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Summary.—Using actuator-disc theory, simplified methods are given for the solution of the direct problem of the
incompressible flow of air through an axial-flow turbo-machine. .

Calculations based on these methods are compared with other approximate solutions to the flow through a model
compressor stage.

1. Imtroduction.—Compressor and turbine design is usually based upon the assumption that
radial equilibrium conditions exist behind rotor and stator rows and this approximate theory is
fully given by Cohen and White.!

Actuator-plane theory, in which a blade row is replaced by an infinitely thin disc which causes
a sudden discontinuity in tangential velocity and vorticity has been developed by Merchant?,
Bragg and Hawthorne® and Marble.*

Using one of Marble’s results and expressing the radial velocity in the form

C,:véfi(y)exp(kix).. OO 61

Hawthorne® and Railly® have obtained expressions for the axial velocity at any point away from
the disc. ‘

The effect of neighbouring blade rows is calculated (@) by superimposing sheets of tangential
vorticity due to single isolated rows and subtracting the sum of all the vortex sheets extending
from upstream to downstream infinity (Hawthorne); (5) by adding the radial velocity fields due
to individual blade rows (Railly).

Differences in these two methods lie in the determination of a value of the attenuation constants
k; in equation (1). Hawthorne determines k; from a solution of the equations for an isolated
disc, but Railly obtains mean values which are dependent upon the extent of mutual blade
interference and are obtained by successive approximation.

General methods for the solution of the direct problem of the incompressible flow of air through
a turbo-machine of known blading are given in this paper:
(@) for isolated actuator discs (7.e., for machines with blade spacings such that aerodynamic
interference may be neglected) :

(0) for actuator discs closely spaced.

The actuator discs may be placed in the plane of the trailing edges of the blades, or at the
" blade centres of pressure.



To estimate the magnitude of the differences between the various theories the direct problem
of a single compressor stage has been considered, the stage consisting of one rotor and one stator.

The velocities at entry to the rotor and at exit from the stator are axial; the tangent of the
outlet angle from the rotor varies linearly with radius and is equal to unity at the tip radius,
t.e., tan g = 7fr, = R.

The hub-tip ratio is 0-4 and the < aspect ratios’ of the blades //b are chosen as (i) 2-1, and
(ii) 4-2, assuming negligible axial clearances. When the actuator discs are placed at the centres
of pressure of the blades it is assumed that the distance of the centre of pressure from the blade
trailing edge is two-thirds of the blade width, 7.e., (a/b = 2/3).

Such a stage is similar to an axial-flow—compressor test stage installed in the Cambridge
University Engineering Laboratories. The tip diameter of this compressor is 14 in. and the rig
is designed for 6,000 r.p.m. If a mean axial velocity of 200 ft/sec is assumed, the flow parameter
(U,/C,,) = 1-83, where U, = blade-tip speed; C,, = axial velocity at upstream infinity and is
assumed constant.

2. Approximate Methods of Caleulating the Flow through an Axial Turbo-Compressor Machine.—
The general methods developed using actuator-disc theory are used to calculate the flow through
the model stage and are compared with Railly’s theory, and with radial equilibrium solutions.
The positions of the actuator planes are illustrated in Figs. 1 and 2 for each method.

Method 1.—Radial Equilibrium Conditions at the Trailing Edges of the Blade Rows

For this theory conditions at stations (02), (2e) and (2) become identical, as do stations (04)%
(4e) and (4).

The radial equilibrium condition at the trailing edge of a rotor is then expressed by:

ac, 1 a dH
C”WZA—;(VCM)%O’C,,Z) :Tyz’ .. .. .. .. .. .. (2)
where Cho=U —C,,tan g,
and H2 - Hl _I_ U(Cu‘z - Cul)'
For the particular example of the model stage, tan f, = 7/r, = R,
dH, d |
and d; = EZ;{U(U — C,s tgn Ba)} .
Then equation (2) reduces to:
ac,, Lc ( 2R\  2U,R
AR x21+R2)_(1+R2)’
which gives an exact solution :
P+ LR
gﬂf_? = _i (3)
c. T RY .. .. .. .. ..

where P, is a constant to be determined from the continuity conditions:

1 1
f C.,RiR = | C..RdR
Rh

Rh

and is given thus:

U, o o U, 2
(“TJ“‘&“Tﬁ%@+&J

2
o (1 x2)
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Similarly at the trailing edge of the following stator:

aC,, , 1 a aH, (4)

C.s W -+ ?(7/61»4) d—7/(7’cu4) = T

where C,o=C, tan «, .
For the particular example, tan o, = 0,
s6 that:

ac,, dH,
dr T dr

C

a
= %{U(U — C,» tgn Bs)},
whence it may be shown :
Ca  (o(U\ (U, R? 1/
=) (@ -plrferel @

where Q, is a constant and is determined by trial and error from the continuity relation.

It is of interest to mnote that if the outlet air angles g, and «, are assumed constant with
inciderice, then the off-design conditions are easily obtained by using a different value of
U,/C,,.

Actuator-Disc General Theory.

By using the result that the axial velocity at an actuator disc stationed at the plane x = 0
is approximately (C,, + C,,)/2, where C,, and C,, are the axial velocities at upstream and
downstream infinity (¥ = — o0, + o) and also assuming that the radial velocity at any point
(r, x) is given by :

¢, = Z fexp R}l - o o o (D)
it may be shown that the axial velocity is given approximately by :
C,=C,y— (i”# exp { — (kx/l)} x>0

.. N ()
Cx:Cx1+( xz; xl)

where / is the blade height and % is determined uniquely by the hub-tip ratio of the actuator disc,

exp {(kx/l)} x <0

This theory is developed in Ref. 5, and is given in Appendix I.

