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Summary.—The post-buckling behaviour of a flat plate reinforced by stringers and frames is considered theoretically,.
attention being concentrated on the case of pure shear loading. Formulae and graphs are presented for the rapid
determination of the shear stiffness, shear strain and induced compressive stresses in stringers and frames.

The analysis is an extension of work by Kromm and Marguerre.

1. Introduction.—It is well'known that a reinforced sheet can carry shear loads considerably-
in excess of the initial buckling load. The behaviour of the sheet under very high loads has been
fully explained by the tension-field theory of Wagner. The transition from initial buckling to a
pure tension field is of particular importance in the aeronautical field and it has been considered
theoretically by Kromm and Marguerre?, Kuhn® and Leggett* and experimentally by Crowther?,

Van der Neut® and others.

The equations derived by Kromm and Marguerre are complicated, and for pure shear loading’
the solutions were confined to the four limiting combinations of zero and infinite direct stiffness
of the stringers and frames. In the present report these equations are modified so that the-
post-buckling behaviour may be predicted quickly with moderate accuracy for any combination
of stringer and frame stiffness. Formulae and graphs are presented for the post-buckled state-
to determine the overall shear stiffness of the sheet, the overall shear strain of the sheet, the:

stringer stress, and the frame stress.

1.1. Assumptions.—The following assumptions are made regarding the structure (see Fig. 1)
(a) The material is elastic
(b) The frames are not attached to the skin
(¢) The stringers have negligible torsional rigidity
(d) The frames and stringers do not bend.
Assumptions made in the analytical solution are given in the text and in Appendix I.

* R.A.E. Report Struct. 136, received 5th February, 1953.



2. Statement of the Problem.—The structure of the reinforced plate is specified, apart from
-overall scale factors, by the relative direct stiffnesses of the stringers (S) and ‘the frames (F).
‘The loading on the reinforced plate is specified by the shear stress = and the nominal direct stress o.
‘The six unknown quantities are: '

y the overall shear strain

s the average stringer compressive stress
op the frame compressive stress

A the buckle wave-number

o the buckle wave-angle.

4 the maximum plate deflection.

2.1. Use of Non-dimensional Symbols.—Considerable simplification in the analysis-and in the
‘presentation of results is effected by using non-dimensional symbols. The symbols mentioned
above are non-dimensional because they are expressed in terms of their initial buckling values.
Precise definitions are given in the List of Symbols. It will be noted that at the onset of buckling
under pure shear

(1)

T=y=1=a=1
6=o05=0p=4 =20 }’

while at the onset of buckling under pure compression in the direction of the stringers
o=05=21=1
T=y=a=4 =20 } ’

provided F is zero.

The amounts of material in the stringers, frames and plate are in the ratio
S:F:1.

A value of 4 equal to unity corresponds to a deflection of about 1-7 times the skin thickness.

2.2. Equations for Solution.—The six equations containing the six unknowns y, o, o5, 4, «, 4
-are, essentially, those obtained by Kromm and Marguerre' who used a strain-energy method of
solution. Brief details of the analysis leading up to the equations are given in Appendix I.
"The equations are: ' : ,

ad2A?

(1—{—1/)(;/—_1):2_'_“2, .. .. .. .. - (3)
' 222 .
.(1—|—F)0F—v{Sas—a(l—}—S)}:(1+2_:a2)112,.. L
o5 — vFaF—{—{SoS——a(l—!—S\}:%, Ly
=1 21* o
For="—— @y 6)
2r _ 2* 43 242
;’—FO'F— ) 22(2 _;_ “2)2’ (7)
21, .
o — {Sos — o(1 4 S)y = 1 F + o |t ) 8)



Equation (3) comes from a consideration of the average shear strain in the plate. Equations
. (4) and (5) come from a consideration of equilibrium of direct loads in stringers, frames and plate
and from compatibility of direct strains. Equations (6) to (8) are derived from minimising the
total strain energy with respect to 4, « and 4. '

In solving equations (3) to (8), Kromm and Marguerre considered only the special cases in
which F was zero or infinite. In the present report no such restriction is made but attention is
concentrated on the case of pure shear loading, 7.c., we take ¢ = 0. The solutions so obtained
may be applied indirectly to all cases in which ¢ is not zero, because S occurs only in the
combination {Sos — o(1 + S)}. A solution obtained for

