz 720D/(D + R)? 14
D2
COS]T m 15
D(D® — J?)
T COS ]‘L’ W | 16
2D¥ D% — 3)?
7% cos Jr -(lgT‘F)‘?']) 17
6D(D* — 8J2D* 4 J4
B cos Jr ( D7+ T 18
. JD
sin Jz DL e 19
- 2] D?
T sin J7 (D2 + J)E 20
. 2]D(3D* — J%
2sin Jv ]—(D—(r]z)a— 21
. 24D D2 — J?
2% sin Jz %‘FT&]) 22




TABLE 1—continued

Function F(z) Operational equivalent Number
DD+ R
e—%7 cos Jx T ZR(D T (R)z 79 23
D{D* + 2RD + (R — J2
7 e~R7 cos Jx {ég TSRD & (1(22 —[-]%}E 24
2D(D + R}{D* + 2RD - (R* — 3]?
72 e~ R7 cos Jz 2 (D —)l—{ZRD T +(]2)}3 )} 25
6D{D* + 4RD? + 6(R? — J?)D? + AR(R* — 8J%)D + (R* — 6R2J2 |- J4
B e=Ts cos Jo { (R D AR D+ T2+ T4} o
. D
e~frsin Jt DET 2RDJ—|- EE) 27
. 2]D(D + R
Te 8 gin Jr DT 2521)( T (R2)+]2)}2 28
. 2]D{3D? + 6RD + (3R2 — j2
7% e~ B gin [v J {{Dz—f—ZRD T (R(2 _}_]2)}/;)} 29
et sin Jx 247D(D + R){D* + 2RD + (R* — J¥} %0

{D*+ 2RD + (B2 + o)1




TABLE 2

Functions Equivalent to Simple Operational Expressions

+

Operational
expression Equivalent function F(z) Number
(D)

1 1 31
1/D T 32
1/D? 72/2 33
. 1/D? /6 34
1/D* 74/24 35
1/Ds 75/120 36
1/Ds %8/720 37
R/(D + R) 1 — e—&r 38
D/(D + R) e~Rz 39
- R(D + R) 1— (1 4+ Ry)e-2r 40
D|(D 4 R)? Te—Br 41
D¥(D'+ R)? (1 — Rz) e=&r 42
R3)(D + R)® 1— (1 4+ Rr 4 }R%c?) ¢~ 43
D/(D + R)? L2 e—Br 44
D¥(D 4+ R)® (v — {R+?) e e 45
D3¥(D + R)® (1 — 2Rv + [R2c®%) e—2v 46
RY(D + R} 1 — (I + Rz + LR - 1R8¢%) e—Re 47
D/(D + R)* 118 e—Fr 48
DD + Ry (3% — 4Re) e~ 49
D3/(D 4+ R)* (zr — Re? + 3R%%) e— B 50
DY(D + R)* (1 — 3Rz + §R%? — [R%%) e—& 51
R5/(D + R) 1 — (1 4 Re + 3R + LR35 + 2 Rich) e—Fe 52
DI(D + R)® et 53
DY(D + Ry (4% — deRed) =T 54
DD + R)* (59 — 4R0? + 2 RA) e 55
DY(D + R) (z — 8R2® + LR%5 — A Rich) e—Rr 56
D5/(D + R)S (1 — 4R7 + 8R27% — §R3%8 4 L Ript) eI 57
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TABLE 2—conirnued ] A

Operational ‘
express)ion Equivalent function F(7) Number
(D
RY(D + R)s 1— (1 + Rr + $R2? 4+ 3RO 4 2 Rivh (1, R5%5) e—Fr 58
DJ(D + R)S 1?6 R ‘ 59
D*(D + R)S (g7 — ghoRP) e~ Fr 60
D%(D -+ R) (119 — A Ret -+ £1,Ro) e~ Fr 61
DY(D + R)b (372 — JRe® + LR — _L R%) e~ T 62
DD + R)S (r — 2Re? 4 R%3 — LR 4 1 Rish) e~ FBr 63
D%(D + RS (1 — 5Rv + 5R%? — §R¥S 4+ 5 Rbct — _3 Ros5) o~ 64
JH(D? 4 J9) 1 — cos Jx 65
DJ(D= + %) e 66
- D(D? 4 J?) cos Jv 67
JH(D? + J3)? 1 —cos Jz— 4Jrsin Je 68
DJ(D* + J2)2 2i]2 (Sinjf T — zcos ]f) 69
D¥(D + J2 b Sif}] : 70
D3(D? + J?)? 3 (r cos Jt + SinJ]T) 71
DY/(D* + J2)2 cos Jv — 3 Jvsin Jo 72
JY(D2 + J7® 1 — (1 — §J%?) cos Jx — § Jusin Jv 73
DID? + J2)3 8}—4 g (3 — ]212> in]]_’ — 8708 Ju 74
DY(D? + J38 8}—2 (f SmTf’ — 2 cos ﬁ) 75
D3¥(D? + J33 8}—2 g (1 + J2e2) S# — zcos JT 76
DD 4 ) % (12 cos Jt + 3z sir}]r) 77
D3|(D? + J?)3 1 {57 cos Jz 4 (8 — J29) Sm—]ﬁ 78
D8[(D? 4+ J2)3 (1 — %/%7%) cos Jz — § Jzsin Jv - 79

10



TABLE 2——continued

Operational

— (R(15H? — 20R2H + 8RY) + JX(TH? — 44R?H + 32R%7 —

. J*R(5H® — 20R*H + 16R%)2) %J_’} s

expr(eg:‘;ion Equivalent function £ (z) Number
@
N : SR . ( R . ) .
D L 2RD + H COSJT+]—str e 80
D . .
D' FeRD ¥ B ~Be Sm]] : 81
. D2 R
D*1 2RD +H (COS Jr— ysin ]r) e~ ke 82
H? : '~ RH _ R 2R2 i :
(D' + 9RD 1 H) 1- [(1—2—]—21> COSJT+%§‘—(—J——) + Hr Smjﬁ} e—Fr 83
D 1 ;
(D> 2RD + H)? 2y (Sm]i -7 COSJT) e~ Hr 84
Dz 1 sin Jt
(D + 2RD + H)® gz |RrcosJr 4 (Jir — B) === 85
D? 1 ) sin Jz
(D + 2RD + H)? gz |\ — 2Rz cos Jo (H — 2R]?%) ——=— e~ F* 86
Dt L 9272 A P2 a4 P2 sin Jt
DT EIRD T A | 2t | |~ ROH 4R 7 cos Jr+ {JUR — H)z — R(3H — 2R%} —]—} e—Br | 87
H? . RH 3H He 1 (R
(D 4 2RD + H)? 1_[31' 272 (1'*'4]2)"8—]2’2 COS]T'*‘S—JZ ]—2(15H2—20R2H+8R4)+
‘ . ' ' 88
+ H(5H — 4R%7 — H?R+® —SmJ] ’} e—Br
D .
(D® + 2RD + H)? 8]45( — J¥ 2)SBJ—T—?ﬂcos]r e Re 89
D sin J7
(D® + 2RD + H)? 8J4 (8Rv — J*®) cos J7 + (R]** + J*r — 3R) —— Be 90
s
D" T 2RD T Hp &7 [{21{ T2t — (H + 2R2)z} cos Jz +
1 {(H + 2R?) — 2RJ? + JA(H — 2R%% S_injf T] e 91
Dt '
(Df + 2RD + H)? 8]4 |:{3RHT + JAH — 4R%)7*} cos Jv — ’
— {8RH — 3J*Hz + JPR(3H — 4R} EHTJJJ _— 9
D5
(D +2RD Y B | & [HRJ 2R* — H)7* 4 (SH® — 16R°H + 8R%)z} cos Jz +
| + {3H® — 4RJ¥3H — 2R?)v — JH(H? — SR*H + 8RY7) 5—-—in~JJ ’] e—Er 93
D6
(D* 1 2RD + Hy® | 8J° [{8.]4 R(25H? — 60R?H + 32R%Yv — J¥H? — 12R?H + 16R*)7%} cos [+
94
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TABLE 3

Functions Equivalent to General Operational Expressions in Form of Fractions
with Denominators of 1st to 4th Order

(1) Fractions with denominators linear in D

Operational expression ¢(D) Equivalent function 77(7) Number
aD 40 b b
D+R §+(d—ﬁ)e—Rr 95
aD + b
- D a 4 br : 96

(2) Fractions with denominators quadrvatic in D

Operational expression ¢(D) ’ Equivalent function F(z) Number
DF RO ot e e o7
Toprt | arlled e e
a——-DzD_i__lb_D]:_ ¢ ]% + (a — 762) cos Jz 4 jb sin Jz 99
e | ar e g e (o )L e
%J)LE (%—73—2)+%z+(a—%+7§—2)e—1% 101
i SR ot b+ B | 102
(8) Fractions with denominators cubic in D
Operational expression p(D) Equivalent function F (=) Number

aD? + bD* 4 cD 4 d
(D + R)(D + Rp)(D + Ry)

A + Bye— B + B,e B o Bye—Ea,

where : .
A= d B_aRIZbe1+c—d/R1
R\ R,R,". ! (Ry — R)(Ry — Ry) 7 103
aR2 — bR, + ¢ — d/R? aRg? — bRy + ¢ — d[R;
B, = By =

(Be — Ry)(Ry — Ry) 7
Check: A + By + B, + By =a.

(R3 - Rl) (R3 - R2)

12



TABLE 3——continued

(3) Fractions with denominators cubic in D—continued

Operational expression ¢(D) Equivalent function I/(7) Number
aD? 4+ bD? + ¢D + d . -
D+ RD L7 A+ BeB 4+ (C + Ex)er7,
where:
_d _aR*— bR +c—d/R
AfR_yZ’ : B= (R —7)? ’
a(rz-—QRy)—[—bR—c—i—zZ(-f——g) 104
‘= ®=7F ’
_arr —br +c—dfr
‘E_ - R—7. )
Check: 44+ B+C=a, BR+Cr—E=aR-+2)—0.
aD®+ D% + ¢D + d d ( d d
D+ ;—,é—i— \4—7—3)—(2011'—13—[—72)1—}—
105
—}—%(mz-br—}—c—[—:)-ﬂ et
aD? + bD? +-¢cD + d sin Jz e
(E+ 9D 17 A+ BceosJr+ C 7 + Ee-rr,
7 where : . :
a al]?+ by — ¢ — vdlJ?
4 =-—= B = ,
7 . JE+ 2 106
C_(b—m/)ﬂ—{—cr——d E_urz—br—{—c—d/y -
I - R R
Check: A+ B+ E=a, C—Er=50—ar.
aD? 4+ bD? 4+ ¢D + 4 sin Jz} oo e
(D'~ 2RD & @D + 7 A—}—(Bcos]r—i—C 7 )e + Ee—r,
‘ where:
A—i B_a(H—ZRif)—}—br—c-}—d(ZR—r)/H
T yH’ o H — 2Ry 4 2 ’
C_a(ZRzr—RH—wH)—|—b(H—R¢')—c(R—7)—|—
- H—2Rr + 12 107
+ d(2R* — Ry — H)/H
H — 2Ry 4 »2 ’
E:m’z-—b?—[—c——d/?’

