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Summary.~The post-buckling behaviom" of a flat plate reinforced by stringers and frames is considered theoretically,_ 
attention being concentrated on the case of pure shear loading. Formulae and graphs are presented for the rapid 
determination of the shear stiffness, shear strain and induced compressive stresses in stringers and frames. 

The analysis is an extension of work by Kromm and Marguerre. 

1. Introduction.--It is well' known that  a reinforced sheet can carry shear loads considerably 
in excess of the initial buckling load. The behaviour of the sheet under very high loads has been 
fully explained by the tension-field theory of Wagner 1. The transition from initial buckling to a 
pure tension field is of particular importance in the aeronautical field and it has been considered 
theoretically by Kromm and Marguerre ", Kuhn ~ and LeggetP and experimentally by CrowtheP, 
Van der Neuff and others. 

The equations derived by Kromm and Marguerre are complicated, and for pure shear loading 
the solutionswere confined to the four limiting combinations of zero and infinite direct stiffness 
of the stringers and frames. In the present report these equations are modified so that  t h e  
post-buckling behaviour may be predicted quickly with moderate accuracy for any combination 
of stringer and frame stiffness. Formulae and graphs are presented for the post-buckled s ta te  
to determine the overall shear stiffness of the sheet, the overall shear strain of the sheet, t h e  
stringer stress, and the frame stress. 

L1. Assumptions.--The following assumptions are made regarding the structure (see Fig. 1):: 

(a) The material is elastic 

(b) The frames are not attached to the skin 

(c) The stringers have negligible torsional rigidity 

(d) The frames and stringers do not bend. 
Assumptions made in the analytical solution are given in the text and in Appendix I. 

* R.A.E. Report Struct. 136, received 8th February, 1953. 



2. Statement of  the Prob lem. - -The  structure of the  reinforced plate is specified, apart  from 
,overall scale factors, by  the  relative direct stiffnesses of the stringers (S) and t h e  frames (F). 
The loading on the  reinforced plate is specified by  the  shear stress ~ and the  nominal  direct stress a. 
T h e  six unknown quanti t ies  are:  

7 the  overall shear strain 

as the average stringer compressive stress 

ar the  frame compressive stress 

'~ the  buckle wave-number  

the buckle wave-angle. 

zl the  max imum plate deflection. 

2.i .  Use o f  Non-dimensional  Symbols . - -Considerable  simplification in the  analys is  and in the  
p resen ta t ion  of results is effected by  us ing  non-dimensional  symbols. The symbols men t ioned  
above are non-dimensional  because they  are expressed in terms of their  initial buckling values. 
Precise definitions are given in the List of Symbols. I t  will be noted  tha t  at the  onset of buckling 
under  pure shear 

= r = ~ = ~ = 2 ) 
(2) 

a ~ a s  ~ ~ y  ~ A ~ 0 J ' . . . . . . . .  

while at the  onset of buckling under  pure compression in the direction of the stringers 

a = as = ~ = 1 ) 

J (2) 
" c = 7 = c ~ = A  = 0  ' . . . . . . . .  

provided F is zero. 

The amounts  of material  in the stringers, frames and plate are in the  ratio 

S : F : I .  

A value of A equal to uni ty  corresponds to a deflection of about 1.7 t imes the  skin thickness. 

2.2. Equations for  So lu t i on . - -The  six equations containing the six unknowns  7, as, ar, ~, ~, d 
are,  essentially, those obta ined by  K r o m m  and Margnerre * who used a strain-energy me thod  of 
solut ion.  Brief details of the  analysis leading up to the equations are given in Appendix  I. 
T h e  equations are:  

cot2A 2 
(1 + v)( r - - . , )  --  2 + ~2, • . . . . . . . . . . .  (3) 

(1 + F ) a ~  - -  ~{Sa~ - -  a(1 + S ) }  = 1 + 2 T ~ J  d2 ,. . . . . . . . . .  (4) 

