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Summary —This note gives the result of an attempt to find an analytical solution of Possio’s integral equation—
the equation which connects the downwash and the pressure distribution on an aerofoil oscillating in two-dimensional
subsonic compressible flow. A method is given for solving this problem and for solving the corresponding problem in
incompressible flow (the solution of Birnbaum’s integral equation).

1. Introduction—The problem of calculating the pressure distribution on an oscillating aerofoil
in two-dimensional subsonic compressible flow can be approached in two ways. The first approach
is to solve the boundary-value problem for the partial differential equation of the flow. This
has been done by Timman and van de Vooren', and they have obtained an analytical solution of
the problem. The second approach is to solve the equivalent integral equation which connects
the pressure distribution over the aerofoil with the known downwash distribution, that is, the
Possio integral equation. This approach has been used to obtain the analytical solution presented
in this note. The solution is the same as that given by Timman and van de Vooren but it is of
interest to obtain it from the integral equation. '

As a guide in devising a suitable method for solving Possio’s equation, a new method of solution
is first derived for Birnbaum’s equation, the equation to which Possio’s equation reduces when
the flow is incompressible. Although there are a number of existing methods of solution, this
new method is of interest and is described in section 4. It is then used to obtain the solution
to Possio’s equation described in section 5.

The method given in this note is possible because each of these integral equations can be split
up into two integral equations, one of which is of a very simple type and the other an integral
equation of the first kind with a symmetric nucleus. The integrand in the second integral equation
has a second order singularity and the integral must be understood to take its principal value.
This singularity causes no difficulty and the integral equation can be solved by the standard
Hilbert-Schmidt® method.

No singular solution of this second integral equation could at first be found for Possio’s integral
equation. However, when the note was in draft a paper by H. G. Kiissner® appeared in which
he solved the problem by a combination of the differential and integral equation approaches, and
gave the singular solution in a simpler form than that given by Timman and van de Vooren.
It was then found possible to derive the smgular solutlon in Kussner S form by a method consistent
with the general method of thls report. : : -

* R.AE. Report Structures 181, received 11th October; 1955.



2. Lust of Symbols.—All lengths have been made non-dimensional with respect to the semi-
chord / so that the wing covers the interval (— 1, 1) of the x-axis.

P Frequency of oscillation in radn/sec
V Velocity of the steady stream
w Reduced frequency parameter
— Gy |
M Mach number
2 = ofl— M
p Air density
I Pressure jump over the aerofoil
= pViI e¥t
w Downwash on the aerofoil
= VW e
a Normal acceleration over the aerofoil
= (VDA e
se,0 The odd Mathieu function of order # and period 2
Ne,B() - Modified Mathieu function of the second kind and order »
H,®(x) Hankel function
Ki(x), Ky(x) Modified Bessel functions of the second kind

3. Principal Values of Improper Integrals—All the improper integrals in this note can be
expressed in terms of the improper integrals.

[t

y)n+1
The principal value of this integral is defined by Mangler? to be
SO TS .
lasipm e =im|] + ] el + o K]

where

Ky(x,6) =0
and

S 1 L= (=
K(x,e) = ZO ri(n —7) e"’ (EZ_}?)y:v '

For n = 0 we get
ALY O I I R 4 €)
Pf—_d:th [ ——d:|,
aX — y y £—>-0 @ + ze - y y
which is the usual definition for the Cauchy principal value, and for # = 1,

Pl & et =tm [ [ <xf(y)y>2dy — 1),

>0 —
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An important property of these integrals is that we can differentiate under the integral sign, i.e.,
d " f9) _ _p W
%PLu_wy@_.ymL@_ﬂwﬂ@.

This fact will be used repeatedly.

4. Solution for Incompressible Flow.—4.1. For a two-dimensional aerofoil in incompressible
flow, the downwash velocity VW (x) is related to the pressure p7?I'(x) by means of Birnbaum’s
integral equation®®, viz.,

%mmwz_femmf (4.1)

(o — o) dv ,
where W(x) is known for |%| < 1 and I' must satisfy the Kutta-Joukowski condition at the
trailing edge, i.e., I'(1) =

- The integral equatioil can be split up into two integral equations:

o I'()

W@Wuﬁjxwwww O )
and o ‘ B}
.2mw@:fj@¥%wm... L a3

From equation (4.2) we get
: ' a .
e Gx) = — = (W (x) e}
= — " {% -+ ZcoW:|
= — e A(x) , S C )
where A(x) is the normal acceleration.