H — 2Ry +

*Check: A + B+ E =a, C—BR—Er=0—a2R + 7).

13



TABLE 3—continued

(3) Fractions with denominators cubic ¢n D—continued

Operational expression ¢(D) Equivalent function I (<) Number
aD? + bD? 4 ¢D + d d +<_c_ R+r)+aR—b—|—c/R—d/Rze_R1_
DD FR(D + 7 R T \Br R R—v 108
_ar — b+ cfr —dfr® ot )
R—v
aD?® 4+ bD? +c¢D + 4 d - (¢ 2 c 24 , c d) .
DD + 7 7z’+(fz—?§)+5(“—ﬁ+7§>—(“’—b+r7z 7 e 109
aD?® L bpD% + ¢cD 4+ d d ¢ ‘ c d\ sin Jz
D{* + 79 fort jot o g eme (- 5) o
aD3 -+ b0D2%2 4+ cD +d d c R ¢ R
cR 2R* — H\sin Jv{ o .
aD® + bD? + cD +d i .. (¢ 4 A
DXD + R) st e /TR T 1
b a
+ (“—ﬁﬂ%—feﬁ) e
3 2
aD +bDD3+ D +d @+ br -+ Yov® + 3ded 113
(4) Fractions with denominators quartic in D
Operational expression ¢(D) Equivalent function F(z) Number
aD* 4 bD® + ¢D? 4+ dD + f R ki . R
D+ R)(D+R)D ¥ R)(D+ R A - Bye~Riw 4 Bye Byt - Bye—Fa¥ 4 Bye—
where:
3 _ pR.2 —
A f B]_:“Rl le +CR1 d+f/R1 114

T RRRR,’ By — B)(Ry — Ry)(Ry — Ry
and analogous formulae for B,, By, B, .
Check: A + By + B, + By + By=a.

14



TABLE 3—continued

(4) Fractions with denominators quartic in D—continued

Operational expression ¢(D) Equivalent function F(7) Number
aD* + D3 4 ¢D? 4 dD 4 f Ra R e
D~ R)(D + R)D + 7 A4 B e-& +32e Ry - (C — E7)e ;
- where:
__f
4= R Ry’
aR® —bR? 4 ¢cR; — d + fIR
B =1 1 L 1 (analogous for B,),
! . (By — Ry)(Ry —7)? { & 2 '
ar® —br® +cr —d -+ flr
E = , 115
(Ry — 7)(Ry — 7)
C(Ry — ¥Ry — 7)2 = ar®{® — 2¢(R, + R,) - 3R,R,} +
+ br{p(Ry + Ry) — 2R,Ry} -+ o(RyRy — 1) — d(Ry + Ry — 2) —
| R+ R, | RiR,
—f(3—2 - B
Check: A + B, + B, C=a.
aD* - D3 4 ¢cD? - dD | f . .
(D + RFD + ¢ At K= Ly et (k= e,
) where:
= S
TRy
aR*R — 3r) 4 20Ry — ¢(R +#) + 24 — ]% (B8R —7)
K= i 116
(R—7)? '
7 _ORP bR 4L cR—d+fIR
T (R —7)? ’
and analogous formulae for %, 7.
Check: 4 + K+ kh=a, L+I+KR+kr=2aR+7—b.
aD* 4 bD3 + ¢D?2—dD +
DrRD T | A+ BeE L (C 4 Er—iGr) e,
where:
e B OB — bR 4 cR —d+f|R
T Ry - (R —#)3 ’
— w(3R*— 3Ry +7) +bR2—cR+d—£ (R*—3Rr 37
€= R ’
@8R — 2) — (2R — ) + R —d + L (2r — R 117
P= (B —7)? ’
ar® — b - c]'—dA—l—{
G= o .

Check: A+ B4+ C=a,
ARy 4 E(R — %) — G = ¢ — 2br + 3ar?.

.15
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" TABLE 3—continued

(4) Fractions with denominators quartic in D—continued

Operational expression ¢(D) Equivalent function F(z) Number
aD* + bD? 4 ¢D? + 4D +
D+ / 1'i4+ (a —%;)—(3@7—6+£)z+-§—(3a72—267'+c—;’];)r2 .
— % (a7/3 — bt or—d —I—J;) B} e—rr '
aD* - bD3 + cD? +dD + f e R . sin 5=
D+ RID+ Ry | AT BT T Bt Cosrm B
) where:
4 f B :aR13—bR12—|—cR1—d+f/R1
Ry Ryj®’ ' (Ry — R)(R2 457 7
B — aR® — bR 4+ cRy —d 4 fIR,
t (R — Ry)(Ry* + 77) ' 1o
c - P — RiR)a® — ¢ - JIf®) + (B + Ry)(bf* — d)
(B + 7% (R + 7% '
g o PR+ Ry)(af® — ¢ + f7%) — (2 — RiRy)(b* — d)
(Be® 4 /) (RSP + 77) '
Check: A+ B, — B,+C=a,
AR, — By(R;, — Ry)) + CRy — E =0 — aR,.
aD* + bD3 1 ¢cD2+dD + f _ pty . _Fsinjr
DT R+ 7 A+ (B— B'vye= B 4 Ccosjr — E [
where: ‘
4 f B,_aR3—bR2—|—cR—cZ—|—f/R
- RT]z H - R2 + ]'2 ’
B— aR*R® -+ 8/%) — 2bRy® + ¢(42 — R?) + 2dR — f(3 + 7%/ R?)
B (B2 + 7%)° T 120
o P — BY@® — ¢ + ff") + 2R(b — d)
= (R* + )2 )
g 2R —c 4 JIf) = (7 — RY(b® — d)
- (Rz + ]'2)2 °

Check: A+B+C=a, BR+B +E=2R—5b.
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TABLE 3—continued

(4) Fractions with denominators quartic in D—continued

Operational expression ¢(D) Equivélent function F(z) Number
aD* +bD3 - cD?+dD + f ha. R . sinjry
DI R)DF R D+ 2D 7 | A+ Bie— BT — Bye 8B 4 lcosyr—{—nT e’
where : A 7
4 f v g _aR®—bR?+ ¢R, —d +fIR,
Ry R’ ! (Ry — R)M, ’
. _aRP —BRE 4 Ry —d 4 IR,
: (R — Ry)M, ’
MM, = a{h? — hR,R, — 27h(R, + R,) + 4°R,R.} +
+ B{H(R, + Ry) — 2R, Ry) + o(RyRy — h) -+
der— Ry— Ry +f )1 — B 2R 2”% ,
121
M Mm = a{— ¥Ry + Ry + 7) + 3hR Ry + 2r*h(R; + R,) —
' — 4R, R73} + b{h? — Ry Roh — vh(R, + Ry) +
+ 2R, Ry} + c{h(R; + Ry — 7) — RyRyr} +
+ ARy — (R, — ) + 7 — I} +
/13 — R, — Rz——%(Rl—zr)(Rz—Qr)g :
and ‘
M, =R2—2R, + A, M,= R?— 2rR, + &.
Check: A + B, — By +l=ua, :
BR, — ByRy +-#—n=ua@ + R, +R,)— 0.
aD* 4+ bD3 4+ cD?+dD + f 4 B — B't) e—Er (Z . sin jr) -
BT REDE +ZD 1 H) + ( 7)€ + {icosjz+n —]. e—rT
where :
A——L. B,_aR3—bR2—{—cR—d+f/R
R’ - M !
M?B = aR*(R%® — ARy + 3h) + 20R(Ry — k) + c(h — R?) +
+ 24(R —#) — f(3 — 47/R + B/ R?),
M¥ = a{h® — hR(R + 47) + 4R%?} 4+ 2bR(h — Ry) + 199

+ o(R2 — B) — 24(R — ) + f{1 — (R — 20)%/h};
M2 = a{— W*2R + ») + hRr(3R + 47) — 4R%%}

+ bk — hR(R + 2) + 2R} + c{h(2R — 1) — Rzy} +
4 d{(R — 72 + 7* — B} + f{8r — 2R — #(R — 2R} ,

and
M=R:—2Rr 4 4.

Check: A+ B+l=a, BRL+B +rd—n=2aR+7) —b.

(71682) .
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TABLE 3——continued

(4) Fractions with denominators quartic in D—continued

~ Operational expression (D) Equivalent function F(z) Number
aD* 4+ bD® + ¢D® + dD + f [ 1 ( . l) , s asinJz
(D + J3)(D? + ) TR + T af ¢+ NE cos Jv + (b] d) 7 193
— (ajz —c+ }];) cos jz — (b2 — d) =
aD* 4 pD3 4 ¢D? - dD 4 a :
(D2 + 722 ! ]i;_{_ (a—]—.];) +<%(b—72)r cos gz + 124
d . sin 7z
| e frerf) |5
DA 4 bD% 4 ¢D? + 4D - i : : in g
u(Dz T 2RD + B)(D* + 7'2)f A+ <L cosJe+ N Smfﬁ) e beosgr A m SH;'F ’
where:
am |
OL = a{H(H — %) +- 4R} — 20R* — o(H — 7%) +
2R +f(1 B 4R2H-I—72) ,
ON = aR{(SH — 4R?) — H} + WHEH — %) + 2RY% — | 125
. ) 4R% + 42
— CR(H + %) + d2R* — H + ) + [R\8 — —%— ],
Q= (* — H) (7 i ]fi) + 2R — d),
Qn = — 2Ry? (czj2 —¢ +]—];> + (2 — H)p? — d) ,
and
Q= (7 — B + 4R2
Check: A+ L +Ii=a, N+un—RL=b—2R.
D4 4- bD% 4 ¢D? + dD i ) in 7
(DZ + ;—RD +—*}1;(D21 21'D+—lj—[ h) 4+ (L cosJr N Smfi) et (Z cosJT SH;']I) e
where : ‘
QL = a{H(H — 1) + 4R(Rh — vH)} — 2b(Rh — 7H) —
— ol — 1)+ 24(R — )+ L (H — h— 4R(R — 7},
QN = a{(8H — 4R®)(Rh — 7H) — HAR — #)} -+
+ O{H(H — &) + 2R(Rh — vH)} — 126

— o{(H -+ MR — 2rHy — d{H — h — 2R(R — #)} -+

+ L (RE — 1) + 2R — N(H — 2RY},
{analogous expressions for 7 and #)
A= and Q = (H — 0P+ 4R — »(Rh —rH) .

