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Summary.--The supersonic flow over bodies for which the surface boundary condition may be satisfied on a circular 
cylinder is considered. The method is based on the linearised small-perturbation theory of supersonic flow. The 
disturbance velocity potential is obtained as a Fourier series, each term of which contains a certain basic function and 
the first eleven of these functions are evaluated. The pressure distribution and wave drag have been calculated for 
some bodies consisting of circular cylinders surmounted by canopies. An extension of the method to solve certain 
wing-body interference problems is also described. 

I. I~troduction.--In recent  years  a ve ry  considerable a m o u n t  of work  has been done on the  
supersonic flow over  bodies whose geomet ry  is snch t h a t  the  l inearised smal l -per turba t ion  
equa t ion  for the veloci ty  potent ia l  m a y  be used. No general  solution has been given for the  flow 
over such bodies, and fur ther  restrict ions mus t  be imposed on the  geometry,  leading to various 
theories,  all based ini t ial ly on the  l inearised equation.  This paper  is concerned wi th  an extension 
of one of these theories, t ha t  known as quasi-cyl inder  theory,  which  was first discussed by  
Lighthi l l  1 and  la ter  developed b y  W a r d  2. These authors  considered the  flow pas t  a body  of 
revolut ion which  did not  differ m u c h  from a cylinder.  Lit t le  o ther  work  seems to have  been 
done, except  for a papeP  by  Ferrar i  dealing wi th  quasi-cylinders hav ing  m i n i m u m  wave-drag.  

Up till now the  t e rm ' q u a s i - c y l i n d e r '  has been used to denote  a body  which  is not  only 
approx imate ly  cylindrical  in shape, bu t  is also axisymmetr ical .  In  this paper  the  term ' quasi- 
cy l i nde r '  is used more  general ly to  denote  a body  which  is only approx imate ly  cyl indrical  in 
shape. The  theory  of Refs. 1 and  2 is ex tended  to quasi-cylinders which, t hough  t h e y  are no t  
axisymmetr ica l ,  are such tha t  the  surface b o u n d a r y  condit ion can be applied on a circular  cylinder.  

The  equat ion  satisfied by  the  veloci ty  potent ia l  is solved by  operat ional  me thods  and  the  
potent ia l  is ob ta ined  as a Four ier  series. E a c h  t e rm of this Four ier  series contains  a f u n c t i o n  
which  is the  same for all bodies of the  above type.  These basic functions are inverses of Laplace  
t ransforms involving Bessel functions of imaginary  a rgument  and  have  to be eva lua ted  numer i -  
cally. The technique  used for evalua t ing  these functions is described in a la ter  section and  the  
first eleven are  t abu la ted  in Table  1. 

The m e t h o d  seems to  be especially sui ted to de termining  the  flow over canopies m o u n t e d  on 
circular cylinders,  and  the  examples  worked  out  are bodies of this type.  

* R.A.E. Tech. Note Aero. 2404, received 13th June, 1956. 



In theory, the method can be extended to solve certain wing-body interference problems. In 
these the wings must  be such tha t  the surface boundary condition can be satisfied on a plane, 
while the body must be a body of the type discussed above and symmetrical about the wing 
plane. The disturbance velocity potential is obtained as a Fourier series involving the same 
basic functions as before. Now, however, the functions are needed not only on the cylinder but  
also on the wing and their com.putation in the lat ter  case is a much more difficult problem. I t  is 
hoped to evaluate them on a high-speed digital computor and to tabulate them in a future paper. 
There are grounds 4 for believing that  some at least of these functions are being tabulated in the 
U.S.A. 

2. Formulation of the ProbIem.--If  a body of the type described in the previous section is 
placed in a supersonic free stream then, provided tha t  the slope at every point of the body, in 
the direction of the free stream, is small, linearised theory may be used to determine the flow. 

In view of the approximation to be made when the boundary conditions are applied, it is 
desirable to introduce cylindrical polar coordinates, x, r and 0. The x-axis is taken in the 
direction of the free-stream velocity, and r is the distance from the x-axis (since the body does 
not depart far from a circular cylinder, the axis of this cylinder may be taken to be the x-axis). 
x is measured from the mouth of the quasi-cylinder. The velocity of the free stream is U and 
its Mach number is M. The symbol B denotes %/(M 2 -- 1). The velocity potential, #, of the 
flow may be written as # = Ux + U¢. ¢ is the reduced disturbance velocity potential due to 
the presence of the quasi-cylinder, the disturbance velocities being U¢~, U¢ ,  and (U/r)¢o. The 
linearised approximation for @, the pressure coefficient, is 

C ,  = - -  2¢, . . . . . . . . . . . . . . .  (1) 

I t  will be assumed tha t  ¢ vanishes upstream of the quasi-cylinder. This is equivalent to 
assuming tha t  the pre-entry stream tube, whose boundary separates the internal and external 
flows, is cylindrical. 