Further, the effect of neighbouring blade rows is obtained by superimposing the vortex sheets
due to each disc, and then subtracting the vortex sheets at infinity. (The analysis is based
upon the values of % obtained from the isolated actuator-disc theory and the justification for
this approximation is investigated in the calculations for the model stage.)

- If the actuator discs are placed at the trailing edges of the blade rows the axial velocity at the
pth disc C,,, is then given by:

Cx Cx =2t Cxq 1 Cx i
Cxop == zb+12"'_ £ — Z ( - 2 q) {eXP - (kqxﬁq/lq)}
, g=1
% (Ca — G,
o (EE e — ) )
9=p+1
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where C,, , C,,., are the axial velocities that would exist at upstream and downstream infinity
of the pth row if that row were isolated, due to the discontinuities in tangential velocity and
vorticity at that row. :

ﬂCM , C, o1 are similarly defined and #,, is the distance (always positive) between the pth and
gth rows.

(Equation (7) is also obtained in Ref. 5 as in Appendix I.)
If, however, the actuator discs are placed at the blade centres of pressure then the axial
velocity at the pth trailing edge C,,, is given by:

= Cr +1 T Cr
Cxpe - Cxp-x—l - Z (—”2””*"‘1") {exp - (kqxﬂq/lq)}

q

I

=

+ 5 (&1_2:§_q) fexp — Btpedl)y, - oo . (8

g=p+1

o

where #,,, is the distance between the pth trailing edge and the gth disc.

Marble has given a solution of the inverse problem in which the distribution of tangential
velocity is initially specified, but the direct problem (that of determining the flow conditions if
the air angles are specified) results in a series of functional equations, since the change in whirl
velocity at the pth row is itself dependent upon C,,,. Methods of successive approximation to
solve this problem are given below in Methods 3 and 4.

Method 2.—Isolated Actuator Discs placed at the Trailing Edges of the Blades
If the rows are sufficiently far apart the effects of blade interference may be neglected and the
following analysis is developed.

Bragg and Hawthorne® have given a general equation for the incompressible, axially symmetric
flow on either side of an actuator disc:

ad 17,46

d—w:;zli@d—w+777:| - .. . . .. (9)
Across an actuator disc: »

Hy = Hy + AW, . . .. . .. .. (10)
where AW is the work done on the fluid by the moving blade row and is given by :

AW = U(Chpo — Choa) - - .. .. .. .. .o (1)

From equations (9), (10), (11):

. @

d d
%77027’ + 7’Cuoz ZZT,U (VCuoz)‘ = {0 + 7C,n 2[1;) (chm) + 7 671/: {U(CuOZ — Cu()l)} )

which may be written:

a a
Moz + (Cuoz — U) dy (7Cro2) = 101 + (Coo — U) dy (rCoaa) - . . . o {12)
But Bragg and Hawthorne have shown that & , H are functions of ¢, and for small streamline
displacements, will be approximately constant at a given radius on either side of the disc.
Further, Ruden’s assumption (Appendix I) may be made, that the tangential vorticity is
approximately a function of radius alone.

oC oC ac,
Thus Ngp == g = (a_x’) . (_a;/_x) — d,’,l]
. 1 1
SRR O F: |
o~ _ aCz aCx _ dcxz :
7702_772_(57)2—(—8_1’«)2_—— dr
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Further » Coor = C,pp tan ey, = C,; tan «, ,
and if the disc is placed at the trailing edge of the blades: . .. .. o (14
' Choe=U — C,ntan 4, = C,, tan «, |

Hence equation (12) becomes :

ac a
d;z + C,oo tan g, @{V(U — C,e tan 502)}
ac, d
— dyl + (U — C,, tan «) s {rC,,tan «,} .
Cxl + Cx2 3 . bt .
But Con = Cooa = —5 (Ref. 8), and the further approximation is made that:
a
7Co00 = — % ’
i.e a_ 1 a
o d—'/’ o 7Co0 dr’
so that:
dCxZ tan /302 d Cxl + Cx2 ]
o U () e b |
_dC,, 20U — C,tana,) d
=0 i+ %(7@1 tan a) . .. . .. (18)
This may be written as an equation of the form:
ac ac,
Ceo® + A:(r)C,, —;‘3 + By(7)C,. + Cy(7) d72 + Dy(r) =0. .. .. (15a)

A similar analysis for a disc representing a stator (4H = 0) gives:

aC,,  tanay d | (C,s + C,J)
g -+ P 4 2 tan oy
_dC,, 2C .5 tan «, d
=— +(Cx3+cx4) p 5(1/Cx3tano:3), . .. . .. (16)
which reduces to a similar differential équation nC,,:
ac,, ac,
C.l2+ A7)C,, = + B,(7)C,s + Cul7) d7/4 + D,r)=0. .. .. (164)

Equations (15) and (16) are general for any actuator discs placed at the blade trailing edges and
operating at planes sufficiently far from other discs that the effect of blade interference is negligible.
Thus the velocity profiles through a turbo-machine may be obtained row by row by assuming
the axial velocity upstream of a row is given by that at downstream infinity in the solution to
the preceding disc, and the whirl velocity upstream is specified by the conditions immediately -
downstream of the preceding disc.