4.2. Solution of Equation (4.8) for |u|<_1.—When we put # = — cos 0, v = — cos ¢, equation

(4.3) becomes
= I'(p) sin ¢ de
2rG(0) = fo (cos 6 — cos o) .. .. .. .. . .. (4.5)

To solve this we use the integral relation

l)f” sin 0 sin ¢

o — (L
S ( nxn)) o (COs & — cos ¢)

s sin ne do | .. .. .. (4.6)

which is proved in Appendix I, section 1.1.
Let
r=Sasinng. .. o o .o oo (47)
I'(z) = 0 and so the traﬂing—ledge condition is satisfied. |
From equations (4.5) and (4.7) using equation (4.6) we get

27G(6) sin 0 = > a,(— nx) sin #f
1

and so

a, = — %fﬂ G(0) sin 0 sin #6 46 .

0

3
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Therefore

I'lp) = — 74?2 Sln%wp f: G(6) sin 6 sin #n6 4
I . 2 sin 76 sin ne
*_%IDG(6)51n0[4Z—f~—ﬁ————]d0
I . 1 —cos (0 + ¢)
__;J‘DG(G)Sanlogl_cos(a_(p)de
:_ng(())Sin()L(f),(p)de N 7E)
0
= I') say
where
1 — 6
L(e,gv):%logl_zgzgzje;. P X

It will be shown in section 6 and Appendix I, section 1.2 that I', = cot ¢ is a singular solution

of equation (4.5) which satisfies the trailing-edge condition. The complete solution of equation
(4.5) 1s therefore

I'=ol, - I,

=ac0t%rp—§f GO)sing L(o,g)d0, .. .. .. .. (410)
- 0 ’
where « is an arbitrary constant.

4.3. We have not yet used all the given data. To find I" we have used, not the given downwash
W, but only the given normal acceleration over the wing, 4. Since 4 = (dW/dx) + ioW, any
downwash of the form W + C e~**, where C is independent of x will give the same acceleration 4.

We shall use the fact that the downwash over the wing is W and not W -~ C e~** to find the
value of a.

To do this the normal acceleration 4 induced ahead of the wing by the pressure distribution
(equation (4.10)) will be calculated by using equation (4.3). The acceleration will be linearly
dependent on «. Equation (4.2) will then be used to calculate the induced downwash over the

wing and « will be chosen so that the induced downwash is equal to the given downwash over
the wing. : :

4.4. Determination of the Constant o.—

Let
o . +1 F(ry)
20 Glat) — j Nt
For |u| < 1, Gu) = G(u).
For w < — 1, if we write # = — cosh# and v = — cos ¢ we have
= [ aly 4+ I .
% Glog) — f T i — s S 4
_ = 2n(af + g) say.
The acceleration ahead of the aerofoil 4 = — G is now known. We must now calculate the
downwash W induced by I".
Let

Wx) e — — f e G du.
4



Then for |x| < 1
x -1 -
W(x) e'* = — f e G(u) du — f e G(u) du
-1

— 0

_ f : {% (e W(u)} du

—af—l' o fl) du— [ g du. (41D

—

" To evaluate the second and third integrals we shall use the integral relation (see Appendix I,
section 1.3)

7 sin # sinh ¢
o (cosh ¢ — cos 0)

s sin nf df = nm e™" . . .. .. (4.12)

In section 6.2 it is shown that
I'y = cot 40
may be replaced by the divergent series
2 i sin 76 .
1

Using this result we have for the second integral on the right-hand side of equation (4.11)

-1 -1 o Iy(v)

an et flu) du = f erer duf av

Cw 1w —v)?
sin ¢

— ® —z’wcoshi_ o " ]’7
fo e sinh ¢ d¢ fo (cosh 7 — cos g]° o) dy

©° . ” sin @
— iw cosh ¢ t t
2_[06 sinh dfo(cosht—cosw)

© 2 (* sinhi¢sing .
[ 2 —iw cosh ¢ d
fo © at Zl fo (cosh # — cos ¢)? St g 4y

' @ o0
— 2.'7'6 f e—-imcosh t z 7 e—ni dt

0 1
_ = — ntw {K (o) + Ki(io)} . . . . .. (4.18)
(see Appendix II) where K(iw) and K,(fe) are modified Bessel functions of the second kind.