¢ satisfies the linearised equation of supersonic flow: 

= Cr, + r Cr + - ¢ 0 0  . . . . . . . . . . .  (2) 

The following boundary conditions must also be satisfied. First, the normal component of the 
velocity must vanish everywhere on the surface of the quaSi-cylinder, whose equation may be 
written 

r = R [1 + 0 ) ] ,  • . . . . . . . . .  ( a )  

where e(x/l, O) < <  1; 1 is the length of the cylinder and R has the dimensions of a length. 
Thus, within the accuracy of the linearised theory, 

bod  - -  7 O (4) 

where e'(t, O) is written for at(t, 0)/at. Secondly, since disturbances due to the presence of the 
body must be confined to the region downstream of the Mach lines emanating from the mouth 
of the body, 

¢ -+  0, as r --+ oo . . . . . . . . .  (5) 

I t  remains to find a solution of equation (2) satisfying (4) and (5). 

3. The Operational Solution of the Limarised Equation.--Using non-dimensional co-ordinates, 

= x I ( B R )  . . . . . . . . . . . . .  (6) 
r' -= r / R ,  . . . . . . . . . . . . . .  (7) 
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equat ion (2) becomes 

¢~'~' = ¢ ' " "  + 7 ¢~" + ¢oo, . . . . . . . . . .  (8) 

with  bounda ry  conditions 

(¢,,),,=1 -~ 7 e x', 0 . . . . . . . . . . . .  (9) 

and ¢ --+ 0, as r '  --> ~o . . . . . . . . . . . . .  (10) 

The Laplace t ransform of a function f ( x ' ) ,  writ ten f ( p ) ,  is defined as 

f ( p )  = e-~" f ( x  ') dx '  . 
0 

The operat ional  form of equat ion (8) is, therefore ~, 

~2~ = G~, + ~¢, ,  + Go, . . . . . . . . . .  (11) 

with boundary  conditions 

R ~ (¢~,),,=1- Z ~(p' 0), . . . . . . . . . . . . . .  (12) 

where g ( x ' ,  O) = ~' x ' ,  0 , . . . . . . . . . . . .  (13) 

and ~ -+  0, as r '  -+  oo . . . . . . . . . . . . .  (1 4) 

The method  of separat ion of variables applied to (11) leads to the  well-known solution of this  
equation,  

= A~(p)  K~(pr ' )  + C,,(p) I,~(])r') cos nO 

where the functions K~ and I .  are Bessel functions of imaginary  argument  6, and A~. B~, C.  and 
D,~ are a rb i t ra ry  functions of p. 

Since I,~(pr') ---~oo as r'----~-oo, while K.~(pr') ~ 0 as r'---~ oo, (14) will be satisfied by  writ ing 

2l ~ I d} _= A~(p)  cos nO + B~( ) sin nO K,(25r') . . . . . . .  (15) 
= 

The boundary  condit ion (12) requires tha t  

io A,~(p) c o s  ~0  + B,~(p) s in  nO K . ' ( / ~ )  = T ~ ( p ,  0)  . . . . .  (16) 

This suggests tha t  ~(p, 0) and, hence, also e' ( ( B R / l ) x ' ,  0} should be expanded as a Fourier  
Series in 0 and, writ ing 

~ ( ~ x ,  0): ~o~ l ~o~'~ ~o~0 ÷ ~x,~ ~ 0 1  . . . . . . .  ~,7~ 
and 

~(p ,  0) = 07.(p) cos n0 + b.(p) sin nO , . . . . . . . .  (18) 
~'l,= 0 
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it is found, on comparing equations (16) and (18), that  

A,(p)  --  R2 g"(P) 
I pK~ ' (p ) '  " . . . . . . . . . . . . .  (19a) 

R 2 ~,,(~) 
B ~ ( # )  _ 1 p o ( ~ )  . . . . . . . .  K ' . . . . .  ( 1 9 6 )  

Substitution of (19a) and (19b) into (15) gives 

R~ ~ Ida(p) cos nO + ~,,(p) sin nO I PK~'(p)" "" = -T ,,=0 K,,(pr') (20) 

It is now convenient to introduce certain basic functions, V,,(X', r'), defined by their transforms : 
K,~(pr') 

lV,,(p, r') - -  pK~'(p) ' . . . . . . . . . . . .  (21) 

and (20) may now be written, 

Application of the product theorem of operational calculus 7 to (22) gives ¢ as 

In the original coordinates (23) becomes 
R co 

¢ - -  ~ l  ~=0 f 0  ~,~ t "~ - "9~1 Xl " • 

Using (1) with (24), 

Cp = Bl ,~oJo--ffR V~ \ B-I~ ' a,, ~-R cos n0 + b,~ ~-~ sin n0 dx~ 

2R ~ (0, R ) l a " ( - f f R )  nO + b, (B-R)sin no I . . .  (25) + B1 ,~o V,  x cos x , . .  . 

with V,/  (t, r/R) written for 3V(t, r/R)/~t . 

After a partial integration (25) becomes 

Cp-= Bl ,,_o V" (BR L) /a ' (0 )  cosn0 + b,,(0)sinn0 I 

+ ~ ,  0V'~\ ~-R , a~' ~-~ cosn0 + b , /  Sill nO dx~. 

