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Summary.—The supersonic flow over bodies for which the surface boundary condition may be satisfied on a circular
cylinder is considered. The method is based on the linearised small-perturbation theory of supersonic flow. The
disturbance velocity potential is obtained as a Fourier series, each term of which contains a certain basic function and
the first eleven of these functions are evaluated. The pressure distribution and wave drag have been calculated for
some bodies consisting of circular cylinders surmounted by canopies. An extension of the method to solve certain
wing-body interference problems is also described.

1. Imtroduction—In recent years a very considerable amount of work has been done on the
supersonic flow over bodies whose geometry is such that the linearised small-perturbation
equation for the velocity potential may be used. No general solution has been given for the flow
over such bodies, and further restrictions must be imposed on the geometry, leading to various
theories, all based initially on the linearised equation. This paper is concerned with an extension
of one of these theories, that known as quasi-cylinder theory, which was first discussed by
Lighthill* and later developed by Ward®. These authors considered the flow past a body of
revolution which did not differ much from a cylinder. Little other work seems to have been
done, except for a paper® by Ferrari dealing with quasi-cylinders having minimum wave-drag.

Up till now the term ‘ quasi-cylinder ’ has been used to denote a body which is not only
approx1mate1y cylindrical in shape, but is also axisymmetrical. In this paper the term ‘ quasi- -
cylinder ” is used more generally to denote a body which is only approximately cylindrical in
shape. The theory of Refs. 1 and 2 is extended to quasi-cylinders which, though they are not
axisymmetrical, are such that the surface boundary condition can be applied on a circular cylinder.

The equation satisfied by the velocity potential is solved by operational methods and the
potential is obtained as a Fourier series. Each term of this Fourier series contains a function-
which is the same for all bodies of the above type. These basic functions are inverses of Laplace
transforms involving Bessel functions of imaginary argument and have to be evaluated numeri-
cally. The technique used for evaluating these functions is described in a later section and the
first eleven are tabulated in Table 1.

The method seems to be especially suited to determining the flow over canopies mounted on
circular cylinders, and the examples worked out are bodies of this type.

* R.A.E. Tech. Note Aero. 2404, received 13th June, 1956.



In theory, the method can be extended to solve certain wing-body interference problems. In
these the wings must be such that the surface boundary condition can be satisfied on a plane,
while the body must be a body of the type discussed above and symmetrical about the wing
plane. The disturbance velocity potential is obtained as a Fourier series involving the same
basic functions as before. Now, however, the functions are needed not only on the cylinder but
also on the wing and their computation in the latter case is a much more difficult problem. It is
hoped to evaluate them on a high-speed digital computor and to tabulate them in a future paper.

There are grounds* for believing that some at least of these functions are being tabulated in the
U.S.A.

2. Formulation of the Problem.—If a body of the type described in the previous section is
placed in a supersonic free stream then, provided that the slope at every point of the body, in
the direction of the free stream, is small, linearised theory may be used to determine the flow.

In view of the approximation to be made when the boundary conditions are applied, it is
desirable to introduce cylindrical polar coordinates, x, # and 6. The x-axis is taken in the
direction of the free-stream velocity, and 7 is the distance from the x-axis (since the body does
not depart far from a circular cylinder, the axis of this cylinder may be taken to be the x-axis).
% is measured from the mouth of the quasi-cylinder. The velocity of the free stream is U and
its Mach number is M. The symbol B denotes +/(M? — 1). The velocity potential, @, of the
flow may be written as & = Ux 4 U¢. ¢ is the reduced disturbance velocity potential due to
the presence of the quasi-cylinder, the disturbance velocities being Ug,, Us,, and (U/r)¢,. The
linearised approximation for C,, the pressure coefficient, is

Co=—2by0 . o e )

It will be assumed that ¢ vanishes upstream of the quasi-cylinder. This is equivalent to

assuming that the pre-entry stream tube, whose boundary separates the internal and external
flows, is cylindrical.

¢ satisfies the linearised equation of supersonic flow:

qusm=¢,,+;¢r+y_lz¢w. R

The following boundary conditions must also be satisfied. First, the normal component of the
velocity must vanish everywhere on the surface of the quasi-cylinder, whose equation may be
written

r=RI[l -+ e(x/l,0)], .. .. .. .. .. (3)

where e(x/l, 0) << 1; 7 is the length of the cylinder and R has the dimensions of a length.
Thus, within the accuracy of the linearised theory,

(qSy),:R:(3—;)%@=§e'(2—‘,0), L

where ¢’(¢, 8) is written for 2&(¢, 0)/3¢. Secondly, since disturbances due to the presence of the

body must be confined to the region downstream of the Mach lines emanating from the mouth
of the body,

é— 0, as 7 —>00 . .. .. - . (5)
It remains to find a solution of equation (2) satisfying (4) and (5).