Thus A(7), B(r), C(#) and D(#) are all known for the direct problem and equations similar to
(15) and (16) may be found. These are usually non-linear differential equations but are easily
solved graphically, by successive approximation and integration. It is of interest to note that
equations (15) and (16) take into account a variation in inlet total head and axial velocity.
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For the model stage accepting a uniform upstream profile equation (15) reduces to:

ac,, R?
72 (14 5) + CaR = (2U, — C)R,

which gives an exact solution:

P, + (QU‘ LS
CxZ o C«’lfl (17)
Co (2 4+ R% ’
2(1 -g) (1 - R -
where P, = x1 2 (1 — _t)
10 (73 Cxl
5 (24 xp)
from the continuity relation. The equation for the following stator reduces to:
dC,. dC,, 2C..5 d "’
B = B +Cx3_|_Cﬂtan“"ﬁﬁ(RC"?‘tan%) Co. .. .. (18)
But C,stan oy = (U — Cor _ztixz tan ﬂoz)

where tan fy, = R and C,, = C,; is obtained from equation (17).

The resulting equation is solved graphically.

Method 3.—Isolated Actuator Discs placed at the Centres of Pressure of the Blades

By equating dH/dy on each side of an actuator disc placed at the blade centres of pressure,
equation (12) is obtained as before. However, the whirl velocity C,,, is no longer specified by
the axial velocity at the disc, but by the conditions at the trailing edge.

The whirl velocity is approximately constant downstream of the disc since @ = #C, is constant
along a streamline and radial displacements are small.

Thus Cu 0z — Cu 2¢
, (19)
and Cuoe = U — C,,, tan 8,
where C,,, is obtained from equation (6).
Croo = Cup — (QJZ‘—C) fexp (—kafl)} = C. (1 _ %) +C.. (%) L (@)

where « is the axial distance between the planes of the centre of pressure and the trailing edge,
and K, = {exp (— ka/l)}.

Thus

dacC, d
d/ + C,s tan ﬂzzd_w {(r(U — C,, tan ,,)}

. dcxl
= d;f

+ (U — C,, tan o) ;_1/’ (7C,q tan «;) .
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The same approximation as before is now made for d/dy at the disc, i.e.,

a 2 a

@ - 7/(Cx1 + Cx2) ZZ} ’

so that
dcxz_zjcx2(1—7)+cxl(§) tanﬁ“i[y(0~§c (I_I&)Jr%fg tan 5. |
r 7(Cua + Coa) dr . 2) " 27 -
ic,, AU —C,,t d
=% ~ (f(clicalz)al)zy(fcﬂtanal), N 2

which may be solved for C,, if the distribution of C,,, tan «,, tan 8,, with 7 are known. Similarly
for a stator: ’
tan «,, P

21C(1-5) + Cu ()
AC -+ 2 2 —[1’ tan o
ar 7(Cos + C0) ar s

_dC,s | 2C taneg d
= _I_r(ng—l—C“)%’(rcxgtan%)' .. .. .. .. o (22)

cuf1=5) e8]

Once again a step-by-step solution from a known entry velocity profile is possible through a
turbo-machine.

Such equations have been solved for the model stage in which

I[b=2-1,4-2and ajb = 2/3. k (for #,/r, = 2-5) = 3-23 (from Jahnke and Emde).

Blade Interference—For a turbo-machine of # blade rows, if blade interference is to be
considered, the problem may be treated as one involving # unknowns. These unknowns are the
# distributions of trailing vorticity # with radius that exist behind the % actuator discs replacing
each blade row. These values of trailing vorticity are assumed constant with radius between
the discs. It is, however, more convenient to consider these unknowns as the # values of axial
velocity that would exist far downstream of each blade row, since a knowledge of the tangential
vorticity after the pth row dC,,/dr enables C,, to be determined from continuity. It is assumed
that the velocity distribution far upstream of the first row of blades is known.

The method of solution of this problem first involves guessing the ¢ downstream infinity ’
distributions of axial velocity and it is suggested that the values obtained from radial equilibrium
theory (Ref. 1) (calculated from the known variations of outlet air angle with radius), form a
suitable starting point. From the values of hub-tip ratio the values of &, %, . . . &,, & -
for each actuator disc are established.

q * 0w

Method 4.—Actuator Discs placed at the Tmz'lz'hg Edges of the Blades—Blade-Interference Theory -

The simplest approximation consists of supposing that the actuator discs are placed at the
trailing edges of the blades. Then the axial velocity at the pth disc (C.op) is calculated using
equation (8) and the guessed values for the * downstream infinity * axial velocities.

For each blade row it is now possible to obtain a differential equation similar to equations (15)
and (16) for the isolated discs, but the whirl velocities at the trailing edges of the pth disc will
now be specified by (U — C,,, tan 8,,) for a rotor, or by C,,, tan «,, for a stator.

The flow through each blade row is in fact treated as an inverse problem, .., an actuator disc
across which there is a specified change in whirl velocity. It should be noted that the same
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This differential equation may be integrated graphically to give a relation between (C,,/C,;) and
(C,,/C,1), which together with equations (25) and (26) enables (C,,/C,;) to be calculated. With
(C,s/C.1) and (C,./C,,) known, (C,e/C,1) and (C,e/C,,) are directly obtained from equation (25).
This has been done for two examples in which //6 = 2-1 and 4-2. :

Method 5.— Actuator Discs placed at the Centres of Pressuyes of the Blades— Blade-Interference Theory

If the actuator discs are placed at the centres of pressure of the blades as Marble suggests,
then the whirl velocities are defined not by the axial velocities at the discs themselves but by
the axial velocities at the trailing-edge positions (C,1, Cia, - - - Cupe s Cige - - - Cryo) downstream
of the discs.