Hence, 

2R ( x ) l a , , ( 0 ) c o s n 0  + b,,(0)sinn01 (c,)~=~ = -BT ~ v,, -F~ 

2 oo f:  (X __ ~l'~ I ~' ( '~1 ) ( Xl ) } +-B~,~o V , \  B R  ] a, -BR c o s n 0 ~ b , , '  ~ sin nO dx , .  .. (26) 
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In  the  above equat ion and throughout  the  rest of the  paper  V,,(t) is wr i t ten  for V,,(t, 1). 

(26) gives the  pressure coefficient on the  quasi-cylinder and the  drag, D, is given by  

½pv - 0 ,0 Ra0 x, 

where p is the  densi ty  of the  free stream. C~, the  drag coefficient based on the  cross-sectional 
area of the circular cylinder r = R, is 

Using equations (17), (26) and (27), 

4R ~ x 

2 R ~ ,  ' fa,, b,~ x 

a,, and  b,~ are defined by  (17). The V,, are functions which are independent  of the  part icular  
form of the  function e(x/l, 0). Their evaluat ion as functions of x and  n is a numerical  problem, 
the  solution of which is discussed in the  nex t  section. 

4. Evaluation of the Basic Func t ions . - -The  inversion formula* for a function f(x),  the  t ransform 
of which  is f ( p ) ,  is 8 

1 r - f(x) --  2~i J~_,®f(fl) ep* dp , . .  . ~ . . . . . .  (29) 

the  integrat ion being along a lille from c --  i oo to c + i oo such tha t  all the poles of f (p)  lie to the  
left of this line. Subject  to this requi rement  the  value of c is arbitrary. (29) may  be used to 
derive a formula for V~(x, r), 

V.(x,  r) = 1 ~c+,o~ K,, (pr) ep ~ dp . . . . . . . .  (30) 
p K , , ' ( p )  ' 

where n is a positive integer. K~(pr) and K~'(p) both  h~ve a branch point  at  p : 0 and this 
introduces a complication into the  evaluat ion of the  line integral. Apar t  from this it is also 
necessary to know where the  zeros of K,,'(P) lie. The general result, for the  zeros of K~'(p), 
where v is not  necessarily an integer, is ~ tha t  K~'(p) has all its zeros to the  left of the  imaginary  
axis and the  number  of zeros is the  nearest  even integer to v + ½ (the only exception to this is 
when  v + ½ is an odd integer;  in this case the  number  of zeros is v + ½). Thus Ko'(p) has no 
zero, KI'(p)  and K2'(p) each have  two zeros, K3'(p) and K~'(p) each have four zeros, and so on. 
The  zeros are symmetr ica l ly  placed about  the  real axis (with one zero lying on this axis when 
v + ½ is an odd integer). For the  m o m e n t  it will be assumed tha t  these zeros are known. 

* Strictly speal~ing the variables x and r used throughout this section should be written x'  and r' for consistency 
with section 3, but the primes have been omitted for simplicity. 
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The integral  in equat ion (30) can be evaluated integrat ing V,(.p, r) round the  contour  of Fig. 1. 
Suppose there  are 2m zeros of K, ' (p) ,  occurring at 15 = ~ ,  ~ going from 1 to 2m inclusive, then  
the  residues of 12,(p, r) e ~ are 

_ K,,(r~) exp x ~  (i + 1, 2, . . . ,  2m) . 
~K,/'(~,) ' 

As the  radius of F tends to infinity the  behaviour  of Kn(p) for large values of p shows tha t  the  
integral  round /~ vanishes. As the  radius of y tends to zero the behaviour  of K,,(p) for small 
values of p shows tha t  the  integral  round y vanishes. Hence, 

V,~ (x ,  ~) - -  2~i ® p K / ( p  e ~) 2~i p K , / ( p  e -~) 

- -  A .  - -  r z - T T - ~ g ~  . . . . . . . . . . .  
. . . .  ( a )  

~ 0 W  1° ,  

K , ( p  e ~:") = e~:"'~K~(p) ~ ~iI,~(p), 

- -  N , ' (P  e -~'~) = eT'~N, ' (P)  T ~ i I , ' (p)  . 

J I 

U 0 

U • 

4 

t t 

• J 

• I 

a Q 

• ° 

4 

O 6 

• ° 

. .  ( 3 2 3 )  

. .  ( 3 2 b )  

From the  differential equat ion for K.(p) ,  

1 K,~'(~,) + 1 + K, , (~ ) .  K."(od) --  ~, (33 )  

Subst i tut ion of (32a), 32t)) and  (33) in (31) gives, after some manipulat ion,  

2.~ o~K~(r~i) exp ~ix f --  V. (x , r )  = --  ~ ( ~  + n~)K.(~, ) + (-- 1)" ~°e-P*K'~(Pr)I'/(P) I , , (pr )K/ (p)  
,=1 0 P [K ,(p)] ~ + ~ [ i , , ( p ) ] ~  d p .  (34) 

This function has to be evaluated for a range of values of x, r and n in order to solve wing-body 
interference problems in which the  potent ia l  away from the  body  is required. In  the  second 
t e rm the  in tegrand tends to zero fairly quickly as p increases, and all the  functions required are 
well tabulated.  The  series, however,  involves K,~ of complex argument.  No tables are available 
for K .  when the  a rgument  is complex and the  amount  of t ime required to work out K.(roQ on 
a desk machine  for, say, eleven values of n and a sufficient range of values of r (r = 1 to 11, say), 
would be very  great. 