S=3S, ‘
.. 9
- -5 0
will be a solution for
S=3S5, ‘
—<SZ—SI)0 . . .. .. .. (10)
T\ FS) %

2.8, Solution of the Equations with ¢ = 0.—In any particular problem S and F are known and
we require the behaviour of y, dv[dy (the shear stiffness), o5 and oy as 7 increases. Two distinct
methods of solution are presented here. The first solution is by elimination and is obtained by
regarding 1 as the independent variable instead of =. This involves considerable computation
and is unsatisfactory for finding dr/dy. The method is summarised in section 3. The second
method of solution is indirect and is based on the exact behaviour of dv/dy, y, os, 0 immediately
after buckling (r = 1) and under very high shear loads (v— ), but makes use of the known
general behaviour of the functions for predicting the behaviour in the range 1 <7 <. The
method, though approximate, admits of considerable generality and can be relied upon to be
accurate to within 2 to 3 per cent. The method is discussed in detail in section 4.

- 3. Direct Parametric SoZ%tion.——By regarding 7 as the independent variable, equations (3) to (8)
can be manipulated to give: ' o

[«(1 + S)(A* 4~ 222 ++ 5) — 2(4% + 1){2(1 + S) + »S(2* — 1} x
X [Fa'2®(3* + 1) + a*F{22%(2* + 2) — »(A* + 2* + 2)} + 22%(1 + 3F — »2°F)] 1)
= [2(2* + D{(1 + F)(2* — 1) + 2vF} — »a®F(2* + 22* + 5)] X '
X [034% 4 2% 4 2 - S(82% + A* 4 2)} + 24* 4 2S2*(34% — »)]
as an equation for determining «, and ' "
A2 4 o?)[ad(1 + S)(a* 4+ 24% + 5) — 2(2* + 1){2(1 + S) + »S(2* — 1)}] _ (12)
o205+ 14 2+ S(3F A° A 2)} + 22° 4+ 22°5(32° — ) "

\ . 2 A%(2% 4 1 /
'ng(l+22+5)—%:1—‘_a¥)' .. . ce e . oo (18)

Once 4, «, 4, v are known the functions y, o5 and ¢, may be found directly from equations (3),
(8) and (6) respectively. For values of = lying in the range 1 <.z < 5, the approximate range
for 1is 1 < 4 < 1-5. A numerical example based on these equations is given in Appendix II.
The corresponding equations in which o is non-zero are given in Appendix III. :

g —

4 Indirvect Solution.—Before this method »can be applied expressions are required for

@), [EE) G () G, G @) &) (@)
dyly’ dr \dy) 1.’ E)f _627_2)1’ (77;)1, (—51_"72_)1’ adylw’ dv /)’ dr /o

and these are derived in Appendix IV.

(71667) : A*



The application of the method to the particular case of the shear stiffness will now be considered
in detail. The other cases considered (shear strain, stringer stress and frame stress) are similar
and the results only will be given. ‘

4.1. Post-Buckling Behaviowr of the Shear Sﬁﬁ%eés.—Prior to- buckling the shear stiffness
dv/dy is unity. Immediately after buckling the shear stiffness drops to a value given by

v\ _ 1+ S+ F+ SF(1— ) e
_(@L~[L+U+MU+QS+5F+SF@+4w-ﬁﬂ see e (14)
which has been plotted in Fig. 2. :

Similarly, the rate of change of the shear stiffness with shear load [—d (2—;—):! is a known
. 11

dr
function. The shear stiffness for large values of 7, plotted in Fig. 3, is given by
(EZE) — (1 + »)(1 + 3S) (15)
ay) . L4258+ ) + 1+ S’ '
where ) .
. 2:\/52(14—35)(1—}—F)—~25Fv2 (16)
* F(1+45)

Up to the present the analysis is exact in so far as it represents the solution of equations (3) to

(8). The stiffness for values of v in the range 1 < v < oo is represented approximately by an
equation of the form .

R
| dy — \dy), dy/i  \dy].,
which is correct at + = 1 and « and should give a good representation of the known general

behaviour at intermediate values. The constant x is chosen so that [ﬂ (Z—;)} will be correct,
. 1

dr
~[3:(z)] |
.= ~ Tl .. .. .. .. . .. (18)
(@), - (7). ,

and is plotted in Fig. 4. Figs. 5 and 6 have been prepared from equation (17) and demonstrate
the change in shear stiffness due to changesin S and F. A detailed example is given in section 5.