3. The Operational Solution of the Linearised Equation.—Using non-dimensional co-ordinates,
¥ = x/(BR), . .. . .. .. .. (6)
r'=v¢[R, .. .. .. .. . .. . (7)



equation (2) becomes

1 1\?
(l’x‘x' == Sbr’r' + 7_/¢7' —I_ (1',—/) ¢9a 5 . T ea “e .. PN (8)
with boundary conditions | ‘
_R* ,(BR , '
(¢rr)1:=1=78 (T—x,e) .. “ e o .. .. .. (9)
and ¢ —0, as 7' —o0 . .. .. .. .. .. .. (10

The Laplace transform of a function f(x’), written F(p), is defined as

o

F8) = | et fl) s

0

The operational form of equation (8) is, therefore?®,

152¢—¢,,+ %, +()¢ea, R € £

with boundary conditions
($)yor = zfzg(;b ), . e e e (12
where o', 0) = &' (§l§x' , 9) , R € : )
and é—0, as Y —>0. .. .. .. .. .. oo (14)

The method of separation of variables applied to (11) leads to the well-known solution of this
equation, "
cos #nf

=2D ' K. (pr) + Cup) T(pr")

sin nO:I ,

B,(p) K.(p7") + Du(p) L(p7')

where the functions K, and I, are Bessel functions of imaginary argument’, and A, B, C,and
D, are arbitrary functions of p.

+

Since I,(pr') — 0 as 7' — oo, while K,(pr') -0 as 7’ —o, (14) will be satisfied by writing

i=3 ?An(zb) cos n0 + B,(p) sin nﬂl Epr). .. .. .. (15

#n=0

The boundary condition (12) requires that
S ,A”(gb) cos #6 + B,(p) sin ne§ K, (p) =
#=0

This suggests that 5(p, 0) and, hence, also &’ {(BR/})x’, 0} should be expanded as a Fourier
series in # and, writing

Bepop. . .. (9

e(%@x 6):§ %'} cos nb + b,(x )sinn@i, .. . .. .. (17)
and ) ' '
(p,0) = > | (j))cosne—{—b(p)sinneg, R 07\
3
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it is found, on comparing equations (16) and (18), that
R* g,
A,() = 5240

. .. .. .. .. .. .. (19a
T PK,(§) (159)
R b,(p)
B, =7 e .. .. .. .. .. .. (19b
B =T 3K, ) 1ep)
Substitution of (19a) and (19b) into (15) gives
, REE : . K, (pr')
— ) cos w8 -+ b,(p) sin nb { L L - .. 20
d=T 2% ) 2K, (7) 20)
It is now convenient to introduce certain basic functions, V,L(x’, r'), defined by their transforms:
7 (g K. (pr') |
Vip, )= — e e .. .. e 21
(2, 7)) PR.(P) (21)
and (20) may now be written,
@:_ﬁidemw+h@mmﬂm@wy..‘“ (22)
n=0 \ *

Application of the product theorem of operational calculus” to (22) gives ¢ as

2 o
b= — EZ f WX — 2, 7y Ja. (%) cos 0 - b,(x,") sin n6§ ax,’ . .. (28)
In the original coordinates (23) becomes 7
o R & * X — % 7 Xy ,
b= —m2 |,V Cart &) | (FR) om0 + 0. (55) sin wfdn. @

Using (1) with (24) |
X — % ¥
?= Bl S Of BR ( BR ’F) (BR) cosnf + b, (BR) smnO;chI

2R°° x .. :
Bl EV,,< ’R) (-B—R) cosn@—l—b,L(BR)smnGg, .. .. .. (25)

with V., (¢, #/ R) written for oV (¢, 7/ R) /ot .

After a partial integration (25) becomes

2R & 7
CP=%2.V» (BR R)

#=0

tam [V Cat 5o

(0) cos 16 —+ b,(0) sin nﬁg

a,’ (BR) cos nd - b, (BR) sin %6‘ ax; .

i V. (Bx_R) goln(()) cos n8 -+ b,(0) sin n@%

w© % X — %, , X, ' ' . '
T2, ],V (x| () cosm + 0/ () sn nofdn. .. ()
4



In the above equation and throughout the rest of the paper V,(¢) is written for V, (¢, 1). -
(26) gives the pressure coefficient on the quasi-cylinder and the drag, D, is given by

D 1 p2m R (%
poi= L], Gt e (7o) RV A,

where p is the density of the free stream. C,, the drag coefficient based on the cross-sectional
area of the circular cylinder » = R, is

C =lflf2”(C) s'(i‘ G)dedx 27)
D nl 0 . plr=R l, . . e .. . .« .. ..‘ .