However,  for problems in which the  potent ia l  on the  body  only is required, V .  is needed  for 
r = 1 only, and  (34) is considerably simplified when r is put  equal to unity• Since ~° the  
Wronskian  of I,~ and K .  is equal to - -  l /p,  i.e., K. (p ) l , / (p )  --  K , / (p ) I . (p )  = I/p, (34) becomes, 
on put t ing  r = 1, 

2m f m ~i exp ~ x  e -p~ dp (35) 
= - + n ' )  + ( -  1 ) -  , - - .  . . . .  

,=, o ~K,, (p)~ + a"EI,/(p)]' p '  

T h e  integral  is not  very  t roublesome to evaluate. For  n > 0 it is small compared wi th  the  
series. Further ,  K. ' (p)  and I . ' (p)  are easily obtained in terms of K,~_~(p), K. (p) ,  /,,-alP) and 
L,(P). The last four functions are well tabulated~L The series involves exponential  and trigo- 
nometr ical  functions and  the  zeros of K,,'(p). The position of the  zeros may  be found 
approximate ly  by  interpolat ing between the  zeros of K,,+~//(~) ; (K.+~/((p) can be expressed as a0 

. + , / 2 ( P ) =  - -  e-* 1 + n ! 2  "+~ + , = 1  s ! ( n - - s +  1)l(2/5) s 
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and the zeros are obtained by solving an algebraic equation of the (n + 1)th order). If the 
first approximation to a zero of K,'(p) is Po, say, then for small ~, 

K~'(po + ~) K~'(po) + K,  (P0) 

and a better approximation is 
Kj(p0)  

]91 = Po K$(po) " 

This process can be repeated as often as necessary. 

Once the as have been obtained the problem of computing V,,(x) from (35) is merely tedious. 
Writing ~ = -- fi~ + i7~, and remembering tha t  -- /~ -- iy~ is also a root of K,'(p), the formula 
for V,(x) becomes 

Vn(x) = 2 ~ ~'(fi'~ q- n~ + ),,3) cos ~,x + 7,(n 2 -  /~2 _ ~2)Sill ~,X exp (--/~,x) 
i : l  ( S i  S + n~ -- ~i~)" + 4/~,~ri ~ 

f~ e-*~ @ ' (36) 
+ ( -  1)" 0 EK.'(P)] ~ + ~EL'(P)? p-r . . . . . . . . . . .  

There is one check on the computing" this is the fact that,  for all n, V,,(0) = 1. This result is 
not obvious from (35), but can be seen quite easily by  considering the operational form of V,,(x). 
From (20) this is 

K,,(p) 
17.(p) _ p K . ' ( p ) "  

The asymptotic expansion of K~(p) is well knownt2; it is 

/~ \~/2  (1 4n ~ -  1 °-*. + + )  
Hence, 

1 1 . . . . . .  (37) 
; , , ( ~ )  ~ p  2:~ . . . . . . . .  

The asymptotic expansion of the transform of a function corresponds to a Taylor expansion of 
its inverse ~3, and, inverting (37), 

v,,(~) = 1 - ½x - .  . . . . . . . . . . . .  ( 3 8 )  

This proves the above statement tha t  V,,(0) = 1. For all the eleven func t ionsworked  out 
(n = 0, 1, . . .  , 10), this check was satisfied to five places of decimals. 

Vo(x) and V~(x) have been tabulated previously. Vo(x) is the same function as the U(x) of 
Ref. 1, and V~(x) is the same function as the V(x) of Ref. 2. No significant difference was found 
between the results of this paper and those of Refs. 1 and 2. 

V,,(x) is tabulated in Table 1 for eleven values of n and for a range of values of x, (0 to 20). 
Two of the functions, Vdx) and V6(X), are shown graphically in Fig. 2. The roots of K,'(p) for 

= 1 to 10 inclusive, are tabulated in Table 2. 

5. Some Applications of the Method.--The theory developed in previous sections can be applied 
to quasi-cylinders with cross-sections which do not depart far from circles. 

An application was made to a configuration consisting of a circular cylinder surmonnted by  a 
canopy. The canopy consisted of a body of revolution formed by  two tangent  ogives placed 
back to back with their axes of revolution coincident with the top of the cylinder. The ratio of 
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canopy height to the radius of tile cylinder was 0.5, and the length of the canopy was five times 
the radius of the cylinder. An identical canopy was mounted symmetrically on the bottom of 
the cylinder. The drag was calculated for a Mach number of 1-4. At this Mach number there 
is some interference between the two canopies and so the flow over a single canopy was also 
determined ill order to estimate the effect of this interference on the drag. 