L 6 VA

whence

4.1.1. Optimum value of S for maximum post-buckled shear stiffness.—For a given amount of
stiffening material W(= S + F) there is an optimum value of S for which the stiffness im.-
mediately after buckling is a maximum. This value, obtained by differentiating equation (14)

reduces to
S__W(l—}—Zv)—l
- 3(1 4+ ») ’ _

Equation (19) will not, or course, be valid unless it yields a value of S sufﬁciéntly large to
warrant the original assumption of negligible stringer bending.

J

(19)

.. 4.2. Post-Buckling Behaviour of the Shear Strain.—The shear strain could be obtained by
integrating equation (17) but this would have to be done graphically and it is simpler to obtain
y from the approximate relation

' (56
d’)/ 1 d)’ ©

T —1 dr
4

TR @)



A4.3. ‘Post-Buckling Behaviour of the Stringer Stress—At the onset of buckling the stringer
compressive stress is determined by

(d_"S) — 2 LTC 4 &) .. (21)
d171 1+25+5F+SF(6—]—41)—1;2)’ “ . ..
while for very high values of the shear load , '
dos . 2(06002 -+ v) , | 2
(E)w*‘m - .. .. .. .. .. .. .o (22)
and the approximate relation for determining the stringer stress is

o5 dcr‘s dos dos _x '
‘;‘*_‘—1—— (E) (EL’_) - (%:) T R .. .o . .o (23)
The functions (dog/dr),, (dSas/dr)l, (dos/dr).,, ' are plotted in Figs. 7,8, 9 and 10.

4.4. Post-Buckling Behaviour of the Frame Stress—At the onset of buckling the frame
compressive stress is determined by 7
(‘fﬁ): 4+ SU+2) @
_ dt), 1425 -+-5F+ SF(6+ 4» — %)’ '
while for very high values of the shear load

dop __ 2 _
(E)w_F—oc;«“ . P . . . .. . .. (25)

and the approximate relation for determining the frame stréss is

or do 7\ do Aoz _xn
%“——1—(df) (dr) (E;)lr L (28

The functions (dogdr)y, (AFop/dr), (dop/dT)., " are plotted in Figs. 11, 12, 13, and 14.

5. Numerical Example—Consider a structure in which

¢t = 0-048 in.
b = 4-8 in.
a = 20 in.

Section area of stringer = 0-115 sq in.
Section area of frame = 0-192 sq in.
E = 10'x 10°Ibjsq in.
»=0-3.

We require the shear stiffness, shear strain, stringer stress and frame stress at shear stresses of
5,000, 10,000 and 15,000 1b/sq in.

With these dimensions '
S — _9&.._ — O. 5

4-8 % 0048
0192
F=45%00m= 22
ol

= 3,600 Ib/sq in.

7T 31— )
7 = 1 corresponds to a buckling stress of
v/ (2)o* = 5,100 1b/sq in.

5
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This value may be compared with the known exact value, for simply supported edges, of
4,850 1b/sq in. The conditions along the edges are those of ‘ continuity ’ rather than simple
support so that the error suggested by these figures (8 per cent) will not in fact be so great (the

error arises, of course, from the assumed mode of buckling). For convenience we can assume
initial buckling stress of 5,000 Ib/sq in.

At 5,000 Ib/sq in. (v = 1) the relative shear stiffness drops to a value given by equation (14)

or Fig. 2: : ‘
dr
~—| =073
(dy)l
From Figs. 3,4, 7, 9, 10, 11, 13 and 14 we have
dr_. 1. das_. dcs___ f .
'GﬂQ—OM’K_l%’(EL~O7L($JQ"1%’K“ﬂGZ
(@EE) = 1-70, (@zf).:: 4.73, « —0-37.
dr /, dr |,

We are now in a position to consider the state of the structure at 10,000 1b/sq in. (z = 2) and
at 15,000 Ib/sq in. (z = 3). Thus, from equation (17)

dv _N. . ' 1-66
@_0'34—{—0 39/z1 %6 |
whence
dz
= = 0-463 ,
(d’}/),=2
(@3 — 0403 .
” . CZ)/ T=3
From equation (20)
| ;:}=0M+U%H%,
whence -
(7’)1=2 = 2‘79 3
(¥)sms = 5-02.
From equation (23)
' Os __ 1. 1. 0-62
‘ 1_1—180 109/~
whence
(05)see = 1-09,

corresponding to an actual stress of 1-09¢* = 3,920 Ib/sq in. Similarly,

(05)rms = 2:49, (0p)sog = 2:39, (0p)s_, — 5-42.