Cp=— %’; f : V, (%e) a (é) a,(0) duc
g0 (7) [V (5 o () 2n s
+ 502 [,V (57) [ () (0 + 5. (5g)20
tgs [ [ 7 (52 = (Fr) @ (3) + » (58) v ()

a, and b, are defined by (17). The V, are functions which are independent of the particular
form of the function s(x/I, 6). - Their evaluation as functions of x and # is a numerical problem,
the solution of which is discussed in the next section.

dw dx, .. (28)

4. Evaluation of the Basic Functions.—The inversion formula* for a function f(x), the transform
of which is f(p), is® :

f(x)zijlz—ifc+iwf(p)ep"dp, @

c—1w

the integration being along a line from ¢ — ¢ to ¢ - ¢oo such that all the poles of f() lie to the
left of this line. Subject to this requirement the value of ¢ is arbitrary. (29) may be used to
derive a formula for V,(x, #)

3

V(% 7) = _% fi: ﬁ{(@ e dp, .. .. .. .. (30)

where # is a positive integer. K,(p#) and K,’(p) both have a branch point at » = 0 and this
introduces a complication into the evaluation of the line integral. Apart from this it is also
necessary to know where the zeros of K,’(p) lie. The general result, for the zeros of K,'(p),
where » is not necessarily an integer, is® that K,’(p) has all its zeros to the left of the imaginary
axis and the number of zeros is the nearest even integer to » - 1 (the only exception to this is
when » 4 % is an odd integer; in this case the number of zeros is » + 1). Thus K,’(p) has no
zero, K,'(p) and K,'(p) each have two zeros, K,'(p) and K,'(p) each have four zeros, and so on.
The zeros are symmetrically placed about the real axis (with one zero lying on this axis when
» -+ % is an odd integer). For the moment it will be assumed that these zeros are known.

* Strictly speaking the variables # and # used throughout this section should be written #* and #’ for consistency
with section 3, but the primes have been omitted for simplicity.

5



The integral in equation (30) can be evaluated integrating V,(p, #) round the contour of Fig. 1.
Suppose there are 2m zeros of K,'(p), occurring at p = «,, ¢ going from 1 to 2m inclusive, then
the residues of V ,(p, ) e** are

K, (re;) exp xer;

K 0 Gt Lz 2m.

As the radius of I' tends to infinity the behaviour of K,(p) for large values of p shows that the
integral round I vanishes. As the radius of y tends to zero the behaviour of K,($) for small
values of p shows that the integral round y vanishes. Hence,

V(5 7) = 1 e K (rpem)dp Lf‘we‘i”‘K,,(ygb e=™) dp
ML O f_m K, (p €7 2m1 ), PK, (P e™)
2% exp wo K, (ve,)
_—ZO_—;;K—HW'. . .. .o - . « .. .. (31)
Now'®, '
K, (p e=™) = e¥" K (p) T nil () . . . . . . .. (82a)
— K, (p e*™) = ™K, (p) F sl (p). .. .. . . o . .. (82b)
From the differential equation for K,(p),
vl 1 ' ne
K,(od) = — o K./) + (1 + &—) K. (o) . . (3

Substitution of (32a), 32b) and (33) in (31) gives, after some manipulation,

 maK ) expa L rmer K (01 (p) — LnK,(p) ~
Ve = = 2 0E T aRey TV 5 TR T AL e 2B

This function has to be evaluated for a range of values of x, » and # in order to solve wing-body
interference problems in which the potential away from the body is required. In the second
term the integrand tends to zero fairly quickly as p increases, and all the functions required are
well tabulated. The series, however, involves K, of complex argument. No tables are available
for K, when the argument is complex and the amount of time required to work out K, (ra;) on
a desk machine for, say, eleven values of # and a sufficient range of values of » (» = 1 to 11, say),
would be very great.