2;t" A 
as - -  ~ F a F  + { S a s  - -  a (2  + S~) - -  2 + ~2 ,  • . . . . . . . . . . .  (S) 

;¢ - -  2 2A ~ 
Fay --  4 (2 + e2),~, . .  . .  . . . .  (6) 

2v 22 -4- 3 2.d ~ 
- -  - -  F a y  = - -  , . . . .  2 ~ ( 2 - / ~ 2 ) ~  . . . .  (7) 

~2 ~ 2  I ~2 I 
o~ --  {Sas --  a(2 ,-}- S)} --  q- 1 ,t 2 

2 + (2 ~ ~ )  + ~2(2 + ~ )  " 

2 

(s)  



Equation (3) comes from a consideration of the average shear strain in the plate. Equations 
(4) and (5) come from a consideration of equilibrium of direct loads in stringers, Iram. es and plate 
and from compatibility of direct strains. Equations (6) to (8) are derived from mxmm~smg the 
total strain energy with respect  to ~, ~ and A. 

in solving equations (3) to (8), Kromm and Marguerre considered only the Special cases in 
which F was zero or infinite. In the present report no such restriction is made but  attention .is 
concentrated on the case of pure shear loading, i.e., we take ~ = 0. The solutions so ob ta ined  
may be applied indirectly to all cases in which a is not zero, because S occurs only in the 
combination {Sas -- a(1 + S)}£ A solution obtained for 

S = S~ ] (9) 
, , , . . . . . , . . ° • , 

a : O  ] 
will be a solution for 

S = & 

d / . . . . . . . . . . .  (10  
2.3. Solution of the Equations with ~ = 0 - i n  any particular problem S and F are known and 

We require the behaviour oLy, d~/dy ( theshear  stiffness), as and ~ as ~ increases. Two distinct 
methods of solution are presented here. The first solution is by  elimination and is obtained by 
regarding),  as the independent variable instead of ~. This involves considerable computation 
and is unsatisfactory for finding d,/dy. The method is summarised in section 3. The second 
method of solution is indirect and is based on the exact behaviour of d~/dy, ),, as, ~ immediately 
after buckling (, = 1) and under very high shear loads (~---> oo), but makes use of the known 
general behaviour of  the functions for predicting the. behaviour in t h e  range 1 < ~ < oo. The 
method, though approximate, admits of considerable generality and can be relied upon to be 
accurate to within 2 to 3 per cent. The method is discussed in detail in section 4. 

3. Direct Parametric So-lution.--By regarding Z as the independent variable, equations (3) to (8) 
can be manipulated to give" 

[cd(1 + S)(). 4 + 2). 2 + 5) -- 2(;~ 2 + 1)(2(! + S) -t z vS(2 2 , 1)}] × 

× [F~).~(). 2 + 1) + a~F{2).~(). ~ + 2) -- v(). ~ + ).~ + 2)} + 2).~(1 + 3 F  -- v).~f)] 

= [2(~ ~ + 1)((1 + F)().~ - -  1) + 2 ~ F }  - -  ~ F ( ) .  ' -+: 2~ ~ + 5)] × 

× [~() .  0 + ).~ + 2 ~- 8(8). '  + ) . ~ +  2)) + 2).' + 2s).~(8). ~ - -  ~ ) ]  

as an equation for determining ~, and 

8)1~ = ~2(2 + c~2)2[a2(1 ~- S)(). ~ -~- 2). 2 @- 5) - - 2 ( , t  ~ + 1){2(1 + .  S) + vS(). ~ - -  1)}] .-. 
a~().4 + ).2 + 2 + S(3). ~ + ).~ + 2)} + 2~ ~ + 2).~S(3). 2 - -  v) 

(11) 

(12) 

%/1! . . . . . . . .  (131 
= g ().~ + 2). ~ + 5) - ).~(2 + . . . . . .  " "  

Once )., c~, A, ~ are known the functions y, as and a / m a y  be found directly from equations (3), 
(8) and (6) respectively. For values of ~ lying in the range 1 < v < 5, the app.roximate range 
for ). is 1 < 2 < 1.5. A numerical example based on these equations is given m Appendix II. 
The corresponding equations in which G is non-zero are given in Appendix III .  