These results have been plotted in Fig. 15 and compared with values obtained by the lengthier
direct solution:considered numerically in Appendix II.

6. Conclusions.—The post-buckling behaviour under shear of plane sheet reinforced by stringers -
and frames has been considered theoretically. An approximate method of analysis, based on
work by Kromm and Marguerre?, has been developed. Formulae and graphs have been presented

from which it is possible to determine the shear stiffness, shear strain, stringer stress and frame
stress in the post-buckled state.

6
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. LIST OF SYMBOLS
Skin thickness
Stringer pitch
Frame pitch
Section area of stringer divided by ¢
Section area of frame divided by af
Young’s modulus
Shear modulus

Poisson’s ratio

.Buckling stress of plate under pure compression

Bt
3(1 — »*)b?
Compressive stress in stringer divided by o*
Compressive stress in frame divided by ¢*

Nominal applied compressive stress divided by o* (load applied to one
stringer and one panel = (1 -+ S)bf oo%)

- Nominal shear stress divided by 4/(2)c*, so that r = 1 at initial buckling

under pure shear

© Maximum plate deflection = #(crest to trough deflection)

\/{6(1 - VZ)} wma;{
4 ¢

Angle between the nodal lines and stringers (see Fig. 1)

4/2 cot y, so thdat « = 1 at onset of buckling under pure shear
b divided by distance between nodal lines (see Fig. 1)

G multiplied by shear strain divided. by 4/(2)o*, so that prior to buckling

oy =T
S+ F

. Decay factors

Suffices ; and _, refer to conditions when + = 1 and as v — .




No. Author
1 H. Wagner
2
3 Paul Kuhn
4 D. M. A. Leggett..
5
6
Floor
7 E. H. Mansfield ..
Additional Notation
Ox, Oy
‘ s
w
/A
G
D
P Py
q
Exnr Eyy
Sy
v

found from a minimum-energy theorem which is used in preference to equation {28)

A. Kromm and K. Marguerre ..

F. Crowther and N. Sanderson. .

A. Van der Neut and W. K. G.
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Strain energy

APPENDIX I

Derivation of the Equations Obtained by Kromm and Marguerre

\

Cartesian co-ordinates, Ox parallel to stringers (see Fig. 1)
Airy’s stress function

Deflection normal to plane of plate

Wavelength of buckles

Shear modulus

Flexural rigidity of plate = E£/12(1 — »?)

Average values of the compressive stresses in the plate
Average shear stress.in the plate

Average compressive strains in the stringers and frames

Average shear strain in the plate

Suffix , or , after ¢ or w indicates differentiation.

The equations governing the post—buckling behaviour of the plate are

Vi = E{(wxy)2 —

W, Wyt , .. . . e .o (27)

DV'% = 0 — 200y + bt . .. .. . . (29

Owing to the extreme difficulty of obtaining an exact solution of these equations, approximate
methods must be employed. A form for w is chosen which includes various parameters and which
gives a good representation of the type of distortion observed in practice. An approximate
solution of equation (27) is then possible by simple integration. The various parameters are

8



The assumed form for the deflection is

w = wmxA cos 7%; cosy—lz (x — y cot v)
. (29)
= Wy COS n—g}'cos (M sgn 1/)) (x — y cot w)§

_Substituting this expression in équation (27) and integrating gives, for the pérticular integral,

. ) 9 ,
Ewmax

¢(1‘»‘) — m

— COS 2
A2 !

(x—ycotqp)—]—ﬂcosZ%yg. . .. (80)

For the complementary function only terms which give rise to average values of the stresses
are considered ;

¢(°)=—%pyx2—§1xy—%xy2,, . . . - . .. (81)
b P 4O (32

Restricting ¢ in this way means that is is not possible to satisfy the boundary conditions
~ exactly, but average values for the overall shear and compressive strains may be found:

and we have

: "W et COL

Bxy:qa'—l—yi————4l2—1'p, . .. « . . -.. T. .. (33)
_- ’p- x Zz'?jmaxz l 2 ‘

Eyy:ﬁy Ep-}-x&z j(@) —|—cot21p§, - .. .. o (39
e ¥ ZZejmaxz

I e a €)

Equations (33), (34), (85) correspond to equations «(3), (4), (5) respectively of the main text.