However, for problems in which the potential on the body only is required, V,, is needed for
7 = 1 only, and (34) is considerably simplified when 7 is put equal to unity. Since® the
Wronskian of I, and K, is equal to — 1/p, i.e., K, (p) L, (p) — K. (p)L.(p) = 1/p, (34) becomes,
on putting » = 1, :
2 X . © —px dp
V)= — S LEXp ek _1nf I ee .. (35
W= = 25 T T LT %

=1

“The integral is not very troublesome to evaluate. For # > 0 it is small compared with the
series. Further, K, (p) and I,'(p) are easily obtained in terms of K, ,(p), K.(p), I,.(p) and
I($). The last four functions are well tabulated”. The series involves exponential and trigo-
nometrical functions and the zeros of K,'(p). The position of the zeros may be found
approximately by interpolating between the zeros of K, 15" (p); (Kay1/2'(#) can be expressed as ™

, B \i %) (s 1)
K1L+1/2 (P)Z - 2_ ’2e-? 1_[_(_5|;_;Tl)p (+)+ Z (%s—[—l_;_—f_sn)(%l_z_; s )
p s=1 ( _I— ) (.p)
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and the zeros are obtained by solving an algebraic equation of the (# 4 1)th order). If the
first approximation to a zero of K,'(p) is pq, say, then for small 4,

KWI(PO 'l_ 6) ~ Kn,(_?t)) _]— 6K1L”(P0) 3

and a better approximation is

K
B bR

This process can be repeated as often as necessary.

Once the «; have been obtained the problem of computing V,(x) from (35) is merely tedious.
Writing « = — f; + 4y, and remembering that — #; — iy, is also a root of K,'(#), the formula
for V,(x) becomes

2 B(BE+ n® + yf) cosyix + yi(n® — B —pf)sinyx
Vn = 2 2 2\2 2., 2
() 2:1 (B2 +n*—y; )24 48y ¢
=] —px dp R
. 1 nf : > e > - i iy
RN Y (e s R
There is one check on the computing: this is the fact that, for all #, V,(0) = 1. This result is

not obvious from (35), but can be seen quite easily by considering the operational form of V().
From (20) this is

xp (—B%)

(36)

- PKJ(p)
The asymptotic expansion of K,(p) is well known™; it is

Vn(?) __ K: (?)

T

Ko (p) ~ (%)I/ge—ﬁ (1 + 4—”28;—1 ..

Hence,

. 1 1
TP ~g—gga— o o e e (37)

The asymptotic expansion of the transform of a function éorresponds to a Taylor expansion of
its inverse®®, and, inverting (37),

Vig)=1—3x— ... . .. .. . . .. (38
This proves the above statement that V,(0) = 1. For all the eleven functions worked out
(n=0,1,...,10), this check was satisfied to five places of decimals. N

Vo(x) and V,(x) have been tabulated previously. V,(x) is the same function as the U(x) of
Ref. 1, and V(%) is the same function as the V(x) of Ref. 2. No significant difference was found
between the results of this paper and those of Refs. 1 and 2.

V(%) is tabulated in Table 1 for eleven values of # and for a range of values of x, (0 to 20).
Two of the functions, V,(x) and V(%), are shown graphically in Fig. 2. The roots of K,’(p) for
# — 1 to 10 inclusive, are tabulated in Table 2.

5. Some Applications of the Method.—The théory developed in previous sections can be applied
to quasi-cylinders with cross-sections which do not depart far from circles.

An application was made to a configuration consisting of a circular cylinder surmounted by a
canopy. The canopy consisted of a body of revolution formed by two tangent ogives placed
back fo back with their axes of revolution coincident with the top of the cylinder. The ratio of

7



canopy height to the radius of the cylinder was 0-5, and the length of the canopy was five times
the radius of the cylinder. An identical canopy was mounted symmetrically on the bottom of
the cylinder. The drag was calculated for a Mach number of 1-4. At this Mach number there
is some interference between the two canopies and so the flow over a single canopy was also
determined in order to estimate the effect of this interference on the drag. :

The results obtained by using the method described in section 3 are shown in Figs. 3 and 4.
The drag coefficient (based on the total canopy frontal area) came to 0-247 when both canopies
were present. This compares not unfavourably with the experimental value of 0-30 obtained
when the drag of this configuration was measured by the free-flight model technique. When
only one canopy was present the theoretical drag coefficient (based on canopy frontal area) came
to 0-282, an increase of 14 per cent on the value for the first case. Fig. 3 shows the distribution

2
along the x-axis of the drag loading, 4.e., of %f (Cy),—r SR d6; the drag is obtained from this
0

by multiplying by R and integrating with respect to x from x = 0 to x = . Here, s is the

slope at a point on the configuration in the x-direction and R is the radius of the circular cylinder

on which the boundary conditions were satisfied. R was taken as 1-021 times the radius of

the circular cylinder on which the canopy was surmounted, giving the helpful value of 5 for the

value of //BR in the application of (28). Fig. 4 shows the distribution along the body of the
. 2

lift loading, 7.e., of — ;—e f " (Cy),—r R d0, when only one canopy is present. The disturbance due
’ 0

to the presence of the canopy almost dies out in a distance equal to one length of the canopy.
The theoretical lift coefficient and pitching moment about the nose of the canopy are so small
that they cannot be accurately determined by the approximate theory used.