, do > sin ng
1

Similarly for the third integral on the right-hand side of equation (4.11) we have

—1 -1 +1 .
on f_w e’ g(u) du = f_w el dy f»_l (%Pl_(v,)v)z dv

P coshi " sin ¢
J— %4 COS.
= L e sinh ¢ d¢ L (cosh  — o5 g* I'y(@) do

— 4 ® iw cosh ¢ 1 ” Sin @
= — ;fﬂ e sinh # dtfﬂ (cosh £ — cos 9)? dp

. . o 0 si
0 1

— 4- z fo G(H) Si]j]_ 0 Sin nh d@ fﬂ eiwcosht—nt dt

n=1

I

0 7L

— 435 " A4(0)sin 6 sin o d@fw g iwessh t=nt gt L (414
.. 0 i

n=1 0

where A(6) is the normal acceleration.
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It is shown in Appendix III that this result can be simplified and we get
g f W) (Kl(iw) 1 Kyio) cos e) ds — 3 W(0) et}
Therefore with these results, equation (4.11) becomes
W(x) eior = W(x) e — W(— 1) e~
)

o R o) + Kyfio)} + W(— 1) e

0 T W) K (i) 4 Koio) cos 0} d

T

b f— e g(u) du = 4

and so since W(x) = W(x) we must have

. :%f W(O){C + (1 — C) cos 6} do
where ’
Ky(io)
Roio) + Kiia) "

The solution of Birnbaum'’s integral equation from equation (4.10) is then

Ilg) = + U W(O){C + (1 — C) cos 6} d@} cot 3g

C:

b 8

(AW S . 1 —cos (8 4+ o) .
SN 44 W
—l—2f03d6—i—1w51n0 Elogl o5 (8 {p)sm6d6.

This is the standard solution obtained by other methods (sée Neumark® and Kiissner®).

5. Solution for Subsonic Compressible Flow.—5.1. Possio’s Integral Equation.—The analytical
method developed in section 4 will now be used to solve the corresponding problem in subsonic

compressible flow. The pressure pV*I'(x) is now related to the downwash velocity VW (x) by
means of Possio’s integral equation?,

aMoy/(1— M)
2%

where W(x) is known for |x|< 1 and I'(1) must be zero.

(2) .
TP ) eiee — HOWE|u—v|)

4 — ]

f e g [T () exp (— iMPQ0)) (5.1)

This form of Possio’s equation has been derived from that given by Kiissner*; it can be obtained
directly in this form by the use of the acceleration potential method.

This equation, like Birnbaum’s equation (section 4), can be split up into two integral equations:

e Wix) — — f Do Guydu .. .. . 52
and 1_00
% Gu) :zf"klr*(v) HI”{MIjlfv_l?W”, ... 53
where B _
1 I'(v) = exp (— {M*2Qv) I'(v) .. .. . .. .. (54
an
3= MOV MY L 58

From equation (5.4) it follows that I'™*(1) = 0.
8



By differentiating equation (5.2) we see that

. ar.
1% - iox
& Gl) = — g2 | e W) |
= — e A(x) . . .. . .. .. . .. (5.6)
5.2. The Solution of Equation (5.3) for |u|<< 1.—When we put # = — cos 6, v = — cos ¢,

equation (5.3) becomes
H®MQ|cos 6 — cos (pl}d

— § * 1
% G(6 _afor (7} sin g 2 ] (5.7)
To solve this we use the integral relation, proved in Appendix IV,
R . H®MQ|cos 6 — cos |}
se, 0 = ano sin 0 sin ¢ [cos @ — cos g se,pdp, .. .. (5.8

where the 4, are functions of M2 and se¢, 6 is the odd Mathieu function of order #. These
functions are orthogonal and are chosen so that

Eg 1 —
0 se,0do =12 T
Lse,, se,, 0 o
Let
F*:zdnse,,qo. .. .. . .. .. .. .. (5.9
1

The Mathieu functions are such that se,(n) = 0 and so the trailing-edge condition is satisfied.
From equation (5.7)

2n G(0) sm@:/lif{—
1 Ay

and so ,
41” = 3
a, = Tf G(6) sin 6 se, 6 46 .
) 0
Therefore
= z aﬂ Sen ¢
ZZ senqpf 0)s1n6 se, 0 do
= %i se,,}pfn exp (— ¢M*Q cos 0) sin 6 se, 6 A(6) 40
1 0
4 0
=— Z i, A, se,
= I''* say, .. . . .. . . .. .. (5.10)
where 7 :
A, = f exp (— M@ cos ) sin 6 se, 0 A(B)do. .. .. .. (5.11)
\ :

There is good reason to believe that the singular solution which gives the correct singularity at
the leading edge is

]_’0* - 2 /171, Sen, 0 Sen qj
1

(see section 6).



The complete solution of the integral equation is then

I — oIy* 4 Ip*
:oczﬂnsen’o se”qa—%ZA,,Ansen(p. .. .. .. .. (6.12)
1 1

As before the pressure I'* may induce, not the downwash, W, but a downwash W + C e~
where C 1s a constant independent of «. We must choose « so that C = 0.