The results obtained by using the method described in section 3 are shown in Figs. 3 and 4. 
The drag coefficient (based on the total  canopy frontal area) came to 0. 247 when both canopies 
were present. This compares not unfavourably with the experimental value of 0.30 obtained 
when the drag of this configuration was measured by the free-flight model techniquelt  When 
only one canopy was present the theoretical drag coefficient (based on canopy frontal area) came 
to 0-282, an increase of 14 per cent on the value for the first case. Fig. 3 shows the distribution 

1 F ~ along the x-axis of the drag loading, i.e., o.f ~ (Cp),.=R sR dO ; the drag is obtained from this 
0 

by multiplying by R and integrating with respect to x from x = 0 to x = 1. Here, s is the 
slope at a point on the configuration in the x-direction and R is the radius of the circular cylinder 
on which the boundary conditions were satisfied. R was taken as 1.021 times the radius of 
the circular cylinder on which the canopy was surmounted, giving the helpful value of 5 for the 
value of 1/BR in the application of (28). Fig. 4 shows the distribution along the body of the 

1 ['~ 
lift loading, i.e., of -- R J0 (Cp)~=R R dO, when only one canopy is present. The disturbance dne 

to the presence of the canopy almost dies out in a distance equal to one length of the canopy. 
The theoretical lift coefficient and pitching moment about the nose of the canopy are so small 
t h a t  they cannot be accurately determined by  the approximate theory used. 

I t  was not found possible to give examples of pressure distributions over the configurations. 
The pressure coefficient is given by (26) and the drag by (28). Inspection of these two equations 
will show tha t  the series for the drag converges more rapidly than the series for the pressure 
coefficient, due to the presence of an extra a,,.(x/BR) in the former series. In fact, eleven terms 
are  not enough to give even an approximation to the pressure coefficient, while they are quite 
sufficient for the drag. 

The experimental work mentioned above also gives results for canopies with windscreens; 
these canopies are derived by a geometrical process from the above basic canopy. I t  is hoped 
to apply the technique of this paper to such canopies in a later note. 

6. Wing-Body Interference.--The preceding work can be extended to solve certain wing-body 
interference problems. The wings must be such that  the boundary condition can be satisfied on 
a plane, while the body must be of the type discussed in this paper and symmetrical about the 
wing plane. This plane may be taken to be the plane 0 z 0, 0 ~- ~. 

I t  is assumed tha t  the potential due to the wings alone has already been determined by 
linearised wing theory. For simplicity in calculating the velocity potential due to the wing 
alone, the wings are assumed to be continued through tile body to meet on the axis (if any other 
assumption is made with regard to the extent of the wings, the only difference is in the values 
of tile separate potentials Sw, ¢1 of equation (39) below, the value of $ remaining the same). 

The velocity potential, #, of the flow may be written as # = Ux + US, $ being the distur- 
bance velocity potential due to the presence of the wing-body combination. $ is writ ten as the 
sum of two potentials, 

4' ---- Sw + $i . . . . . . . . . . . . . . .  (39) 

where ~v is the potential due to the wings alone and ~± may be termed the interference potential 
due to the presence of the quasi-cylinder. S w is assumed to be known and St is taken as a 
potential of the form of equation (15) with the cosine terms only appearing since the body is 

8 



assumed to be symmetrical about the plane 0 = 0, 0 = x. I t  follows tha t  ¢ satisfies the 
potential equation (8) and the boundary condition at infinity (14). The boundary condition on 
the wing is automatically satisfied by  symmetry. 

This leaves one more boundary condition, tha t  on the  surface of the quasi-cylinder, to be 
satisfied. Using the notation of section 3, this condition is 

= , ( ;  ) y e  ,0 , 

T o ) _  . . . . . . . .  

From this point the analysis proceeds as in section 3. The right-hand side is expanded as a 
Fourier series in 0, and Cr is obtained as 

,,=0 \ B R  ' c,~ ~ dx l  cos  nO , . .  (41) 

where the c,~ are defined by  

- / -~ '  ,0 - - R  = = - ~ c , ~  cos nO . . . . . . . . . . . .  (42) 

Cp is determined as in section 3 if required over the quasi-cylinder alone. To fred the value of 
Cp on the wing it is necessary to tabulate V,~(x, r) as a function of n, x and r. I t  was stated in 
section 4 tha t  the evaluation of V~ i n  this general case was beyond the power of a computer 
using a desk machine. A short note by  Mersman ~, however, suggests tha t  some of these functions 
may have been worked out in the U.S.A..  No further details are known a t  the moment. 

The problem of wing-body interference in combinations of the above type has also been treated 
by Nielsen 1~. 

7. C o n c l u s i o n s . - - T h e  linearised theory of supersonic flow has been used to formulate the 
problem of flow past certain quasi-cylindrical bodies and to determine the velocity potential on 
the surface of such bodies. The quasi-cylinders are not necessarily axisymmetrical but  must be 
such tha t  the surface boundary condition can be applied on a circular cylinder. The disturbance 
velocity potential is obtained as a Fourier series, each term of which involves a certain basic 
function. The first eleven of these functions are tabulated in Table 1 and it has not so far been 
necessary to go beyond this number. 

The method is particularly suitable for the determination of the flow over a circular cylinder 
surmounted by a canopy, and has been applied to such a body. The theoretical value obtained 
for the drag is in fair agreement with experiment. 

I t  is also shown in principle how the method can be extended to solve certain wing-body 
interference proMems. 

9 
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LIST OF SYMBOLS 

A,,(t,) 
" a n ( X  ~) 

B 
B,,(p) 
<(x') 

C~ 
C,,(p) 

Up 
C 

c,,(x/BR) 
D 

D,,(p) 

g(x',  o) 

h(x/1) 
L(x) 

K,,(x) 
l 

M 

m 

p 
R 

S 

U 

V,~(x, r) 

v,,(x) 

X 

X t 

2 1 .  