Check: A4+ L+4+Il=a, N4+n—RL—vi=05b—2a(R +7).

18



TABLE 3—continued

(4) Fractions with denominators quartic in. D—continued

Operational expression ¢(D) Equivalent function F(z) Number
aD* - 0D3 - cD?2+dD + f '_ s . oy singzl
(D* ¥ 5D ¥ ) 44+ (B—I—Br)cos]r—}—(C—{—Cr)—j e,
' where :
f
A = hj,iz 3 B=a-— '}72 3
2P2B’ = ar(4r® — 3h) +b(h — 2% + v — d + frlh, 127
o2 2 22 38
2C = ar(2® — 8h) + bh — cv 4+ d + fr 7= )
2C" = a(dr® — hy — 2br 4~ ¢ — flh.
Check: By — B' — C = 4ar — b;
2C'r — B'h — Ch = (2ar — b)(2r2 + h) +or.
aD* + bD® + cD* 4 dD -+ ] e s e
DD L R)D + R)(D + Ry v B Cenir g Guem e Gue s,
where :
f d f ( 1 1 1 )
A=—w%5-, B= — Bl T I
RRR, RRE, RRER B RTE, o8
c _aRP® — bR, + ¢ — d|R; + fIR?
! (By — Ro)(Ry — Ry) ’
and similar formulae for C,, C;.
Check: B4+ Ci+Co+Ci=a.
aD* - bD? +cD?4dD + f B -
DD+ RD + 7 Ar+ B4 C e~Be  (E 4 Gr)e—'™,
where:
_t _4 _f ( L ?)
A_R—?g" B R Ry® Ry
o_ AR — bR+ c— 4R+ fIR®
= (R — 7 : 129
G__m'z—br—}—c—d/r—{—f/rz
B R—v7 ’
7 ar(r — 2R) + bR — ¢ + d(2» — R)}»* + f2R — 37)/[r®
B (R—r)? - )
Check: B+-C 4+ E=a, A+ BR+ER—7)+G=1>b—2ar
aD* + bD? + cD* + dD + f J; i 3f a3 i 2
D(D + 7 F*’+(ﬁ_74)+ (”—73+74)_ 2ar—bt 5] v
p f 130
—{—‘% (m'2 —br 4+ ¢ — - + 772-) 72 e—17
19
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TABLE 3—-continued

(4) Fractions with denominators quartic in D—continued

Operational expression ¢(D)

Equivalent function F(z)

Number

aD* + bD3 + ¢cD? +dD 4 f
D(D -+ R)(D? + 77)

AT+B+Ce—Rr+Ecosjr—GSH;—.”

>

where :

J o B2 __I

kR U RETRP

ChaRZ—bR+c—d/R+f/R2

- R2+j2 4

7. G+ IR —c— dRJf + fI?

R2+j2 ’

C— aRj? — b® — cR + d -+ fR/®

- R2+j2 *
Check: B4+ C 4+ E =a, A—CR—-—G=b—aR.

131

aD* 4 bD? 4+ cD? - dD L f
DD F R(D: + 2D 1 7)

Az + B 4- Ce—RT—[— (Zcosjr +n Siréﬂ) e~ 17,
where :
_J _ 4 _ S (L %
= “m m\eTR)

c_ @R — bR +c—d/R + fIR?
— = ,

MZ:a(h—ZR%/)—|—bR—c—]—£}f(27—R)—i—hiz(h—}—ZRv—Mz),

Mn = a2Rr* — hR — hr) -+ b(h — R¥) + (R — #) +

+ e — R~ i) + L @R — 2) + b — R,

and
M =R?—2Rr+h.
Check: B+ C+l=a, A+ BR+UR—7)+n=15b— 2ar.

132

aD* + bD8 + ¢cD* £ dD + f
D*D + R)(D +7)

$47% 4 Br 4+ C - Ke—Br — ke—i7 |

where:
_ I 2 f (1 _1)
=% B*mfﬁﬂ§+y’
_ 1 1 f (¥ R

K_aR—b—{—c/R—d/RZ—l-f/R?’
- R —v ’
k_ar—b—[—c/w—d/ﬁ—]—f/ﬁ'
B R—v :
Check: C+K—k=a.

133

20



TABLE 3—continued

(4) Fractions with denominators quartic in D—continued

Operational expression ¢(D) - Equivalent function F(z) Number
‘aD* + bD3 4 ¢cD? 4 dD + f f 4 9 c 24 3f
DD F 7¢ gt Tln—) = )+
134
¢ 24 38f ¢ d  f o
+j(“v‘ﬁﬁ—ﬁ)—(”—”ﬂ—ﬁﬁs)f °
aD* 4+ D3 4 ¢D? 4 dD + f o, 4 c f ¢ | f )
DD o\ o +—21’+ T + ﬂ—'—‘z+—4 COS]T+
(D% +77) 2 ] czj"j 7 135
_sin 7z
b— 5 :
+( 72) 7
aD* 4- bD? + ¢D? +dD + f o sinjz\
DHDE 1 %D 1 i) 3424 Bt + C + (lcosyr—l—n]—.j)e R
where :
_/ _4 %
A_%’ B—h h
24
ng—%—;wL%;(Mz—k), 136
24y
Z=u—7c&+7ﬂ_—£3(472—h),
a
n:—m—l—b—%—}—]ﬁ@rz—h)—{—{;;(3}&—472).
Check: C+1l=a, B—lr+un=>0—2ar.
aD*+ bD3 + ¢D? + dD + f f A (c 4 f
DD + R) reTHE TR/ T TR TR T .
b ¢ a f b ¢ d I\ aere
+(ﬁ—ﬁ+ﬁ—@)+(“—ﬁ+ﬁrﬁ+@ e
ﬂD4+bD3+‘D(;D2+[ZD +f ﬂ—}“bT—’—%CTz—i—%‘(zTg—f—giIlel 138
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TABLE 4

Operational Fractions, with Denominators Quintic in D, Reduced to Stmpler Fractions

(A) No apparent zero roots in denominators Number
Denominator with at least one single real root:
aDb + bD* - c¢D3 +dD?+fD+4+g kD a,D* + b, D* + ¢, D? 4+ d, D 4 f;
(D+R(D*+BD¥+CD?+ED+G)” D+ R ' D'+ BDP4CD*+ EDA G’
where:
139
k_aRz—bR—}—c——d/R—i-f/Rz—g/R3 £ =glR
T~ TR_BR+C—ER+GR L&
d_f—fl—kG _d—dy —kE b_c—-cl—kC a_b—bl—kB
=g TR - TR ATTTR
Check: 24+ a,=a.
Denominator with a double real and a triple real root:
aDd + 6D+ ¢cD*+dD*+ fD+g  aD*+ 0D+ ¢, X a,D n b,D n ¢, D
(D + R¥D 4+ #)3 o (D + R)* D+vr ' (D492 (D473’
where :
art — b3 4o — dv + f — gfr
¢, = glr?, Cy = s
1 g/ 2 (R . 7)2 ‘ 140
by (R — 7) = 2ar’(r — 2R) + br2(3R — #) — 2Ry + d(R +7) — 2f + §2 & —R),
ay (R — 7}t = ar®(6R% — 4Ry + #®) — 30R% 4 cR(R + 2r) — d@R 4 ») +3f — 1% (R? — 4Ry - 67%) ,
G =a—a,, by =1>5—3ar — a(2R — 7} — b, . .
Denominator with a pair of imaginary roots and a triple real root:
aDd + 6D+ cD3 - adD* - fD g a D+ 50D + ¢ 1 a,D n b,D X ¢ D
(D% 4+ J3(D +7)? o D24 2 D4y ' (D4+n2 " (D47’
where:
art — br® + or? — dr —glr
clzg/'rs) Cy = : + 2 9 —l_f g/ ;
St 141

By(J¥ 4 72 = — 2a%(@]% 1) - 0P(3]2 A %) — o]t 4 A(JE— 1) + 2fr — &, (]2 + 37,
a(J? + 72)% = ar¥ (6]t + 3% 4 1) — brJU3J% — #2) 4 ¢JA(J? — 3¢%) + dr(3]2 — #2) —
—fr—80) — £ (Jr 4 370t 6,

@G =a—dy, by="0—3ar 4+ ayy — b,.
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‘ ' TABLE 4—continued

(A) No apparent zero roots—confinued Number
Denominator with a triple real root and any two remaining roots:
aDb + Dt 4+ ¢D¥ +dD?+fD+g  aD*4+ 5D+ ¢ X a,D n b,D i D
(D® 4 2RD + H)(D +7)® T D1 2RD+H "DH+r " D+ (D4
where :
s _a1/4—br3—{—072—d1'+f—g/¢
=g, “@= H — 2Ry 4 #* ’
by(H — 2Ry + 782 = — 2ar%(2H — 3Ry + #%) + 6r*(3H — 4R + 72) + 2er(Ry — H)+ d(H — 7% — 7
_ ’ 142
—9f(R —7) —f_z(H—4Rr+372),
ax(H — 2Ry + 7%)3 = ar*{6H? — Hr(16R — 37) -+ 7*(12R* — 6Ry + #2)} — by{38H? — Hr(6R +7) + 4R} +
+ c(H? — 3°H + 2R/ — d{H@2R — 37) + 7*} + f(4R® — 6Rr - 3* — H) —
— 8 (H2 __ 3H¥2R — #) + 2%(6R* — 8R¥ + 31},
7,3
;= a — ay, by =10 — 3ar — ay(2R —7) — b, .
(B) Single or multiple zero roots in denominators
Denomiinator with a single zero root and any non-zero remaining roots:
Db 4 bD* + ¢DS 4 dD* 4+ fD + g
D(D*+ BD* + CD*+ ED +G) - 143
o)) 0 (-
_g/G+aD +(b G)D +(c G)D—I— a c D+ \f C
D Df - BD?+CD®:++ED+G
Denominator with a double zero root and a triple real root:
aD’ 4 bD4 4 cD* 4 aD* + /D +g g | (f 31, (i _if%@) n
D¥D + 7)3 DT \r T A/D T\ A A
d 3f 6\ D -
+<‘”‘?3 ?5—75)D+7_ 144
i 2f 3\ D
- (2‘”_—“;2‘— L+ %) o+
) | i, f g\ D
+ (“72_b’+°_‘r+ﬁ“73) D+
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TABLE 4—continued

(B) Multiple zero roots—continued

Number

Denominator with a triple zera root and a double real root

aD? + bD* + cD3 + daD? + D + 72 ) 2 1 a 2
5 + 1/2___ 2+ - — =5

D¥D + 7)2

L+

’ 4
aD2+( y2+—f~~35)D+( 7,‘1+37f—7§)
4

(D +7)?