5.8. Determanation of «.—

Let
- +1 (2} —
27 Glu) = ﬂf rH(o) MO ~ol)do,
o [ — o]
For |u|< 1, Glu) = Glu) .
Foru < — 1 '
~ +1 (2) —
2 Cla) — at [ Lor() o (Moju—ov]}
-1 l% - ’Ul
+1 H®MQu —v|} ,
® 1
A ) S
If we put 4 = — cosh ¢, v = — cos ¢, this becomes
_ _ @ , L Hl(z){MQ(COSht — COS (P)}
2 G(t) = ak 2 Ay se, OL sin g se, ¢ (cosh ¢ — cos o) dqg
i n o H,®{M Q(cosh t — cos ¢)}
4 Z i, A, fo sin ¢ se, ¢ (cosh ¢ — cos ¢) i
Let

Wix) e = — fx &' G(u) du .
Then for || << 1 -
x - —1 _
W(x) e — — f e Gu) dot — f &' G(u) du
—1 —

—1 _
= W) e — W(— 1) e~ — j e Glu) du |
Therefore W(x) = W(x) for |»|< 1 if
—1 _
W(— 1) et + f e Glu) du = 0,
ie., if o

= @ " (@ .
217(— 1) e + ad 3 1,56, 0 f Cemieent sinh ¢ f sing se.p H,*{M 2(cosh £ — cos ¢)}

(cosh # — cos ¢)

dy

) © T oy (2) —_
—aSad, [ e sinhtdtf sin ¢ se, o H\®{M Q(cosh ¢ — cos ¢)} dp =0 .
: 0 0 (cosh # — cos ¢)
If we use the relation

- . H,®{MQ(cosh ¢ — cos ¢)}
@7 — =
Nen (t) Mo Jo Slnh ¢ sin 4 (COSh { — cos (P)

se, ¢ dop .. (5.13)
8



where u, is a function of M Q (see Appendix IV) and write

f e--iQ cosh ¢ Nen(z)(t) dt - Nn ]
0

we get

2uW(— 1) e=* 4 i iéﬁN" se,’ 0 — 42 @—'EA,L =0,
. 1 Hn 1 a2
1.6.,
42%7%@—2mw—1m4w
}.OC — 1 n w
Z AnNn 86”/ 0
1 :u‘n

The complete solution is therefore

e}

][4§@é£9_2ngwwa—1ﬂ
L T Ha > A,se, 0 se, ¢
1

— 2 2 A N
L5 ZL IO
Z w,

- %iﬂnAnsen(P:

exp (¢M2Q cos ¢) I'(p)

where the coefficients A, are determined from the known downwash velocity by the use of
equations (5.6) and (5.11). :

Since

_Z Ne,™(0) @ Ne,®(0)

ln—ZMQW) and,u”__EM.Q Sen,o ,
the result becomes
A/ (1 — M?) exp (¢M*Q cos ¢) I'(p) =
©  se,’ 0 i
2 e AN D e o)
— © [sven/()]z B Z Neu(z),(()) Se,, se, ¢
2R ACORE

= Ne,®(0)
TSN T

This is not quite the same form of the solution as that given by Timman and van de Vooren
because they have introduced incompressible-flow results to ensure the convergence of the series
which occur.

The series given here for the singular part of the pressure

2 Ne,0)
| A Nm se,, 0 Se, @
is divergent but it has a (C, 1) sum.. The integral of the series will probably converge. The
divergence of the series :
< [se, OF
> Ne,0)

is more serious. A method of finding its sum is suggested in Appendix II,
9



6. Stngular Solutions of the Integral Equations.—6.1. In order to solve completely the integral
equation

b
g = [ K(e.y) /() d, B
we need to know the singular solutions, functions f(y) for which
b
f Ky fo)dy=0. .. .. .. .. .. .. .. (62

Let K(x,y) = K(y,%) and let the eigenvalues and eigenfunctions of the homogeneous integral
equation

qS(x):Af:K(x,y)qb(y)dy ... 63

be 1, and ¢, respectively. The functions $,(x) are orthb’gonal and are assumed to be normalised
so that

b
[t ax = 1.
We shall show formally that the functions

To=> Ld(3) 6uld) . . .. . (64)

n=1

and

o0

Fo=3 b)) .. .. .. .. .. (65

n=1

are singular solutions of equation (6.1).
We shall first show that

2 $.(%) $,(2) = S(x —z), .. . . . .. (6.8)
where §(x), the Dirac delta function, is zero for x = 0 and at ¥ — 0 behaves in such a way that
| ot =10

6(x) is the ‘ derivative ’ of the Heaviside step functiont -

1 x>0
H(")=§0 x <0

t Let

e) = [7 By —%)f(»dy,
then formally

g =— [ H(y =70

But
ge) = [" 7o) a
X and so |

) =—fx).

Therefore |
f:o H'(y — x) f(y) dy = f(x) .

If we write
we get

[7. oy — 07 dy = 1)

Differentiating this with respect to x we get

[ 0 —=07dy=—7
and putting ¥ = 0 in these last two equations we get the results quoted in the main text.