Arbitrary function of 15 

Fourier coefficient defined in (17) 

= V( M ~ -  1) 

Arbitrary function of p 

Fourier coefficient defined in (17) 

Drag coefficient based on a suitable area 

Arbitrary function of p 

Pressure coefficient 

Defined after equation (29) 

Fourier coefficient defined in (43) 

Drag 

Arbitrary function of p 

Defined in (39) 

Bessel function of imaginary argument of the first kind 

Bessel function of imaginary argument of the second kind 

Length of quasi-cylinder 

Math number of free stream 

2m is the number of zeros of K,/(p) 
Variable of Laplace transform (@ section 3) 

Radius of the circular cylinder on which the surface boundary condition is 
satisfied 

Radial co-ordinate in cylindrical polar co-ordinates 

= fiR 
Slope in the x-direction at a point of the canopy of section 5 

Velocity of free stream 

Inverse of K,/pr) 
pK,/(p) 

Inverse of K,,(p) "i.e., V,~(x, 1) pK,,'(p) ' 
Axial co-ordinate in cylindrical polar co-ordinates 

x/BR 
Variable of integration 

Position of zero of K,,'(p) 
-- #~ is the real part  of ~ 
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LIST OF SYMBOLS--cor~tinued 

:t: )'~ is the imaginary part of ~ 

A function always small compared with unity 

Angular co-ordinate in cylindrical polar co-ordinates 

Density of free stream 

Total velocity potential 

Disturbance velocity potential 

Defined after equation (40) 

Defined after equation (40) 

A Laplace transform of a function is denoted by a bar placed over the 
symbol for the function. 
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10 G .N.  Watson . . . .  
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TABLE 1 

7heFunctionsV.(x) 

0 
0.1 
0.2 
0.3 
0.4 
0-5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4-2 
4.4 
4.6 . 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 
6-2 
6.4 
6-6 
6-8 
7.0 
7.2 
7.4 
7.6 
7.8 
8.0 
8.2 
8.4 
8-6 
8.8 
9.0 

1.00000 
0.95182 
0.90703 
0.86533 
0.82646 
0.79016 
0.75621 
0.72442 
0.69461 
0.66663 
0.64034 

0.64034 
0.59230 
0.54960 
0.51150 
0.47737 
0"44671 
0.41907 
0.39408 
0.37141 
0.35080 

+1.00000 
0.94947 
0.89827 
0.84689 
0.79576 
0.74522 
0.69560 
0.64715 
0"60006 
0.55451 
0.51063 

0.51063 
0.42829 
0.35356 
0.28661 
0.22737 
0.17560 
0.13089 
0.09275 
0.06066 
0.03404 

+1.00000 
0.94248 
0.87226 
0.79275 
0.70710 
0.61820 
0.52859 
0.44048 
0.35572 
0.27581 
0.20193 

0.20193 
+0.07536 
--0.02052 
--0-08593 
--0.12375 
--0.13853 
--0.13563 
--0.12046 
--0.09801 
--0.07253 

+1.00000 
0.93087 
0.82975 
0.70638 
0.57044 
0.43087 
0.29549 
0.17066 

+0.06116 
--0.02985 
--0.10074 

--0.10074 
--0.18243 
--0.19460 
--0.15855 
--0.09849 
--0.03559 
+0.01537 

0.04709 
0.05880 
0-05434 

+1.00000 
0.91474 
0.77196 
0.59333 
0..40096 
0.21488 

+0.05119 
--0.07900 
--0.16988 
--0.22065 
--0.23466 

--0.23466 
--0.18008 
--0.07254 
+0.02643 

0.08112 
0.08574 
0.05587 

+0-01492 
--0.01761 
--0.03221 

0.33201 
0.31483 
0.29909 
0.28464 
0-27133 
0.25906 
0-24772 
0.23721 
0.22746 
0.21840 
0.20996 
0.20209 
0.19473 
0.18785 
0.18139 
0.17533 
0.16964 
0.16428 
0.15922 
0.15444 
0.14993 
0.14566 
0.14162 
0.13778 
0.13413 
0.13067 
0.12738 
0.12424 
0.12124 
0.11838 
0.11565 

+0.01232 
--0.00507 
--0.01867 
--0.02900 
--0.03653 
--0-04170 
--0-04490 
--0.04650 
--0.04680 
--0.04607 
--0.04457 
--0.04248 
--0.03998 
--0.03721 
--0-03430 
--0.03133 
--0-02838 
--0-02552 
--0-02278 
--0.02019 
--0.01778 
--0.01556 
--0.01353 
--0.01170 
--0.01006 
--0.00860 
--0.00731 
--0.00619 
--0"00521 
--0.00437 
--0.00365 

--0.04729 
--0.02462 
--0.00594 
+0.00812 

0.01755 
0.02276 
0.02445 
0.02346 
0.02061 
0.01671 
0.01240 
0.00818 
0.00443 

+0.00136 
--0.00096 
--0.00251 
--0.00337 
--0.00367 
--0.00353 
--0.00310 
--0-00249 
--0.00182 
--0"00116 
--0.00058 
--0.00011 
+0.00025 