These whirl velocities are:
for the pth row, if a rotor C,,, = U — C,,, tan g,
for the pth row, if a stator C,,, = C,,, tan «,,

where $,,, «,, are the rotor and stator exit air angles at the trailing edges, measured relative to
the blade rows. :

Since the value of ® = 7C,, is constant along a streamline between the discs, for small streamline
displacements the whirl velocity C, is constant.

Thus the whirl velocity C, just downstream of an actuator disc is defined by the axial velocity
at the following trailing edge. :

The method of solution of the problem is similar to that of Method 4. The ¢ downstream
infinity * values of axial velocity are guessed and the velocities at the trailing-edge stations are
calculated using the principle of superimposing the individual trailing vortex sheets due to each
blade row, and subtracting those extending from upstream to downstream infinity.

For the trailing edge downstream of the pth row the axial velocity C,,, at that station is given
by: \ .

(29)

B

% - C;
Cxpz = LYxpia + 2 (%I) {eXp (_ kqxpeq/lq)}

q=n

= 5 (G e (A}, - @

a=p+1
where x,,, is the distance (always positive) between the gth row and the pth trailing edge and
the flow is incompressible.

For each disc a differential equation is obtained similar to equations (15) or (16) but the whirl
velocities just downstream of the disc are the same.as those calculated for the trailing edge:

for the pth row a rotor C‘OP =C,po=U—C,p tan g,
for the pth row a stator Cuop = Crpo = C, . tan oy, .
Thus for the pth row if a rotor:

ACrpin 20, tan B, d
ar P(Coprr + Cup) dy{

r(U — C,p tan B,,)} -

- dcxp Z(U - C:f(p—l)e tan “(ﬁ—«l)e) d
=7t — (R o = (rCop_ne tan «,_ay,) , - . . .. (30)
or for a stator;
aC, i1 2C, . tana,, d '
7 -+ HCorrr & Co) E;{v(cm tan a,,)}

dC,, — Copore tan B,_y.) @
2 —I— ( (Cxp(j_ll)—*— ijj) (17 D )'671'/{7([] - Cx(p—l)e tan ﬁ(ﬁ—l)e)} . s . (31)
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The n equations for the » blade rows are then simply solved by graphical integration and the
resulting values of  downstream infinity * axial velocities may be used in a second approximation.
For the model stage:

Kb—a<cx4 - Cx2) Ka<cx2 - Cxl)

sze = Cx2 _l_ 2 - 2
and .. .. .. .. (32)
. Ka+b(cx2 - Cxl) Ka(cx4 - Cx2) ‘ :
Cx4e - Cx4 - 2 - 2

where K, , =exp[{— k(b — a)}/l], K, = exp (—ka/l), KHb.% exp [{— k(a —I—‘ b,

in which b is the axial distance between the discs (i.e., the blade-row centres of pressure), and
a is the axial distance between the actuator-disc stations and the trailing edges of the blades.

Then as in Method 4: _
(U - Cx25 t'(ln ﬁZe)(Cxl _{_ sz)

dCs _ dCu(y |
d?’ - d7’ { (CxZ + Cx4) (Cx2e tan 1326)
But
Cx25 = CxZ (1 - Kﬂ +2Kb~a) —I_ Ké—ﬂ Cx4 + % Cxl
q (C) (2 u. _ K)+ (K + K, =1 -k, ) &
Cx VoA Cx 1 C” 1 : Cx L (33)
CZ (sz (sz + Cx4 ’
Cxl) Cxl )

whence the method of solution is the same as before.

Ultimate Steady Flow.—Stages deeply embedded in an axial-flow turbo-machine may be
considered as identical pairs of actuator discs and the distribution of the tangential vorticity 5,
is the same after each rotor row. C,is defined as that axial velocity that would exist far down-
stream of the rotor and is related to 5, by 5z = — (dC,./d?). Similarly the distribution of
tangential vorticity ns = — (dC,s/dr) is the same after each identical stator.

If the rotor, say the kth row is considered then along a streamline :

H,=H,,+ AW,, .. .. .. .- .. .. (84)

where H,_, is the stagnation enthalpy after the (¢ — 1)th disc
H, is the stagnation enthalpy after the Ath disc
AW, is the work done on the fluid by the Ath row.
For the (£ 4 1)th row, a stator row:
AW;,. =10, .

H,=H,,. .. .. .. .. .. .. (35)
Then from equations (34) and (35), along a given streamline H, m=H, .+ AW,.
Differentiating with respect to v, ’ |

)= () dam,
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but using equation (9) for the (¢ — 1)th row, a stator:

iH, 3\ 1 dog\  (AH,,
( dy )_F(nsijesd_w) __< dy )

for small streamline displeicements. Hence d(AW,)/dr = 0. Or approximately:

d
7y W) =0, PR £ )

result originally given by A. R. Howell” and used by Railly®.