It was not found possible to give examples of pressure distributions over the configurations.
The pressure coefficient is given by (26) and the drag by (28). Inspection of these two equations
will show that the series for the drag converges more rapidly than the series for the pressure
coefficient, due to the presence of an extra a,(x{BR) in the former series. In fact, eleven terms

are not enough to give even an approximation to the pressure coefficient, while they are quite
sufficient for the drag.

The experimental work mentioned above also gives results for canopies with windscreens;
these canopies are derived by a geometrical process from the above basic canopy. It is hoped
to apply the technique of this paper to such canopies in a later note.

6. Wing-Body Interference.—The preceding work can be extended to solve certain wing-body
interference problems. The wings must be such that the boundary condition can be satisfied on
a plane, while the body must be of the type discussed in this paper and symmetrical about the
wing plane. This plane may be taken to be the plane § = 0, § = x.

It is assumed that the potential due to the wings alone has already been determined by
linearised wing theory. For simplicity in calculating the velocity potential due to the wing
alone, the wings are assumed to be continued through the body to meet on the axis (if any other
assumption is made with regard to the extent of the wings, the only difference is in the values
of the separate potentials ¢, ¢, of equation (39) below, the value of ¢ remaining the same).

The velocity potential, @, of the flow may be written as ® = Ux - Ug, ¢ being the distur-
bance velocity potential due to the presence of the wing-body combination. ¢ is written as the
sum of two potentials,

$=Gwtdr, oo . e (39)

where ¢, is the potential due to the wings alone and ¢, may be termed the interference potential
due to the presence of the quasi-cylinder. ¢, is assumed to be known and 4, is taken as a
potential of the form of equation (15) with the cosine terms only appearing since the body is

8



assumed to be symmetrical about the plane 6§ = 0, 6 = =. It follows that ¢ satisfies the
potential equation (8) and the boundary condition at infinity (14). The boundary condition on
- the wing is automatically satisfied by symmetry.

This leaves one more boundary condition, that on the surface of the quasi-cylinder, to be
satisfied. Using the notation of section 8, this condition is

b= (F.0),

or (%)7=R = IZ_EE, (;—6, Bi) — (B;ﬁ:/)hze' . . .. .. (40)

From this point the analysis proceeds as in section 8. The right-hand side is expanded as a
Fourier series in 6, and ¢; is obtained as

. R & * X — % ¥ Xy
¢ = —FZ,ZOLV”(W’F}C"(T)dxlcosne’ .. (41

where the ¢, are defined by '
R? (X aqsw . Rt = X
Te (7’9)"R(ay),=R_T,EOC?(B‘E) cosnb . .. .. .. .. .. (42

C, is determined as in section 3 if required over the quasi-cylinder alone. To find the value of
C, on the wing it is necessary to tabulate V,(x, #) as a function of #, x and ». It was stated in
section 4 that the evaluation of ¥V, in this general case was beyond the power of a computer
using a desk machine. A short note by Mersman®, however, suggests that some of these functions
may have been worked out in the U.S.A. . No further details are known at the moment.

The problem of wing-body interference in combinations of the above type has also been treated
by Nielsen'.

7. Conclusions.—The linearised theory of supersonic flow has been used to formulate the
problem of flow past certain quasi-cylindrical bodies and to determine the velocity potential on
the surface of such bodies. The quasi-cylinders are not necessarily axisymmetrical but must be
such that the surface boundary condition can be applied on a circular cylinder. The disturbance
velocity potential is obtained as a Fourier series, each term of which involves a certain basic
function. The first eleven of these functions are tabulated in Table 1 and it has not so far been
necessary to go beyond this number.

The method is particularly suitable for the determination of the flow over a circular cylinder
surmounted by a canopy, and has been applied to such a body. The theoretical value obtained
for the drag is in fair agreement with experiment.

It is also shown in principle how the method can be extended to solve certain wing-body
interference problems.