145

Denominator with a triple zero root and a pair of imaginary roots

aD5+bD4—f—cD3+dD2—}—fD+g

&
D3(DE + J7)

s T pE

Belhg) e

o=t gl
i DTy e

146

Denominator with a triple zero root and any two remaining roots

g/H f 2R\ 1 a
+ <H HZ) 52*(

2R AR _H
“D2+<5”H+ ST

aD® + bD* + ¢cD* 4 dD? 4 fD L g
D3(D® + 2RD + H)

2/R

e

2d —
)D+( PR RS R
-+

AR H) 1

Dt

2R* — H
Jg

D*+ 2RD - H

Denominator with a quadruple zero root and a single real root

aD5+bD4—l—cD3—}—£ZD2—I—fD + g
DYD + R)

el gz)$+<g~—%+é>—l+
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TABLE 5

- Operational Fractions, with Denominators Sextic in D, Reduced to Simpler Fractions

{A) No apparent zero roots in denominators Number

Denominator with at least one single pair of imaginary roots:

aD’ 4 bDS - cD* +dD + fDP + gD+ k@D + bD | aD*+ b,D8 + ¢,D* + d,D +
(DL D+ BD* L CDE - ED+G) ~ D'x 2 " DAL BDP ¥ CDE L ED+G °

where
g o @t =P f— R — CJF + G) + (B]* — dJ* + g)(B]* — E)
' U*—CP + G + (B = B ’ e

b Wt =4 + " — CJ* + G) — J*(a]* — ¢/* + f — k[]*)(B]* — E)
! (J*— CJ* -+ G + J3(BJ* — E)? ’

Ay = & — ay , by=106— b, — Ba,, f=FR]?,
Go=c—aJt— Bh+ (]2 —Clay,  dy=d—bJ*+ (J2— O)b, + (BJ* — E)ay.

Check: Gb; - J%d, = g.

Denominator with at least one double real root:

aDb 4 DS 4 cD* + dDP + fD* + GD + k _ a,D® + b,D | ayD* + b,D% + 6,D% + dyD + ,
(DX R*D*+BD*+CD*+ED+ G ~ (D+R? W DIfBDP+CD®+ED+ G’

where :

_ “_a/l+boc—cﬁ—|—dy——f6+g6—kf
T T (R*— BRE+CRE—ER+Gp

—ax+bf —cy+d6 — f0 4 g — kK

h= R (R*—BR* Y CR*— ER+ G2’

A= RYR* — 2BR® + 3CR? — 4ER + 5G) , « = R3(BR® — 2CR® + 3ER — 4G)

f = RR* — CR* + 2ER — 3G), | y = R(2R* — BR® 4+ ER — 26) 150
5 =38Rt — 2BR + CR* — G, - 6 = 4R* — 3BR? + 2CR — E,

I = 5R* — 4BR + 3C — 2E/R + G/R? . K —6R — 5B + 4C/R — 3E/R® + 2G/RY,
AGy=a—a, by = (b — 2aR) + (2R — B)a; — b,

¢, = (¢ — 2bR + 3aR? + (2R — B)b, — (3R? — 2BR + C)ay,
dy = (d — 2R + 3bR* — 4aR% — (3R? — 2BR + C)b, + (4R* — 3BR® + 2CR — E)ay,

fo = k/R®.

Check: 5,G + dyR* + 2/,R =g .
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TABLE 5—continued

(A) No apparent zero roots—continued

Number

Denominator factorized into a quadratic and a quartic with no common roots:

aDb 4+ bD5 + ¢D* - dD? - fD? 4+ gD + k _ uD*+b,D ay D+ 0,03 + ¢, D2 4+ 4D + f,
(D*+2RD+ H)YD*+ BD?* +CD*+ED+G) D24 2RD+H DY+ BD3 4+ CD2+ED+ G’
where:
a/l—l—boc—c,b’—i—dy—fé—l—g@—kl" b _—aoc—}—bﬁ—cy—l—cié—f@—l—gl’—kK
= H{(6* — o) 1= 0 — or

A = H* — 2BRH® ++ CH4R? — H) — 4ERH(2R? — H) + G(H? — 12R?H -+ 16RY)

o« = BH® — 2CRH® + EH(4R? — H) — 4GR(2R* — H), . f = H% — CH? + 2ERH — G(4R? — H),

y = 2RH? — BH? 4+ EH — 2GR, §=H@A4R? — H) —2BRH - CH — &,
. : 151
= 4R(2R* — H) — B4R* — H) 4+ 2CR— E,
HI'= (H? — 12R?H + 16R*) — 4BR(2R* — H) + C(4R* — H) — 2ER + G,
H2K = 2R(3H?* — 16R*H + 16R%) — B(H* — 12R?H -+ 16R%) + 4CR(2R* — H) — E(4R? — H) + 2GR .
Gy = @& — Oy , by = (b — 2aR) + (2R — B)a, — b, L=kIH,
¢ ={c — 2Rb + (4R? — H)a} + (2R — B)b, + (H — 4R? + 2BR — C)ay,
dy = {d — 2Rc + (4R* — H)b — 4R(2R?® — H)a} -+ (H — 4R2 + 2BR — ()b, +
+ {4R(2R* — H) — BA4R* — H) + 2CR — El4 .
Check: b,G + dyHl + 2f,R = '
Denominator with two triple real roots:
aDG—l—bD5+cD4—l—dD3—|—fD2+gD—|—k__A+ a,D . by D n D
D+ B D+ 7P prRT IR TRt
a,D b,D c,D
+ i+ Dimt Dr
where:
(R — 7)%a; = aR3(R? — 5Ry + 107%) — 6bR*»? - 3cR¥(R + #) — d(R2 4+ 4Ry + %) -+ 3f(R +7) — 152

— 6y + @ (10R2 — 5Ry + 72),
(R — )%, = aR4(57 — 2R) + bR3R — 4) + 3cR% — dR(R + 2#) + f(2R + #) — 3¢ + 5 (4R —7),
(R — #)%; = aR® — bR* + clé3 —dR? + fR — g + kR, = k/R%3,
and analogous formulae for a,, b, c,.

Check: A +a, +a,=a, A(R—{—r)+bl+b2+a17+azR:b—2a(R+r).
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TABLE 5—continued

R . R

Check: B+a,=a.

(A) No apparent zero roots—continued Number
Denominator with a singie and a quintuple root:
aDS + oD% + cD*+dD? - fD? + gD+ k _ AD T ay D5 4+ b, D* 4 ¢, D® - 4, D% 4 D +g1
(D+ R)(D + #)® D+ R (D +#)8 '
where:
»A'_aRs—bR4+cR3—dR2+fR—g—]—k/R _k g —g — A 153
= (R—7)5 _ o BTR A=
g _f—fi—54r c_d—dl'—mAﬁ €= o — 1047 b —b, —54r
1 R ) 1 R 3 1 R » al — B R 3
Check: 4 4+ =a.
(B) Single or multiple zero roots in denominators
* Denominator with a single zero and a quintuple root:
aD8 + bD% -+ ¢D* - dD? + fD2 - gD+ k
D(D 4-#)® - A 154
kfro . aDs + (b — Rfy5) D + (¢ — SRy D% + (d — 10-/#3) D2 4 (f — 10R/#3D + (g — 5k/7)
D (D+7)®
Denominator with a single zero, single real and a double pair of any other roots:
aD6+bD5+cD4+dD3—{—fD2+gD+k_é_}_ BD +alD4+le3—|—ch2—f—dlD—]—f1
DD 4 RY(D? + 2D 4 h)* o D+ R (D? 4+ 2D + h)? '
" where: : '
A—i B_aR4—bR3+cR2—dR+f——g/R+k/R2 f_g—Ah(h+4Rr)
T RR2’ o (R? — 2Ry + k)2 o 1 R ’ 155
- f—f, —24(Rh 4 27k + 2R#*) — BR? d—dy —24(h -+ 2Ry + 2% — 4Brh
dl = ; € = ’
R : R
b_c~cl'—A(R+4V)—2B(h+21f2) a_b~b1—A—4Baf
1= ’ = :
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TABLE 5—continued

(B) Multiple zero roots ~—continued Number
Denominator with a double zero, single real and triple real root :
aD8 4+ bD8 D +-dD¥+fD*+eD+ kA | B . CD +a1D3—}-b1D2+ch—}—dl
© DD 4 RY(D + )3 ‘5§+_D D+ R (D +#)? !
where :
4k B_ 8 B3R+ o MR — bR 4 cR —d + fIR — g[R* + kR
TR R Rt B (R —17)? ’ 156
J—3847(R +7) — Br*3R +7) d—d, — AR+ &) —3Br(R +7) — Cr®
dl == > c]_ = y
R R
b~c—cl—A—B(R+3y)~3C72 _b—b —B—3Cr
L R ’ = R )
Check: ¢, +C =a.
Denominator with a double zero and a double pair of any other roots:
aDs 4 bDb 4 ¢D* + 4D3 + fD? 4 gD +k& £+§+
DA D? + 2¢rD + h)? DD
L @D (b= B)D* 4 (e — A — 4B)D* 4 {d — 4dr —2B(h+ 21D + (f — 24 (h + 2%) — 4Bri) 157
(D2 4 2D 4 h)? ?
R g 4
A = h—z N B = }72' - _kg .
Denominator with a triple zero and triple real root:
aD8 4+ bD5 4 ¢D* - dD3 - fD* + gD -k
DD +7)? o
A +£ +£ 4 aD? 4+ (b—C)D*4 (¢ — B —3Cr)D + (d — A — 3By — 3Cs? 158
D p2t D" (D + 7 ’
k : g 3k f 8z 6k
A=5  B=5Z—-%, (=x—ut5.
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APPENDIX

Examples of Solutions of Differential Equations and Response Problems
' by Using the Formulae of Tables 1 to 5

The purpose of the following examples is to show how to apply the formulae correctly, to exhibit
advantages in avoiding all the usual drudgery of resolving operational expressions into partial
fractions, and finally to give a few interesting analytical discussions of response problems thus
solved. Very simple, trivial or well-known problems have been excluded, but greatly complicated
ones have also been avoided.

