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Summary.--An account is given of experiments made at M = 1.42 using three rectangular half-wing models having 
biconvex sections with thickness ratios 0.04, 0.06 and 0.08, mounted on a reflection plate. Measurements were made 
of the pressure on the upper surface of the wing and of pressure and flow direction in the neighbourhood of the wing . 
tip. Direct shadow photography and observation of surface oil patterns enabled various details of the flow to be 
visualised. The results are correlated with the linearised theory and with certain second-order modifications to this 
theory. I t  is found that in general the linearised theory provides a sufficient approximation to the detailed flow only 
for tile thinnest wing at very small incidences. In most cases the suggested modifications effect a considerable 
improvement. 

1. I n t r o d u c t i o n . - - T h e  ftow in the neighbourhood of the tip of a rectangular wing at supersonic 
speeds is one of the simplest examples of three-dimensional gas dynamics, and the approximate 
theoretical solution of the problem by means of the linearised theory, applicable to thin wings 
at small angles of attack, has been known for some years (see, for example, Ref. 1). A considerable 
a m o u n t  of  experimental evidence is available concerning the overall force characteristics on 
such wings, and it seems that  for wings of moderate aspect ratio the predictions of the linearised 
theory are substantially verified under the conditions for which they may be expected to apply 
(cf. Ref. 4); and by taking approximate account of second-order effects the theory may be 
extended to dover an increased range of incidence and wing thickness 2. Much less experimental 
work seems, however, to have been done on the detailed pressure distribution and flow pattern 
around rectangular wings (but see Refs. 3 and 5), and it was accordingly decided to make a 
systematic series of tests to investigate the matter  more fully, with particular reference to the 
correlation between theory and experiment. In order to do this three half-wing models were 
used, of biconvex circular-arc sections having thickness ratios 0.04, 0 -06  and 0-08, mounted on 
a reflection plate. Measurements were made of the surface pressure and of the pressure and 
flow direction at other points inside the influence region of the wing tip. Standard flow visualisa- 
tion techniques were used to show certain aspects of the shock-wave pattern round the wings 
and of the flow over the wing surface. 

A 

*Published with permission of the Director, National Physical Laboratory. ' 
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2. Theoretical W o r k . - - I t  is convenient at this stage to give a brief.acc0unt of the most important  
thedfetical information v~hida is' at p~resent available: on the subject, and to  'indicate' certain 
extensions which may easily be made. Most of the work is based on the linearised theory, which 
gives in effect the: first approximation to the solution of the exact equations of~in'viscid flow 
when these are expanded as an infinite series in powers of the wing thickness ratio or angle of 
incidence (see, for example, Ref. 6). ' I t  is well known t h a t ,  provided tile free-stream Mach 
number M is sufficiently high for the leading-edge shock to be attached and tile flow behind it 
pro-ely supersonic*, then the fact that  the wing is cut off at its tips will affect the flow only in 
certain regions, exterior to which it will be purely two-dimensional in character and can be deter- 
mined by standard methods. These two ',tip regions' are approximately conical in shape, with the 
apex of the cones at the extremities of the leading edge; according to tile linearised theory 
they are simply the Mach cones from these points. Provided that  the aspect ratio Of the wing 
is greater than a certain value (given by the linearised theory as 2 / ~ / ( M  ~ --  1), these regions will 
intersect behind the wing trailing edge, • so that  they may be treated separately as regards the 
flow in the neighbourhood of the wing ; this is the only case which will be considered, in the 
present paper. 

.lof. L imar i sed  Theory . - -S tandard  rectangular axes are used with origin 0 at  the starboard 
ti the wing leading edge, which is referred to as the apex ; Ox is taken in the direction of the 
free s t ream;  Oy horizontally Outwards in {he spanwise direction (so that  y is negative on the 
wing) and Oz vertically upwards t. The corresponding components of fluid velocity are taken to 
be (U + u, v, w), where U is the velocity' of tile undisturbed stream and (u, v, w) are the com- 
ponents of the perturbation velocity. I t  is convenient to measure x, y and z in terms of the wing 
chord c, so that  the actual spatial co-ordinates are cx, cy and cz. 

A wing of symmetrical biconvex section and thickness ratio ~ is con:sidereal, Whose equation 
at Zero incidence is . . . . . . .  

. . . . . . . .  

On the assumption Of inviscid, irrotational flow, there exists a. velocity potential ¢ such t h a t  

u = - ~ x , v - - ~ y , w _  ~z'  

and the linearised equation for steady motion is then 

. . . . . . . .  • . . . . . . .  ( 2 )  

where B = . % / ( M  2 -- 1 ) .  ... 

This equation has to be solved under the linearised boundary condition On the wing: at incidence 

. . . . : • . 

, ! 

Her.e the alternative signs refer to the upper and lower surfaces  respectively. The pressure 
coefficient %viii then be given by the equation ' 

p 2 u  . . . . . .  
' '  C p - -  1 2 ' - -  .. : , . ~ p ~  U U , 

to the f irs t  order, where ib~ and 01 are respectively the, pressure and density of.the undisturbed 
stream.: , , 

• . ,  , . . 
4 

• Theconditi0ns f0r shock attacliment are exactly the same for an unswept wing of finite span as for a twoLdimensional 
wing of the same section'. 

? In tile experiments described in section 4.4, z was in fact measured at all incidences from the mean plane of the 
wing ; this does not affect the linearised theory but has been taken into account in the second-order calculations where 
necessary. 
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According to the linearised theory the effects of thickness and incidence may  be t rea ted  
separately, and the  results then  added to give the  flow at incidence over a wing of finite thickness. 
At zero incidence the flow is equivalent  to tha t  produced by  a distr ibution of supersonic sources 
over tha t  part  of the  plane z = 0 occupied by the  wing, of s t rength  proport ional  to the  slope 
2,(1 --  2x) of the  surface ; it is thus a straight  forward mat te r  to calculate the pressure and  
velocity at any point. The addit ional  flow due to incidence is conical, so tha t  the problem 
may  be reduced to a two-dimensional  one and solved by  one of the  s tandard  methods  for conical 
flows (see Refs. 6 and 7). These methods  make  use of conical co-ordinates y~, z~, r and 0 defined by  

Yl = By/x  = r cos 0 

z~ = Bz/x = r sin 0 , 

so tha t  r = B~/ (y  ~ + z~)/x 

and 0 = tan -~ (z/y). 
Thus 0 = ~ on the upper  surface of the  wing where y is negative. 

The following expressions are finally obtained for the  components  of the per turbat ion veloci ty 
and the pressure coefficient, for a wing of thickness ratio ~ at incidence c~, in the region bounded  by  
the  Mach cone from the apex 0 and the envelope of the Mach cones from points on the trail ing 
edge ; details of their  derivat ion are given in the Appendix.  

u ~ Cp ~ 1 -- r + y~ sgn 2~ 
_ _  ~ - -  Z - - - -  X U ~B c°s-~ V(1 - z?) 

× (1 --  2,~) COS- @(1 ---Z12) -F 2 ] cos -t r~/(  1 _ z~ ") -]- 2 3, cosh -~ , (4) 

) [ 'i v _ 2~ 1 - - r  sin~0 +2-~  2 x v / ( l _  r, ) + (1 --  2x) cosh - ~ r  (5) 

and U - -  ~ r ' 1 - - r - - y ~  21 cos  ~0 + ~ cos  -1 ~ / ( l  - zl ~) 

yl z?)l V ( 1  - " 
I .Yl 2r sgn z (1 -- 2x) cos -1 r~/(1 zl 2) + 2BIzl c°s-1 (6) + ~  _ 

Here the  value of the inverse cosine between 0 and ~ is t.o be taken  (Equations (4), (5) and (6) 
in their complete form do not  appear to have been derived previously, though the results when  

= 0 are given by Lagerstrom and GrahamS). 

In  the plane of the wing, where z = 0, these equations simplify to give the following well- 
known results 

u c~ 2~ I B  (1 _ 2x) cos-ly~ - t- 2y cosh-1 ~3~1 .. '(7) U -- ± ;P; c°s-* (1 --[Yll + Yl) --  ~- 

uV _ T 2 ~ C  - 13'~]) H( -  Y~) + 2~ [2x~/(1 - Y?) + (1 - 2 x ) - - /  ~'~l: 
1 

c ° s h - 1  ,/'Yl; " (s) 

and 

A:I 

~) 2~(, 1 - -  l y l [ . ~  1 C o s - l ( I  __ 1 . ) , 1 ] - - ~ } 1 ) -  - ~  - -  (1 - -  2 X ) C O S  -1  ° (9) 
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Here the alternative signs refer to the upper and lower surfaces respectively and H(y~) is the 
standard ' unit function ' defined by 

H(y,)  _~ ( i  if y '  > O ' 

if Yl < 0 . 

Outside the Mach cone r = 1 the flow is two-dimensional in character, and the perturbation 
velocities are either zero (outside the influence region of the wing) or given by 

v -  + B B (1  - 2 (x :~ B z ) } ,  

-, v = O  

72) 
and ~ = - -  ~ ± 2 ~ { 1  - - 2 ( x T B z ) } .  

B.y the use of these equations, calculations have been made of the following quantities, for 
wings with ~ = 0.04, 0.06 and 0.08, over a range of incidence at M = 1/2 " 

@ on the upper surface of the wing along the lines 10 = 15, 30, 38 and 48 dog, where 10 = tan -1 
( -  y,) 

@, v /U  and w / U  along the lines z = 0(y > 0), y = 0(z > 0) and z = ~, in the plane x = ½. 
The results of these calculations are shown in Figs. 3 to 14, where they are compared with the 
corresponding experimental values. 

All the preceding equations apply only upstream o f  the region which is influenced by the 
vortex wake of the wing, bounded by the envelope of Mach cones from the trailing edge. In this 
region the flow at zero incidence presents no difficulty, though the formulae given above have 
to be modified to allow for the vanishing of the source strength in the plane of the wing down- 
stream from the trailing edge. But the flow due to incidence is radically altered; the lifting 
surface treated in conical-flow theory is replaced by a vortex sheet, whose strength is constant 
in a streamwise direction, extending downstream from the trailing edge, and across which the 
pressure must be continuous and equal to the free-stream pressure. The flow is clearly no longer 
conical; but Lagerstrom and Graha~n 8 have shown that  it may be represented by the super- 
position of an  infinite number of conical fields, originating from every point on the trailing edge 
which lies inside the Mach cone from the apex. Details will not be given here, since no experi- 
mental  measurements were made in this region ; but it is interesting to consider what happens 
in the wake just downstream of the trailing edge, and this may be found by the following simple 
argument, also due to Lagerstrom and Graham 8. In passing from the upper or lower surface 
of the wing into the wake, the flow is deflected at the trailing edge by means of a shock or centred 
expansion wave in such a way that the pressure just downstream of the trailing edge is the 
same for fluid coming from either surface. Now the pressure change across a weak oblique 
shock or expansion is related to the flow deflection d by the equation A C, = 2d/B to the first 
order. If the wing incidence is e, the trailing edge angle 2Z and the downwash angle e, then 
the flow deflections for the upper and lower surfaces are Z ± (c~- e) respectively, so that  
2 -]- ~ --  ~ : ½B(Cpw --  C,v) and ,~ -- c~ @ s = ½B(C,~v - -  @L), where the suffices U, L and W 
denote values at the trailing edge on the upper and lower surfaces and in the wake respectively. 

Therefore e = ~ @ ~ } B ( C , v -  C,L) 

= - - c o s - '  (1 + 2y,) ( -  1 ~< y ,  ~< o) . . . .  ( lo) 
; 7~  ° ° 

and 2[ l c,,,,. = c,~, + b ~ + - c°s-;(1 + 2y,) ( -  ~ ~< y, ~< o) 11) 
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for any symmetrical wing ; in the present case i = 23. The downwash angle e calculated from 
equation (10) is plotted in Fig. 19 ; it will be seen that  e increases steadily from zero behind the 
two-dimensional region to the value 0~ behind the wing tip. I t  should however be pointed out 
tha t  the above theory  depends on the sidewash v/U being small, and this is clearly not true 
very near the wing tip. 