- 4 :  Indirect Solutio~.--Before this method can be applied expressions are required for 

r / ~ ] d  d~ {dash, ( d %  ( d ~ 4 ,  / d %  [ d ~  i (da 4 /da 4 

and these are derived in Appendix IV. 

A* 
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The application of the method to the particular case of the shear stiffness will now be considered 
in detail. The other cases considered (shear strain, stringer stress and frame stress) are similar 
and the results only will be given. 

4.1. Post-Buckling Behaviour of the Shear Stiffmss.--Prior t o  buckling the shear stiffness 
d~/d), is unity. Immediately after buckling the shear stiffness drops to a value given by 

d,  _-- 1 + ( 1  + v){1 + 2 S + S F + S F ( 6 + 4 v _ , , 2 )  1 J " " " " 

which has been plotted in Fig. 2. 

Similarly, the rate of change of the shear stiffness with shear load-J~_ (d]2)~ is a known 
L~~ \ ~ Y /  A 1 

function. The shear stiffness for large values of ~, plotted ill Fig. 3, is given by 

t 03= 1 + ~ - + S ( 3 +  ~) + ( 1 + S ) . ~  2 . . . . . . . . .  (15) 
where 

~/12(1 + 3S)(1 + F ) -  2SF~,~ I 
~ 2 =  F ( 1  + S )  . . . . . . . . . . .  ( 1 6 )  

Up to the present the analysis is exact in so far as it represents the solution of equations (3) to 
(8). The stiffness for values of T in the range 1 < ,  < oo is represented approximately by an 
equation.of the form 

d-7 = (~)03 + I ( ~ ) 1 -  (17) 
 dv]031 ' " . . . . . . . . .  

which is correct at ~ = 1 and oo and should give a good representation of the known general 

behaviour at intermediate values. The constant K is chosen so that  [@_(d.] 1 win be correct, 
whence " ~  \~Y/J 

dr 

K ~  
. . . . . .  

and is plotted in Fig. 4. Figs. 5 and 6 have been prepared from equation (17) and demonstrate 
the change in shear stiffness due to changes in S and F. A detailed example is given in section 5. 

4.1.1. 02btimum value of S for maximum post-buckled shear stiffmss.--For a given amount of 
stiffening material W(--  S + F) there is an optimum value of S for which the stiffness im- 
mediately after buckling is a maximum. This value, ob ta inedby  differentiating equation (14) 
reduces to 

s = w(1 + 2j - 1 

3(1 -+- ~) . . . . . . . . . . . . . .  (19) 

Equation (19) will not, or course, be valid unless it yields a value of S sufficiently large to 
warrant the original assumption of negligible stringer bending. 

4.2. Post-Buckling Behaviour of the Shear Strai~.--The shear strain could be obtained by 
integrating equation (17) but this would have to be done graphically and it is simpler to obtain 

from the approximate relation 

- -  1 - -  + - -  ~-~/~ . . . . . . . . . . .  ( 2 0 )  
03  1 03  

4 



4.3. Post-Buckling Behaviour of the Stringer S tress . - -At  the  onset of buckl ing the  str inger 
compressive stress is de termined by 

s~ _ 2 + F(2 + 4v) . . . . .  (21) 
] 1  - 1 + 2 8  + 5 F  + S F ( 6  + 4~ - -  ~ )  ' " " 

while for very  high values of the shear load 

(d~q 2(~2  + ,) . . . . . .  . .  (22) 
& 1+; - (1 + 3 s ) s .  " . . . . . . .  

and the  approximate  re la t ion  for determining the stringer stress is 

~+ _ ( a ~ q  _ t { a ~ s ~  _ { a ~ q  t+-,,, . . . . . .  (23) 
T --  1 \dT]o~ t \ d T ] +  \ & ] l )  " . . . .  