Method 6.—Actuator Discs placed at the Trailing Edges of the Blades—Ultimate Steady Flow
If the actuator discs are placed at the trailing edges of the blades then:

d
7 [U{(U — C,optan Bog) — Costan agsf] = 0. .. .. .. .. (36a)

Then if an infinite number of identical rows is considered, using equation (12) the axial velocity
at any rotor disc C,,z is given by:

Cuon= (G Co8) — (Con g O fexp — 22 1 (exp— 2. )]
g o) o2
£ (G o) ¢ (o= 22|
e o)
=c,,.,5.2.. .. .. .. .. .. . .. (387

Thus equation (36a) becomes:
P .
7 [U{U — C.onltan fox + tan ag)}] =0,

the result derived by Railly by superimposition of radial velocity fields.
Thus for the model stage in ultimate steady flow: '
a

d
5 (AW,) = 5 {U(U — C.uxR)} = 0,

whence Cror = 2 + (Constant/R?) .

From the continuity relation the constant is determined and for the particular example
(U,/C,. = 1-83):

| CxOR _ CxOS . . 0‘381
C.—C, 1 83—————R2 .

(38)

Method 7.—Actuator Discs placed at the Centres of Pressure of the Blades—Ultimate Steady Flow

If the actuator discs are placed at the centres of pressure of the blades then the equation (37)
remains unchanged and C,z = C, s, although in general the values of C, zand C,s will be different
from those used in Method 6.

11



. However, the axial velocity at the trailing edge of any rotor is not the same as that at the
trailing edge of a stator. For if the blade spacing is b, and the distance between the plane of the
centre of pressure and the trailing edge is @, then for identical blade rows:

CxRe :: CxR._ (C‘LS%C‘& [eXP 1 _—'Z[I‘e (b _I" Gl)

-+ exp,—? (30 + a)

+. ]

+...]

. (C»R - CrS)

5 [expg—.?a —]—exp;—l]i(Zb—}—a)

CxS_'CxR i k
+(h2“)~expi—~l~(b—a) —|—exp§—7(36—oz) —[—]
+(C“e+@5?_exp§—§(zb—a) —l—expa—?(élb—a) +o . e9)
Cxéezcxs—(—c&g&s’)—expj—?(b+a) +exp3—?(3b+a) —[—:|
CxS_CxR [ k k
—(EZ)_GXPE—Z_a +exp3—l—(2b+a) —|—..}
Cior— C,s k
—l—(—f—zb)iexpg—z—(b—n) —I—exp?—z(?)b—a) —I—]
CS—CxR .
4 (G 7 Co) 5 )[GXP1~?(25-01) +eXp§—7(4b—a) +} .. (40)
CxRe#CxSB

The criterion d(4W,)/dr = 0 is still valid but the work done across a disc is defined by the
whirl velocities at the trailing edge positions,

z.e., %[U{(U — C,p.tan Bz,) — C,s, tanag,}] = 0. .. .. .. .. (36b)

This equation is not sufficient to determine the flow as in Method 6 since C.r # C,s,, and a
method of successive approximation must be used. C, r and C,s may be guessed and two
differential equdtions are integrated graphically.

Thus for a rotor:

dCxR . Zcx Re tan ﬂRe i
dr 7(Cox + C,s) dr

ac, 20U — C,g, tan ag,) d
:77_5_(7(CRics)“s)d_y(ycmtan%). R 3

{r(U — C, g, tan fg,)}

And for any stator:

dC,s 4 2.5, tan a5, d
dr #(Cor+ C.s) ar
. dCxR 2(U '— CxRe tan IBRC) d
=& T 7(Cor + Cys) Zr WU — Contan fo)}.. . o - 42)

12
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These two equations together with the values of C, ., C,s, obtained from equations (39) and
(40) and the guessed values of C,p, C,s enable a solution to be obtained, or alternatwely either

equation (41) or equation (42) may be used together with (36b).

It is of interest to note that for the model stage the criterion d(4W,[dr) = 0 gives the
distribution of C,, with radius immediately since tan «;, = 0, and this gives C,, as identical
to C,or = C,os calcalated in Method 6. Then referring to equation (41) :

dCon  dC,s
dr — dr "’

since  taneas, =0 amd;Z (4AW,) = j {r(U — C,p.tan B)} = 0.

Hence C,z = C,s -+ constant.

The continuity relation requires that this constant should be zero so that C,, = C,s = Cyor
= C,os = C,z. = C,s., 1., there are no discontinuities in tangential vorticity across the discs.

Method 8.—Actuator-Disc Theory—Addition of Radial Fields (Railly)

Calculations for the model stage receiving a uniform upstream profile alone using the theory
of addition of radial velocity fields have been made for comparison with Methods 2, 4 and 6

(/b =21, 4-2).
Values of K, calculated from Railly’s analysis are:

(a) é:Q-l K,=0-191 K,;,=0-192 cf. K, =0-214
S " from the isolated-disc theory

(o) é:zx-z Ky — 0436 K, — 0-446 cf. 0-462.

The addition of radial velocity fields gives the same result as Methods 6 and 7, for the model
stage in ultimate steady flow. Methods 6 and 8 would give identical results for any given
distribution of outlet air angles, f; and «g, in ultimate steady flow, but Method 7 in general
gives different values for C,,, C,s,-

~ Off-design Performance.—The exact solutions for Methods 1 and 2 have been used to compute
the axial velocity at exit from the model stage rotor for U,/C,; = 3-0 assuming that the outlet
angles «, remain unaltered.

3. Discussion of Calculations—The calculation of axial velocity at rotor and stator trailing
edges for the eight methods used are shown in Figs. 4 to 18.

The flow parameter U,/C,, has been chosen as 1-83, and for the methods involving the
estimation of blade interference values of /b = 2-1, 4-2 and a/b = 2/3 have been used.

In general the radial equilibrium solution (Method 1) has been used as a reference velocity.