2.2. Higher-Order Theories.--2.2.1.--In the region where the flow is two-dimensional (the 
shape of the boundaries of this region is discussed below), the Busemann second-order theory 
may be used, and moreover the pressure On the surface of the wing may be found with con- 
siderable accuracy in the absence of viscous effects by  means of the shock-expansion theory 
(cf. Lighthill, Ref. 9), provided that  the leading edge shock is attached. 

I t  is interesting to note that,  even if the incidence is so great that  the deflection onto the lower 
surface is large enough to cause this shock to detach, it is still possible formally to work out the 
shock-expansion theory for the upper surface as if shock detachment had not occurred. The 
results will certainly be in error near the leading edge but may nevertheless be  reliable except 
in this region, as indeed proves to be the case. 

The pressure distributions calculated in this way are shown in Figs. 3 to 5 as ' simple shod¢- 
expansion theo ry '  for ~o = 48 deg. 

2.2.2.--When the flow is t ruly three-dimensional, there has been as yet little progress in 
extending the linearised theory to higher approximations. Such progress that  has been made 
may be divided into two parts : first, rigorous investigations into the nature of the flow near 
the Mach cone from the apex and in particular into the shape of the nearly conical shock from 
this point ;  and second, simple non-rigorous methods designed to improve the accuracy of 
estimation of the pressure distribution and forces on the wing surface. 

Lighthill n,l" has shown that  i n t h e  neighbom-hood of the Mach cone r = 1 the series solution 
to the exact equations of inviscid flow, of which the linearised solution represents the first term, 
is not uniformly convergent and that  therefore the linearised theory does not give correctly 
even a first approximation to the flow in this region. This difficulty may be avoided by expanding 

the,co-ordinate  r, as well as the perturbation velocity potential $, as an infinite series in powers 
of a small quant i ty  ~ representing the thickness ratio or angle of incidence ; thus 

r = R  + 

and ~ = E ~"~ (0 R) .  

The correct first approximation e $, (0, x, R) to the velocity potential $ near r = 1 is thus found 
by substituting R for r in the expression e 6, (0, x, r) given by the ordinary linearised theory ; 
the function r, which expresses to the first order the difference between r and R has to be found 
from second-order considerations, taking into account the conditions which must be satisfied 
across the shock. In this way LighthilP 2 has obtained first approximations to the strength and 
position of the shock in certain problems of conical flow, in particular that  of a rectangular flat 
plate at incidence. For a wing of finite thickness the flow is not strictly conical, so tha t  Lighthill 's 
results cannot be applied directly, but some insight into the actual flow pattern near the Mach 
cone may be obtained by considering the related conical problem of flow over a rectangular wedge. 

For a wedge of semi-angle d at incidence c~, the pressure is given by 

p -- p~ ~ yl  c~ 1 ---r + y_~ 
fll U2 - -  = B  COS--i ~ ( 1  - -  Zl 2) = B  COS--1 ~ ( 1  - -  Zl 2) sgn z,  



in the notation of 2.1. Near the Mach cone r = 1 it is found t h a t  

P - -  P l  1 
Pl Ug t ~  ~ (O - -  ~sgn z)H(-- Yl) + A(O)g(1 -- r), 

where A (0) -- sec 0 ~/2 
z~B (~ -- V/(2) ~ sin ½.O) . . . . . . . . . . .  (14) 

Lighthill lg has shown that  the strength and displacement of the shock from the Mach cone are 
• both proportional to the square of the strength A(0) of the singularity in the ]inearised theory, 

provided that  this is positive. 

Thus, whenever A(0) > 0, a shock exists of strength given by 

3 M 4 
= + 1) _ 1 A2( ° )  . . . . . . . . . . . . . .  (15) 

lying (for y > 0 only) on the cone 

r = 1 + (r + 1) g A (0) . . . . . . . . . . .  (16) 

If A(O) is negative (corresponding to an expansion as the Macfi cone is crossed in a streamwise 
direction), then both the shock strength and (for y > 0) displacement from the Mach cone are 
of lower order. An additional singularity occurs along the lines in which the conical shock surface 
meets the plane.shock from the leading edge ; the above results break down in these regions. 

We see from equation (14) that  if ]~] ~< a/V/2.then A(O) has the same sign as cos 0., so that  
there is a shock outboard of the wing tip (y > 0) and an expansion inboard (y < 0). For greater 
values of [~1 this is still true below the wing at positive incidence, but above the wing the 
situation is reversed whenever = > 0 ~> 2 sin -1 @/(~d'2)}. The nature of the shocks is shown 
diagrammatically for various values of 0~ in Fig. 18. 

For flow over a finite closed wing the above results are no longer strictly applicable, except 
in the immediate neighbourhood of the leading edge, where the wedge semi-angle ~ must be. 
replaced by half the leading-edge angle;  thus ~ = 23 in the present case. However, it may 
easily be shown that,  according to the linearised theory, the singular part of the pressure near 
the Mach cone r = 1 is still p,U=A(O),v/(1 --r), with A(O) given by equation (14); so that  it 
seems probable that  the correct first approximations to the shock strength and position are still 
given by equations (15) and (16) (where applicable), provided that  the distance from the leading 
edge is not too great. Further downstream it is well known that  the shocks decay in strength 
and that  the inclination of the shock stirfaces decreases steadily towards the free-stream Mach 
angle. 

I t  remains to consider the shape of the surface separating the two-dimensional flow over the 
wing from the tip region ; note that  equation (16) does not apply here. Since it is known that  
the strength of any shocks which may be present is at most of the second order in T or ~, it follows 
that  to the first, order this surface must be an envelope of characteristics of the two-dimensional 
flow, and this makes it possible to determine its shape. 

Suppose that  the equation of the surface is 

r = 1 +f(O,  x) . . . . . . . . . . . . . . . . .  (17) 

where f is of the first order in ~ and c~. The condition that  equation (17) should represent a 
characteristic surface of the neighbouring two-dimensional flow is that  the angle between the 
normal to (17) and the local flow direction should be ~/2 :k: #, where/~ is the local Mach angle. 
Now, for two-dimensional flow above an aerofoil whose upper surface has the equation z Z(x) 
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at zero incidence, the velocity vector has direction cosines (1, O, ¢(x - -  Bz))  correct to 0(~), where 
¢ (x) = Z'(x) --  cz is the local inclination of the surface, and the local Mach angle is given by. 

1 {1 + - - B z )  . 
sinff = ~ r  l q - -  B 

The relevant  direction cosines of the normal  to (17) can be shown to be 

1 l q -  + x  -PO(~ =) 

B 
and ,t,a = / ~ r  sin 0 + 0(3) , 

so tha t  the condit ion 

B 2 
M ~ ax (xf)  = 

ment ioned  above leads to the relation 

IB s i n 0 +  {1 + ½(YB--I!M~} l ~ ( x -  Bz) . . . . . . .  (18) 

be satisfied near the Mach cone, where B z  -"- x s in  0, so tha t  it may  be in- This equat ion has to 
tegrated directly to give, as the final form for equat ion (17) 

r = l + ~ 7 [ ( M 2 - - 1 ) s i n 0 + { l + ½ ( ) , - - 1 ) M " } ]  Z(~)--c~ ~ 0 < ~ =  , (19) 

where ~ = x(1 --  sin 0). A similar result can be obtained in the range --  ~ ~< 0 ~< -- =/2. 

In  the present  case Z(x)  = 2~x(1 --  x), so tha t  equat ion (19) becomes 

r = 1 + ( M 2 / B ~ ) { ( M  2 --  1) sin 0 + 1 + ½(), --  1)M ~} x 
x (2 (1 - + s in  o) - . . . . . . .  (20)  

The corresponding result when ~ = 0 has been obta ined in a different way by LighthilP ~. 

The theory  given above is applicable (to the first Order) whether  or not  a shock of second-order 
s t rength  exists on the  surface under  consideration. W h e n  there is no second-order shock, 
i.e., when A(O) is negative,  a higher approximat ion to the shape of the  dividing surface could 
be obta ined in a similar way, using the Busemann second-order theory for the two-dimensional  
flow. In  cases where a shock is present, no further  progress can be made  wi thout  knowledge of 
the complete second-order solution. 

2 .2 .3 . - -Though a t rue second-order solution for the  flow in the tip region has not yet  been 
obta ined (but see Ref. 13), all a t t empt  has been made  by  Czarnecki and Mueller ~ to modify the  
pressure distr ibution on the wing surface obta ined by means of the linearised theory so as to give 
be t te r  agreement  with experiment.  In its simplest form their me thod  may  be described briefly 
as follows : 

The pressure dis t r ibut ion for a two-dimensional  aerofoil of the same section is first calculated 
by the  shock-expansion method,  at zero incidence a n d  at the required incidence ct. The pressure 
coefficients obta ined in this way are wri t ten as the sum of their  value at zero incidence and an 
increment  due to incidence;  thus @(x)  = Cp,0(x) + @,,(x). To find the pressure coefficient 
at  a point  (x, y) on the  surface in the tip region, we take  

Cp(x, y) = Fl (x,  y) Cb, o(X ) + F2(x, y) Cp,,,(x), . . . . . . . . . .  (21) 

where Fl(x, y) is the ratio of the pressure coefficient at the point (x, y) to that at a point wi th 
the  same value of x in the  two-dimensional  region, according to the linearised theory for ~ = 0 ; 
F2(x, 2) is similarly defined from the linearised theory of the  flow due to incidence. Some results 
of this simple me thod  are shown in Figs. 3 to 5 as ' simple shock-expansion theory '. 
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The method can be refined to allow for the fact that  the region of the wing surface influenced 
by the tip is not in fact bounded by a straight Mach line from 0, but by a curve which, as dis- 
cussed in the previous section, is at least to the {~rst order a characteristic of the two-dimensional 
flow and is therefore given approximately by the equation 

- y = Y ( x )  = d x  

~ /{M2(x ) -  1} . . . . . . . . . .  (22) 

Here M(x) is the local Mach number as calculated b y  the shock:expansion method. Czarnecki 
and Mueller therefore suggest that  the functions F1 and F~ of equation (21) should be evaluated, 
not at the point (x, y) at which the value of Cp is desired, but at a point (x', y') displaced to allow 
for the distortion of the tip region. They give various methods  of doing this, the simplest of 
which consists of linear distortion in the spanwise direction. Thus we take 

N'  ~ 2;, 

X 

Y'  = Y BY( ) " 

The results of this modification are shown in Figs. 3 to 5 as 'modified shock-expansion theory '. 

3. ExjSerimental Details.--3.1. The Tunnel and Reflection Plate.--The tests described below 
were made in the 18-in. x 14-in. High-Speed Wind Tunnel at the National Physical Laboratory, 
using supersonic liners designed to give a nominal Math number of 1.4. All models were mounted 
on a reflection plate fixed to the tunnel wall, in order to bypass the wali boundary layer. The 
plan-form of the reflection plate (see Fig. 2) was designed according to the principles described 
by Ormerod ~, in particular the angle of inclination to the flow of the leading edges (60 deg) 
was chosen so that  they would remain supersonic throughout a model incidence range of 4- 15 deg 
at the Mach number of the tests. In fact preliminary tests showed that  the disturbance caused 
by the plate leading edges did not noticeably increase in magnitude up to an incidence of 20 def. 
The plate was mounted on the turntable in the tunnel wall by three struts so as to provide a 
clearance of 2 in. from the plane of the wall ; directly behind the plate the turntable was hollowed 
out in order to compensate for the additional blockage due to the plate and its Supports. 