The introductory examples 1 and 2 treat simple differentiation and integration; examples
3 to 5 ordinary differential equations; examples 6 to 11 some response problems which may find
immediate application in aeronautics or other branches of engineering. In all these examples
the order of operational fractions never exceeds 4, but example 12 shows some applications of
the more complex formulae of Tables 4 and 5 (fifth and sixth order fractions).

Example 1.—Find the third derivative of the function
Flz) =ve X (cos]r—l—}esin]r). . . .. .. . (A.1)

Let us denote by ¢(D), ¢1(D), ¢.(D) and py(D) the operational equivalents of F(z), F'(z), F"(z)
and F"(v), respectively. Combining the formulae (24) and (28) of Table 1, we find

__ D+ 4RD*+ 4R* — H)D

¢(D) (D + ZRD + H) (A.2)
We now use the formula (@) of section 2 and, as F(0) = 0, we obtain
_ D' 4 4RD* 4 (4R* — HYD*
¢i(D) = (D* + 2RD + H)E ) (A.3)
and it is seen.that F'(0) - p.(0) = 1. Applying (d) again, we get
3D® +4RD*+ HD
poD) = — H (D2+2RDiH)2 . (A.4)
We have F'(0) = gy(w) = 0 and, applying () once more, we obtain
3D* + 4RD* + HD?
w(D) = — B (4.5)

(D° + 2RD + Hy

To determine F”(z), we look for an appropriate formula in Table 3, which is (127), and putting
a=3,b=4R,c=H,d=f=0,wefind4d =0,B=3, B = — 2R, C = — 3R, C' = R*— J*,
and hence

3R, J*— R?

F'(x) = H (2Rr—3) cos Jv + (7_+ - r) sinJrle . .. (A6)

If the first and second derivatives were also required, we could apply (127) to (A.3) and (A.4),

which would yield :
F'(z) = (COS Jr + R—-}&Sin]r) e %

y . (A.7)

T

F'le) = — H (vcos J + 2 ‘]R sin Jz ) e~
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and all results can be obviously checked by direct differentiation. The advantage of the
operational method is that the 3rd derivative could be found without determining the 1st and
2nd ones. Simple differentiation by use of operators is seldom shorter than the usual process, and
cannot be generally recommended. The reader may notice, however, that each group of formulae
in Table 2 contains a series of successive derivatives, and hence this table may often be useful
for rapidly finding derivatives (or integrals) of such functions as appear therein.

T

Example 2—Find the integral I = f
the previous example‘.
Applying the formula (¢) of section 2, we find the operational equivalent of I:

__9o(D) D*+4RD + (4R* — H) ’
@.(D) = D = (D*L9RD f AF .. . . .. (A.8)

and then, putting in (127) a =06 =0, c= 1, d = 4R, f = 4R* — H, we obtain at once

_4R*—H H—4R* 2Rz 38H —4R* H —2R* \sin Jt
=g+ §( T H )COSJ“L(R T T H T) 7
This can be checked immediately by direct differentiation but, to determine the integral I by
usual methods, without using operational formulae, would be a rather laborious procedure.

If the upper limit of integration were assumed to be (w) right from the start, only the constant
term A of 1 would have to be determined, and we would obtain

fw 7 e—Re (COS]T + ?sin ]T) 6,ZT — 3R — J*

0

F(v) dv, the integrand F(r) being the function (A.1) of

0

e"® .  (A.9)

BT R e (A10)

'Exozm]ble 3.—Solve the system of simultaneous differential equations

T+ LT — 2 = 2] cos Jr |
by d . .. . . . (A1)
Dyt =2 sinJe

assuming initial conditions x =y = 0-at = = 0.

We follow the instruction of section 3, find the operational equivalents of forcing functions
from formulae (15) and (19) of Table 1, and obtain the following subsidiary equations:

(D = D+ (D + J)y = 2] s aio
, .. - ..o (A2
~ D+ )+ (D~ )y =] 52

The main determinant of these equations is 2(D* 4 J?) and hence, if there were no forcing
functions, we would have to deal with a simple undamped oscillating system, of natural frequency
J. As the forcing functions are simple harmonic of the same frequency, we have a case of
resonance, which it would not be too easy to solve by usual methods. Solving the subsidiary
equations, however, and interpreting by means of the formula (124), we obtain at once
X D?—2]D*— J*D . :

- [-—] (D2]+ ]2)2] } = Jz(cos Jv — sin Jv) = 6(cos 6 — sin 0)

) L (A1)

N4 [:] D —{(_1)22]52]2—)2]21)} = Jz(cos Jz + sin Jz) = 0(cos 6 + sin 6

a
where 6§ = [z, for abbreviation.
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The solution is illustrated in Fig. 1. Tt is seen at once that x = 0 for 6 = =(} + #), and
y =0 for § = #(} + ), when » is an arbitrary positive integer. It is also found easily that
the curves of x/a and y/a are both contained in the angle between two straight lines from the.
origin, of the slope + 4/2 against §. The curve x/a touches the upper limiting line at an infinite
number of points corresponding to 8 = =(7/4 + 2n), the lower one similarly at 0 = (% + 2x).
The same applies to the curve y/a, for which the points of contact occur at § = = (} + 2n) and
0 = #(5/4 + 2n) respectively.

The exact turning values of x and y can be found by determining the first derivatives (directly,
- or multiplying the operational equivalents by D and re-interpreting) :

%ﬁﬁzu_en@o_a+wmmo

. (A4
L dy | (A.14)
EE:(I —{—G)COSO—F (1 — 0) s 6

The variable ¥ becomes maximum or minimum for an infinity of values 6,, making dx/dv = 0,
so that ’ :

1—40, . 7
tw%=T¥a,m'%emnﬁ—%% (A1)
whence the turning values become
' Hp 1 —sin26, 20,2 '
Z o COS 01}1‘—’_ Sin 67” B i 97” /J(l + 91”2) ’ o o o (A.16)

the first three being x,,/a = 0-213, — 3-595,7-895, at 0,, = 0-128x, 7(2 4 0-113), #(7/4 -+ 0-056)
respectively. Further turning values occur for values of g,, exceeding only slightly 11x/4, 15x/4,
197/4, etc., the differences becoming rapidly very small, and the turning values themselves
being almost equal to 4 6,4/2. The turning points get gradually nearer and nearer to the
consecutive points of contact with the limiting lines, as seen in Fig. 1. :

Similarly, ¥ becomes maximum or minimum for all values 6, making dy/dr = 0, i.e., satisfying

| 6, + 1 i | |
tan 6, : o1 or 6, = cot (6,, — Z) , .. .. .. (A7)
and the turning values are
Yo_ 14sin29, = 20,2
@ sinf, —cosf, &= 0 \/(1 -+ 6,,2) ’ o o - (A8)

lthe first three being y,/a = 1-618, — 5-728, 10-11 at 6, = x(} -+ 0-197), z(5/4 + 0-075),
m(9/4 + 0-044) respectively. Further turning values are again very near to the consecutive
points of contact with the limiting lines.

Example 4.—Solve the differential equation

4 3 2
%4—6%4— 14%—}— 14%—]—5%20
with (A.19)
Ho=1Ho =0, % =2, %= —8 (atz =0)
and the equation: . . .
:’5—3:—{—6%—1—14%—1—16%—{—83120
with : (A.20)

yU:yOZOJ 3702—'2, y():lo (atT:O)
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The subsidiary equations are respectively:

(D* + 6D 4 14D* 4 14D + 5)x = 2(D* 4 6D) — 8D, . . .o (A21)
(D* 4 6D* + 14D* + 16D + 8)y = — 2(D* + 6D) - 10D, . (A22)
and the solutions become (using formula 122 after factorizing quartics) :
. 2D* 4 4D L o
x[_ (D—|—1)2(D2—|—4D—|—5)} =7Te—esing, .. (A23)
‘ — 2D* — 2D o e '
y[: (D+2)2(D2—|—2D—|—2)}=Te e’sinw. .. o (A24)

The two solutions are very similar, the two exponentials being simply interchanged. This
difference accounts for a different behaviour of two functions, the former reaching only one
maximum %, = 0-2855 at 7 == 1-444 and then subsiding to 0 without oscillation, while the
latter reaches first vy, = — 0-1750 at v = 1-084, then v, = 0-0156 at v = 3-835, and later
performs a decaying oscillation. The functions and their derivatives are illustrated in Fig. 2.

Example 5.—Solve the following system of simultaneous differential equations:

2
%4—42—?——{—2%—-42—{—#23/:0 with %, =38, %, =0,

4%+x+%—4%+3y=0 =0, 5, =86 (4.20)
(at = = 0)
The subsidiary equations are
(D*+ 4D + 2)x — (4D — 2)y = 3(D* 4 4D) } _ (A.26)
(4D + 1)x + (D* — 4D + 3)y = 18D ’

the main determinant being (D* + 4)(D* 4 1), so that the solution consists of two undamped

simple harmonic oscillations, of frequencies 1 and 2. The appropriate formula is (123), and the
solutions become:

X [_ 3D* 4 33D*
L D+ 49D+ 1) |
_ 6D*+ 21D* 4+ 24D o
[M (D* 4 4)(D* + 1) :|<*7COST—|-GSII11 7 cos 2z

]=100051—7c0521

(A.27)

Example 6.—Determine the response of a simple ¢ exponential delay unit ’ (of gain factor G
and time constant #) to a finite parabolic input of duration 27, and maximum value 4 (parabolic

impulse). . Find the position and magnitude of the maximum output, for varying time constants
t and 7,. '

The parabolic input 7, illustrated in Fig. 3 (small inset diagram) seems to be a good first
approximation to a ¢ smooth to-and-fro impulse ’ as often used in practice (e.g., an ordinary push-

pull stick movement applied in flight tests of aircraft). Such an input is represented by the
simple formula

2 |
I:A(ZZ—;—Z), for0 <z <2, .. .. .. .. (A2

(21 1

so that I, = 4 at v+ = 7;, and for v > 27, the input remains equal to 0. The law governing
the output x of our unit is then:

o
G(x+t%):I:A(2I_1§), for0 <<%, .. .. .. (A29)

G(x+zg_f):o, | Cdore>%2.. .. .. .. .. (A30)
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Let us consider one simple particular case first, viz., £ = 0. In this case the unit is a simple
proportional gear, and we have, for 0 <7z < 27,

max

w=1 4
TG G G’