10



Let x be an interior point of the interval (a, 5) and let

x — Z z an (]Sn
Then since
b 0 %+ m
[awama={] 70
we have
b
a, — f H(x — 2) $,(7) dz
- f “g.(2) dz
Therefore ’
H(x - Z) = 21: ¢1L(Z) (]‘,);L(Z) dz
and so

o —2) = H'lx — 2) = > $,(x) 4u(2) .

1
If we differentiate this equation with respect to x we get

"(x — 2) Zgﬁn $a(2) . .. .. .. .. .. (8.7

6'(x) is zero for ¥ = 0 and behaves at ¥ = 0 in such a way that}

[ vwrm e =—r0.

The relations (6.6) and (6.7) can be proved rigorously by using the Schwartz theory of
distributions®*°.

We can now show that I'y is a singular solution, for

f b To(y) K(x,y) dy = f b K(x,) iﬂnqﬁn(y) $.(2) dy

= 3 4.0 4,(2)

and so is zero for x # z.
Similarly I'y, is a singular solution.

In section 6.2 these results will be verified for incompressible flow by using the concept of a
Cesaro sum. This is defined as follows:

Let

13

s.(%) = > a,(x) andlet o,(x) = %z $a(%)
1 1

Then if as # — o0, a,(x) —o(x), o(x) is said to be the first Cesaro sum, the (C, 1) sum of the series.

Even though a series is divergent it may have a Cesaro sum. If a series is convergent and has

a sum s(x) then it has a (C, 1) sum o(x), and ¢(x) = s(%).

It may be possible to prove that for x == z the (C, 1) sums of the series (6.6) and (6.7) are
zero. It is not known what connection, if any, there is between the theory of distributions and
the theory of divergent series.

1 See footnote to section 6.1, para. 4.

11
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6 2. Singular Solutions for Incompressible Flow.—For incompressible flow the eigenvalues are
— 1/(nz)} and the eigenfunctions are sin #6. The series (6.6, 6.7) become

(oz) Z % sin n0 cos ny = —};i n{sin (0 4 v) + sin #(0 — »)}
= %%i{cosn 8 + ) + cosn(f — z,u)}

and

(b) > sinnb sinny = — > {cos n(f + p) — cos n(6 — p)}

and because of the relation
34+ >cosnt =0 (C, 1)
1
the (C, 1) sums of both series are zero.

The singular solution corresponding to equation (6.5) is

1a . .
Ty = — —Z sin #nf cos ny

— —?1 Z{sm n(0 + v) + sin n(8 — )}

and since
> sinnx = 4 cot 4« (C, 1),
1
we have
1
Ty = — = {cot (0 4 v) + cot (6 — )} .
If this function is to give the correct singularity at the leading edge we must have » = 0 and
' 1
Ty = — %cot $6 .
The singular solution corresponding to equation (6.4) is
- 1&sin#d sin#
To=—23——F —

o 1lo 1 — cos (0 + »)
T 4z °T1 —cos (0 — y)°

This function gives the correct singularity at the leading edge 6 = y of a control surface.

6.3. Singular Solutions for Compressible Flow. —For compressible flow the eigenvalues are

Ne,(0)
=5 M2 Ne,® (0)

where Ne,®(z) is the modified Mathieu function of the second kind and order », and the
eigenfunctions are the odd Mathieu functions se,0 (see Appendix IV). By analogy with the
incompressible solution it appears that the singular solutions for the compressible case are

Iy* = Z 2, se, 0 se,w
and 1
, Iy* = i A, se,0 se,’ O
but no verification can be given. :
12



6.4. Although the series for the singular part of the pressure are divergent they are still useful
because the series for the lift or moment may be convergent. But even if the final series are
not convergent they will have Cesaro (C, 1) sums and these are not much harder to calculate
numerically than the sums of convergent series. ‘

7. General Discussion.—All the integral equations of subsonic flutter derivative theory are of
the form

e W (n,y) = — f & dy f f K(x,&; v) T(Em) dé dn
—w S

where K(x,£;y,m) = K(£,x;7,7) and S is the wing area. This integral equation can be solved
by the method given in this note if the eigenvalues and the eigenfunctions of the homogeneous
integral equation

dey) =2 [ [ Kwg; yn) s(em) de dn

are known. These functions will exist for any plan-form, but except for simple plan-forms like
the elliptic or possibly the rectangular wing there is little hope of finding these functions
analytically. However, a method could be devised for calculating these functions numerically
for any plan-form. The work of this note is, however, mainly of interest because of the
mathematical topics which have arisen.