A thorough preliminary calibration was made of the test region, i.ncl.tid{ng measurements of 
static pressure and flow direction. I t  was found that  the mean Mach'h{imber was 1.42 with an 
overall variation of i 0.02 ; in the region influenced by the wing tip, of particular interest in 
the present tests, the variation was not greater than -1- 0.01. The flow direction varied in yaw 
between 4- 0.4 deg and in pitch between 4- 0.2 deg; again 'the variation was less in the tip 
region. The principal cause of non-uniformity in the flow appeared to be not the reflection 
plate but  a vertical window junction in the opposite wall of the tunn.el, which produced a weak 
shock crossing the plane of the wing just inboard of the Mach line from the t ip  leading edge ; 
this probably did  not interfere seriously with flow measurements inside the tip region of the 
wings, but caused difficulty in determining the shape and nature of the inboard boundary to 
this region. The use of the reflection plate made it inadvisable to at tempt any flow measurements 
downstream of the wing trailing edge, since the strong compression between the plate and the 
tunnel wall propagated even upstream of the rear end of the plate, causing a rapid fall in Mach 
number about 1 in. downstream of the wing trailing-edge position at all spanwise stations. 

3.2. The Modds.--Three half-wing models were used, each of rectangular plan-form with 
3-in. chord and 4-in. span, giving an effective aspect ratio oi 2-aa, and having symmetrical biconvex 
circular-arc sections of thickness/chord ratios 0.04, 0.06 and 0.08 respectively; the wing tips 
were cut off square. A flange at the base of the wing fitted into a sl0t in the reflec}cion plate, 
and was connected to the turntable on the tunnel wall-by means of a hollow circular cylinder, 
which also served to transmit the tubes from the pressure holes ; thus the model and reflection 
plate both rotated with the  turntable. The upper surface of each wing was provided with 21 
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pressure holes of about 0.01 in. diameter, arranged as far as possible along rays from the  apex 
making angles 15 deg, 30 deg, 38 deg and 48 deg with the tip chord line (see Fig-. 1) ; one hole 
was also provided on the lower surface to check the position of zero incidence. Owing to the 
small thickness of the models only seven tubes could be provided for transmitting the pressures, 
so that holes not in use had to be sealed. Several methods of doing this were tried ; the most 
successful consisted of applying a thin film of cellulose nitrate dissolved in acetone over the top 
of the hole. Optical tests showed that the maximum thickness of the film never exceeded 0.0003 
in., so that no interference with the flow need be feared. 

All tests were made with the boundary layer on the upper surface turbulent, transition being 
fixed by means of a band of aluminium paint mixed with carborundum grains extending over 
about 6 per cent chord from the leading edge. The standard sublimation techniqus, using 
hexachlorethane, was employed to verify that this band was efficacious in causing transition. 

3.3. Details of Tests.--During most of the experiment the stagnation pressure was held constant 
at 31 in. mercury absolute, giving a Reynolds number 1.2 × 10 ~ based on the ~ving chord. 
No tests were made at higher Reynolds numbers, but it is thought that  the scale effect with 
turbulent boundary layers is likely to be very small (cf. Ref. 16). 

Measurements of pressure on the upper surface of the three wings were made over a range of 
incidence from -- 5 deg to 13 dog or 15 deg;  the upper limit, being the maximum obtainable 
at this Mach number due to tunnel blockage, varied to a certain extent with the thickness of 
the model. Repeat measurements were taken in most cases. Comparison of the results obtained 
from holes at the same relative position on the upper and lower surfaces showed that  the error 
in the measured incidences at small lift coefficients did not exceed about 0.1 deg. At high 
incidences the lift on the thinnest wing caused a considerable deflection of the tip. Observations 
by means of an incidence telescope showed that the vertical deflection rose to about 0.1 in. at 
c~ = 13 dog, but that the twist was never greater than about 0" 15 deg. No correction has therefore 
been applied to the measurements of wing incidence. 

The following procedure was adopted in reducing the results to the form of pressure coefficients. 
For each pressure hole, the measured pressure was plotted against incidence and a mean curve 
drawn, using the results of all repeat measurements. From this curve was subtracted the value 
of the pressure measured at the corresponding point in the empty tunnel~ and the corrected 
pressure coefficients were then obtained in the usual way. These pressure coefficients are plotted 
against chordwise position x a long the  lines w = 15, 30, 38 and 48 dog in Figs. 3, 4 and 5 for 

-~ 0.04, 0.06 and 0.08 respectively; the results of the theoretical calculations described in 
section 2 are also shown. 

In addition to these measurements of surface pressure, a detailed investigation was made of 
the flow in the vertical plane through the half-chord line of the wings (the plane x z ½). Pressures 
were measured by a standard supersonic static probe of 0.08 in. outside diameter, and the 
direction of flow was obtained by means of a Conrad-type yaw-meter having tw o parallel total- 
head tubes, each of 0.06 in. diameter, cut off at the tip in the form of a wedge of 60 dog total 
angle ; separate measurements had to be made of the flow direction in horizontal and vertical 
planes. The sensitivity of this yaw-meter at M = 1.4 was found to be 10.0 in. of water per 
degree. 

In all cases a correction was applied, as for the surface pressure measurements, by subtracting 
the value of the appropriate quanti ty measured at the corresponding point in the empty tunnel. 
It  was found difficult to repeat accurately the exact alignment of the yaw-meter at zero incidence ; 
consequently all traverses were started outside the influence region of the wing, to provide an 
absolute comparison with the empty tunnel results. 

Traverses were made along three lines in the plane x -~ ½ ; horizontally along the wing half- 
chord line (z = 0), vertically above the wing tip (y = 0) and horizontally along a line -~ in. 
above the wing half-chord line (z = ~). The results are shown in Figs. 6 to 14, where the theo- 
retical calculations described in section 2 are also given. 
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3.4. Flow Visuaiisat~o¢~.--The use of an opaque reflection plate.for" mounting the models naade 
it  impossible to use standard direct shadow or schlieren methods, but by coating the plate w i t h  
white paint and illuminating it with a normally incident beam of parallel light it was found that  
a shadow pattern could be obtained of sufficient clarity to enable good photographs to be taken. 
In this way it was possible to see the principal details of the overall shock pattern and of the 
wake, though little could be distinguished of the boundary layer on the wing. Photographs of 
these shadow patterns over a range of incidence are shown in Fig. 16. 

In order to visualize the flow pattern on the wing surface, experiments were made using a thin 
coating of a ~nixture of t i tanium oxide and heavy oi l  applied uniformly to the upper surface 
of the wing. Reasonably clear oil patterns were obtained at high incidences after a few seconds 
running time*. Photographs of these oil patterns are shown in Fig. 17 ; they were taken while 
the tunnel was running to avoid the distortion which resulted when the tunnel shock passed 
over the model in shutting down. 

4. Discussio~¢ of Results.--4.1. The Pressure Distributio~ o~ the Wi~g Surface.--In Figs. 3, 4 
and 5 the experimental pressure distributions on the upper surface are compared with the results 
of the linearised theory (equation (7)) and of the simple and modified shock-expansion theories 
described in section 2.2.3. It  can be seen that  in general the approximation provided by the 
linearised theory is reasonably adequate only for the thinnest (4 per cent) wing at small positive 
angles of incidence, and becomes steadily worse as the incidence or thickness is increased, parti- 
cularly at negative incidences. 

The simple shock-expansion theory gives results which are in good agreement with experiment 
(having regard to the possible experimental error, which may reach ± 0.01 on Cp) for all three 
wings over a wide range of positive incidences (up to 8 deg and in some cases even to 12 deg), 
except near tlie wing tip (~# = 15 deg) and, at low incidences, along the line ~ = 48 deg. The 
modification suggested by Czarnecki and Mueller to take into account the distortion of the 
tip region due to finite incidence and thickness (' modified shock-expansion theory ') seems, at 
least in the present case, inferior to the simple shock-expansion theory where the two differ 
significantly, except at low incidences along the line ~o = 48 deg; and even here the effect of 
the distortion appears to be overestimated. It  should, however, be remembered that  this modi- 
fication was designed primarily to take into account the effect of thickness and would certainly 
not be applicable at incidences high enough to cause the leading-edge shock to detach t ; indeed 
the remarkably good results given at s~ach incidences by. the simple shock-expansion theory 
must be regaided as to some extent fortuitous. 

Some insight into the range of validity of these theories may be gained from consideration 
of the degree to which the ' t ip  region is distorted from the simple Mach triangle 0 ~< .--Yl ~ 1. 
The boundary to this region may be found from equation (22), on the assumption that  it is 
approximately a characteristic of the neighbouring two-dimensional flow, as described in sections 
2.2.2 and 2.2.3. This assumption is not strictly valid either when a shock occurs at the boundary 
between t.he two regions§ or when the leading-edge shock is detached, but may nevertheless 
provide a useful guide even in these cases. The results of these calculations are shown in Fig. 15. 
I t  is seen that  for values of ct. between about 4 deg and 8 deg the distortion is of the nature of a 
contraction and, except near the leading edge, is almost independent of wing thickness. For 
smaller positive incidences the distortion is very small for the thinnest wing but changes rapidly 
as the thickness is increased ; thus for the thickest wing at zero incidence there is a large extension 
of the tip region. Even for the thinnest wing this extension becomes large at quite small negative 

*Subsequent experience has indicated that  better results could have been achieved by using an even thinner layer 
of oil 

"t'The incidences at which the shock detaches are -t- 5.4, 4- 3.1 and 4- 0-8 deg for the three aerofoils in order of 
increasing thickness .  

§.According to the linearised theory (cf. equation (14)) this happens when c~ >~ T~/2 ' initial values for the three wings 
in ascending order of thickness are g = 3.2, 4.8 and 6.4 deg. 
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incidences, due to the strong leading-edge shock, and for the two thicker wings at c~ = - 4 deg 
the existence of an appreciable subsonic region behind the detached leading-edge shock means 
tha t  the tip region is effectively unbounded. 

This  explains why none of the theories quoted above give acceptable results at negative 
incidences at the comparatively low supersonic Mach number of the present tests. I t  appears 
also that  the Czarnecki-Mueller modification is reliable when the distortion of the tip region 
consists chiefly of an extension (provided this is not too large) but should not be used when a 
contraction occurs. No explanation can be offered; but it is perhaps worth noting that  it is 
in the latter case that  a shock is liable to occur at the boundary between the tip and two- 
dimensional regions. 

A further point of interest concerns the nature of the flow in the immediate vicinity of the 
wing tip. A study of the pressure curves for ~0 = 15 deg (Figs. 3a, 4a and 5a) at high incidences 
shows that  the experimental pressures are in most cases considerably lower than those predicted 
by the simple shock-expansion theory, which gives good results further inboard ; for the thinnest 
wing they are indeed even below the linearised theory (Fig. 3a, ~ = 12 deg), though the effect 
becomes less marked as the wing thickness is increased. This can be explained in terms of the 
theoretical singularity which exists at the wing tip ; for a real flow this leads at moderate inci- 
dences to flow separation from the edge of the upper surface of the wing, thus producing a region 
of concentrated vorticity just above the  tip. 

The phenomenon of tip separation has been studied theoretically by several writers, particularly 
at low speeds, and it is well established that  the resulting vorticity leads to an increase of suction 
on the upper surface of the wing near the tip, as has been observed in the present experiments. 
Cheng 16 has given a theoretical treatment of the supersonic flow past a rectangular flat plate 
and has calculated the change in pressure distribution due to the tip separation ; but  his simple 
model of the flow is to some extent unrealistic in that  it assumes a discrete conical vortex without 
the physically necessary feeding vortex sheet and thus overestimates the magnitude of the 
effect, a defect which is shared by the similar methods of Edwards ~7, Adams TM and Brown and 
Michael 19 for thin delta wings. Furthermore, it is clear that  for a wing of finite thickness the 
phenomenon will be sensitive to the shape of the wing tip, but if a reliable theory were available 
for the flat plate it might be extended by applying it only from that  incidence at which separation 
was first observed, as suggested by Kiichemann ~°. 

I t  should be emphasized that  for finite wings the effect is essentially of the second order, at 
least as regards the detailed pressure distribution, as may be seen from the fact that  in only one 
case (for the thinnest wing at incidences above about 10 deg) is the suction actually greater 
than that  predicted by linearised theory. Thus any theoretical attempts to correct for tip 
separation must start  from a reliable second-order theory of the unseparated flow, when this 
becomes available. 

