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Summary.—Tests on NACA 0020 sections of 12 and 2°0-in. chord completely spanning the tunnel showed that
there was no appreciable difference in compressibility drag rise due to wind-tunnel interference. This was the
case both with the aerofoil yawed (40 deg) and straight across the tunnel.

The results, and further measurements on a Piercy aerofoil previously tested, showed also that the gain in Mach
number has been increased from 65 to about 80 per cent of the theoretical value that assumes infinite span and
no boundary-layer effects, now that the air is dried to a large extent by use of return ducts.

~ Some explorations of the flow behind the aerofoil are considered to justify these conclusions at Mach numbers
up to at least 0-92,

In Ref. 1 the results of a single series of measurements on a yawed aerofoil were compared
with the improvements due to yaw to be expected on a highly idealized theory. It was found
that giving an angle of yaw 40-5 deg to a symmetrical Piercy section, maximum thickness
20 per cent at 40 per cent of the chord, increased the Mach number at which the drag coefficient
at zero incidence reached 0-015 from M = 0-72 to 0-89. Theory, for an infinite span and
neglecting boundary-layer effects, would have predicted a rise to M = 0-98.

The further tests described in the present report were made to see whether there was any
error due to tunnel interference and also to take advantage of the recent improvement in the
tunnel-flow conditions due to installation of return ducts and the consequent reduction of
humidity. :

For the latter purpose the tests of Ref. 1 were repeated under the new conditions but with
the same Piercy aerofoil. The results are compared in Fig. 1 (experimental points in Fig. 5)
and it may be seen that there is an even greater improvement, the Mach number for a drag
coefficient of 0-15 being raised to 0-98. This change with reduction of humidity, in this case
from well above 50 per cent relative humidity to about 15 per cent, is not unexpected at very
high Mach numbers®. The reduction in “low speed” drag, that is, before the steep rise begins,
is probably due to a contemporary reduction of wind-tunnel turbulence.

For the interference tests use was made of two available models of NACA 0020, of chord
12 and 2-0 in. The results obtained at zero incidence and zero and 40 deg yaw are shown in
Fig. 2 (experimental points in Figs. 8 and 4). It is clear that the change in aerofoil chord/tunnel
size in the ratio 2:0/1-2 has made little difference to the drag variation. The same proportion
of the theoretical gain has been achieved in this case as with the Piercy aerofoil.
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It must be remarked that there is considerable difficulty in making the tests at the very
highest wind-tunnel speeds, which were obtained by setting the flexible walls for constant
speed along them. Some degree of doubt must be held to apply to the values of the Mach number
above approximately 0-92 (¢f. the second set of results in Fig. 3, with the speed too high ahead
of the aerofoil). '

Further experiments relating to the flow around the aerofoil are described in Appendices
I and II.

Conclusions.

1. Observations of drag rise on a 2-in. chord aerofoil 8-in. long unyawed and approximately
104-in. yawed at 40 deg in a rectangular wind-tunnel 8-in. by 17-5-in. correspond with sufficient
accuracy to true two-dimensional conditions.

2. The increase of the Mach number at which the drag rise commences for a two-dimensional
aerofoil yawed at 40 deg. is 80 per cent of the theoretical improvement to be expected if boundary-
layer effects are ignored.
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| APPENDIX 1.
Pitot Traverse at Different Positions Behind the Aerofoil.

(1) At Different Distances Behind the Trailing Edge Down the Middle of the Wind-Tunnel.—
- Pitot traverses were made at §, 1, 2 (the standard distance) and 4 in. behind the trailing edge
of the Piercy aerofoil (chord at right angles to the leading edge 2 in.) at the 40 deg angle .of
yaw and a Mach number 0-80. The results shown in Fig. 6 indicate a definite fall with increased
distance downstream. Previous to this set of readings another series, nominally under the
same conditions, gave the values plotted in Fig. 6 as circles o o, which for some unknown reason
are considerably higher than the normal set. They, however, also indicate a fall with distance
downstream. ‘

- The above were taken at M = 0-80 which is below the speed at which the drag rises (for this
yawed case). Similar results (Fig. 7) were obtained on the NACA 0020 aerofoil at M = 0-81,
and also at M = 0-92, which according to previous results as shown in Fig. 2 should have been
a high enough speed to give a very much higher drag. However, Fig. 7 shows that the drag
was only about 20. per cent higher than the value at M = 0:81, which can hardly be explained
as a speed error since in all cases the speed was taken as the average over the walls facing the
whole length covered by the yawed aerofoil, and this varied very similarly in the two cases. -

(2) At Different Spanwise Positions.—A few pitot traverses were made at positions off the
central plane of the tunnel. The values of C, obtained are shown diagrammatically in Fig.
8, which also includes the results of Fig. 7.

It will be noticed that the drag is higher behind the sweptback end of the aerofoil, where
also Fig. 9 shows that the shock wave is larger. . :

Although the observations were too few to draw reliable conclusions, it is thought that the
comparative value of the main series of results (Figs. 1 and 2) of this report is fairly well estab-
lished, but absolute values are open to considerable doubt.




APPENDIX TI.
Static Explovations Around the Aevofoil.

An attempt was made to obtain a rough idea of the velocity field around the yawed aerofoil
(NACA 0020 2-in. chord). The experiments took the form of traverses of a static tube at
right-angles to the aerofoil along lines through the trailing edge, 2-in. behind it, and 2 and 4-in.
ahead of it. These were done in the centre plane of the tunnel and 1-8 in. from each wall.

The readings were reduced to Mach number on the assumption that despite the presence of
shocks total-head loss was negligible. They are shown plotted in Figs. 9, 10 and 11 for three
free-stream speeds, each partial diagram corresponding to a plane parallel to the side tunnel
walls, 7.e. perpendicular to the aerofoil span and chord. Very approximate contour lines have

been dotted in for M = 1 in the lowest speed case (M at walls = 0-91), being made solid where
a shock wave is likely.

It will be seen that up to M = 0-92 at least, it should be quite safe to use the pitot-traverse
method of measuring the drag, but at M = 0-97 (mean speed at tunnel walls opposite the aero-
foil) the pitot tube may have been in supersonic regions of flow. - However the top speed value
of Cp (at mean M = 0-97) given in Fig. 4 is possibly not in much error, since, as shown there,
a uniform speed was achieved at the walls, whereas in the later exploratory tests described above
the speed of sound was exceeded over part of the walls (Figs. 10 and 11). :

The high readings in Figs. 10 and 11 ahead, but slightly to the side of, the sweptback end
of the aerofoil seem very anomalous, but there seems little doubt as to their actually being read.

An attempt to portray the whole velocity field at once is made in Fig. 12, for the case
M = 091. '
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