It is shown that these integral equations whose kernels have a second-order singularity can
be solved by the standard Hilbert-Schmidt method because the integrals are principal-value
integrals. The singularity can of course be reduced to a first-order singularity by carrying out
the integration with respect to x but if this is done the resulting kernel will no longer be
symmetric and there is no longer an obvious method of solution. If this is done for Possio’s
equation the resulting kernel is extremely complicated. For Birnbaum’s equation in steady flow,

2 W (x) = — T J‘J: (x—F_(:y)y)—z dy ,

— 0

the equation which results is the Prandtl-Glauert integral equation

277 (3) = | i ;(_—yly dy .

The kernel is simple but the integral equation is no longer of a standard type and it is better to
leave the equation in its original form.

~ Prandtl’s lifting-line equation

bx) = o) o)

V) + g [ il

can sirvnilarly~ best be solved by keeping the second-order singularity. The equation can be

written ( }
SGCa NS O S N RV U
VABCS R =Dty T 4 | L Ve By w— a0 ©
where
2
plx) = ay(x) c(x)

13



This can be written as

Kix) = Al + | He) K(e) de

—35

() = v/} k)

B 1 1
VW) BE)} (v — &)

The equation can be solved if the eigenvalues and eigenfunctions of the equation

where

and

H(x,&) . = H(&x) .

ﬂ@:zﬁH%Q¢@d§

are known. If f(x) is constant the eigenfunctions are those given in section 4. If §(x) is not
constant the solution will probably have to be determined numerically, for though the eigen-
functions exist it may not be possible to determine them analytically.

The note gives a method of finding singular solutions which does not seem to be well known.-
The method depends on the expansion '

zcj:(ﬁ”(x) ‘;’n(y) : (3(96 — y)

of the Dirac delta function in terms of a set of orthonormal functions {$,(x)}. This equation
has a meaning when é(x) and ¢,(x) are distributions as defined by Schwartz. The singular
solutions are given as a series of distributions but if these series are considered to be series of
functions the sums or the Cesaro sums give the correct singular solutions.

\
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APPENDIX I
In this appendix, we shall prove the relations (4.6) and (4.12).
1.1. Integrating by parts Glauert’s integral

| T_cosng g, 7Smnd
,COSg —cosbB T TSm0
we get ,
1 sing sinung @ sin %0
N _f 2 d?’ _
nJ o (cos ¢ — cos 0) Sin 0
1.6,
1\ sin® sing . '
_ _ ,
( “”)fu (cos ¢ — cos 6)* sin ne dp = sin #
It is of interest that the Hilbert-Schmidt expansion of the kernel

sin 6 sin ¢
(cos & — cos ¢)?

is the divergent series ’
o)

— 2n > nsinnd sin ng .
1

1.2. Tt is easily verified that cot 3¢ is a singular solution of the integral equation, for

f” sin.f sin ¢ 1 __d_J‘ 1+ cose
o (cos 8 — cos ¢)* 27 7 de J,cosp — cos 6
a
1.3. If we integrate the integral
f” cos #f _me ™
oCosh#—cosf  sinht¢

by parts and rearrange, we get
f“ sinh ¢ sin 6
o (cosh £ — cos 6)*

sin 70 df0 = an e~ ",

APPENDIX II
Evaluation of the Integral

I= f e=iocsht Sy e~ dt  (see section 4.4, equation (4.13)).
0 1
The sum of the series is e~*/(1 — e™)* and so the integral'becomes
__ ® e_t —iwcosh ¢
| oo &
© e—imcosht
—1
_ 2f0 cosh — 16#
f il dx where x = cosh?.

L =DVt =)
15
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To evaluate the improper integral

. w© e—iwx i
=ty

© e~iwx _ e—iw Ciw © dx
| et mve—n e Lu—nvw-n'

For the first integral we have, integrating by parts,

Syt e - SN

1 (8 — Dy (@ — 1) |
i [ i o

=i [ = G5
1 x — 1

= —10{K(iw) + K (o)} + e~ .
The principal value of the second integral

we write it as

f"" dx
1 (v — D/ (3" — 1)

is — 1. This can easily be found by using Mangler’s formula for integration by parts, or since
the indefinite integral of the integrand is [1 — 4/{(¥ + 1)/(x — 1)}], by taking the finite part.

Therefore ‘ '
I =3[~ 10{K(iow) + K (o)} + e~ — e~]

= — Yo{K,(lo) + K, (i)} .
This method of evaluation is due to Neumark.

This method cannot be used to evaluate the corresponding integral in compressible flow .

_ [T civcm = [se,” 0]* ()
J — fo ¢ Z Nen(z)(o) Nen (t) dt 3

because of the difficulty in summing the series and. so it is important to find some other method
of evaluating I which will also apply to J.