4.2. Surface Flow Parterres.--The surface oil patterns which were obtained at high incidences 
(Fig. 17) are also of interest in this connection, since they show clear traces of tip separation and 
in many cases of the characteristic outflow near the tips which is associated with the presenc e 
of a vortex lying above the surface. 

Many of these photographs also show the position of the shock wave which forms the inboard 
boundary to the tip region, marked by an abrupt change in direction of the surface streamlines 
as they cross the shock. The shock positions seem to be in qualitative agreement with the 
theoretical ideas mentioned previously (Fig. 15) ; they lie in all cases well within the tip Mach 
cone, and there are signs of the predicted contraction of the tip region with increasing incidence. 

The extent of flow separation near the trailing edge can be clearly seen by this method. In 
interpreting the results it is important  to bear in mind the work of Gadd and Holder (Refs. 21 
and 22) on boundary-layer separation induced by oblique shocks. They have shown that,  for 
turbulent boundary layers at local Mach numbers above 1.5, an appreciable amount of separation 
may  be expected if the flow deflection through the shock exceeds about 12 deg ; this criterion 
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has been confirmed by some experiments on a double-wedge aerofoil at M = 1. (3 "3. Thus two- 
dimensional trailing-edge separation would be expected for the present series of aerofoils at 
incidences exceeding abouJc 8, 5 and 3 deg respectively. The photographs show in all cases a 
considerable alnount of separation at the junction of the trailing edge with the reflection plate, 
due to the interaction there of the two boundary layers ; if this effect is ignored and attention 
is concentrated on the edge of the tip region (ab6ut -} span outboard from the plate), it is seen 
that  the degree of separation is consistent with the above figures. Thus for the 4 per cent thick 
wing there is a small amount of separation at c~ = 10 deg, for the 6 pel: cent wing the separation 
at this incidence is considerably greater, and the 8 per cent wing shows an appreciable separation 
at ~ = 8 def. As the incidence is increased the separation in this region also increases rapidly, 
part ly due to interaction between the trailing-edge shock and the two conical shocks springing 
from the tip and root of the leading edge. Outboard of this region there is a marked decrease in 
the amount of separation, which in no case extends as far as the tip of the trailing edge. This is 
due largely to the rapid increase in downwash as the trailing edge is approached (see Fig. 19) ; 
thus at the tip itself the linearised theory predicts that  the downwash angle is exactly equal to 
the angle of incidence so that, according to Gadd's .criterion, there should be no change in separa- 
tion with incidence, as indeed appears to be the case. 

The effect of trailing-edge separation can of course also be seen in the local loss of suction at 
high incidences, notably from the pressure distributions along the line ~r = 38 deg (Figs. 3c, 
4c and 5c) and to a lesser degree along the line vJ = 30 deg (Figs. 4b and 5b) ; the lack of a pressure 
hole near the trailing edge on the line W = 48 deg prevents observation of the even more marked 
effect which must have occurred along this line. 

e 

4.3. Direct Shadoz~ Photogra~hs.--The most interesting feature of the direct shadow photo- 
graphs (Fig. 16) is the double tra~ling-edge shock which is visible at low incidence on both surfaces. 
This can be explained very simply in terms of the shape of the trailing-edge shock surface. Con- 
sider, for example, the flow at zero incidence. In the two-dimensional region the local Mach 
number at the trailing edge is higher than that  of the free stream and the inclination of the 
shock to the free-stream direction is less than the Mach angle of the undisturbed flow. As the 
tip region is entered the local Mach number decreases and so the inclination of the shock increases, 
reaching a maximum near the tip where it verges into the weaker conical shock from the extremity 
of the trailing edge. 

On the assumptions of the linearised theory the shape of the trailing-edge shock can easily 
be calculated ; a typical example is shown in Fig. 21. It  is evident ttmt the shock surface will 
.be tangential to the normally incident beam of light both in the two-dimensional region and 
near the tip, so that  a strong image of the two-dimensional shock and a weaker image of the 
tip shock will be seen on the plate. The theoretical values of the two-dimensional shock angle, 
calculated from the shock-expansion theory, and of the tip shock angle, obtained on the assump- 
tion that  the tip pressure coefficient at zero incidence is half the two-dimensional value and that  
the variation with incidence is according to the linearised theory, are shown in Fig. 20, together 
with some experimental measurements from the photographs of Fig. 16. In view of the un- 
certainty of the measurements and of the approximate nature of the theory (see the remark 
at the end of section 2.1) the agreement is quite good at zero and small positive incidences, but 
not at negative incidences ; this may be due to the large distortion of the tip region in such cases. 

The shape of the bow waves seen in the photographs is of less interest in the present connection, 
since it represents the integrated effect of the purely two-dimensional shock surface from the 
leading edge. The angles at which the shock detaches are consistent with the theoretical values 
c~ = 5.5, 3.2 and 1.0 deg for the three wings ; thus the thinnest wing at ~ = 10 deg and the 
two thicker wings at ~ = 5 deg all show detached bow waves. The shock angles at zero incidence 
are somewhat greater than predicted by theory for M = 1.42, indicating that  the mean Mach 
number along the leading edge is smaller than the overall mean value ; this was confirmed by 
the empty-tunnel calibration. 
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The boundary layer and wake are also in many cases visible in the photographs, but these are 
again mainly of general interest, and much more detailed information may be obtained from 
the surface oil patterns. 

4.4. Flow Measurements Off the Wi1¢g Surface.--The results of the measurements of the pressure 
coefficient Cp and the two components v and w of the perturbation velocity in the vertical plane 
through the half chord-line (x = ½) are shown in Figs. 6 to 14. They indicate that,  in general, 
the unmodified linearised theory is adequate only for the thinnest wing at very small incidences, 
outside the immediate neighbourhood of the singularities which exist on the Mach cone from 0 
and along the tip chord. The calculations of the strength and position of the conical shock, 
described in section 2.2.2., are also included in the figures, together with an estimate of the 
appropriate modifications to the linearised theory ; in most cases the agreement with experiment 
is considerably improved. In the two-dimensional region inboard of this shock further improve- 
ment  may be obtained by malting use of the Busemann theory to calculate the second approxima- 
tions to @ and w/U ; the results are shown in Figs. 12 to 14. 

A more detailed discussion of these points is given below : 

(a) Along the lithe x = ~,zl = 0" (y > 0) (Figs. 6 to 8).--At zero incidence the measured pressure 
coefficients (Fig. 6) are in good agreement with the modified theory for all three wings ; it is 
difficult to estimate the exact position and strength of the conical shock by means of a static 
tube, since this causes an apparent smoothing out of the steep pressure rise, but  within the 
limits of the experimental error the predictions of Lighthill 's theory 1~ are certainly verified. 
For c~ = 2 deg and 4 deg the predicted constancy of pressure is also verified, but  at c~ = 6 deg 
there is a perceptible increase in the strength of the shock and its displacement from the 
Mach cone. 

The same conclusions are largely true concerning the measurements of v/U (Fig. 7), except 
that  there is an unexpected peak in the experimental curves just inboard of the shock, and 
variation with incidence is more marked, particularly near the wing tip. 

The measurements of w/U (Fig. 8), however, show very poor agreement with theory ;  the 
curves are similar but  are displaced laterally so that  the measured values are always under- 
estimated. This lateral shift is to be expected near the shock, and for smaller values of y~ it 
may perhaps be explained in terms of the displacement due to the separation of the flow at the 
wing tip ; the peak value of w/U must occur at a positive value of y~, and again the effect is an 
outward shift of the origin for y~. 

* 0) (Figs. 9 to l l ) . - -Ver t ica l ly  above the wing tip there (b) Alo~g the lira x = ~, y = 0 (z > 
are two singularities in the linearised theory ; at the tip (z~ = 0) and at the point z~ = 1 which 
is common to the two-dimensional region, the tip region and the undisturbed flow. For this 
reason the agreement between theory and experiment may be expected to be poor, particularly 
since no second-order corrections are as yet  available except as regards the position of the shock, 
which may be predicted by  two-dimensional nlethods. Nevertheless, at zero incidence the 
agreement for the thinnest wing is quite good except near the shock ; the variation with thickness 

. is correctly predicted only in the case of v~ U. 
As the incidence increases the agreement becomes poorer except where local values of the 

quant i ty  under consideration are very small, in particular the large positive values of w/U which 
are predicted near the tip are not realised in practice, since the value on the wing surface itself 
must in fact equal the local inclination of the surface. 

The position of the shock is consistent with two-dimensional theory at c~ = 0 and 2 deg except 
for tile thickest wing at c~ = 0, where the relatively small value of & a t  the shock suggests tha t  
this may be beginning to curve from its two-dimensional position into the conical shock from the 

*In this section z is measured throughout vertically above the plane of symmetry of the wings, at all incidences ; 
this fact has been allowed for where necessary in all second-order calculations. 
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apex. As the incidence increases the strength of the shock decreases, but it does not nlove 
towards the plane of the wing as would be expected i f the  flows over the upper and lower surfaces 
were independent. Now in fact, for all the wings tested, the shock has detached from the leading 
edge when the incidence has reached 6 deg, and even before this happens there must be some 
increase in the curvature of the upper surface shock near the leading edge, with a corresponding 
upward deflection of the shock from its theoretical position. The strength of the shock is in 
most cases lower than the theoretical value, which at this point is just half its two-dimensional 
value. 

The experimental values of v/U (Fig. 10) near the tip at the higher incidences are all numerically 
larger than predicted by theory ; this is clearly consistent with the idea of a tip vortex discussed 
previously. 

(c) Alo~g ~he li~e x = ~-, z =: ~ (Figs. 12 to 14).--It is convenient to divide the discussion of 
the results of this horizontal traverse into two parts, outboard ( Y >  0) and inboard (2Y' < 0) 
of the tip respectively. The first of these is analogous to case (a) above, and many of the remarks 
made there are also applicable in the present case. At low incidences (~ _-- 0 and 2 deg) reasonably 
good agreement is obtained for all three quantities between the experimental results and the 
linearised theory, particularly when the latter is modified according to Lighthill's method to 
allow for the finite shock strength, though this is overestimated in the case of the two thicker 
wings. 

The variation with incidence, however, differs very considerably from theory, and at c~ = 6 deg 
the agreement is poor;  in particular, the strength of the shock does not decrease as predicted 
by theory but remains practically constant, again probably due to the detacliment of the shock 
from the leading edge. 

Over the surface of the wing (y < 0) the agreement between experiment a n d  tlie linearised 
theory depends to some extent on the adequacy of the latter in the two-dimensional region and 
on the amount of distortion experienced by the tip region, two factors which in the present case 
are closely connected. Thus at zero incidence, when the second-order correction in the two- 
dimensional region and the distortion of the tip region are both quite large even for the thinnest 
wing, the linearised theory gives poor results for Cp and w/U, and the suggested corrections give 
a considerable improvement, though t h e y  cannot at present be extended outside the limit of 
the two-dimensional region. As the incidence increases the measured values of Cp (Fig. 12) 
approach more closely to those of the linearised theory, and Ior c~ = 4 deg and 6 deg the agreement 
for the thinnest wing is excellent. A similar improvement also takes place in the case of w/U 
(Fig. 14), but is less marked ; the measured values remain throughout below the theoretical values. 

For the sidewash v/U (Fig. 13) the situation is slightly different, since the two-dimensional 
value is of course exactly zero ; as a result the complete second-order correction can be estimated 
with some accuracy near the boundary of the tip region, and gives remarkably good results at 
zero incidence, though the agreement becomes less good as the incidence increases. It  is difficult 
from the experimental measurements to determine the exact position and nature of the boundary 
of the tip region ; this may be partly due to the rather poor velocity distribution of the empty 
tunnel in this neighbourhood. However, the reasonably consistent results and satisfactory 
agreement with theory which are obtained at zero incidence lend some weight to the suggestion 
that  at moderate incidences the simple expansion or shock predicted by theory is replaced in 
practice by a comparatively diffuse system of weak compression and expansion waves ; compare 
for example the theoretical and experimental results for v/U at k = 0 and 6 deg. 