0.00048 
0.00061 
0.00064 
0.00061 

+0"00053 

0.03977 
0.02142 

+0.00438 
--0.00812 
--0.01490 
--0.01633 
--0.01384 
--0.00920 
--0.00410 
+0"00023 

0-00312 
0'00441 
0.00434 
0.00337 
0.00199 

+0.00062 
--0.00044 
--0.00106 
--0.00126 
--0-00113 
--0-00080 
--0-00040 
--0.00005 
+0-00020 

0.00033 
0.00034 
0.00028 
0.00018 
0"00007 

+0.00002 
--0.00007 

--0.02955 
--0.01661 
--0.00189 
+0.00840 

0-01190 
0.00965 

+0.00452 
--0.00054 
--0.00363 
--0.00426 
--0.00304 
--0.00110 
+0.00059 

0.00146 
0.00148 
0.00092 

+0.00021 
--0-00033 
--0.00056 
--0.00050 
--0.00026 
--0.00001 
+0.00016 

0.00021 
0.00016 

+0.00007 
--0.00002 
--0.00007 
--0.00007 
--0.00005 
--0.00002 

+1.00000 
0.89420 
0.70058 
0.46076 
0.21717 

+0.00561 
--0.14962 
--0.23771 
--0.26056 
--0.23005 
--0.16409 

--0.16409 
--0 .00316" 
+0.09988 

0.10487 
+0.04535 
--0"01935 
--0-04892 
--0.03882 
--0.00963 
+0.01442 

0.02108 
0-01288 

+0.00017 
--0-00791 
--0-00833 
--0.00369 
+0.00140 

0.00377 
0.00277 

+0.00080 
--0.00109 
--0.00163 
--0.00101 
--0.00003 
+0.00061 

0.00065 
+0.00029 
--0.00010 
--0.00029 
--0.00024 
--0.00006 
+0-00008 

0.00013 
0.00008 

+0.00004 
--0.00005 
--0-00005 
--0.00002 
+0.00001 

0.00002 
+0.00002 
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T A B L E  1--continued 

x Vo(x) 171(x) v~(x) v.(x) v4(x) v~(~) 

9.2 
9.4 
9.6 
9-8 

10.0 

10"0 
10-5 
11"0 
11"5 
12.0 
12.5 
13"0 
13"5 
14"0 
14"5 
15.0 
15.5 
16.0 
16.5 
17.0 
17.5 
18.0 
18-5 
19-0 
19.5 
20.0 

0.11304 
0.11054 
0.10815 
0.10586 

--0.00304 
--0.00253 
--0.00211 
--0.00176 

+0.00043 
0.00032 
0.00021 
0.00012 

--0.00010 
--0-00009 
--0"00007 
--0.00004 

+0.00001 
0.00003 
0.00003 
0.00002 

0.10366 

0.10366 
0.09853 
0.09388 
0.08965 
0.08578 
0.08222 
0.07895 
0.07593 

--0.00148 

--0"00148 
--0.00099 
--0"00073 
--0.00061 
--0.00056 
--0.00055 
--0.00056 
--0.00056 

. 

+ 0 .  
--0" 
--0" 
--0" 
--0" 
+0" 

0" 
0" 

00004 

00004 
00007 
00008 
00005 
00001 
00001 
00002 
00001 

--0.00001 

--0.00001 
+0.00003 

0.00002 
0.00000 

+0.00000 

0.00000 

+0.00000 
--0.00001 
+0.00000 
+0.00000 

0.07313 
0.07052 
0.06809 
0.06582 
0.06370 
0.06172 
0.05985 
0.05810 
0.05644 
0.05488 
0-05340 
0-05200 
0.05067 

--0.00056 
--0.00054 
--0.00052 
--0.00050 
--0.00047 
--0.00043 
--0.00040 
--0.00037 
--0.00034 
--0.00031 
--0.00029 
--0.00026 
--0.00024 

0.00001 
0.00000 

+0.00000 

+0.00001 
--0.00001 
--0.00001 
+0.00000 
+0.00000 

1 1 (2 log 2z --  2). (Ref. 16) Beyond x = 20, Vo(x ) = z + -~ 

31 
Beyond x = 20, V l ( x  ) = - -  z- 5 + -~- log 2z --  . (Ref. 2) 
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TABLE 1--continued 

v6(x) vT(~) v # )  v # )  Vlo(~) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3-4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 
6.2 
6.4 
6.6 
6.8 
7.0 
7.2 
7.4 
7.6 
7.8 
8.0 
8.2 
8.4 
8.6 
8.8 
9.0 
9-2 
9-4 
9.6 