The functions (das/&)l, (dS~s/d~)l, (d~s/&)+, ~' are p lo t ted  in Figs. 71 8, 9 and 10. 

4.4. Post-Buckling Behaviour of  the Frame S t ress . - -A t  the  onset of buckling the  frame 
compressive stress is de te rmined  by  

(d~ 6 4 + s (4  + 2~) . . . . . .  (24) 
dT ] l =  1 + 28 + 5F + S F ( 6  + 4~, --  +,~) ' "" 

while for very high values of the  shear load 

(e~ 4 _ 2 . . . . . .  (25) 
dT! ~ F~® " . . . . . . . . . . .  

and the  approximate  relation for determining the  frame stress is 

~ ( e ~  i _ t ( a ~  _ ( e ~  t~-~,, . . . . . .  (26) 
- -  1 - -  \ t i t  1+ t \ &  1+ \ &  11t ' "" 

The functions (d~ddT)+, (dF~f l&)l ,  (d~fldT)®, K" are p lo t ted  in Figs. 11, 12, 13, and  14. 

5. Numerical  Example . - -Consider  a s tructure in which 

t = 0. 048 in. 

b = 4"-8 in. 

a = 20 in. 

Section area of stringer = 0. 115 sq in. 

Section area of frame = 0. 192 sq in. 

E = 10 × 106 lb/sq in. 

v = 0 . 3 .  

We require the  shear stiffness, shear  strain, stringer stress and frame stress at  shear stresses of 
5,000, 10,000 and 15,000 lb/sq in. 

Wi th  these  dimensions 
0.115 

S =  = 0 . 5  
4-8 × 0.048 

O. 192 
F =  = 0 . 2  

20 × 0.048 

~2Et ~ 
~* --  3(1 - -  v')b " = 3,600 lb/sq in. 

= 1 corresponds to a buckl ing stress of 

~/(2)~* = 5,100 lb/sq in. 

5 
(716671 A*2 



This value may be compared with the known exact value, for simply supported edges, of 
4,850 lb/sq in. The conditions along the edges are those of ' con t inu i ty '  rather than simple 
support so that  the error suggested by these figures (6 per cent) will not in fact be so great (the 
error arises, of course, from the assumed mode of buckling). For convenience we can assume 
initial buckling stress of 5,000 lb/sq in. 

At 5,000 lb/sq in. (~ = 1) the relative shear stiffness drops to a value given by equation (14) 
or Fig. 2" 

(d~)l = 0 . 7 3  

From Figs. 3 ,4 ,  7, 9, 10, 11, 13 and 14 we have 

~ = 0 " 3 4 ,  '~---1"66, \d~:] =0.71,  \ d T ] ,  

( h : ] l =  1"70, \ d ~ ] ~ 0 = 4 " 7 3 '  K " = 0 . 3 7 .  

= 1"80, K' 0"62, 

We are now in a position to consider the state of tile structure at 10,000 lb/sq in. (, = 2) and 
at 15,000 lb/sq in. (~ --  3). Thus, from equation (17) 

d~ 
= o .  34 + 0.  39/  1.oo , 

From equation (20) 

whence 

whence 

From equation (23) 

whence 

- -  -- 0"34 + 0"39/~ °'88, 

(?'),=2 = 2 .79 ,  

(r)~=~ = 5" 02.  

as = 1 " 8 0 -  1.09/z °'"" 
T - - 1  

(as).=2 = 1"09 ,  

corresponding to an actual stress of 1.09~* = 3,920 lb/sq in. Similarly, 

(Zs)~=3 = 2.49, (a~),=2 = 2.39, (~p),=~ = 5.42. 