5. Concl~sioT~s.--The results discussed in the previous section confirm in general the principal 
that,  if detailed information is required concerning the flow over a wing (as opposed to the 
overall forces acting on it), then the linearised theory is adequate only when the predicted 
perturbation velocity is small everywhere. Thus, even for the thinnest (4 per cent thick) of 
the three wings tested, reasonably good experimental agreement with the simple theory is 
obtained only at zero and very small positive incidences at points not too near the singularities 
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which exist at the wing tip and on the Mach cone from the apex. The tip singularity at incidence 
is of order r -1/2, while at zero incidence it is merely logarithmic, and it is probably for this 
reason that  in general the effect of increasing incidence is estimated with less accuracy than the 
flow at zero incidence. 

Certain modifications to the linearised theory in the neighbourhood of the conical singularity 
(based on Lighthill's methodl2), which predict in particular its strength and position, provide a 
definite improvement at low incidences but  are again less successful when the incidence is 
appreciable. No complete second-order theory is yet available, but the pressure on the upper 
surface of the wings at positive incidences may be estimated with some success by a simple 
extention of the shock-expansion method for two-dimensional flow. Good agreement with 
experiment is obtained in this way at incidences up to about 10 deg in regions which are not too 
close to the wing tip and are not affected by trailing-edge separation. At zero and small negative 
incidences further improvement may be obtained by using a modification suggested by Czarnecki 
and Mueller 5 to take into account the distortion of the tip region, which at these incidences 
may be considerable; at positive incidences, however, the corresponding modification seems 
less successful. 

Surface oil patterns (Fig. 17) confirm the existence at high incidences of vortices lying in a 
streamwise direction above the upper surface at the wing tips, as in subsonic flow; these tip 
vortices lead to a local increase in suction which is.evident in the surface pressure measurements 
in this region. The degree of separation of the boundary layer near the trailing edge is consistent 
with previous two-dimensional work on the subject~l."2.23 ; the separation always starts in the 
two-dimensional region and spreads outwards towards the tip, but does not reach it within the 
incidence range of the present tests. 

The reflection plate was used successfully as a screen on which to obtain direct shadowgraphs. 
The most interesting results obtained in this way concern the nature of the trailing-edge shock ; 
this is apparent in the photographs (Fig. 16) as an apparent bifurcation of the shock, which 
is shown to be consistent with theoretical considerations on the shape of the shock surface. 

The comparatively low supersonic Mach number of the present tests leads to the detachment 
of the leading-edge shock over a large part of the range of incidence, particularly for the thicker 
Wings. For this reason it would be interesting to investigate the effect of increasing the Mach 
number;  this might lead to better agreement with theory in regions near the leading edge. 
Further work should also include flow measurements downstream of the trailing edge, which 
have not been attempted with the present apparatus ,  due to the poor quality i n this region of 
the flow produced by the reflection plate. 
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A P P E N D I X  

The Flow Field Due to a Rectangular Biconvex Wing (Linearised Theory) 

(a) Zero incidence.--The per tu rba t ion  veloci ty  due to a dis t r ibut ion of supersonic sources of  
s t rength  2~(1 --  2x), over the semi-infinite strip 0 ~< x ~< 1, y < 0, has to be calculated.  This 
m a y  of course be done by  first finding the veloci ty  potent ia l  (e.g., by direct integrat ion) and 
then  differentiat ing ; bu t  it  is ins t ruct ive  to build up the  veloci ty  field from tha t  of a rec tangular  
wedge,  which m a y  easily be de te rmined  by  the  me thod  of Goldstein and  W a r d  6' 7 for conical flow. 

Consider first a wedge of semi-angle $, at  zero incidence, occupying the  quadran t  x > 0, 
y < 0. Nex t  use the  conical co-ordinates y~ = By/x  = r cos 0, z~ = Bz/x  = r sin 0, and make  
the s t andard  t ransformat ion  to the  complex t plane, defined by  

t = r/(cos 0 --  i~/(1 --  r ~) sin 0) (r ~< 1) . . . . . . . .  (A.1) 

= s e c h  (s + iO), 

where  s = -- cosh -~ 1 
f 
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I t  is t h e n  well  k n o w n  t h a t  t h e  genera l  conica l  v e l o c i t y  field sa t i s fy ing  t he  l inea r i sed  e q u a t i o n s  
of m o t i o n  m a y  be  w r i t t e n  u = ~ G d t ) ,  v = NG~(t), a n d  w = ~G3( t ) ,  where  G,, G, a n d  G3 are  
ana ly t i c  f u n c t i o n s  of t s a t i s fy ing  t he  re la t ions  

i t  
G ( ( t ) ' G ( ( t ) ' G a ' ( t )  = ~ "  - -  i "  V/(1 - -  t 2) . . . . . . . . .  (A.2) 

T h e  b o u n d a r y  c o n d i t i o n s  to  be  sat isf ied in t h e  t p l ane  are • 

On t he  real  ax is"  0@(t) > O , w = O .  

On t he  real  ax i s"  .~(t) < O , w =  ± Ua. 

Thes e  are c lear ly  sa t isf ied b y  

U~ 
G~(t) = - -  i - - -  log t . . . . . . . . .  

tTg 
(A.a) 

w h e n c e  w = - - -  
U ~  

A m  t 

US 
21; 

- -  - -  t a n  -1  { V ( ]  - -  r 2) t a n  0}  f r o m  ( A . 1 )  

_ U ~  s g n  z cos -* Yl (A.4) 

F r o m  (A.2), i t  is easi ly  f o u n d  t h a t  

U ~  
G 1 = - -  ~ C O S  - 1  t (A.5) 

a n d  - c o s h _ , l .  
t 

T h u s  

arid s ince 

U ~  
u = - -  ~/3 A m  {t -~- @/(1  - -  t2)}, 

V (  l _ t 2  ) = ~ / ( 1 - - r  2 ) - i r  = s i n O c o s O  
1 - -  r 2 sin s 0 

it  fol lows t h a t  
UO y~ 

~l~ = - -  - -  C O S  - 1  

V ( 1  - 

1 
Since  cosh -1 - - -  

t 
- -  s + iO, i t  also fol lows t h a t  

d U 1 
c o s h  -1  ~ . 

7~ f 
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T r a n s f o r m a t i o n  back  to cartes ian co-or.dlnates y ie lds  ' 

U =- ~ B  c°s-1  V' (x  2 B~z ~ ; " "  ' "  " (A.9) 

a n d  

v 
- c o s h  -~ x / ( B ~ )  . . . . . . . . . . .  

U = 

w 
- -  sgn z cos-* x y / t ~ . X / ( x  - -  B 2 z ~ ) } ,  . . . . . .  

U 

q 

9 9 

. .  (A.IO) 

. .  (A.11) 

where  , .  ~ = ,  t / ( y  = + z2) . ,  i 

N o w  the  ac tua l  w i n g  i n a y  be  t h o u g h t  of as m a d e  up  of a w e d g e  of s emi -ang l  e ~o --= 2 ,  w i t h  
l ead ing  edge a long  x = 0, toge ther  w i t h  a d i s t r i b u t i o n  of  in f in i tes imal  wedges ,  each of semi-  
angle  - -  4 , ~  w i t h  l ead ing  edges  a long  x = ~ a t ' in terva l s  ~ in the  s t r e a m w i s e  direct ion.  Since  
the  po in t  (x, y,  z) (z > 0) is ins ide  the  Mach cones  from tile a p e x  of those  w e d g e s  f o r  w h i c h  
0 ~< ~ ~< x - -  B~5, and  ins ide  the  t w o - d i m e n s i o n a l  region of w e d g e s  w i t h  x - -  B#o <~ ~ <~ x - -  B z  
( f o r y  < 0), it fo l lows that ,  for z > 0 " . . . . . .  " • - [~ , i  ~ 

u 2 ,  y ,  q_ 4 ,  u -  =Bc°s-lx/(]-z#) 2Bl1" 

v _ 2 r  c o s h _ l  _1 _ 4~_ 12 . . . . .  , 
, V .  ~ ~" ~ 

a n d  
W 

U 

where  I1 = 

2* vvs xv. 4~ Ia, c ( ~  - 1  _ _  _ _  

, ° , ~ ° • 

= ~ , , / ( x  2 - B2z2)  ~ ~ ., 

f " B y  g¢ + , ~ ( c o  - ~ ) H ( - - y ) ,  ; e ° s - 1  ~j (~2  _ B 2 z ~ ) .  

B &  ~ i ; 

. • o ° 

I '  I 

( A . 1 2 )  

(A.18) 

. . . . . .  (A.14) 

, . .  , ,  

1 "  2 

L : C°sJi - i  B 7  ' 

d~ + ~(o~ ~ ) ~ ( - y ) .  a n d  Ia ---- cos -~ a~l/(g ~ _ B2z= ) 
Bo~ 

, , T h e s e  in tegra l s  can be e v a l u a t e d  b y  in tegrat ion  b y  parts  ; in the  case of 11 a n d  [a the  f u r t h e r  
s u b s t i t u t i o n s  

¢ 
= ~ (for I1) 

v ' ( ¢  2 _ B 2 ~  ~) , .  / '  

a n d  ' l, , : ~ / ( ¢ ~ _  B2a52) - -  77 (for ?a) are necessary .  

T h e n  it  m a y  be  s h o w n  tha t  

12 = x , c o s h _  1 _1 x%/(1 r 2) - ' 7  ~ , 
, J" . ,  : . .  { 
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W h e n  y is posi t ive,  it is found t h a t  

Yl -- - -  BZ COS -1 I 1 =  X COS - I  %/(1 ~ Zl~i - -  BY c o s h  -1 1 Yl 
" r r % / ( 1  - -  z l  2) 

W h e n  y is nega t ive  

zl = ~ = - oos- '  %/(¢ _ B w ) j  

= ~ ( x  - B z )  - x c o s  - 1  
lyll 1 lyll 

%/(1 zl ~) + B]y] cosh-* - + Bz cos -1 
- -  r r % / ( 1  - -  z l  ~) 

" Y *  " - - -  Bz c o s  - *  = x c°s~1%/(1 _ zl~) ' By  cost/-~ r 1 

as for posi t ive  y .  

Yl 
~'V(1 - ~12) ' 

i 

Similar ly ,  for posi t ive  and  nega t ive  y • 

13 = x cos -~ Yl Bz cos -1 Yl 
~V(1  - ~?) V ( 1  - ~?)" 

Fina l ly ,  cons idera t ions  of s y m m e t r y  lead to the  resul t  tha t ,  for all z • 

~ _ m, ( 1 -  2x) c o s - ~ v (  1 ~?) + 2 1 ~ l c o s - 1 % / ( 1 .  ~/) 
V ~ - -  - -  

Uv __ 2zaz I (1 --  2x )cosh  - l l r  + 2x % / ( 1 -  r~)] . . . . .  . . .  . .  (A.16) 

and  w 2~ I Yl Yl ] U - -  s g n z  ( 1 - - 2 x )  coS-1r%/( l_z12)  + 2Bizl c o s - i V ( l _  ~?) j  " . .  (A.17) 

(b) Flow due to incidence.--The solut ion for a r ec t angu la r  p l a t e . a t  inc idence  ct. is well k n o w n  ; 
i t  is given,  when  z > 0, b y  

2 U g  - -  B 1 + !  = - - = B s i n h - 1 % / t '  . . . . . . . .  (1.18) 

- - .  ~ .  . ' ,  . .  ~ o • • ° ° • ° ° , • • 

2U0~ t " " " 

, )  ,) . . . . . . . . . . .  and  2U0~ - - ~ / ( 1  t t (A.20) 

[These equa t ions  m a y  be ob ta ined  ei ther  di rect ly ,  b y  us ing the  b o u n d a r y  condi t ions  

R(G3') = 0 for t < 0 

and  I(G~') = 0 for ¢ > 0, 

or f rom equa t ions  (112) to (114) of Golds te in  and  W a r d ' s  paper  7, p u t t i n g  to ---- oo 

20 
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B y  making  use of the  relat ion 

( !  ± t )  1/~ r) v2 i(1 sin lO t = r-1/~[(1 :k cos ½0 --  T r) ~/~ ~ ], 

which m a y  be deduced from the definition of t (A.1), the  equat ions valid for z~ > 0 can be 
obtained,  namely  

u ~ 1 -- r + y~ (A.21) 
COS-I ' .  . . . . . . . . . . . . .  

u - ~ B  V ( 1  - ~ ? ) '  

v _ 2 ~ (  ! - - r )  sin½0 ' (A.22) - -  ° ° • • ° ° ° • • • ° • . 