In the discussion the effects of blade interference, positive interference from another disc is
defined as that causing the axial velocity at the station considered to become more distorted
from the value C,/C,, = 1-0. Negative interference implies that an external blade row is
inducing a return to the undisturbed upstream velocity distribution. Thus it will be apparent
that for the model stage the effect of the stator upon the rotor is a positive interference effect,
but negative interference is induced at the stator disc by the rotor.
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Figs. 4 to 6 compare the radial equilibrium approximation (Method 1) with a calculation for
isolated actuator discs at the blade trailing edges (Method 2). There is a considerable difference
in the computed axial velocities at the rotor trailing edges and at the stator-blade root.

Figs. 7 to 9 show the results obtained if the actuator disc is placed at the centre of pressure
of the blade (Method 3). For the low aspect ratio blade (//b = 2-1 a/b = 2/3), Fig. 7 shows
this calculation to be near the radial equilibrium solution but the ratio //6 = 4-2 gives an axial
velocity C,,, little different from Method 2.

Figs. 8 and 9 suggest only small differences between the calculations for the stator. The
calculations for /b = 2-1 are almost identical with those for /b = 4-2 and are not plotted.

Comparisons between Methods 4 and 8 and for blade interference have been made and excellent
agreement is obtained. This is illustrated in Fig. 10. The rotor trailing-edge velocity is
identical for //b = 2-1, and the differences for //b = 4-2 are small. Similar calculations for

C.0/C,, and C,,/C,, give close agreement, and the determination of the attenuation constant
%, shows but small differences (see above).

The general effects of blade interferenceé are therefore shown using the methods employing the
concept of constancy of trailing vorticity (Hawthorne. Ref. 5. Appendix B).

Fig. 11 illustrates the small positive interference effect of the stator upon the rotor for //b = 2-1
and a larger induced distortion from C,/C,, = 1 for /b = 4-2. Method 4, in which the discs
are placed at the trailing edge, is employed.

Negative interference is shown by this method in Fig. 12, but Fig. 13 again suggests that the
calculation of C,, varies little with the method chosen.

Figs. 14 to 16 illustrate Method 5, using blade-interference theory with the discs placed at the
blade centres of pressure.

For the axial velocity at the rotor trailing edge, the separate effects of (i) placing the disc at
the trailing edge (Fig. 7) and (ii) positive interference from the stator (Fig. 11) are combined
(Fig. 14) and the result is little different from the radial equilibrium result. The calculations for
I/b = 2-1 are not shown, as these are almost identical with the Method 1 results.

However, if the radial equilibrium calculation is fortuitously accurate for the rotor because
of positive mterference negative interference at the stator trailing edge 111ustrates wide differences
between Methods 1 and 5.

The axial velocity for the model stage in ultimate steady flow (C,oz = C,os = C,x = C,5) is
shown in Fig. 17, and suggests a reversal of flow at the root. Once again the comparison is
made with the radial equilibrium solutions for the single stage.

Although the differences between the various theories will be greater because of the low
hub-tip ratio chosen, the flow parameter U,/C,, is small judged by modern compressor practice,
and this small value tends to minimize these differences. This is illustrated in Fig. 18, which
compares Methods 1 and 2 for the rotor, at U,/C,; = 1-83 and 3-0.

The results of these calculations are summarized in Table I which shows the difference in
axial velocity from root to tip, as calculated by various methods for positions 02, 04 and 4.

If Method 5 is considered to be that giving the most accurate calculations, then it is seen
from the table that while other methods may give agreement at one trailing-edge position, the
results for the other trailing edge are not accurate.
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TABLE 1
Dijfferences in C, root to tip

(Cx 02)tip - (Cz02)r00t (Cz 04)tip - (C:u 04)root (Cn:4)tip - (Cx4)root
Method o o ‘ Cor
1. Radial equilibrium 0-47 1-05 1-05
2. Widely spaced discs at blade
trailing edges 0-27 0-80 1-07
!
3. Widely spaced discs at blade 0-35 (Zé 4-2) 0-87 <5 4~2) 1-01
centres of pressure :
0-40 (El 2-1) 0-87 (EZ 2-1) 0-97
4. Discs at trailing edges. Inter- 0-40 (—l 4-2) 0-66 1-04
b
ference theory (Hawthorne)
0-32 (g 2-1) 0-75 1-09
5. Discs at centres of pressure. 0-45 (Zé 4-2) 0-63 0-82
Interference theory (Haw-
thorne) 0-50 (zl 2-1) 0-82 0-93
6, Ultimate steady flow .. 2-0 20
7.

4. Conclusions.—The comparisons of the actuator-disc theories suggest that the choice of the
position of the plane of the actuator disc is important, and that methods in which the discs are
placed at the trailing edge of the blades may not be as accurate as the original radial equilibrium
theory. ' ' '

For large aspect ratios (//b > 3) the trailing-edge—disc methods may be more satisfactory, but
then the effects of blade interference are considerable unless the axial clearances are large
compared with the blade width, a configuration not encountered in modern turbo-machines.

For low aspect ratios (1/6 < 8) blade interference effects become less important, but the placing
of the disc at the trailing edge becomes a larger approximation. »

The excellent agreement between the theories for blade interference suggest that the use of
the attenuation constants k;, as determined from isolated-disc theory, is justified in a theory
taking into account blade interference. It is therefore suggested that Method 5 is of practical
use for axial-flow compressor and turbine designers. The disc is placed at the centre of pressure
of the blades, but the possibly considerable effects of blade interference are not neglected. The
values of k; are determined directly from the hub-tip ratio.