It is convenient to regard the strains e,,, ¢,, and s, as fixed and then express the fact that the
strain energy of the plate is a minimum with respect to /, 9, @n,, (the static analogue of Kelvin’s
minimum energy theorem). '

From well-established theory the strain energy in a strip of plate of length [ is

V=t 7 [+ 60— 2+ (B — 6.7)

—1/2d —p/2
+ D{(w,, + w,)* — 2(1 — 2)(w,m,, — wxf)}] dedy .. .. (36)
and if the values of ¢ and w, given by equations (32) and (29) are substituted we find
. 4, ma\:41 24 T 4t2 max2
V — Etbl [" Dna: (25*(‘%4 Jsin’y 9624(1”’_ 57y ({1 497 + 422 cos” )
1 , '
+ (382 + 387 — vputy + (1 + v)qz}:| N 74
and the average strain energy per unit length is
F=V/l. . e (3



The conditions of minimum strain energy are now

oV oV | |
=0, .. .. .. (39
oV oV

5’(;)—01'%:0, e . . .. ..V (40)
oV eV -
a—w—'orézzo, .. . . ..-- .. (41)

max

subject to equations (33) to (35) being satisfied.

On introducing the non-dimensional parameters used in the main text, and equating e, ¢, to

the strains in the stringers and frames, equations (39), (40), (41) may be written, respectively:
2124°®

g T ASos —o(l+ S+ o (Fop + 1) —dar + J(1+ )2+ 8 =0, .. (42)
%+{SGS“G(I+S)}—FGF‘+ (2—0:2)1/05.—— 1 =0, .. .. .. ’(43)
1+ A% 42 9 Lo ol

Ez—i;%ﬂsaw o(1 + S)} + Fop (;TJF 5)_

2\ 2 2

~20c7:—|—%~062—|“(1 +28)Z(22+“)

Equations (6) to (8) of the main text are derived by suitable combination of equations (42) to
(44). : :

=0. . . (44)

APPENDIX II
Example Based on Direct Pavametvic Solution

: The example considered here is the same as that considered in section 5, for which S = 0-5,
F=0-2 and » = 0-3. A ‘ '

We now choose an arbitrary value for 4 and substitute in equation (11). Let us take, for
‘convenience, 2 = 4/2 so that 4* = 2. Equation (11) is now )

(19-50® — 18-90)(1 - 2* 4- 2:720® + 5-92) — (7-92 — 0-7842)(16a* -+ 19:4) =Z=0.  (45)
This equation may be solved by trial and error.

With o* =2, Z = — 2:09; with «*= 21, Z = 40-2, so that, on interpolating, we can
take «* = 2-005. ' :

From equation (12) we now find 4* = 1-573 and from equation (13) = = 2-10, whence, from
equations (3), (8) and (6), y = 2-95, o5 = 1-18 and o, = 2-77.

Values of 2* equal to 1-1 and 2-5 have also been taken. The numerical results of all the
calculations are presented in tabular form below. o

A2 Ca? | o R oz 4 O Or
1-0 1:00° | 100 0 1-00 | 1-00 0 0
1-1 1-102 1-050 0-1156.| 1-08 1-11 0-06 014
2-0 2-005 1-416 1-573 2-10 2-95 - 1-16 277
2.5 2-877 1-542 2-530 2-85 4-56 2-14 5:95

10



APPENDIX III

For the case of combined shear and compression it is convenient to obtain the solution for the
case in which the ratio of applied compressive load/applied shear load remains constant during
loadmg If we denote this ratio by g we have

, : g =0l 4S) .. .. .. .. .. .. (46)
and the equat1ons corresponding to those of para 3 are - '
He?(1 4 S) + «p}(A* 4 24° + 5) — 2(2% - 1)}{2(1 + S) 4+ »S(2* — 1)}] X
X [t FAR(AR 1) A P F{227(2% + 2) — v(2* —}— A+ 2)} 4 24%(1 4 3F — vFlZ)]
= [2(2* + D{1 + F)(* — 1) + 20Fy — vFa?(2* 4 20 + 5)] x
CoX [e¥At 4 A2 42 4 S8t A2 4 2)} + aB(A* + 1) + 2% + 25/12(312 — )], .. (47)