In the general case, it will be convenient to introduce the auxiliary notation
‘ R =1t = G|k, ' (A.32)

where R may be termed ¢ damping factor ’ of the e.d. unit. The equation (A.29) can then be
written-in the following operational form (replacing the input function in the right-hand part
by its operational equivalent by means of formulae 2 and 3 of Table 1):

| 247D —1
HD + Rjx =5 5,

and the solution (valid for 0 < v < 27;) will be found immediately by using formula (112) of
Table 3:
x[—zé 7.D— 1 }_ 24
T k2 D¥D + R)| RRz
where, for abbreviation, we have introduced auxiliary symbols :
2=Rvr, 2=DRu=mult. .. . . .. (A.35)

Similarly, the first derivative of x will be (using formula 101)
ax 24 =D —1 24 -
2 [ = e DD ) e |1 20— )
Initially, both % and dx/dv increase from 0 to positive values. However, at = = 27, (end of
input), we have ‘ '

atz =17,. (A3l

the maximum being # =

(A.33)

(14+2)(z—1+e7) —§2° (A.34)

B

L (A.36)

24 ax
x, = TR (1 + e?1)(z, — tanh z;) > 0, <E)e = — Rx, <0, (A.37)

so that dx/dz has changed sign, and x must have reached a maximum before the input has ceased.
If the maximum occurs at z, = Rr,, then z, must make (A.36) equal to 0, hence

1 foy= R . . 13)

1 —e#m

If 7, is known, this equation can only be solved for z, by trial and error, or by any other approxi-
mate method. It is easily seen, however, that there is only one solution for z, (whatever the
value of z,), and that

. 2 < 2y < 220, .. .. .. .. .. L. (A39)

so that the maximum occurs during the second half of the input duration. A few.sample response
curves (for z, = 1, 2 and 3) are shown in Fig. 3a, where the ordinate is conveniently chosen as
x/%. The thick parts of the curves correspond to (A.34), while the continuing thin parts have been
obtained by solving (A.30), the solution being obviously

x = x, e RO .. .. .. . .. . .. (A.40)

To obtain general characteristics of the response for variable R and z,, it is convenient to
tabulate z, and z, from (A.38), whereupon the ratio z,/2; = /7, can be plotted against z (Fig. 3b).
A simple formula for #,,, may be obtained by combining (A.34) and (A.38), as follows:

A oz, 2
"max—k_ze‘z;(z"z)' L (A4
This can be presented in two alternative forms, comparing the maximum output obtained here
to éither of the corresponding maxima in two particular limiting cases : :
33
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(@) Limiting case R —>o0.—This is equivalent to ¢ = 0, if G is supposed to be a given constant
(¢f. A.32). The case has been considered already (proportional gear with no delay), and the
respective maximum has been given by (A.31). We have thus :

Fovex P (2 — @’) (G assumed constant) .. . .. .. (A42)
z % 2 :

(b) Limiting case R =0, 4.e., t = o0 and G = 0, the assumption being now that % is a given
constant. The equation (A.29) then becomes

kx 2t 4
kﬁzle(;—ZJ; O<r<2) .. .. .. .. (A4
our unit becomes a simple integrator, and we obtain '
Az (7P 78 : '

x__fg-t?-_gag.f. L A

In this case the maximum output x*, reached at v = 2z,, becomes
4 Ax :
x*:fSTl’ S . . .. .- .. . .. (A.45)

and we get from (A.41) and (A.45)

Fmax _ 3 2y (2 &,
x* 4z, 2, 2

(k assumed constant) . .. .. .. (A46)

The formulae (A.42) and (A.46) are illustrated by curves in Fig. 3b, where an additional curve
represents the ratio ,/%, obtained by combining (A.37) and (A.31), and all quantities are plotted
against z, = Rv, = 7,/f. This ratio of two time constants is seen to be the only parameter on
which the form of the response depends.

Example 7—Consider the previous problem (example 6), replacing the parabolic input by one
proportional to ze™"".

We may write the formula for input:
I =vre, dlldr = v(1 — r7) e, .. . .. (A.47)

so that v is the initial rate of increase of 7. The input is {llustrated by a small inset diagram in
Fig. 4b. The maximum value 4 of the input occurs at

n=1r . (A8
and is obtained as . ‘
A="2220 0 L (A49)
€ ey

The input increases originally from 0 to 4, in a way rather similar to that of the parabolic input
(Fig. 3b) but, instead of falling back to 0 at v = 2z, it decreases slowly, reaching 0 at infinity.
The differential equation for the output is now, for all positive values of =

ax '
G@+¢%)=I:mew_ L as0)

Let us consider égain the simple particular case £ = 0 first. The unit is a simple proportional
gear, and we have :
Imax A

I . o
r=7, the maximum being % = C =

at v =1,. .. .. (A51)
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In the general case, we introduce again the auxiliary notation (¢f. A.32)

R=1/t=0Glk, . . .- .. . .. (A52)
and the operational form of equation (A.50), using formula (9), will be
vD
k(D+R)x=W .. « . .o o e .. (ASS)
The solution will be found immediately, by applying formula (104) :
T v D — v —Rz 4 . ;rr
x{_ﬁw+ﬁwD+ﬂ4_MR—ﬂ{e Q- R=der| . (ABY)

and, similarly,

ax v D? v o Cre
h[_kdﬁ+ﬂu%+w}_MR—4VBR R —neye — Re®|.  (A55)
A few sample response curves are shown in Fig. 4a, the ordinates being x/%, and the abscissae
z = Rz, by analogy with example 6 and Fig. 3a. The sample curves correspond again to the
values 1, 2 and 8 of the parameter 2z, = R, (¢f. A.35), and may be compared with those of Fig. 3a.
The ascending parts do not differ much, but the following decrease of the output is, of course, very
much slower in Fig. 4a. The exact maxima and their location can be determined as follows.
- Supposing that the maximum occurs at z, = R, and introducing for abbreviation

yzm—ﬂm:%@;;y.. L (A58
1
we equate (A.55) to 0, and the condition for maximum output is obtained in the form
Vo - _ 7 |
l—gl_ey, or zl_l—e*?' .. .. .. (A57)

If 7, is known, this equation can only be solved for y (and thus z,) by approximate methods,
there being only one solution (whatever the value of z)." It is easily proved that z, > z, z.e.,
the output reaches its maximum later than the input. To obtain general characteristics of the
response, it is convenient to tabulate 2, and z, against y, whereupon z,/2, = 7,,/7; can be plotted
against z, (Fig. 4b). A simple formula for %, may be found by combining (A.54) with (A.56 and
A.57), as follows :

g = vy Ary
T RER(R — 7) ER(R —7)

This can be presented again in two alternative forms, comparing the maximum output obtained
here 1o either of the corresponding maxima in two limiting cases:

e=mi1 el C. . .. .. (A58

(@) Limiting case R —oo (Thus ¢ = 0, if G is supposed to be a given constant (¢f. A.52)). The
case has been considered already, the respective maximum output being (A.51), so that we have

Fmax — _'}/7:_ el—zm/zl B z—m

el—zm/z
F Yo 2 © 1 (G assumed constant) . .. .. .. (A.59)

(0) Limiting case R = 0 (Thus ¢ = o and G = 0, the parameter % being now assumed to be a
given constant). - The equation (A.50) becomes

dx —¥T . -
k%:I:vre ;.. .. .. . .. (A.60)
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our unit is a simple integrator, so that we obtain (¢f. formulae 40 or 98)

I—(+merl, .. .. .. (A8l

o=t } _ 2
[— R(D - 72| kr?
and the maximum output, reached when = —>, becomes

Y e*A?

S
el o . .- . . . . .. (AB2)
We then get from (A.58) and (A.62)
| Fmax = —————_—y72 —y /. — _Z’l — (% )
x*_R(R—y)e 1—2126 1, .. . .. . (A.63)‘

The formulae (A.59) and (A.63) are illustrated by curves in Fig. 4b, the abscissa being still
% = Rv, = /i, the only parameter on which the form of response depends.

Example 8.—Find the response of a simple exponential delay unit (of gain factor G and time
constant #) to a simple harmonic (sinusoidal) input of amplitude A and periodic time 7. In
particular, find whether there is any transient overshoot of the output maxima over its ultimate
steady amplitude.

The differential equation for the output x,
G(x—{—tj—f):Asian/T, .. . .. .. . .. (As64)
can also be written, putting

R=1)t=Glk, and j=2x/T, .. .. .. (AsB)

in the following form, more convenient for using our tables:

k(fil_erRx).:Asinﬁ, L (Aes)
or in the operational form:
. D : ' :
k(D+R)x:Ajm. .. . .. . . .. .. - (A.67)
The solution is found by making use of (106) :
_A4j D . Aj e : R . . ,
% [_ % D T 0D L R)} = HRT £ (e — C0S % —|—7 Sll’l‘j‘l:) .. (A88)
or, putting for abbreviation .
6 =4, Rfj=T2t=s, x*=AIG, .. .. .. (A69
in the simpler form :
x:x*l_ls_sz (e —cos @ + ssin ). .. .. (A70)
Similarly, the first derivative becomes ' ‘
;Z_f = jx* 1—_?_85 (scosf® +sin & — se% . .. (A7)

If the time constant ¢ were = 0, i.e., s = o, we would have to deal with an ordinary proportional
gear, and the output x would be simply #* sin jr, with the amplitude x*. In the general case,
the output is not simple harmonic (because of the exponential term in the solution) but after a

36



sufficiently long time (with v —o0 and 6 —-o0) the transient exponential term becomes vanishingly
small and we have, with gradually improving accuracy, steady-state oscillations expressed by

xS (ssin@—cos@),@ﬁjx* (scos 6 + sin 9) . L .o (A72)

s
1 s? dr 1 - s?