U ~ r 

cos i ,  w 2~ ! -- --  r --  y~ 
_ c o s  ½0 + { _ . . . . .  ( A . 2 3 )  

and  U u r ~/(1 -- z~ 2) 

These results can easily be extended to cover negat ive  values of z by  considerations of anti-  
s y m m e t r y ;  and by  combining them wi th  equations (A.15) to (A.17), equations (4) to (6) of 
section 2.1 m a y  be derived. 

21 



tO 

J 

V=I5 ° V~bO ° ~/=68 ° IK=~g ° 

®oi ®o /O o~ ," 
I z l / l /  

~@ 1 / ~  / /  , "" / / x z 

:~//~//;-'/ o® (Hale on bokh 
I I ~'.~'.~£ s~r-faces), 
¢ g.,,,, ,-, 

i 
0 ~Leading edge 

I Oirenkion 
of flow 

4 ~ 

Fio. 1. 

I 
I • i .,¢¢-- 

i 
10.1 
1 
I 
1 2 'I • I 

Reflect:ion Line of I 
plahe k u n n e l j J  

wall I- i 
I 

Plan of model, showing position of pressure holes. 

DirecL ,on  
o f  flo~v 

FIG. 2. 

........... .17" 3'5~ " I 

• . Z l 

2 . . . . . . . .  h ,, 
~_ lit; ~'I" b-q 

Position of model in reflection plate. 



to 
Go 

-0 .4  

-0..5 

~0.2 

-0.1 

Cp 

0 

0-1 

0'2 

/ . ~ f  . ~ _ > f  ,,,m~ / / , i -  

/¢. .>" ~, . j . -  "" 

c"  - - ' / ~  l-"" - 5  o 

O.B 
O o.2 o.4 m o.a o.s 

(a) g / =  15 ° 

Exper imenL 
Linearised LIqeory 

- 0 -4  

-0 .3  

- 0 . 2  

-0..I 

Cp 

0 

0.1 

0.2 

f 

J 
/ 

J 
J 

texpc) /s~ t '<c~ . - -  "- . . ,~,i" -~  ~'- '- . . .~ ~ - - "  

/_~y; .t- ~ ,  

...,. 04 . . ~ . .  P - % /  

. -u / / , / . ] ~ _ t h / -  

,, _5 b/ 
/ 

1.0 0 0.2 0 .4  :~¢ 0 .6  0 5 

(b) ~ = 3 0  ° 

1.0 

Modified shock-expans ion  Lheorg . . . . . . . . . . . . . . . .  {Where Lhl's is noL shown ~ e  resulLs az3ree 
Simple shock-expansion ~aorcj \wikh ~ose  orE he modift'ect gheorg) 

FIGS. 3a and 3b. Pressure distribution on the wing.--T = 0" 04. 



bO 

- 0 " 4  

-0.5 

- 0 , 2  

-0.1 

cp 
0 

O. t  

0.2 

I I 

J~'27 

o ...J"1 ° -  - " 7 ~ . 7 J /  

0-3 

!. coo 
- J 

0.4 
0 0.2 

Ex pe.rimenE - 
Line.~-'ised I:heorg 

0"4. ~ • 0.6 
( c )  .7,. = ~t~ ° 

FIGS. 3c and 3d. 

i -o.~- 

c~,~r~ J / ~ 9--'..~'I ! 
I ~ .~ " - " ~ . - "  " ~  

/ 

-0 .2  ~ / - " "  "" 

- O , I  ~ - - -  o - - ~  / S /  

P ! - - ; ~  I . ~ "  i 

!...sT. . . "  j/" "; 
o, ..-~.X" / ~ a . /  

&.~/,, 

0-~- 
0 . 8  t .0 0 0-2 0-~. ~2 0 .6  0-8 (.0 

Modified shock expansion ~em" 9 
Simple shock expaasion l~eory ~-  . . . . . .  [--(Where I:h;s is moP. shown ~ e  resulEs 

8gr"ee. ~l:h Ehose. of khe. modiPie.d khem-y) 
Pressure distribution on "the wing.--T = O-04. 



- 0 . 5  - 0 - 5  

bD 
e ~  

- 0 - 4  

- 0 " 3  

-0"2  

-0 .1  

Cp 

0"1 

0"2 

i4~ " J , 

( h l e o r & - d 2 - " / . /  ,s. 

/ . .  ,/C..- ,H #-" 
/ . . . ~ . & ' o  / 4  ° / j ~  / 
C..". , ' - ' "4,> " o_~" ~ - .  /./.~o/y/// 

/ / , "  ~/ _J  

S 
../k~ 
sy./~, 

> i - / "  

/ I  

0.5 
o 02 

Experimenh 
Line&rlsed ~eorg  

0.4 ~ 0,6 
• ~ = 15 ° 

O 

- 0 - 4  

- 0 . 3  

- 0 - 2  

-0 .1  

Cp 

0 

0.1 

0.2 

; / / I  

~ q ~ / / . , f  . f ,  
- / ; . . . - . i :~  <~ . . -  ~ ;" , -  

/ =' .J  _.,,7 ,YS 

" 0X~;o ~ _ - " _ / i  
,, 0 o /  1 

0.8 iO 

Modi~:ied shock expa, nsion gheorg 
Simple shock expansion Lheorg 

0 56 0.2 0.4 a~ 0.6 0.g 1.0 

(b) ~ = 50  ° 

. . . . . . . . . . . .  {Where Lh,s is nok shown b_he resulks 
aqrea wiLh b_hose ef the mod~£ed ~eo r~ )  

FIGS. 4a and 4b. Pressure distribution on the wing.--T = 0.06. 



-05 

-0 ,~ 

ct. 
- o  s (exp,:) 

/ / J  

/ 
0'3 

0.4 
0.2 0.4 ~ 0.6 

(c) ~ = 38 ° 
0.8 1.0 

ExperirnenE 
Linearised hheory 
Modified shock expansion hheor 9 
5imple shock expansion blneorg 

'\ 

o ~  

FIGS. 4c and 4d. 

- 0 . 5  / .  

/ 

-0.4 .s~, ,,~ // . .  i " "  

-o.~ ,~.- . / ~ .. . . .  . "  

- / . , / Y  
-0.1 % S  < ;//?/ Cp ~ 

p 

0-1 ~ / / /  

0"2 
s et 

0.4 
0 0.2 0.~. ~c 0.6 0 .8  

(d) 1~ = 4 a  ° 

(Where I:h~s is not: shown ~ e  resulb~s agree wi~ 
bhose_ of b_he modified ~heory) 

Pressure distribution on the wing.--T = O. 06. 

I.O 

26 



-0..5 

/ 
-0 .4  / /  / 

/S'$'" .d.' 

Cp ~ . ,,/'" 

, . ,~ / 
~,:? ~, 

'/'// 
0"2 ,,~ '-'4" 

0-~ 0"3 

/ 
/ 

/ / 
/ / 

,//'/,.f 

,,2 
., f ¢-,// /,, 

A : / "  7 

-¢d 

0:4. 
o 0.2 o . , ,  : c  0 6  0 . 8  

(,-,) ~ = Is ° 

I'0 0.2 0.4 ~ 0"6 0:8 1.0 
(b)  v~ = 3 0  ° 

Expgrimenk 
Lineari~ed khear9 
ModiFied shock expansion kheory 
Simpl~ ~hock expansion k_hoor 9 

O- 0 0 

. . . . . . . . . . . . . . . .  (Wher~ k_hls is not: shown Eh~' re.sulk~ agree wil:h 
I=hos~ ~ Eh~ modified ~"9) 

FIGS. 5a and 5b. Pressure distr ibution on the wing . - - z  = O.OS. 

27 



j , ;  
,,-, 

/ 
/ 

/ / 
/ / 

/ / 
k 

~.o.yi/" ,,'/.y /~ 
-o., -~2 ° /.,"" :#V .~ 

0 '/2~ / 

o., - ~ /  : / )2" 

0.2 ' / o~/""' / o ~ / j / /  

o.'Y 
/ 

O.,d. 

0'5 
0 0,2 0.4 ~ 0'6 0.8 I'0 

( ~  ~ = 58 ° 

Experimenh o o -o 
Linearised kheorg 
Modified shock-expansion hheor 9 . . . . . . . .  
Simple' shock- expansion k_heor 9 .................. 

/ / 
/ / 

/ / 
/ / / 

. / . 1 t -  t , 

o/ . . -  /. 

o /> Y'/ 

Y'I./J" ":""" 

/ i / / , ;  /. 

0"5 
0 0.2 0'4 aC 0.6 0.8 1.0 

(4 )  g / =  4 8  ° 

FIts.  5c and 5d. Pressure distribution on the wing.--~ ---- 0.08. 

28 



to 

0 

Cp 

0 . 0 5  

0.10 

~ 0  

0 

O.OS 

0-10 

O 
D 

l i V s  ~" 

o o  / I  I • 
/ ,hob j ,~ 

(o_)  ~ = 0 
I 

.0 

ta 

\,,~ S o ,, ~-~'6 o o / o ,  
" .  \ ; ~ i  _ l - - - / - -  

\ A U l  o m~ n 

"...dl° o ~../ 
['~--.-2k-x__ ~ 

( c )  ac = 4 ° 
i 

)h~ a 

t . ! 5  

a', 

._-J 

0 ~  

Cp 

o-o5 

hnearisRd o-IO 
nr ~.heorg ExpEl o 

0-04 o 
0-06 o 
0.08 A 
Second order modificakions 
. . . -  . . . . . . . . . . . . . . . . . . . . . . .  

0 

Cp 

0-05 

0,I 
y, 1.0 0 

\, ~-~L ~c/o4'+ 
\-O~oO 7 ! 

" ~  A ,, " ~ ' ~  .. J 

( b )  a = 2 ° 
J 

O 

O 

o 

z~ 

A~ \...m 

.~j 1.0 

"i , .O ,l~u 
! ' , io D a 

.f) l :, :: ! ,, " 

.-4 
• L~ : ,5, 

; o ° . :  °'-, 

A O 

(d) ~ = 6  ° ~ a ~  

~ 1.0 

FIG. 6. Pressure coefficients along model  centre-line (x = 0.5,  z ---= 0). 



C..O 
C )  

0"05 

"U 

U 

0.0,5 

U 

... -,~-.A ¢, A 

a a "%9  ' ' ' ' &  
- ~ ~ ....~ .~ ~. . .  

O L ".~C.. x u 1~ ' , ,~  

' ,~o (~ ~ = 0 ", 
I : ; b  r ~ ^  

ou, '0 

_____ =° 
_ 

" -~o , , \  hi 

hlil 
~ ( c )  o c - - 4  ° 

I. 

~ I G .  7. 

O-OS ' - - - -  

A "*" • F '#; 

-u -oo o -~  ~. _ o 2 o . "  <. °, 
" ~ " ~  ~ " i 

o L , \ l  
\~'4. 6 a 

cb) ~ -- 2 ° ~ill " 
Linea.rised 

Lhe~mj 0 ~'~ t- 0 I r  Ex~kl  r t:: ', o - o - ~  

6 0 . 0 4  

0 . 0 8  - . .  