In turbo-machine design, Method 5 would be used for the first few stages, after which the
flow would be expected to approximate to the ultimate steady flow condition soluble by Method 7.
Equation (8) may be readily adapted to give the axial velocities at the blade leading edges for
determination of the incidences.

A further modification of these methods for the off-design condition may be to allow for
variation in outlet air angle and blade losses in the equating of dH/dy across the disc, using
cascade results and the incidences obtained from the first approximation to obtain values of these
two new variables. :

It is important to note that Methods 5 and 7, while taking into account any non-uniformity
in entry-axial velocity profile give no estimation of the growth of the boundary layer through a
COINPIessor. . :
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NOTATION

Referring to Figs. 1, 2 and 8, the following notation is used :

Co-ordinates;

C,
C,
C

]

o
1
kd

S R ST

Subscripts :

oW P R

01

02

03

04

2e

oR

05

Re

Se

t

h

Superscripts:

I4

Il

7, 0, x.

Radial velocity

Tangential velocity

Axial velocity

7C, Tangential momentum

(0C,Jex) — (8C,[or) Tangential vorticity
Streamline function defined by:

vC, = oyfox  vC,= — (0y/[or)
Stagnation enthalpy -
Tip radius

Root radius

r[r, Non-dimensicnal radius ratio

Rotor aungular velocity

Qy Blade speed ‘

Absolute air angles

Exit rotor air angle measured relative to the moving blade

Blade length in radial direction

Blade width in axial direction

Axial distance between planes of blade trailing edge and centre of pressure

Conditions far upstream of a rotor

Conditions far downstream of a rotor

Conditions far upstream of a stator

Conditions far downstream of a stator

Conditions immediately upstream of a rotating actuator disc
Conditions immediately downstream of a rotating actuator disc
Conditions immediately upstream of a stationary actuator disc -
Conditions immediately downstream of a stationary actuator disc
Conditions at the trailing edge of a rotor-blade row

Conditions at the trailing edge of a stator-blade row

Conditions far downstream of a rotating actuator disc in ultimate steady flow
Conditions far downstream of a stationary actuator disc in ultimate steady flow
Conditions at a rotating actuator disc in ultimate steady flow
Conditions at a stationary actuator disc in ultimate steady flow
Conditions at the trailing edge of a rotating blade row in ultimate steady flow
Conditions at the trailing edge of a stationary blade row in ultimate steady flow
Relating to blade tip
Relating to blade root

Denotes perturbation to the axial velocities at infinity (upstream or down-
stream) in the neighbourhood of an actuator disc, e.g., ¢,,’, ¢,2’.
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APPENDIX I

Three- Dimensional Flow in an Axial Turbo-Machine

1. The Approximate Solution for Flow through an Actuator Disc.—An approximate solution of
the actuator-disc problem may be obtained by assuming that the trailing vortex lines lie on
cylindrical surfaces concentric with the axis of the annulus. The radial velocities are not, however,
neglected, so that the condition for stream surfaces and vortex-line surfaces to be the same is
no longer satisfied. :

—0o re +00

1 Cxy * C":- Cx, + C“'z Cxy

Th
- + X

Cr, 2

Fr1c. A.l.

With this assumption it may be shown (Ref. 8) that the axial velocity at the actuator disc is
(C,1 + C.2)/2 where C,, and C,, are the axial velocities at infinity upstream and downstream
respectively. With the notation of the figure C,," and C,," are the perturbations to the axial
velocities m the regions ¥ =0 to x = — o and ¥ =0 to ¥ = + o respectively. At x =20
Cxll = (sz - Cxl)/z a,Ild szl = (Cxl - sz)/z

Since it is assumed that the ring vortices pass downstream along cylindrical surfaces the value
of the tangential vorticity, 5, at any radius will be constant and is equal to its value at infinity.
17
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Vorticity components in a flow with velocities C,, C,, C, and co-ordinates 7, 0, x, are &, g, ,
where for axially symmetric flow:
oC,

Ez—ax

aC, aC,

0x o7

For incompressible, axially symmetric, flow the continuity equation is

0 0 : ‘
%(1’6})—[——3;(76,):0. s .. « . .. . .. s (2)
aCrZ a ’ ach : -
Hence : 1=, (Cro+ 2C,,) = — oy .. .. L. (3)
acr2_ acx2’
ot Tox oy

A similar equation applies upstream of the actuator disc. The equation of continuity (2) for
incompressible flow may be written :
aC !

+1—,5( ) =0. .. .. .. .. (4)
Differentiating equation (4) partiélly with respect to » and substituting from equation (3):
1eC, C,  #C,
2+787 P a—xz_O. .. .. .. (5)

A standard procedure for solving this equation is to write C, — Z {exp (Bx)} fi(r), where

k; with 7 =1, 2, 3, etc., are a number of constants whose values depend on the boundary
conditions. Then:

> foxp (B} A70) + 13 foxp (i} 10) + 3 (k2 — &) foxp (b} £) 0. .. @
Hence for all values of ¢ since this equation must be satisfied at all » and ¥ > 0 or x < 0,
)+ L5 + (kf—j—z)fi(r) —0. .. @
The general solution of this Bessel’s differential equation is:
| A0 =AJike) + BY k). .. .. .. . .. @
Hence the radial velocity is given by:
C, = 2 {exp (Bw)} {4, J.(k?) + B, Y (kr)}. .. .. .. )

Since at the boundaries of the annulus 7 = 7, and » = 7,, C, = 0.
_ A Ji(ky) + B, Y (k) =0
and A Jykr) + BY (k) =0 S
or Julkir)Yi(kr,) — Ju(kw )Yk = 0. e . .. (10

This equation gives an infinite number of values of ,; the first six of which are tabulated for
various values of (7,/r;) by Janke and Emde (p. 205).
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Since the values of %, only depend on the values of 7, and #,, the solutions for C,, and C,, are
symmetrical about the actuator disc.