It might be thought that if the integral I were evaluated by integrating term by term that the
final series would have a Cesaro sum, but this is not so. Some idea of the difficuities inherent in
this method of evaluating the integral can be gained by evaluating the integral I for o = 0.

We have
1(0) = f > netdt.
¢ 1

We have seen that the value of this integral is — §. If we integrate term by term, we get

0)=31.

This series has no Cesaro sum but it has an Euler-Maclaurin constant C or a Ramanujan sum
(R, 0) of — & (see Hardy®, Ch. XIII). Therefore
10) = — (R, 0) .
16



It can be seen that — 4 is a natural sum of the series 1 4- 1 4 1 + if we consider the series
z cos #8 cos ne + zsin nd sin np = = 6(6 — @),

which is obtained from equatmn (6.6) by takmg the functions {¢,} to be the usual trigonometric
functions. If we put ¢ = 0 we get

3+ > cosnb = = 5(6)
1
and so in some sense the ‘ finite part ’ of the series 1 + Z 1 is zero. Again the Riemann Zeta

function ¢(s) is given for R(z) > 1 by the series Z(s Z —. But ¢(s) is analytic throughout

the s plane except for a pole at s = 1. The series 1 —{— 1 -+ may then be considered to have
as sum, in some sense, {(0), ¢.e., — 3.

The integral I can now be evaluated. We have

(e} [+s]
sz e“”““Zne"”t dt =1
0 1

= Z ub, say,
1
where
J— f —zcosht ni dt
Now
¢}
%(bu—l n+1 - e # cosh ¢ —nt Slnh t dt
[2e] [oe]
— l: 1 —ZCOSht—M] _ ZLJ‘ e—zcoshi—nt Jy
Z 0 2Jo
__ € fon b
Z n 2
i.e.,

and so if we let

Iy=> ub,
we get 1 ,

Iy=1e7*>1— $2(by + by — by — by,4) -
As N — l »

N
S1——3% (R0
1

by and by, — 0
and so since

bo — foo e—zcosht dt — KO(Z)
0

and

bl — f e—zcosh’t—t dt — KI(Z) — € ,
0 : Z

we have )
Iy— — Yo{K(in) + K,(io)} (R, 0) .

17



It will be difficult in practice to apply the Euler-Maclaurin sum formula to the series

oW

I = Z %J‘ @—#cosh t—nt Ju
0

1
without first bringing it into the form which includes the series > 1, and it will be even more
1 -

difficult to apply it to the series

2 o
z Ef]?(-?)o] J' —iQcosh ¢ Ne,n‘z)(t) dt .

The numerical value of the series | can however be found by using the previous results for I
and 7(0). We can write J in either of the two forms

— (] — I} — bio{Kyfio) + Kfio))
={J— 10} —%. |
The series {J — I}, {J — I(0)} should be convergent; they should at least have a Cesaro sum.

or

APPENDIX III

In this appendix a simpler form will be found for the series

= > f ) sin 6 sin %0 dGJ gz cosh i—nt Jy Z = iw
1 L)

(see section 4.4, equation (4.14).)

Let
W) = 3a, z a, cos nb
1
where '
tna, = f W(@) cos 16 df

(] R

and let -
bn — f e—z cosh ¢ —n? dt .

0
Since

1 4daw

( )—smﬁ do + W,
we have
& . . = rdW . .
f A(B) sin 6 sin nf 46 = f [75 + zsin OW] sin n0 40
(1] [1]
= fn Wz sin 6 sin #0 — cos %6]: a0
0
= %n{%z(dn—l - an+1) - %an}

and so

== Z {%Z(anwl — an+1) - nan}bn >
=1
18
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Now
%bn = e — %—Z<bn—-1 — bn-}-l)

and so
2 w
JFE) = 32 3 {01 — Bl + @B — b} — e D,
1
= $2(ah; + aiby) — e~ zﬂn
= BaEo(e) + wFola) — e [+ Sa
. 1
i.e.

Flz) = & f TWO)E(2) + cos 0 Ko(2)} d0 — kn e W, .

APPENDIX IV
- Basic Integral Relations for Compressible Flow
In this appendix we shall prove the relations (5.8) and (5.13).

It can be shown that for 0 < 0 < ¢ <=z and 0 < ¢ < 6 < = the function defined by

H,®(e«|cos 6 — cos ¢])

H(0,p) =sin 0 sing [cos 6 — cos 9]

satisfies the differential equation

02 0*H
%—MZCOSWH: 357 — a’cos’ ¢ H .