Second order  modiF,'c~ons O.OS - 

o ~ ' - ~  \ \ \  ]i 

o ° ~ , : :  o 

o ~ ~ i ! !  
0 , , :  o -o - - ,~  - 

(~) 5= C 
I - 0  0 .u,  • J. 0 

Transverse component of velocity along mode] centre-line (x = 0.5,  z = 0). 



C~ 

0.15 

0 }0 

U 

0"05 

A 

-I 

I 
L 

0 

Lo 
i i2 

li" 
L 

I l o  

(,,., ° 
\ . \ o  a \O\\o 

c~ 13 \ x\, 

/X 

D A 
o t, 

\ t3 /x 
o ' " , - ,  ta " ,,. 

g, I .o 

( a )  -~ = 0 . 0 4  
c 

0,15 

0.10 

0 3  

U 

0.05 

0 

_ 

t, 

I 

oc Theory Exp5 
2 e o 

40 o 

6 ° A 

I,L_o 

9, t .0 

(b) [ = 0 . 0 6  
C 

0.1~ 

0"I0 

q 
I 

Ii 
lio 
i{ ^ 
{I 

I!o 

io 

0 

(c) -~ = o.oB 
c 

A 

& 

D t, 

° ~ ,  I I Om13 A & l 

~ ' : . ~ . . . ~  J o 
1.0 

FIG. 8a to 8c. Vertical component  of velocity along model  centre-line (x = 0.5,  z ---- 0). 



-0-1:)~ 

O 

Cn 

0.05 - -  

0. I0 

0.20 
0 

;oof  ~;0 %.` 
°° 

\ 
\ ',\¢ 

"\ 

,i 

(o.) O~ = 0 

I 
0.5 

t 
0.0C. 

~.0 
zt 

1.5 2.0 

- 0,0~ 

0 

Cp 

o.os 

).10 

).15 

).20 

/5 

b,,.  0.04 O,OB 
000 I 0 

° ~ .  O+o o °~ 
~, "~1 ° 

"~-~Oo I ~ 

: \ .  *'4 

\ \ i  

(~) o~ = 2 ° 

I 
0.5 ~.0 

Z= 

& 

z~ 

o . 0 ~  

1 . 5  2.0 

- 0  IO 

.-0.05 

"Cp 

o 

0,05 

0.I0 
0 

8 ,  

6-.."-. 

x 

(c)  =. = 4" 
I 

0-5 

T~= 0.06 

, ,o l o o ° O . b 8  A 
A-\~p I D., 
, .  ;, : . ~ o / , , - , = a D  

" ~  , 
"M 

I ] 
I.O 1.5 
Z l 

2.0 

-0.I( 

- 0 . 0 !  

c~ 

( 

0.05 

o.I0 
0 

A 

0 ~ 

0 

//,'-~, ~ 41o oo_ I'-~0.0~ 

\ " ~ " - .  ~ Iy-or" 

(a) ~ = 6  
I 

0.5 1.0 1-5 
Zj 

2.0 

Linear-lsed 
"r b.h~or~ gxperimenl" 

0 . 04  o 
0 . 0 6  o 
0 . 0 8  

Calcul~Led shock posiLions, &ccordlng Ir~ second order 
Lwo-d imensional  klneorcJ, are shown Ichus $ 

I 

Fro. 9. Pressure coefficients vertically above centre of wing tip (x = 0.5,  y = 0). 

32 



0.06 O.OS 

0'04 

U 

0-02 

-0 ,02 

- 0.04~ 

~°°°;o2~. \. 

0 o (a) c~ = 
I 

0.5 
- Z  I 

1'0 

O° 0 

"q,Oo n [ ]  

\ 0 0 

7" 0.04- 0.06 

I-5 

0"0~ 

U 

0.0, 

. 0 

0.08 

- 0-02 

- 0.04 
0 

I I 

I ' . . ~ - -_ .  \, + / ~ ~ aan~h1\ 

• ~ i ~  , / /o  +oo.~ l o.01 [/o o.o+ 
/ 
o~ 

(~) cc = 2 0 

I ,,,/ 

0.5 Z, 1.0 I'5 

0.02 

lr 

U 

0 

- 0,02 

- 0.04 

- 0 .06  

- O.OB 

-0 -10  
0 

FIc .  10. 

/ 

/ 
, / ' / i  X 

°+ 
J 

/ 

ii! ° 
i ° 

, ~ - - -~ ,4~ ~. ,~az~ ~ 
& ,%, DO Z~ 

~---- -\eL p o 

u -, 0 ~  z~ 

~ooo - / /  1 
o ~=o'%.os~oe 

(c) ¢z = 4 ° 

0.5 I'0 1.5 
Z~ 

0.02 

2/ 

U 

0 

,/ 

- O-02; 

- 0-04 !//oo 
/!~ °° 

- 0.06 ! , //oo 
008 ir o 

[] 
& 

-0-10 I 
0 0.5 

Linear ised  
"r gheor9  g×per imenh 

0 : 0 4  - - - - - -  o 
0 - 0 6  a 
0 - 0 8  z~ 

Calculahed shock posihions, ao :o rd /n  9 ~o second 
orde r  k w o - d l m e n s i o n a l  kheorg,  a r e  shown k_hus / 

Z~ z 

/z~ ~/ , , 'o  -r,0.O~'k '0.o6 
/ / / ; o  0.05 

h 

:3 0 

IO 0 

( d )  ac = 6 ° 

1.0 1.5 
:Zj  

Transverse  component  of  veloci ty  ver t ica l ly  above  centre of wing t ip  (x = 0 .5 ,  y = .  0). 

33 



0.08 

0'06 

,'.,o 

U 

0-0A 

0,02 

0.06 

0.04 

U 

0,02 

0 

-0.02 

-0.04 

./] 
/ , oo 

zS / ;  //, z ,~__,/~_ u x 
,/~ , ,/n4 ~ (~ ~ o o °  / 

( o3~z=0  "r,-o.o4 0.06 o.o8 

0"5 I-0 1'5 2-0 
2~ 

0.0(~ 

0'.06 

~3 

0.04 

/ 

0.02 ~ _ ~ ¢  - 

0 

. /  j 
/~ o 

/ / / ~  l o o o °  

. . i / / ~  n ~ 0 

" ~ o  ~ ° ~  o oB I 

(~ 0.5 I'O 1'5 
Zl 

F~ / !  d:: 
V j  - r10 

.,,. ~ / 001 oo 

_ a . . _ _ ~  o o 
z~Q O ~' 0 0 "r=O.04 0.08 
0 0~o 0 0.06 

(c) ~ = 4 ° 

0.5 1.0 
Zj 

0.C 

0.0 

5 
3.0 

I 

- D.O:  

o o ° ~  

a 6 o  ° o 

o 

1'5 2.0 0 0.5 

v,, A 

j" ,. 
nn 

_ 10.04 0-08- 
":--0- o u ~) 0 0-06 
o ° o - ~ - " i  ~" 

(c) ~. = a o 

1.0 1.5 
ZI 

Line~ri sed 
-r. k_.he~ry ExperimenL 

0.0~- ' o 

0.06 o 
0,08 

Calcul~Jzed shock posikions, according ~o second 
order kwo-dimension~l Lheor9,  a re  shown Lhus 

2.0 

2.0 

FIG. 11. Ver t i ca l  c o m p o n e n t  of v e l o c i t y  ve r t i c a l l y  a b o v e  cen t re  of wing  t ip  (x = 0 .5 ,  3' = 0). 

3 4  



c ~  

- 0 . 0 5  

C p  

0 

0"0,5 

0 '10  
- 2 . 0  

- 0 '  10 

Cp 

-0 .05  

0-05 

0,I0 
-2.0 

T 
0.04 .... 

0.06 --- 
0-08 --- 

-1"5 

° ° ° ° ° ° ° ° ° °  C],~z]~.~ ,," Q O o I 3 o O l l  
o >°o°~ o ~ ° ~ ' - - ~  °-_oo_~_.oo_2-°°~ 

0 I ° O O  ~ 13 ~._d.i: ,~f,-~,:+o0:+-'+""" °oo..,....:2_ ..... 
~ i ~ o ~ . l  . - -  I . I  . ~ > "  

a ~ . , ' ~ r , ~ . ¢ . /  . , "  . . . . . .  " ~  
. _ _ ~ i o ~  /,, / . - - . -  . . . .  ...4-r,-'"" 
--" r=o.o+'W /,' (o.) a = 0 " r=0.o~ 

- I .0  -0 .5  ,..L/~ 0 o.5 i.O 

/ 

-0 .0  

Cp o o o  o o  
r Oq) O O ~ 0 0 0  
04- o .~ • a n  o 

.la.q..;---,-,'~,~.._..', ~. ~,,~oo . =..,, 

~.,~-~ ~.0~, -~, ~.. [] 0 o 0 o , i  A . i ," 
O.C - - - - ~ - ~  ~ , "  " ' - .  I , +c.; r~-  : r ' -  *_ 

/ I ' " . - - . ~ . . l .  ,, 

o, o - - = - - f ~  :b) ~ = ~" | "'i 
L--"sO Ool~ ~ -0.~ 0 ,, 0 . s  i.o 

'+ o,< -o-=o+ot~-%-,~]T=o.o+ °, 

P ~,a ._+~ "+,,.^. ~,o . . . . . . . . . . . .  # "@ " a \  

- ~  o, "r3-q°e ' \ ~ - %  

" \  , ¢ ~ ,  

\ = "  ~o o", ,  
o-~ C \ ,Xxao " ~ _  , 4 ~  :. i o u  n ,, 

c:lA • ~ o o "-,, : i '  ". 

• . ~  o ' - .  o o o ~ j ~  1 

o0, "~'¢~ =-~°=  = ! " 

"I'-~ O.OB Z~ 6 6"" 

. Ca) ~. =- ~° %, * 

o-I(~ 
1.0 I,S -1.5 -bO -O-S o y~ 0-5 I.O 

L ine~r i sed  
"7" I : heo ry  E x p e r l m e n l :  

0.0,4. o 
0 . 0 6  o 
0 . 0 8  ", 

S ~ c o n d  o r d e r -  m o d l F i c a k . / o n s  . . . . . . . . .  

q. 
0.o~-.. 

0,06 .... 

O.Og---- 

o o 

0 0 0 0  0 I 0 ' 

........ .--~ ~.=~.~.o o oo 

.-g.u *%. 

T == 0 '08 ""-.., ,. ~ ~I",4~< ~, o 

_ ] "  " ~  \ ~ ~....+.- ,, 
. . . . .  ,~,,% ~oooo+~d  ! 

" \  , a ~ . O . . ~ _  ..- / _ . ,  ', 

,, A &  h, 

-1.5 

(c) ~" = + ° 

-iO -O-S ~ 0 0.5  

FIG. 12. Pressure  coefficients  a long  t h e  l ine x = 0-5 ,  z = 0 . 2 5 .  

I.S 

1.5 



Ob 

.0"06 

0.04 
..#- 

U 

0-02 

O 

-0.02 

0.04. 

0 . 02  

i t  

0 

- 0 . 0 2  

- 0 . 0 4  
-2 .0  

O 0  

- I -$  

~ 5 ' ~ ' ~ ' ~ ' - ~  
,,~, ~ / ~,..~"o"°-'o~ 

,,"~.--,~ , . - - - ~ ; ~ ; ~ o  
, ,  

~'~ .~ .- 

(a) ~=0 
l 

-I-O -0 .5  y ,  o 

~ ' - - . 4  ~ ,' 

; '~ - , : ,S '~ .~ ,  

~ yr,O,. O 
--O..O..O 

--..T=O.0B 

" \  
-{3- " , ~ - ~ .  ~. 
- ' ,  \ a i ~ 

,Q  

0 5  I-0 I-S 

otoo.;.,~ 
O 0 0 ; . 