The maxima and minima then occur alternately for an infinite series of values of § which may be
denoted by ¢ and for which

tanf = — s, sinf = 4 s/4/(1+ 5%, cosl =+ 1/+/(1+5s). .. . (A73)

~ The consecutive values of § form an arithmetical progression, and we may write § = #z — tan™'s,
where 0 < tan™'s < 1w, and maxima correspond to odd values of #». The turning values of the
input occur when 8 = nz — %=, the maxima again corresponding to odd values of #. The phase
delay of the output is therefore §z= — tan™'s = tan~' 2a#/T. The steady-state amplitude is

S A A

Vo AR - ) —

P TS T GV AR (A74
A few illustrative curves of the output, represented conveniently by

Fo 1 e _cosossind) .. .. .. .. (AT75)

/(1 +5)

and including the early transient stage are given in Fig. 5, for several values of 2=s, or T/¢. It is
seen that, during the transient stage, the minima of x have smaller values than £, but the maxima
are bigger, the overshoots increasing as s falls. The exact transient turning values x,, occur for
the values 0,, satisfying the equation (from A.71)

scosf, +sinf, =se% -~ . .. .. (A.76)

which can only be solved by trial and error, or other approximate methods, whereupon the
turning values themselves, and the correspondong overshoots, may be found from

2
G VO G (AT
x s ‘ : .
The greatest overshoots occur when s = 0, or R = 0, in which case the solution is
x:%.(l—cos@):ﬁ(l—cos@), . Ve . .. (A78)

and the overshoot is obviously 100 per cent. In this particular case our unit becomes a simple
integrator ; there is a steady oscillation right from the start, but the mean value is %, instead of 0.

The inset diagram in Fig. 5 gives the ratio Z/x* against 2=s or T/t (cf. A.74). This graph seems
to imply that there is no output when s = 0, but in this case, with % finite, we have x* = o,
Z = AlRj.

The reader may consider the analogous case when the input is proportional to cos j7, instead
of sin jr. He will find similar results, except that the overshoots are practically negligible.

Example 9.—Determine the response of an undercritically damped oscillator (complex delay
unit) to a step input, and find the maximum output overshoot over its final steady value. Also
determine the response of a system consisting of two such oscillators in series to a step input,
anduﬁnd whether the overshoot in such a system may be greater than in the case of a single
oscillator.

For a single oscillator we have
2
Oy eRZ fmx—dH, .. .. .. .. .. (A79)
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 where H — R* = J* > 0, J is the natural frequency of the oscillator, R its damping factor, and

A denotes the final steady output. By using formula (80) or (100), the response is obtained in
the form

X[ H - R . —re S
Z[—D2+2RD+H]ml—(cos]r—}—j—sm]r)e . e .. .. (A.80)
and the derivative ' . ‘
ldx H . _. . .
Z%—Te SII].JT. .. .. .. PN .o (ASl)
The turning values occur at Jz, = nx (where n =1, 2, 3, . . .) and are
"Z" =14 (— D)t e=mmri L (AS8Y)
The maximum overshoot (for # = 1) is
xmax _ — a—wR/J :
v 1=e . . . . .. . .. (A.82a)

A specimen response curve (for R[] = 0-2, H/J* = 1-04) is traced in Fig. 6a, the overshoot being
53-4 per cent. Fig. 6b gives the graph of the percentage overshoot against the ratio R/J, the
greatest value being 100 per cent for R = 0. The overshoot decreases rapidly when R// rises,
and becomes only 4-3 per cent for R/ = 1. Beyond that value, the overshoot becomes practically
negligible and it disappears completely for R/J = o, i.e., J = 0, H = R* (the case of critical
damping). In this particular case, we obtain, using formula (40) g

J

. X R2 —1.. I » 1 —Rz
Z[:m]=1—(1+zh)eff T =Rue™

and it is seen that the output increases monotonically from O to its ultimate steady value. The
alternative case of overcritical damping (when H < R? and the transfer function D* + 2RD + H
has two real roots, say — 7, and — #,) is also easily solved by means of formula (97) :

S 717 _ 77T — e ldx v, v e
&[—<D+m<D+m)}—1+ e gl (e — ), (AsY

and the output is seen again t6 increase monotonically, with no overshoot.

(A.83)

The above simple problem is well known and has various applications. In particular, its

solution represents the rise of incidence (or normal acceleration) of an aircraft, following a sudden
elevator displacement.

Let us suppose now that the output of the oscillator is fed as an input into another similar
oscillator, with an analogous transfer function (D?* 4 2#D + %), the constants #, 4 differing, in
general, from R, H. We have then two oscillators in series, and.the final output (obviously

independent of the order in which the two oscillators follow each other) will be given by the.
following operational formula:

% [: (D" T 9RD + E%}EDZ %D T h)} (4 is final steady output) . .. .. (A.85)
The solution is obtained directly from formula (126):
%: 1 —{—g <oz cos Jz —}—7bsin ]r) e~ é—{ (cz' cos jr + bj;sinjr) e,
where : ' :
H—h—4RR —71), b=RH — k) + 2R —(H — 2R, [’ .- (A86)
' =h—H-+&R—7), b =rh—H —2R—7h— 2%,
Q= (H—h?+ 4R —7)(Rh — vH)

I

a
’
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but this solution applies. only if both oscillators are undercritically damped, ie., H > R’
% > #*, and not in resonance, i.e., R # 7, or H # k. An analogous solution for the derivative
dx/dr can be readily obtained but, in view of its complexity, it would not be of much use for
determining the overshoot. Of several alternative cases, let us consider only one, viz., when
v = R, h = H, ie., the oscillators are in resonance, both as to frequency and damping (still
assuming H > R?). We obtain, using (83) or (127),

= et = - {{1 - B e
(R )0

e——Rt

: k. .. (A87)
and similarly

1 dx H*D- H . -

Yy [: (D" T 2RD + H)2:| = g7 (sm]r —Jz cos]r) e’

In Fig. 6a, two additional curves have been plotted, one of which shows the response according
to (A.86), with assumed ratios R|J = #[j = 0-2, j/J = 0-5, the other one a similar response in
the case of resonance, the ratio R/J being still 0-2. It is seen that in both cases the first overshoot
is considerably greater than with a single oscillator, the former curve showing ~ 80 per cent,
the latter ~ 110 per cent overshoot, as against 53-4 per cent for a single oscillator. The higher
overshoots occur, of course, with considerable delays relative to the lower one especially, when
the second frequency 7 is lower than the first one J. (It should be noticed that all curves are plotted
against the same abscissa Jz.) The matter is of considerable practical interest, e.g., for an
aircraft with power-operated controls, where the power unit may often behave as a complex
delay unit. A complete analysis of overshoots for all possible combinations of frequency and
damping ratios (3 independent parameters) would be rather involved. In the case or resonance,
however, the analysis is simple. The turning values occur at Jv = 0, the angle 0 being one of
the consecutive roots of the equation :

tanb =0, .. .. O V. <)

ie., 6, = 4-493, 0, = 7-725, 0, = 10-904, etc., and the maximum overshoot, corresponding to
6,, is found to be ,
e 4 €T R, H,\
| 7—1_\/(1+012)(1+]_91+2]201)... L (A89)
The corresponding graph is given in Fig. 6b where it may be compared with that referring to a
single oscillator. - ‘

Example 10.—Determine the response of an undamped oscillator, of frequency [ = 27| T,
to a finite parabolic impulse of duration 27, and maximum value A. In particular, find the
turning values during the transient stage and the final steady amplitudes.

The differential eqhation for the output %, while the input lasts, is

d2 2
C-Z-tiZjL]zx:A(lel_f?) O<z<20) .. .. .. .. (A90)
or, in operational form, ' , -
' 2A v,D — 1 ‘
(Dz‘l‘]z)x:;?fl—l)?— . . .. . . .. (A90a)

Before solving this equation, let us remark that, if the oscillator was subject to a step input of
magnitude A, the response would oscillate about its mean value A//?, with 4 100 per cent
overshoot or undershoot, so that the maximum would be

x* = 24[]*, .. .. . .. . .. .. (A.91)
" and this is a convenient value for comparison in the following analysis. ‘
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The solution of (A.90) is obtained immediately by using formulae (135) and (110):

94 D —1 7 . 2 |
x{:ZZ—DW_!_—]—Zﬂ_6——«12[(1—@050)—]—01(0—51116)—%0], L (A2

v:%[:%l)—r(%%;—}ﬂ:j;—?k[@l(l—cos@)—(@—sine)}, .. .. .. (A.92a)

where, for abbreviation,

6= Jr, 6, = Jr, . ... (A93)

It may be noticed that, for + = 0 (hence 6 = 0) both x and v are 0. The next interesting point
is to find the values of x and v at the end of the input, 7.e., for v, = 27,, 0, = 26,:

in 6,(si — 0 ]
5, — 2 S Oa(sin 01912 1CSB) L (Ao

vezzjx*cof“’ol(smaglj f:0086) . (Ao

Once the input has ceased, i.e., for 6 > 26,, the differential equation for # is simply

2, I .
%—]—]295:0 (r>20) with) — "latv =2, .. .. (A95)

e

or, in operational form, .
- D+ J)x = D, + Do, .. .. .. .. .. .. (A.952)
and the solution becomes (¢f. formulae 15, 19, 99)
% = x, cos (0 — 0,) —|—%sin 0—6) .. .. .. (A9
or substituting (A.94, A.94a) and simplifying, |

e Sin 6, _é gl cos by . (6 — 6y) (0 =>20,). .. (A.96a)
1

x = 2%

The motion is obviously harmonic, with the amplitude

w |Sin 6, — 6, cos 6,

=2 5 — . .. . .. (A97)
0, ‘

We may observe now that the form of the response (apart from scale), both for the duration
of the input and after, depends on one parameter only,

0, = Jry=2nw|T, .. .. .. .. .. (A.98)
proportional to the ratio of time constants 7, and 7.
A remarkable feature of the present problem is that the steady amplitude (A.97) may sometimes

become nil, 7.e., that the output may stop simultaneously with the input. This will happen, in.
fact, for an infinite number of values of 0,, viz., those satisfying the equation

sin 0; — 6, cos 6, = 0, or tan 6, = 6, . .. .. .. .. . (A99)
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It is so because the expression (sin 6, — 6, cos ;) happens to be a common factor of formulae
for x, and v, (see A.94 and A.94a)}. The well-known equation (A.99), which we have encountered .
- already in example 9 formula (A.88) has an infinite number of solutions:

6, — gn _ 0-219 — 4-493 ,

5 |

or S — 0120 = 7-725,
or ;n — 0-092 — 10-904, etc.,

the subsequent solutions being slightly smaller than, but differing less and less from, 9z/2, 11%/2,
etc. '

In Fig. 7a, several sample response curves (for some chosen values of ;) have been traced,
the ordinate x/x* being plotted against §. The thick parts of all curves correspond to (A.92)
and the thin ones to (A.96), the points of junction marking the end of the input in each case.
Small values of 8, (e.g., #/4, =/2) apply when the duration of input 2r, is only a fraction of the
natural period T of the oscillator. With large values of 6, (e.g., 10 or 15), the input lasts over
several periods, and this results in several oscillations of the thick parts of the curves. The curve
corresponding to 6, = =2 is an example of a case in which v, = 0 but x, = 0, so that ¥ = %,
and the point of junction gives a turning value. Finally, the curve corresponding to 6, = 4-493
is the simplest example of the output stopping simultaneously with the input. It may be noticed
that all maxima of x/x* within the duration of input are less than 1 (although some are near
enough to 1), and both maxima and minima are positive; x, may, however, be either positive or
negative and, of course, the subsequent turning values are alternatively (4 %) and (— %).