84% — 22+ ) [{e?(1 + S) + ap}( 24—{—212—{—5)—212+1{2 S) 4+ »S(2* — 1)} (48)
- 2{24 + A% 2 + S(34* + A%+ 2} + ocﬂ (A% 4+ 1) 4 22% —I— 22:5(34* — ») 7
oy . ad*(A* 4 1) 7 7
g(ﬂ. —-|—2}. +5> m, ‘e N e e . . . (49)
o(l + S5) = Bz. .. .. .. .. - .. (50)

Knowmg A, @, 4, 7, o the functions y, o5 and o may be found directly from equations (3) (8)
and (6) respectlvely :

- APPENDIX 1V
Derivation. of the Differentials (dv[dy), [% (%)] -, ele.
. 1
.. or 7d (dv
In determining the differentials (dz/dy),, [EZ? ((Z;

in which the flexibility of a structure is related to the flexibility of a structure constrained to
buckle in certain fixed modes. Identities (C) and (G) of Ref. 7 state that the flexibility dy/dr
and cross-flexibilities, e.g., dos/dr, at the onset of buckling do not depend on the rate of change
of mode shape. Thus we may take 1 = « = 1 in equations (3), (4), (5) and (44), i.e., (41), which
on writing I' for (1/3)4* reduce simply to _
L Fp -9 =T
( + F)O‘F 'VSO‘S = Ar
S (1 —|— Sos — vFop =20
7 —1— Fop —4Sos=1 _

)] , etc., use will be made of some identities’
1

(51)

The flexibilities on this basis do not vary with = so that by 51mp1e elimination we can deduce
equations (14), (21), (24) of the main text. . S

To calculate [i (@)] we observe that
dv \dy/ 1,
d(d'l: —_@ . (dy2
' dz dy) = de T 67%)
‘and we shall calculate (4% /dz?), from identity (E) of Ref. 7.
=11



d%og A% p\ -
(W)l and ( d* )1
~will be calculated from identity (H).

Consider now that 4 is the independent variable and consider the state of the structure when
A-has increased to (1 4 41). From equation (11) by substitution and neglecting second order
quantities it will be found that « has increased to (1 + «'d%), where

;3 1—{—25—|—F+5F(2~|—2v—v2)) (52)
¥ _§(1+S+7F>+SF(7—|—3v— )
Furthermore, from equation (12): o
(d_Az) _9( 14+ S+ F 4 SF(1 — ) (53)
ar ), 2\1+4+ S+ 7F + SF(7 4 3v — »*))”’
so that from equation (18), v = 1 + u 42, where
_@(,I—I—ZS—{—SF—{—SF(G—{—LLv—vZ)) (54)
FTo2\TFS+7F +SF7T + 8 — ) )

Now let the structure be constrained to buckle in thié mode alone (A =1 4 di, « = 1 4 a'd}).
The stiffness of such a constrained structure may be determined from a set of equations similar
to equation (51), namely, :

(14 2)p — 7) = ITL+ (2 + (1/3)a'} d2]
(1 + F)oy — »Sos = 4ITL + {3 + (1/3)a’} d2]
(1 + S)os — vFop = 2I'[1 + {2 — (2/3)s'} d1]

v — 1 — Fog{l — (3/2) di} — $Sos (1 — o’ d2) = I'{l — (5/3)a’ dA}

(35)

If these equations are solved by simple elimination they give expressions for the flexibilities
in the form . ~

dy\ _ (dy |
(Er)m o (%)1 + Al dﬂ’

B\ | A (56)
— (¥ A1 .
o (df)l - 23 a
from equation (54).
And similarly ( dcrs) ( d Gs) 4,
s — S 227
o) e (57)
dog . do g A,
- (), = (), + e
Now since : »
dy\ _ (dy d (dy\ 7
(-d—r)m - (%)1 + CE (E)m]ld'ﬁ' + etC., . . v (58)

we have by equating coefficients in equations (56) and (58)

[ﬁ (@ } _ 4
dl’ dT)ml—‘LL

whence, from identity (£) of Ref. 7:

dzy_Al : -
(d_rz)l_‘ﬂ' )
12



Similarly we have from identity (H):

. dos
(dzas) _ 2_1‘12 Al(d_f)l
1

22s _
dx 7 %

- dop
(dZGF) 2_143 Al(d—f)1 '

FhE ()
dr),

(dz]dy)., etc., are found by standard methods if we observe that 1 — o as 7 — o,

13

AY

#.-11]

(60)
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