I "  o 
o ° O  

o 

(cI or_ = 4 .0 

o 
~ 0 0  

" " t ~ ' J  
~ "  ~= o.o~,'~ i,. 

~=--~ 

- I .5  -I-O -O.S 

OD 
9 0 o ,  

~r 

9~ 

Fro.  13. 

0.04 

5 

0.02 

0 

-0-02 
- 1 - 5  

0-04 

0.02 
"v 

g 

0 

- 0 - 0 2  

- 0 - 0 4  
1.5 

~.-'~"~'~" ~, '& 
_ ~. ~ ~, ~ , ~ , L ~ - ~ "  ~" ~" . . .n.o.e 

° f i o Z 2 . o ~  ooo  ~ -  ~, .fro" 

9..-~.~ J -  o 
; / . 9 ~ . ~ c  o .__._ "6 o o o 

0.04 

- I .o  -o -5  o 9'~ o-5 

D S O 0  0 

0 0-5 I-0 1-5 l,O 

IJ'nea~ised 
-r I:heor 9 , Expe r imenk  

0.04 0 
0-08 o 

0-08 ,c, 
Second o rder  modifice.~..ions . . . . . . . . . . . . .  

T r a n s v e r s e  c o m p o n e n t  of v e l o c i t y  a long  the  l ine x = 0 .5 ,  z = 0 .25 .  

,~ &'--.! 7 ~, O.OB 

(b) (= = 2" 

1.0 

./'% 

o._ .2"0/o 

'-o%.%.,,,~ o 
Q ~ O  O 

0.5 0 
9, 

--.,"r = 0"08 
,0. Q n O ~ D  

,~.°~\, o 4 o 

(d) a: = 6" 

1'5 

0.5 1-0 I.S 



C~ 

O~ 

006 

0-04 

U 

0.02 

T ~ T - 0  06 "~T = 0 08 
.o.. o~ T-004 "~. ~ " 

...... ~ooooo , 
0.0~ £ " b ,  ~"1~'~,^ ^ " " "  " ~ ' -  ~---T=o.0"I~; 

U o o o U U O o , I  ° ODD] ~,~i~0~ 

O~A 

--0.02 
-I.! - I -0 -0.5 ,.V~ 

0,04 

0.02 

U 
. / / "  o ~  

0 . . . . . . .  /" - ~ a - "  C ° 

~"~o--~" = ~  "o ° °  : 

- 0 . 0 4  

• 

/ 

-0.06 

~Oo i c k °~ '~° °  '~- 

(a) ~. z 0 

0 0.5 ~.0 

• "iN: i! I " 

-O.OB 
- I , 5  -I.0 -O-S 0 O,B 

Y, 

}-5 

I,o i ,5 

0.0( 

o.o~ . . . . .  -k 

0.02 -~.~B - - \  ~ - ~ "  ~ o ~  , ;:&~ ~ " . ~  , , 

...... -~ ~ ,  ~ k o ~  s o --- B t ~ 
c 0.04 . . . .  : 'N~i o,~^ 

o o o oo  o ° e o o  o 
, o o (b) ~ -  2 ° 

0-01 , ,  
-J.5 " -I.0 -0.5, 

O:C 

0.0 

Z 

..0;-C 

6< 

0.0~ 

0 0  
- b 5  

Linearise-d 
"r lrJ1eo r U . E x p e r i m e n t  

0 " 0 4  o 
0.06 o 
0-08 U 

Second order modiFicahion$ ...................... 

0 u - o . s  ~.o 
:> ,-~t- 

I .;oi.oo, 
El B 0 ~,  

• / " '  /"~'o o%-%'~.o ° @ 4 

F ' o  ~<'-:% oa~ " r -  0.o~ 

,/,;k,*-"--"-aN:ii o..,,, 
/ / ,  i :  / @ ' ,  

/ / f ) ~  
T . /  z / ~ . 

0 , 0 8  / "~o 

o-o..E.....=.~-' ;~1t- o 
~ u  ~ . a ~  ;t o A D £ 

0.04 , oo~O OOo ° ° °  (d) 0L= 6" 

- I - 0  - 0 ' 5  0 0,5 I-0 
YJ 

FIG. 14. Ver t i ca l  c o m p o n e n t  of v e l o c i t y  a l o n g  t h e  l ine  x = 0 -5 ,  z = 0 .25 .  

1"5- 

1.5-- . 



W~n 9 

Lip 

Wln t 
Lip 

Wln9 
i:ip 

1p" -306 56 ~ 4.5 ~ 466 
, o~ s>'4 ° ~ , "  -4' 

/ I / /  d , "  _ /  / / 
. / /  

J /  
(&) -r = 0.04- 

~ ?,2~4~: 2 .  -~" 
, , , / / / / -  
/S/  

J 7  
F 

(b) T = 0.06 

3~ 50 ° 58 ° 4S ° 48 ° 

,,,'f 
,Z/ 

(c) "r = 0.08 

Win t 
rook 

Win 9 .: 
root 

5ound&ry of Lip region (~hock-expanslon Lheory) t 
5oundar~ of I-ip region (l ine&rised k__.heorg) j M '= '42 

. . . . . .  Line of pressure holes 

FIGS. 15a to 15c. Dis tor t ion  of the  t ip  region for rec tangular  
b iconvex wings. (Upper  surface). 

38 



¢=0 

o0 
~D 

~r..5 ° 

' r  == 0 . 0 4  

(.) 

-- 0"06 

( ,)  

--0"08 

(c) 

(0 

FIGS. 16(a) to 16(0. Direct shadow photographs. 



C )  

l= - I 0  ° 
i 

, r  - 0 . 0 4  

i' 

' / 

(g) 

il == 15 ° *~'~" 

(J) 

b 

FIGS. 16(g) to 16(1). 

1" - 0"06 

(h) 

\ 
\ 

(k) 

Direct shadow photographs. 

,7" • = 0"08 

( i )  

(1) 



" 0 " 0 8  

a = 8  ° 

. - -  0 " 0 4  I" - - 0 ' 0 6  

. ~  G s l O  ° 

( c )  - ( d )  

a " 1 2  ° 

(f) 

FIGS. 17(a) to 17(g). Surface flow patterns. 



,r , ,  0 " 0 4  I" m 0 " 0 6  T" = 0 " 0 8  t 

a m 1 4  ° 

L ~  

(h) f i l  (J) 

a = 15 ° 

j - 

t" 

(k) {0 (m) 

FIGS. 17(h) to 17(m). Surface flow patterns. 



• 11//zzz~ 

(a) 0 - ~ "  

~z 

7<. I ~s,o-'~\ 

LimJ~s o~" cenk_r~ expansion 
From" lead;n 9 edge ~ z 

. . . . .  ±__/~7..~ - ' - . . ~  

/ i ~o"~" 
, / 

(c) 2 "r ~ ~z 

--"9 

FIGS. 18a to 18c. 

Shocks of f irsi:  order 5Lrenq~h 
Shocks o£ second order sl:rengk_h 
Expansions (orshocks of lewerorder) 

Nature of leading-edge shock surface for a rectangular wedge of angle 4T (diagrammatic). 

gxperlmenka] Theore~c&l 

sLron9 0.04 0.06 0.0a " " I 
shock o ~ z~ 

Angle of xx\ - .  

. weakshoc.~ .'.'; iD :.~: (mea~ curve) \~ \\ 

Re. 19. ~. ":.,, . 
e \ % % ~ ¢ , \ \  \ .., l 1.0 

Shoc~ I \ \ \  
60kl \ % \ \ \  

!(mean) 
0.04 
0.06 

~0~ ° ~ 0.08 
0 0.5 I'0 

-..Ut 

at trailing- FIG. 20. F I G .  19. Downwash 
edge. (Linearised theory), angle. 

0 ~ 5 ° 100 

M- -  1 ' 4 2 .  

Trailing-edge shock 
(Upper surface). 

FIG. 21 .  

34387 wt.5219843 K9 8]57 D&Co. 34/263 

Secklon of shock by 
b.he plane ~ ~ 2 

~0 "4 

Con;ca1 shock 
from kip 0.S 
~ra!ling edge 

Shock of skrengkh O(T) - -  
shock of s~.rencjl-h 0 ( T  2)  

I I 
0.5 - Y  i.o 

=0,  " r = 0 . 0 4 ,  M = , / ~  

Shape of trailing-edge shock surface. (Linearised theory). 

43 
PRINTED IN GREAT BRITAIN 



""• . L 

i 

L 

r 

k" 

R. & M. No. 3055 

...: Publications of  the 
Aeronautical Research Council 

1939 

194o 

1941 

1942 

1943 

1944 

1945 

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL 
(BOUND VOLUMES) 

Vol. I. Aerodynamics General, Performance ' Airscrews, Engines. 5os. (52s;) 
Vol. II. Stability and Control, Flutter and Vibration, .Instruments, Structures, Seaplanes, etc. 

63 s. (65s.) 
Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flut ter ,  Icing, Stability and "Control, 

Structures, and a miscellaneous section. 5os. (52s.) 
Aero and Hydrodynamics, Aerofoils, Airscrews, Enginesl Flutter, Stability and Control, Structures. 

63 s. (65s.) 
Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75 s. (77s.) 
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47 s. 6d. 

(49 s. 6d.) 
Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (82s.) 
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. 

9os. (92s. 9d.) 
Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84 s. (86s. 6d.) 
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, 

Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84 s. (86s. 6d:) 
Vol. I. Aero and Hydrodynamics, Aerofoils. I3OS. (I32S. 9d.) 
Vol. II. Aircraft, Airscrews, Controls. I3OS. (I32S. 9d.) 
Vol. III.  Flutter and Vibration, Instruments, Miscellaneous, Parachutes, Plates and 

Propulsion. x3os (I32S. 6d.) 
Vol. IV. Stability, Structures, Wind tunnels, Wind Tunnel Technique. 13os. (132s. 6d.) 

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL--  
1937 2s. (2s. 2d.) 1938 is. 6d. (is. 8d.) 

Panels, 

1939-48 3 s. (3 s. 5d.) 
INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL 

REPORTS, AND SEPARATELY-- 

April, 195o . . . . .  R. & M. No. 26o0. 2s. 6d. (2s. lOd.) 

AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH 
COUNCIL--  

19o9-January, 1954 - - - R. & M. NO. 2570. 15 s. (15 s. 8d.) 

INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCffc-- 

December i, 1936 - -  June 30, 1939. R. & M. No. 185o. IS. 3 d. (is. 5d.) 
July 1, 1939 7- June 30, 1945. - R. & M. No. 195o. Is. (IS. 2d.) 
July I, 1945 - -  June 30, 1946. - R. & M. No. 2o5o. xs. (is. 2d.) 
July 1, 1946 - -  December 31, 1946. R. & M. No. 215o. IS. 3 d. (xs. 5d.) 
January 1, 1947 - -  June 30, I947. - R. & M. No. 2250. is. 3 d. (IS. 5d.) 

PUBLISHED REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL--  

Between Nos. 2251-2349. - - R. & M. No. 235o. is. 9d. (I$, IXd,) 
Between Nos. 2351-2449. - - R. & M. No. 2450. 2s. (2s. 2d.) 
Between Nos. 2451-2549. - - R. & M. No. 2550. 2s. 6d. (2s. iod.) 
Between Nos. 2551-2649. - - R. & M. No. 2650. 2s. 6d. (2s. Iod.) 
Between Nos. 2651-2749. - - R. & M. No. 5750. 2s. 6d. (2s. lod.) 

Prices in brtwke~ include postage 

HER MAJESTY'S STATIONERY OFFICE 
York  House,  Kingsway,  London W.C.2;  423 Oxford  Street, London W.l  ; 

13a Castle Street, Edinburgh 2; 39 K i n g  Street, Manchester 2; 2 Edmund  Street, Bi rmingham 3; 109 St. M a r y  Stre~  
Cardiff; Tower  Lane,  Bristol 1; 80 Chichester Street, Belfast, or through any booksell#r 

S.O. Code No, 23-3055 

R. & M. No. 3055 