It remains to find a generalyway to determine the positions and values of the maxima and
- minima during the transient stage. Denoting by 6,, = J=,, the relevant values of 6, the equation
« for 6,, is obtained by making (A.92a) equal to zero, ¢.e.,

01 —cos6,) — (0, —sin0,)=0... .. .. .. (A.100)

For a given 6,, this equation can only be solved by approximate methods. The best way,
however, is to write it in the form '

6, — sin 6,

6, = { —cost, . .. .. .. .. (A.100a)
and plot 6, against 6, as shown in Fig. 7b. It is seen that only one 6, corresponds to each 6,
but the inverse is not true. For a given 6, there may be one, or three, five, seven values of 0,
etc., their number increasing as 6, increases. The minima of the curves in Fig. 7b are easily found
to lie on the straight line 8,, = 26, and satisfy (A.99)}. As obviously 0,, must be < 20, it follows
that the minute arcs of the curve below that straight line do not give any real turning values and
should be considered as meaningless.

Substituting (A.100a) into (A.92), we obtain, after some considerable simplification, the
following formula for turning values of x:

1 — cos 8, — %0,,sin 0,,\*
6,—sinb, . ’

and this confirms, in a general way, that all transient maxima and minima must be positive.

%, = 2t ( (A.101)

W

+ It may be noticed that x, (but not »,) becomes 0 also when sin ¢, = 0, and v, (but not x,) becomes 0 when
cos 6, = 0; in both cases the response continues indefinitely after the input has ceased. .

1 Of two other straight lines marked in Fig. 7b, the one 6, = 36, is tangent at the origin, and that 6, = 6,
(corresponding to tan 6,/2 = 6,/2) intersects the curve at points for which the output attains a turning value when
the input is maximum. ' '
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‘To complete the illustration of this example (rather more complicated than the preceding ones),
Fig. 8a presents graphs of x,/x* and %/x* according to (A.94) and (A.97) respectively, and Fig. 8b
graphs of the few transient turning values x,/x* calculated from (A.100a) and (A.101). The
abscissa is 6, in all cases. As regards Fig. 8b, it should be mentioned that, for 6, < =/2 the
output has no maximum in the transient region (¢f. Fig. 7a). As 6, increases, more and more
turning values make their appearance, but the illustration does not go beyond the third maximum.

Example 11.—Determine the response of a simple oscillator, with any amount of damping, to
an instantaneous pulse (Dirac’s pulse, or delta-function input). Find the maximum output.

It may not be superfluous to recollect the definition of Dirac’s pulse. Suppose any dynamic
system is subject to a step input of magnitude @ at = = 0, and the response is represented by
a f(z). If a subsequent negative step input of magnitude (— «) is applied at = = z,, then the
final response, from 7, onwards, will be

af@)-af@-—zg::anf“)‘*ﬂ"‘“). . . . .. (A.102) |

2

Let us now suppose that v; decreases while @ increases, in such a way that ar, = const = A4,
say, so that the total impulse is constant, while its duration becomes smaller and ultimately
tends to 0. In the limiting case the response becomes

Fle) = Af'(x)  (x>0). .. .. .. .. .. (A103)

Hence the operational equivalent of such an input is AD. A finite impulse of strictly zero
duration is, of course, physically impossible. Nevertheless, F(z) represents, with a fair approxi-
mation, the response to a ‘ rectangular * impulse of magnitude A, of very short duration.

In the case of an oscillator, the subsidiary equation will be
B(D*+ 2RD 4+ H)x=AD, .. . . . . . .. (A.104)
k being an arbitrary constant factor. We have to consider five cases :

(@) Undercritical damping: H — R* = J* > 0, the solution being from (100) or (81, 82):

I .odx A R . e
x_E]e sin Jz; d—r_k—(cos]z_jsm]r)ela. . . .. .. (A.105)

There are an infinite number of turning values, and the first (and highest) maximum occurs at
7, where Jz, = tan~' J/R, sin Jv, = J[4/H, so that

%ﬂ=ije@mm4W® ce e oo L. (A108)

- (b) Supercritical damping: H — R?* << 0. We have then
D* 4 2RD + H= (D + n)(D +7),
where ri=R 4+ /(R —H), r,=R—+/(R*—H),},.. (A.107)
r+7, = 2R, ' 711’2=H‘ |
and the solution is, from (97),

e ]
(D + r) (D + 7,) R(ry — 1)

d_x-—-—- _é___ (7 e—1r ¥ 6;721)
dr~ Ek(ry — 7y " o
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The only maximum occurs at 7, where e"1="2" = r,[r,, and

A\ 4 (R 4 4/(R* — H) —R/V/(RE—H) .
Xmax == }3_7’1<;2) - k'\/H( ‘\/H ) R . . (A109)

~ (¢) Critical damping: H = R?, in which case (formulae 98 or 41, 42)

_=_(1_Rz)e—h.'.. ... (A.110)

'xI:_A D A . odx A
—E(DJFR)J TETC T & TR
The only maximum occurs at 7, = 1/R, and
A
Kmax = éﬁ . (A].].l)
(d) Zero spring constant: H = 0, the solution being, from (101),
! D 4 o . .
% [— ED T ZRD:l =577 (1 — e~*%) , and the maximum value of x is
_ A

(¢) Zero damping: R = 0, H = J?, and then the solution, from (99) or (66, 67) becomes

dx A o !
cos Jz; xmax—kj' .. (A.113)

The solutions. (@) to (4) are illustrated by five response curves in Fig. 9a, corresponding to the
following values of the convenient parameter /H/R:

0, 06, 1, 2125, 4-0625.

'4[:%1)2?%]2} k]sm]f ZTF

In all these cases R > 0 and Rz is a convenient abscissa. The figure shows how the response
varies at constant R with varying H. In case (¢) the response would be represented by a simple
sine curve, but the convenient abscissa would be ]r

Fig. 9b gives the graph of the maximum output ratio xmax/x against v/ H/R.

Emm]ﬁle 12. ——Fmd functlons Iy(z), Fy(r), F’(z), equivalent to the following operational
expressions

2D° + 13D* + 39D® + 39D* + 37D + 2

plD) = (D" + 4D+ 5D T I ’ (A1140)
» - 3D + 7D% + 12D + 17D% 4 14D* 4 9D + 2 ..
pe(D) = D+ 201D F D+ 2D° +3D + 1) ° (A.114(ii))
, 5D% + 60D° + 285D* 4 675D°% + 836D° -+ 477D + 54 s
respectively.
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(i) In the first case we apply formula (142) of Table 4, with R=2, H=5,r=1, a = 2,
b=13,¢=239,d =259, f= 387, g =2, and we obtain 01_2 C, = 2, 62_3 a, =1, a, =1,
b, =1, so that

D? D 2 D D
poD) = D+ D+ 3

2D

DI F5 T DFi T DT T D (A-115)
a direct check being easy. Using now formulae (100) and (8, 9, 10), we get

Fulr) — 5+( cosr—gsinr) e 4 (1 4 87 4 %) e (A.116)

ii) In the second case we apply formula (151) of Table 5, witha =3,6=7,¢c= 12,4 = 17,

f=14, =9 %t=2 R=1, H=2 B=1,C=2, E=3 F=1, andweobtam/l—IZ
o« =4, p =10, y—8 6~—3 0=—~1, F=—5/2, K=—2, and hence a, = 2, b, =1
ay=1,b0,=2,f,=1,¢c,=1, d2:3, so that

_ 2Dp*4 D D'+ 2D° + D* 4 3D 4+ 1
wD)=pitoprst D DT e LD L - - - AL])

a direct check being again simple. It remains to factorise the quartic denominator

D4 D4 2D* 4 3D + 1 = (D + 1)(D + 0-4534)(D* — 0-4534 D + 2-066)

(A.118)
and to use (100) and (121), and the solution is
Fyz) = (2cosv —sint)e ™+ 1 —e" ,
+ 0-4606e~#%** - (0-5396 cos 2- 19497 4 0-0395 sin 2: 19497)e® %7 (A.119)
(iii) In the third case we apply formula (152) of Table 5, with R=38,v = 1,a =5, b = 60,
c =285, d =675, f=836, g =477, k= 54, and we obtain 4 = 2, ozl_l, 61:2 ¢, =3
Ay = 2, 62—3 02—4 so that

D D 3D 2D 3D 4D _

and, using (8, 9, 10) twice, we get the final answer:

Fe) = 2+ (1 + 20 + gr) et £ (2 - Br + 20%) e (A.121)
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F1G. 1. Solution of example 3. F16. 2. Solution of example 4.
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(0). SAMPLE RESPONSE CURVES.
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(b) GENERAL CHARACTERISTICS OF RESPONSE.

F1Gs. 3a and 8b. Response of simple delay unit to
a parabolic input of finite duration (example 6).
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(b). GENERAL CHARACTERISTICS OF RESPONSE.

Figs. 4a and 4b. Response of a simple delay unit
to an input proportional to = e~7* (example 7).
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Fic. 5. Transient response of a simple delay unit to a sinusoidal input——Sample
- curves (example 8). (Inset: Variation of the steady amplitude with the ratio of
time constants.)
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F1G. 6a. Response to a step input into damped
oscillatory systems (complex delay units) in series,
compared to the case of a single unit (example 9).
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(b. GRAPH FOR DETERMINING POSITION OF TRANSIENT

Figs. 7a and 7b.

TURNING VALUES,

Respénse of an undamped

oscillator to a finite parabolic input (example 10).
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1009,
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F1G. 6b. Maximum overshoot in the case of a

step input into two resonant complex delay units

in series, compared with that corresponding to a
single unit (example 9).
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(b).GRAPH OF FIRST FEW TRANSIENT TURNING VALUES.

Figs. 8a and 8b. Response of an undamped
oscillator to a finite parabolic input {(example 10).
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(b). MAXIMUM OUTPUT DISPLACEMENT.

FiGs. 9a and 9b. Response of a damped oscillator to

(71682) Wt. 52/8942 K.7 6/58 Hw.

an instantaneous pulse (example 11).
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