Let
£6) = [ H0.0) lo) d -
Then since differentiation under the integral sign is permissible, z.e.,

d2 n 7 BZH 0)
. dé; = dezf H(0,9) &l9) do = L 3(62 ?) gly) do ,

we get
‘ ;%-—]—(d—oc cos? §)f = f [azg—]— (@ — «® cos? B)H]g(@d‘l’
_.f [%2}5—]- (a — o® cos® ¢)H} g(w) do
[ -]
+ f [dzg — «? cos? qp)g} Hdy.
Now H(6,0) = H(6,x7) = 0 and so if

dZ
Tt (a—arcos p)g =0

and g(0) = g(=) = 0 we have
ZZ];+(a—a cos’0)f=0.
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Now the operator
2
ddz—}-( a — o® cos® p)
is equal to
dz
e + {(@ — %«*) — %o’ cos 26}
and so g is a multiple of one of the odd Mathieu functions se, ¢ if a is suitably chosen.

The function f satisfies the same differential equation with the same eigenvalue a, and since
H(0,¢) = H(s,p) = 0 we have f(0) = f(=z) = 0. Therefore if g is a multiple of se, ¢, / must
be a multiple of se, 8. Therefore ‘

H, (| cos § — cos ¢|)
|cos 0 — cos ¢

se, 0 = lnf sin 6 sin ¢ se, ¢ do ,
0

where 4, is a function of «.

It can also be shown that the function

H,®{a(cosh  — cos ¢)}
(cosh ¢ — cos ¢)

h{t,¢) = sinh ¢ sin ¢

satisfies the differential equation

) o
EV_“ cos<ph— a—tg——oﬂcoshztk
Let .
f(t) = f‘, h(t,o) glo) dy ,
then

_ [% —(@—arcos®yf| = — [ [gt—k — (a — a* cosh ) glo) dy

= r [a;}: + (@ — «® cos? (p)h] g( ) dp

__[oh 081"
= [Ge—5),

_|_f |:d2g_|_ (@ — o® cos® <p)g]hd<p..

Now A4(¢,0) = A(t,z) = 0 and so if g(0) = g(=) = 0 and

dg—l—( a—a’costp)lg =0,

i.e., if g is an odd Mathieu function then

2
%—~ (@ — «®cosh?f)f = 0.
If g is a multiple of se, p then since the eigenvalue a is unchanged, the solutions of this equation
are the modified Mathieu functions Ne¢,™ ®(¢). From the known behaviour of A(e,f) for large ¢,
we see that f must be a multiple of Ne,® () and so 4
i ‘ H,®{a(cosh ¢ — cos ¢)}

@& . .
Ne®(#) = u, f . sinh ¢ sin ¢ (cosh £ — cos ¢)

se, ¢ dy |

where yu, is a function of «. '
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APPENDIX V
Calculation of the Eigenvalues 3, .,

5.1. Calculation of the eigenvalue p,,.—

Let

. . H®MQ(cosht — cos p)}
@(f) — L
Ne,2(t) = u, fﬂ sinh ¢ sin ¢ (cosh 7 — o5 ¢)

Now : )
HOG) = 2 4 P0) logr + 0}

where P(r) and Q{r) are power series in #. Therefore

1 @ 2 (" sinh{ sing
o Ne,2() = alM 2 f o (cosh # — cos ¢)* se, ¢ dp + R,(f) say.
If se, ¢ = i @, sin 7, then
1

se, ¢ dp =

f” sinh ¢ sin ¢ sin 79 dg
2

7 sinh¢ sin ¢
o (cosh # — cos ¢)® a,f

o (cosh z — cos ¢)

va, e,

I

~Ns =P8

It can easily be seen that R,(f) — 0 as t— 0 and so in the limit we have

1 2% &
2 Ne.®(Q) =
b Ne,®(0) ﬂMlel:?/clr
2 ,
=z O
i.e.,
7 Ne,®(0)
‘LL”_QZMQ se,’ 0 °
5.2. Calculation of the Eigenvalue 1, —
Let
: PR . H®(MQ|cos 0 — cos ¢|)
se, 0 = A, 0sm@ sin @ [cos 6§ — cos 9] se, ¢ do .
If we let 6 — 0 we get
n . H®(M(1 — cos ) _Lose, 6,
A, Osm(p (T — cos ¢) senrpd<p_11_r>r;m_sen 0.

se, ¢ do .

(5.2.1)

(5.2.2)

The integrals in 5.2 are principal-value integrals but the integral in 5.1 is a proper integral which
becomes improper-at # = 0. In order, therefore, to equate the limit as ¢—> 0 of the integral 5.1
with the integral in (5.2.2) we must take the principal value or finite part of 5.1 at £ = 0. The
finite part of {Ne,®(f)/}sinh £ at # = 0 is Ne,®’(0) and so equating the two limit integrals we get

}'n Nen(z)(o) - lun Senl 0 ]
i.e.,
= Ne,®(0)
=5 M ey
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