+1.00000 
0.86941 
0.61766 
0.31698 

+0.03863 
--0.16442 
--0.26676 
--0.27121 
--0.20240 
--0.09632 
+0-01080 

0-01080 
0.13026 

+0.09259 
--0.00863 
--0.06368 

--0.04444 
+0"00427 

0.03054 
+0.02130 
--0.00196 
--0.01452 
--0.01014 
+0.00093 

0.00690 
+0.00482 
--0.00044 
--0.00328 
--0.00229 
+0.00021 

0"00156 
+0.00109 
--0.00010 
--0.00074 
--0"00052 
+0.00005 

0.00035 
+0.00025 
--0.00002 
--0.00017 
--0.00012 
+0.00001 

0.00008 
+0.00006 
--0.00001 
--0-00004 
--0-00003 
+0.00000 

0.00002 
0.00001 

+0.00000 
--0-00001 
--0.00001 
+0-00000 
+0.00000 

+1.00000 
0.84055 
0.52558 

+0"17087 
--0.11647 
--0"27156 
--0.28431 
70"19114 
--0"05279 
+0.07086 

0"14024 

0.14024 
+0.09682 
--0.04008 
--0.07611 
--0-01579 
+0.03755 
+0.02825 
--0.00814 
--0.02086 
--0.00563 
+0.00954 
+0.00811 
--0.00160 
--0.00560 
--0.00186 
+0.00240 
+0.00230 
--0-00027 
--0"00150 
--0.00059 
+0.00059 
+0.00064 
--0.00003 
--0.00040 
--0.00018 
-]-0.00014 

0.00018 
+0.00000 
--0"00010 
--0.00006 
+0.00004 

0.00005 
+0.00000 
--0"00003 
--0.00002 
+0.00001 

0.00001 
+0-00000 
--0-00001 
+0.00000 
+0.00000 

+1.00000 
0"80783 
0.42694 

+0.03114 
--0"23348 
--0"30499 
--0.21339 
--0"04710 
+0"09827 

0.16218 
0.13627 

+0.13627 
--0.03246 
--0.08568 
+0.00173 

0.05032 
+0.00949 
--0-02722 
--0.01121 
+0.01340 
+0.00929 
--0.00580 
--0.00658 
+0.00198 
+0.00422 
--0.00027 
--0.00250 
--0.00036 
+0.00137 
+0.00050 
--0.00069 
--0.00043 
+0.00031 
+0.00031 
--0.00011 
--0.00020 
+0.00002 

0.00008 
+0.00001 
--0.00007 
--0.00002 
+0.00004 
+0.00002 
--0.00002 
--0.00002 
+0.00001 

0.00001 
0.00000 

+0.00000 

+1.00000 
0.77151 

+0-32451 
--0-09407 
--0.30288 
--0.26815 
--0.08721 
+0.09481 

0.17410 
0.13284 
0.02579 

+0.02579 
--0.10162 
--0.00459 
+0-05842 
--0.00247 
--0.03298 
+0.00416 
-[-0-01831 
--0.00388 
- o -  01002 
+0-00304 
+0.00540 
--0.00218 
--0.00287 
+0.00147 
+0.00150 
--0.00096 
--0.00076 
+o.0o061 
+0.00038 
--0-00038 
--0.00018 
+0.00023 
+0.00008 
--0.00014 
--0.00004 
+0.00008 
+0.00001 
--0.00005 
+0.00000 

0.00003 
+0.00000 
--0.00002 
+0.00000 

0.00001 
0.00000. 

+0.00000 

+1.00000 
0.73179 

+0:22115 
--0.19790 
--0.32145 
--0.17739 
+0.04974 

0.17824 
0.14662 

4-0.02041 
--0.08749 

--0.08749 
--0.04715 
+0.06698 
+0.00118 
--0.03776 
+0.01328 
+0.01605 
--0.01326 
--0-00400 
+0.00881 
--0.00103 
--0-00449 
+0-00223 
+0.00166 
--0.00185 
--0-00024 
+0-00111 
--0.00028 
--0.00051 
+0-00034 
+0.00016 
--0.00025 
+0.00000 
+0-00014 
--0-00005 
--0.00006 
tO" 00005 
tO" 00001 
--0- 00003 
tO" 00000 
tO" 00002 
--0"00001 
--0"00001~ 
+0.00001 

0.00000 
+0.00000 
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T A B L E  2 

The Roots of K,/(p) 

T h e  fo l lowing  t ab l e  gives  all t h e  so lu t ions  of K , / ( - -  a 4- ip)  = O, for  n = 1 to  10 inc lus ive .  
Ko'(p) has  no  zero. 

n ~ ~ n ~ 

0.64355 
0.83455 
0.96756 
1"98162 
1.07279 
2.44093 
1.16125 
2.80372 
3.30981 
1.23832 
3-10823 
3.83945 
1.30706 
3.37302 
4-28713 
4.63644 

0.50118 
1-43444 
2.37386 
0.44080 
3.32208 
1.32259 
4.27689 
2-21193 
0"43637 
5.23662 
3.10944 
1.31040 
6.20015 
4.01418 
2.18909 
0.43517 

8 
8 
8 
8 
9 
9 
9 
9 
9 

10 
10 
10 
10 
10 

1.36941 
3.60872 
4.67839 
5.19993 
1.42667 
3.82205 
5.02798 
5.69438 
5.96253 
1.47973 
4.01755 
5.34531 
6.13751 
6.54610 

7.16673 
4.92519 
3"07327 
1"36046 
8.13578 
5.84153 
3.96284 
2.18088 
0"43478 
9.10691 
6.76252 
4"85738 
3.05917 
1.30462 
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