(71643) A*
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LIST OF SYMBOLS

Arbitrary function of p

Fourier coefficient defined in (17)
V(M — 1)

Arbitrary function of p

Fourier coefficient defined in (17)
Drag coefficient based on a suitable area
Arbitrary function of $ |
Pressure coefficient

Defined after equation (29)
Fourier coefficient defined in (43)
Drag

Arbitrary function of $

o (%E x, 0)

Defined in (39)

Bessel function of imaginary argument of the first kind
Bessel function of imaginary argument of the second kind
Length of quasi-cylinder |

Mach number of free stream

2m is the number of zeros of K,'(p)

Variable of Laplace transform (¢f. section 3)

Radius of the circular cylinder on which the surface boundary condition is
satisfied ~

Radial co-ordinate in cylindrical polar co-ordinates
7|R
Slope in the x-direction at a point of the canopy of section 5

Velocity of free stream

Inverse of — K., (p7)

PE./(P)
- KJ(p)
Inverse of — e, Vipix, 1
PR, () e VY
Axial co-ordinate in cylindrical polar co-ordinates

x/BR

Variable of integration

Position of zero of K,'($)

— f, 1s the real part of «;
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No.

1
2

3

10

11

12

13

14

15

16

LIST OF SYMBOLS—continued

y; ==y, is the imaginary part of «;
e(x/l, 0) A function always small compared with unity

0 Angular co-ordinate in cylinidrical polar co-ordinates
p Density of free stream
@ Total velocity potential
¢ Disturbance velocity potential
é; Defined after equation (40)

B Defined after equation (40)

A Laplace transform of a function is denoted by a bar placed over the
symbol for the function.
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TABLE 1

The Functions V (%)

* Vi(x) l Vi(x) 1 Vy(x) \ V() . V(=) Vs(x)
0 1-00000 -+ 1-00000 --1-00000 --1-00000 --1-00000 -+41-00000
0-1 0-95182 0-94947 0-94248 0-93087 0-91474 0-89420
0-2 - 0-90703 0-89827 0-87226 0-82975 0-77196 070058
0-3 0-86533 0-84689 0-79275 0-70638 0-59333 0-46076
0-4 0-82646 0-79576 0-70710 0-57044 0-40096 0-21717
0-5 0-79016 0-74522 0-61820 0-43087 0-21488 +0-00561
0-6 0-75621 0-69560 0-52859 0-29549 +0-05119 —0-14962
0-7 072442 0-64715 0-44048 0-17066 —0-:07900 —0-23771
0-8 069461 0-60006 0-35572 --0-06116 —0-16988 —0-26056
0-9 0-66663 0-55451 0-27581 —0-02985 —0-:22065 —0-23005
1-0 0-64034 0-51063 0-20193 —0-10074 —0-23466 —0-16409
1-0 0-64034 0-51063 0-20193 —0-10074 —0-23466 —0-16409
1-2 0-59230 0-42829 +0-07536 —0-18243 . —0-18008 —0:00316 °
1-4 0-54960 0-35356 —0-02052 —0-19460 —0:07254 --0-09988
1-6 0-51150 0-28661 —0-08593 —0-15855 4-0-02643 0-10487
1-8 0-47737 0-22737 —0-12375 —0-09849 0-08112 +0-04535
2-0 0-44671 0- 17560 —0-13853 —0:03559 0-08574 —0-01935
2:2 0-41907 0-13089 —0-13563 +0-01537 005587 —0-04892
2-4 0-39408 0-09275 —0-12046 0-04709 4-0-01492 —0-03882
2-6 0-37141 0-06066 —0-09801 0-05880 —0-01761 —0-00963
2-8 0-35080 0-03404 —0-07253 0-05434 —0-03221 --0-01442
3-0 0-33201 +0-01232 —0:04729 0-03977 —0-02955 0-02108
3-2 0-31483 —0-00507 —0-02462 0-02142 —0-01661 0-01288
3:4 0-29909 —0-01867 —0-00594 -+0-00438 —0-00189 --0-00017
36 0-28464 —0-02900 -+0-00812 —0-00812 -+0-00840 —0-00791
3-8 0-27133 —0-03653 0-01755 —0:01490 0-01190 —0-00833
4-0 0-25906 —0-04170 0-02276 —0-01633 0-00965 —0-00369
4-2 0-24772 —0-04490 002445 —0-01384 -+0-00452 -+-0-00140
4-4 0-23721 —0- 04650 0-02346 —0-00920 —0-00054 0-00377
4.6 - 0-22746 . —0-04680 0-02061 —0-00410 —0-00363 0-00277
4-8 0-21840 —0-04607 0-01671 +4-0-00023 —0-00426 -+0-00080
5.0 0-20996 —0-04457 0-01240 0-00312 —0-00304 —0-:00109
52 0-20209 —0-04248 0-00818 0-00441 —0-00110 —0-00163
5.4 019473 —0-03998 0-00443 0-00434 -40-00059 —0:00101
56 0-18785 —0-03721 +4-0-00136 0-00337 000146 —0-00003
58 0-18139 —0-03430 —0-00096 0-00199 0-00148 -4-0-00061
6-0 0-17533 —0-03133 —0-00251 -+0-00062 0-00092 0-00065
6-2 0-16964 —0-02838 —0-00337 —0-00044 +0-00021 --0-00029
6-4 0-16428 —0-02552 —0-00367 —0-00106 —{0-00033 —0-00010
6-6 0-15922 —0-02278 —0-00353 —0-00126 —0-00056 —0-00029
6-8 0-15444 —0-02019 —0-00310 —0-00113 —0-00050 —0-00024
7-0 0-14993 —0-01778 —0-00249 —0-00080 —0-00026 —0-00006
7-2 0-14566 —0-01556 —0-00182 —0-00040 —0-00001 +4-0-00008
74 0-14162 —0-01353 —0-00116 —0-00005 +0-00016 0-00013
7-6 0-13778 —0-01170 —0-00058 --0-00020 0-00021 0-00008
7-8 0-13413 —0-01006 —0-00011 0-00033 0-00016 -+0-00004
8:0 0-13067 —0-00860 4-0-00025 0-00034 -+0-00007 —0-00005
8:2 0-12738 —0-00731 0-00048 0-00028 —0-00002 —0-00005
84 0-12424 —0-00619 0-00061 0-00018 —0-00007 —0-00002
8:6 0-12124 —0-00521 0-00064 0-00007 —0-00007 -+0-00001
8-8 0-11838 —0-00437 0-00061 --0-00002 —0-00005 000002
9-0 0-11565 —0-00365 --0-00053 —0-00007 —0-00002 +0-00002
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TABLE 1—continued