These results have been plotted in Fig. 15 and compared with values obtained by the lengthier 
direct solution considered numerically in Appendix II.  

6. Co~clusions.--The post-buckling behaviour under shear of plane sheet reinforced by stringers 
and frames has been considered theoretically. An approximate method of analysis, based on 
work by Kromm and Marguerre 2, has been developed. Formulae and graphs have been presented 
from which it is possible to determine the shear stiffness, shear strain, stringer stress and frame 
stress in the post-buckled state. 

6 



b 

6g 

S 

F 

E 

G 

f fs  

f fF 

(7 

LIST OF SYMBOLS 

Skin thickness 

Stringer pitch ~ 

Frame pitch 

Section area of stringer divided by bt 

Section area of frame divided by at 

Young's modulus 

Shear modulus 

Poisson's ratio 

. Buckling stress of plate under pure compression 

a~Et ~ 
3 ( 1 -  ~)b ~ 

Compressive stress in stringer divided by ~* 

Compressive stress in frame divided by a* 

Nominal appIied, compressive stress divided by ~* 
stringer and one panel ,= (1 -t- S)b¢ ~ * )  

(load applied to one 

Nominal shear stress divided by ~/(2)~*, so t h a t ,  = 1 at initial buckling 
under pure shear 

wm~x Maximum plate deflection = ½(crest to trough deflection) 

4 t 

~0 Angle between the nodal lines and stringers (see Fig. 1) 

= ~/2 cot % so that  e = 1 at onset of buckling under pure shear 

---- b divided by distance between nodal lines (see Fig. 1) 

7 = G multiplied by shear strain divided.by ~/(2)~*, so that  prior to buckling 
. ,  7 = 7 r .  

W ---- S + F  

/~,K,K' " Decay factors 

Suffices ~ a n d .  refer to conditions when ~ 1 and. as ~ ~ co. 

L , 
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A P P E N D I X  I 

Derivat ion o f  the EquaEions Obtained by K r o m m  and  Marguerre  

Add i t i ona l  No ta t ion  

Ox, OF Cartes ian co-ordinates ,  Ox parallel  to  s t r ingers  (see Fig. 1) 

$ Airy ' s  stress func t ion  

w Deflect ion n o r m a l  to  p lane  of p la te  

1 W a v e l e n g t h  of buckles  

G Shear  m o d u l u s  

D F lexura l  r ig id i ty  of p la te  = Et3/12(1 - -  v ~) 

p~, py Average  va lues  of t he  compress ive  stresses in the  p la te  

q Average  shear  s t ress . in  t he  p la te  

e,,, eyy Average  compress ive  s t ra ins  in the  s t r ingers  and  f rames  

~y Average  shear  s t ra in  in the  p l a t e  

V St ra in  energy  

Suffix ~ or y af ter  ~ or w indicates  different iat ion.  

The  equa t ions  govern ing  the  pos t -buck l ing  behav iou r  of t he  p la te  are 

V~de = E{ (w,~,) 2 - -  w,~w,~,} . . . . . . . .  . . . . . . .  (27) 

Ov'w = - -  + . . . . . . . . . . . . .  ( 2 8 )  

Owing to the  ex t r eme  diff iculty of ob ta in ing  an exact  so lu t ion  of these  equat ions ,  a p p r o x i m a t e  
m e t h o d s  m u s t  be employed .  A form for w is chosen which  includes  var ious  p a r a m e t e r s  and  which  
gives a good  r ep resen ta t ion  of t he  t y p e  of d i s tor t ion  observed  in practice.  An  a p p r o x i m a t e  
so lu t ion  of equa t ion  (27) is t h e n  possible b y  s imple in tegra t ion.  The  var ious  p a r a m e t e r s  are 
found  f rom a m i n i m u m - e n e r g y  t h e o r e m  which  is used  in preference to  equa t ion  (28). 