Substituting for C, in equation (4) and integrating to obtain C,” between the limits x = 0
andx = +

>, lfexp (kan)}fk] | /() )=

Now since C, and C,” = 0 at ¥ = + oo, £; is negative for ¥ > 0 and positive for x < 0.

Inserting the values for C," at x = 0:

Zk[ ) - f()} (:24;”61 L 12
If only the first root of equation (11) is taken, then:
C.i/ = (exp A#) ((%) O 6 7
C.o' = — {exp (— kx)} (c__%_g_) S -
Hence if / is the blade length:
C,i'=—0C,) = (exp3'}6x) (C“ ; C“) . .. .. .. (14)

The value of 3-16 is correct for #,/r, = 1-5 and varies between 3-146 and 3-23 as 7,/r, varies
from 1-2 to 2-5 respectively.

2. Blade-Inteyference Theory.—Between each blade row in the compressor; sheets of tangential
smoke-ring vortices exist which are identified by the value of C, at downstream infinity. These
are shown diagrammatically in Fig. 2.

Fic. A.2. Diagrammatic representation of sheets of tangential vorticity between blade rows.

I the pth row of blades shown in Fig. A.3 is considered and all the vortex sheets of neighbouring
blades are superimposed :

(71361) ’ B2



The sum of all these vortex sheets is pictured below where the compressor has # stages:

p-2

p~1

2Cxp +

Crpat +

Cxp—-l

2

p

2Cxp+| +

Fic. A4,

Cxp+2 + Cxp

P4l

p+2

Hence between the (p — 1)th and the pth rows the vortex sheets obtained by superposition are :

q=n
Cop+ 2 Coq -
qg=2

Downstream of the pth row and ahead of the (p 4 1)th the vortex sheets sum to:

q=n
C:r;’:+1 _I_ 22 Cxq .
a=

Hence the vorticity pattern may be obtained by summing the vorticities of all rows taken
separately and subtracting the sum of all the vortex sheets due to each blade stretching from
upstream to downstream infinity. This procedure is shown diagrammatically in Fig. A.5 for a

single stage:

Fic. A.5a.

A

F1c. A.5c.  Sum of vortices due to each row taken separately.

20

Actual vorticity.
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Fic. A.5d. Vortex sheets extending to infinity which require to be subtracted from (c) to give (a).

The induced axial velocity at the pth row due to the gth row when the vortices of all rows are
taken separately is from equation (14),

When ¢ < $:

= Cxq+1 -

Crgrn — C,
( q+12 q) . Cxlq .

exp ( - k—quﬁf.7>
q

—_ (CM 1 + Cxq) (Cx T Cxq)
= + 2 + q+ 2 <1 -

k
exp(—fqu))—(?xlq. .. .. (15)

q

When g > 4:

exp ( iq xm) (CLHZ‘"_CM) — C,y,
q

— (Cxq+1 _}— Cxq) _ (Cxq-l-l - Cxq) <1 _
2 2

where x,, is the magnitude (always positive) of the axial distance between pth and gth rows and
C,1, is the average axial velocity at the gth row:

-
Pmn(ytz - 1’7»2) '

_
€xp ] Ve

q

) — Cau, .. (18)

Cxlq == (17)

From the sum of the above induced velocities must be subtracted the effect of all the infinitely
long vortices due to each blade row as shown in Fig. A.5. This latter effect is:

g=n

(Cog—Card -+ oo oo e (18

2

=
I

Hence, the total induced velocity is:

2 %( ret1 T Cxq) 4 (Cxq+12“‘ Cxq) (1 _

q=n

— > (Coy— Coap) P ¢ )

7=2

k
exp (— —l—qu)g — CxlqE

q

noting that the -+ sign is taken when ¢ << $ and the — sign when ¢ > p. The induced velocity
may also be written:
kq
exp <_ 7 xﬁq)
q

=Lt __ (Cxqikl - Cxq)
g=1 . 2

+ i (Cxq+12_ ng)

p+1

+ (C,,le—l— C“,)

exp (—]%’xm) —C,1. . . . (20

q
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Hence the axial velocity at the pth row is:

C. C,
Coop = (22225222) 1 (C,0 — €)

< Cxq-!-l — “axg q
+ 3, (P fewp (= ) 20
P
or for incompressible flow :
_ (Caprr + G,y 1L Ch g xq k&, |
Cij) - ( 9 ) i ( 9 ) exp ( lq xm)g
(22)

_[— qqi:n (Cxq+12— Cx‘l) 3eXp (_ l%xm)
= q

Pl
Similarly it may be shown that the axial velocity at a point #,, between the pth and (p + 1)th
rows is given by :

I (Cxq+1 _ Cxq)
2

k
Cxpe = Cxp+1 - Z exp (— “Z_: xﬁw)‘

q=1
g=n Cx _Cx E !
+ 2 (g e (= ) (23)

where x,,, is the distance (always positive) between the plane x = x,, and the gth disc.
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