% Vilx) Vi(x) V(%) Vy(x) Vy(#) V(x)
9-2 0-11304 —0-00304 +0-00043 —0-00010 ~+0-00001 -+0-00001
9-4 0-11054 —0-00253 0-00032 —0-00009 0-00003 —0-00001
9-6 0-10815 —0-00211 000021 —0-00007 000003 —0-00001
9-8 0-10586 —0-00176 0-00012 —0-00004 0-00002 -+0-00000

10-0 0-10366 —0-00148 - 0-00004 —0-00001 0-00000 —+0-00000
10-0 0-10366 —0-00148 +0-00004 —0-00001 —+0-00000
10-5 0-09853 —0-00099 —0-00007 +0-00003 —0-00001
11-0 - 0-09388 —0-00073 —0-00008 0-00002 +0-00000
11-5 0-08965 —0-00061 —0-00005 0-00000 +0-00000
12-0 0-08578 —0-00056 —0-00001 -+0-00000
12-5 0-08222 —0-00055 -+0-00001 :
13-0 0-07895 —0-00056 0-00002
13-5 0-07593 —0-00056 0-00001
14-0 0-07313 —0-00056 0-00001
14-5 0-07052 —0-00054 ~ 0-00000
15-0 0-06809 —0-00052 -+0-00000
15.5 0-06582 —0-00050
16-0 0-06370 —0-00047
16-5 0-06172 —0-00043
17-0 0-05985 —0-00040
17-5 0-05810 —0-00037
18-0 0-05644 —0-00034
18-5 0-05488 —0-00031
19-0 0-05340 —0-00029
i9-5 0-05200 —0-00026
20-0 0-05067 —0-00024
1 1
Beyond » = 20, V() = P 4 e (2log2z — 2). (Ref. 16) w
Beyond x = 20, Vy(x) = — 223 + 374 (log 2z — :1%) . (Ref. 2)
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TABLE 1—continued

% Ve(#) V() Vi(#) Vy(#) Viol®)