8 



The assumed form for the deflection is 

~Y ~ (x cot ~) ] W=W~a~COSuCOS7 - -  y 

= ZUma x COS T COS b 

(29) 

Subst i tu t ing this expression in equat ion (27) and integrat ing gives, for the par t icular  integral,  

E W m a x  2 ' 

For  the complementary  function only terms which give rise to average values of the  stresses 
are considered ; 

. .  ( 3 1 )  ¢(°) = - -  ½P,x ~ - -  q x y  - -  ~ p , y  , . . . . . . . . . .  
and we have 

¢ = ¢(p)+ ¢(~). ..  . . . . . . . . . . . . . . .  (32) 

Restr ict ing ¢ in this way means t ha t  is is not  possible to satisfy, the bounda ry  conditions 
exactly, but  average values for the overall  shear and compressive stratus may  be found" 

e,y = q + u ~ w ~ 2  c o t  W . . . .  (33) 
4P ' " . . . . . . . . .  

i b y - - v p .  ~ w  .... 2{(/)~ } (34) 
%Y--  E + 8l  ~ + c ° t 2  ~ ' " . . . . . . .  

. . . . . .  ( a s )  p ,  - + . . . . .  
e.~ = - E 8 P  . . . .  

Equa t ions  (33), (34), (35) correspond to equations .(3), (4), (5) respectively of the  main text .  

I t  is convenient  to regard the  strains e,,, %y and e,y as fixed and then  express the  fact t ha t  the  
strain energy of th6' plate  is a min imum with  respect to l, ~, Wm~ (the static analogue of Kelvin 's  
min imum energy theorem). 

From well-established theory  the s t rain energy in a strip of plate of length l is 

V --  - {(¢~, + ¢,,)~ --  2(1 + v)(¢,,¢,, --  5,,~)} 
• ; - ~ 1 2  J - b ~ 2  

+ D{(w,,~ + wyy) ~ -  2(1 -- v ) ( w = w y y -  w,y~)) 1 d x  d y  . . . .  

and if the values of ¢ and w,  given by  equations (32) and (29) are subst i tu ted we find 

V~4Wm~x~(1 + Jl ~) sin'  V Yg'tt2Wmax 2 ~2)2 
V = E t b l  L " - 2 ~  + 96b~(1 - -  V~ {(1 + + 4X ~ cos ~ ~o} 

1 + _ p { ½ p  2 + ½ p 2  vlb,p, + (1 + v)q2}l . . . . . . . . . .  (37) 

and the average strain energy per uni t  length is 

? = V/Z . . . . . . . . . . . . . . . . . . . . .  (38) 

9 



The conditions of minimum strain energy are now 

aW o r ~  = O, . . . . . . . . . .  (39) 

- -  _ _  . , . ~0 or ~ = 0 ,  . . . . . . .  (40) 

~Wma~ or ~ = 0 . . . . . . . . . . .  (41) 

subject to equations (33) to (35) being satisfied. 

On introducing the non-dimensional parameters used in the main text, and equating e**, ayy to 
the strains in the stringers and frames, equations (39), (40), (41) may be written, respectively: 

2~2A 2 
2 + cd + 2{Sas - -  a(1 + S)} -[- ~2(FaF + 1) - -  4~ ,  + ½(1 + 22)(2 + ~ )  = 0 ,  . .  (42) 

(1 + 
(2 + 7 ) 2  ~ + { S ~ s  - -  ~(1 + S)}  - -  F ~ +  (2 - -  ~ ) , / ~ .  - -  1 = 0 . . . . . . .  (43) 

(1 + ( 
(2+~2)  2 2 + { S ~ s - - a ( 1  + S ) } - t - F a F  2-t-~2 2 ~  -t- - -  

- -  2 ~  + ½~2 + (1 + ~2)2(2 + ~ )  = 0 (44) 
8~2 . . . . . . . . . . .  

Equations (6) to (8) of the main t ex t  are derived by suitable combination of equations (42) to 
(44). 

A P P E N D I X  n 

Example Based on Direct Parametric Solution 

The example considered here is the same as that  considered in section 5, for which S = 0.5, 
F = 0 " 2 ,  and v = 0.3. 

W e  n o w  choose  an a r b i t r a r y  v a l u e  for  ~ a n d  s u b s t i t u t e  in e q u a t i o n  (11). L e t  us  t ake ,  for  
c o n v e n i e n c e ,  2 = %/2 so t h a t  ~ = 2. , E q u a t i o n  (11) is n o w  

(19"5~" - -  18" 90) (1" 2~ ' + 2 .72~  ~ + 5 .92)  - -  (7 .92  - -  0.78~2)(16~" + 19.4)  = Z = 0 .  ( 4 5 )  

This  e q u a t i o n  m a y  be  so lved  b y  t r ia l  a n d  error.  

W i t h  ~2 = 2, Z = - -  2 . 0 9  ;~ w i t h  ~" =- 2 .1 ,  Z = + 40 .2 ,  so t ha t ,  on in te rpo la t ing ,  we  can  
t a k e  ~2 = 2 .005 .  

F r o m  e q u a t i o n  (12) we  n o w  find A 2 = 1 .573  a n d  f rom e q u a t i o n  (13) ~ = 2 .10 ,  whence ,  f r om 
e q u a t i o n s  (3), (8) and  (6), y = 2 . 9 5 ,  as = 1 .18  a n d  aF = 2"77.  

Va lues  of 22 equa l  to  1 .1  a n d  2 . 5  h a v e  also b e e n  t aken .  T he  n u m e r i c a l  resul t s  of all t he  
ca lcu la t ions  are  p r e s e n t e d  in t a b u l a r  f o rm  below.  
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A P P E N D I X  11I 

For  the  case of combined shear and compression it  is convenient  to obtain the solution for t h e  
case in which the rat io of applied compressive load/appl ied shear load remains cons tant  during 
loading. If we denote this  ratio b y  ~ we have  

= o(1 + S ) I ,  . . . . . . . . . . . . .  (46) 

and the equations corresponding t o  those of para. 3 are 

[{e'(1 + S). + ~ } ( Z '  @ 24' + 5) --  2(2' +:  1){2(1 + S) + vS(~' --  1)}] x 

x [~'F,t2(~ ~ + 1) + ~2F{2Z~(,t ~ + 2) - -  v(;L ~ + X~ + 2)} + 2;~(1 + 3 F  --  vFX~)] 

= [2(,~ ~ + 1){(1 + F)(,V -- 1) + 2 v F } - -  vF~(~. ~ + 2~ ~ + 5)] X " 

× [~'{~ + ~= + . 2  + S(3~ ~ +  ~ -+: 2)} + ~ ( X  ~ + 1) + 2-~ ' + 2S~=(3~ ' --  v)],  . .  (47) 

8A ~ = ,1'(2 + ~)~[{~'(I + S) + ~}(~ + 2,t ~ + 5) --  2(1 ~ + 1){2(1 + S) + ~S(a ~- I)}] (48) 
¢~{;¢ + ~2 + 2 + S(3;¢ + 2~ -47 2)} + ~fl(;t ~ + 1) + 2;¢-}- 2;,~S(3;t ~ --  v) -' 

+ 1) 
[} ( , V +  2;~ ~ + 5 ) -  ~ ( 2  + ~)~  ' " . . . . . . . . . . . . .  (49) 

o(i + s ) =  . . . . . . . . . . . . .  (5o) 
Knowing ,~, ~, A, 3, o the  functions y, ~s and ~ m a y  be found direct ly from equations (3), (8) 

and (6) respectively. _. 

,,, -- .- - A P P E N D I x  -IV .... - " " 

[' ('1] . Derivat ion of  the Differentials (d'c/@)l, ~ ~ / ,  etc. 