0 +1-00000 —+1-00000 -++1-00000 —+1-00000 -+1-00000
0-1 0-86941 0-84055 0-80783 0-77151 0-73179
0-2 0-61766 0-52558 0-42694 +0-32451 +0-22115
0-38 0-31698 -+0-17087 +0-03114 - —0-09407 —0-19790
0-4 —+0-03863 —0-11647 —0-23348 —0-30288 —0-32145
0-5 —0-16442 —0-27156 —0-30499 —0-26815 —0-17739
0-6 —0-26676 —0-28431 —0-21339 —0-08721 +-0-04974
07 —0-27121 —0-19114 —0-04710 -+0:09481 0-17824
0-8 —0-20240 —0-05279 +0-09827 0-17410 0-14662
0-9 —0-09632 +0-07086 0-16218 0-13284 --0-02041
1-0 +4-0-01080 0-14024 0-13627 0-02579 —0-08749
1-0 0-01080 0-14024 +0-13627 -+0-02579 —0-08749
1-2 0-13026 --0-09682 —0-03246 —0-10162 —0-04715
1-4 +0-09259 —0-04008 —0-08568 —0-00459 +0-06698
1-6 —0-00863 —0-07611 +0-00173 -+-0-05842 +0-00118
1-8 —0-06368 —0-01579 0-05032 —0-00247 —0-03776
2-0 —0-04444 -+0-03755 —+-0-00949 —0-03298 +0-01328
2-2 +0-00427 +0-02825 —0-02722 -+0-00416 +0-01605
2-4 0-03054 —0-00814 —0-01121 +0-01831 —0-01326
2-6 +0-02130 —0-02086 +0-01340 —0-00388 —0-00400
2-8 —0-00196 —0-00563 --0-00929 —0-01002 --0-00881
3-0 —0-01452 +0-00954 —0-00580 +0-00304 —0-00103
3-2 —0-01014 -+-0-00811 —0-00658 +0-00540 —0-00449
3-4 —+0-00093 —0-00160 +0-00198 —0-00218 -+0-00223
3-6 0-00690 —0-00560 -+-0-00422 —0-00287 +0-00166
3-8 +0-00482 —0-00186 —0-00027 --0-00147 —0-00185
4-0 —0-00044 +0-00240 —0-00250 - --0-00150 —0-00024
4.2 —0-00328 -+0-00230 —0-00036 —0-00096 +0-00111
4-4 —0-00229 —0-00027 -+0-00137 —0-00076 —0-00028
4-6 +0-00021 —0-00150 ~+-0-00050 -+0-00061 —0-00051
4-8 0-00156 —0-00059 —0-00069 -+0-00038 +0-00034
5-0 -++0-00109 -+0-00059 —0-00043 —0-00038 -+-0-00016
5-2 —0-00010 —+0-00064 -+0-00031 —0-00018 —0-00025
5-4 —0-00074 —0-00003 +0-00031 +0-00023 —+0-00000
56 —0-00052 —0-00040 —0-00011 -+0-00008 +0-00014
58 +0-00005 —0-00018 —0-00020 —0-00014 —0-00005
6-0 0-00035 +0-00014 +0-00002 —0-00004 —0-00006
6-2 +0-00025 0-00018 0-00008 --0-00008 —+0-00005
6-4 —0-00002 —+0-00000 -+0-00001 -+-0-00001 -+-0-00001
6-6 —0-00017 —0-00010 —0-00007 —0-00005 —0-00003
6-8 —0-00012 —0-00006 —0-00002 - -+0-00000 -+0-00000
7-0 —+0-00001 --0-00004 -+0-00004 0-00003 —+0-00002
7-2 0-00008 0-00005 -+0-00002 +-0-00000 —0-00001
7-4 +-0-00006 —+0-00000 —0-00002 —0-00002 —0-00001 -
7-6 —0-00001 —0-00003 —0-00002 -+-0-00000 -+0-00001
7-8 —0-00004 —0-00002 +0-00001 0-00001 0-00000
8-0 —0-00003 ~+0-00001 0-00001 0-00000. -+0-00000
8-2 -+-0-00000 0-00001 0-00000 -+0-00000
8-4 0-00002 -+0-00000 --0-00000
8-6 0-00001 —0-00001
8-8 +0-00000 --0-00000
9-0 —0-00001 -+0-00000
9-2 —0-00001
9-4 —+0-00000
96 --0-00000
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TABLE 2
The Roots of K, (p)

The following table gives all the solutions of K,'(— « 4 ¢8) = 0, for » = 1 to 10 inclusive.
K,'($) has no zero. '

7 « B % o B

1 0-64355 0-50118 8 1-36941 7-16673
2 0-83455 1-43444 8 3-60872 4-92519
3 0-96756 2-37386 8 4-67839 3-07327
3 1-98162 0-44080 8 - 5:19993 1.36046
4 1-07279 3-32208 9 1-42667 8-13578
4 244093 1-32259 9 3-82205 5-84153
5 1:16125 4-27689 9 5:02798 396284
5 280372 2-21193 9 5-69438 218088
5 3-30981 0-43637 9 5:96253 0-43478
6 1-23832 5.23662 10 1-47973 9-10691
6 3-10823 3:10944 10 4-01755 6-76252
6 3-83945 1-31040 10 5-34531 4-85738
7 1:80706 6-20015 10 6-13751 305917
7 3-37302 4:01418 10 6-54610 1-30462
7 4-28713 218909

7 4-63644 0-43517
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