In  determining the differentials (&/d),)~, ~ 

in which the f lex ib i l i ty  of a s t ructure  is related to the  flexibili ty of a s t ructure  constrained to 
buckle in certain fixed modes.. Identi t ies  (C) and (G) of Ref. 7 s ta te  t ha t  the  flexibil i ty d),/dT:' 
and cross-flexibilities, e.g.,  dos/d'~, at the  onse t  of buckling do not  depend on tile rate  of change 
of mode shape. Thus we m a y  take ,t = ~ = 1 in equations (3), (4), (5) and (44), i.e., (41), which 
on wri t ing F for (1/3)A 2 reduce s imply to 

( 1  + F ) a ~ - - : ~ S ~ s  = 4 r ]  . . . . . .  (51) 
(1 + S) s ± ,vo  = 2 r  . . . . .  

. . . . .  ~ - -  1 - - F o r  F ~- ½ S a s =  I '  

The flexibilities on this  basis do not  va ry  w i t h ,  so t ha t  by  simple el iminat ion we can deduce 
equat ions (14), (21), (24) of the  m a i n t e x t .  - ' 

T o c a l c u l a t e l d {  ~]dr__ 

- 

a n d  we shal l  Calculate (d'y/d*=), from iden{ity (E) of Ref. 2. 

~-11 



d~ 2 )1 and \ d~ ~ )1 

2will be calculated from ident i ty  (H). 

Consider now tha t  2 is the independent  variable and consider the s tate  of the structure when 
,~. has increased to (1 + d2). F rom equat ion (11) by  subst i tu t ion and neglecting second order 
quant i t ies  it will be found t ha t  ~ has increased to (! + oc'd,~), where 

, . . .  ( s 2 /  
= g_ + S + 7F + SF(7 + 3 v - -  ~,~)] . . . .  

Fur thermor  e , from equat ion (12)' 

dZ ] ~ = 2  I + S + 7F + SF(7 + 3 v - -  ~) ' "" 

so t ha t  from equat ion (13) , ,  = 1 + ~ dZ, where 

3 [1_ + 2S + 5F + SF(6 + 4~, --  ~,~)] 
(54) 

~ = 2 \ 1  + S + 7F  + SF(7 + 3~ --  ~) ] . . . . .  

Now let the  structure be constrained to buckle in this mode alone (Z = 1 + d2, ~ = 1 + ~'d~). 
The stiffness of such a constrained structure may  be de te rmined  from a set of equations similar 
to equat ion (51), namely,  

(1 + , ) (r  - ~) 

(1 + F ) ~ -  ~S~s 

(1 + S)~s - ~F~F 

--  1 --  F ~ { 1  --  (3/2) dZ} --  {Sos (1 --  ~' da) 

= rE1 + {2 + (1/3)~'} dzj 

= 4PE1 + {½ + (1/3)~'} dZ] 
* 

= 2/ ' [ !  + {2 --  (2/3),~'} d;t] 

= r { 1  - ( s / 3 ) ~ '  d ~ }  

. .  ( s s )  

If these equations are solved by  simple el imination they  give expressions for the flexibilities 
in the  form 

from equat ion (54). 

And similarly 

# 

Now since 

+ + 

we have by  equat ing coef-ficients in equations (56) and (58) 

whence, from ident i ty  (E) of Ref. 7" 

(d~r~ 3A1 
~]~- 2~ "" 

12 

& /,,~ = \ & )l + -ff 

& J,~ = \ & )1 + 

I 0 @ • 

. . . . . .  ( s s )  

. . . . . .  (57) 

. . . . . .  ( s 8 )  

. . . . . .  ( s 9 )  



Simi la r ly  we h a v e  f rom i d e n t i t y  (H)" 

-ida-- 1i 
(dT:/@) ~o, etc.,  a re  f o u n d  b y  s t a n d a r d  m e t h o d s  if we observe  t h a t  t --+ oo a s ,  --+ oo. 

(60) 
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