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Summary.--Using actuator-disc theory, simplified methods are given for the solution of the direct problem of the 
incompressible flow of air through an axial-flow turbo-machine. 

Calculations based on these methods are compared with other approximate solutions to the flow through a model 
compressor stage. 

1. Introduction.--Compressor and turbine design is usually based upon the assumption that  
radial equilibrium conditions exist behind rotor and stator rows and this approximate theory is 
fully given by Cohen and Whi te )  

Actuator-plane theory, in which a blade row is replaced by an infinitely thin disc which causes 
a sudden discontinuity in tangential velocity and vorticity has been developed by Merchant 2, 
Bragg and Hawthorne ~ and Marble. ~ 

Using one of Marble's results and expressing the radial velocity in the form 

Cr = ~ f / r )  exp (k~x) . . . . . . . . . . . . . . . .  (1) 
i ~ 1 

Hawthorne 5 and Railly 6 have obtained expressions for the axial velocity at any point away from 
the disc. 

The effect of neighbouring blade rows is calculated (a) by superimposing sheets of tangential 
vort ici ty due to single isolated rows and subtracting the sum of all the vortex sheets extending 
from upstream to downstream infinity (Hawthorne); (b) by adding the radial velocity fields due 
to individual blade rows (Railly). 

Differences ill these two methods lie in the determination of a value of the at tenuation constants 
k~ in equation (1). Hawthorne determines ki from a solution of the equations for an isolated 
disc, but Railly obtains mean values which are dependent upon the extent of mutual  blade 
interference and are obtained by successive approximation. 

General methods for the solution of the direct problem of the incompressible flow of air through 
a turbo-machine of known blading are given in this paper" 

(a) for isolated actuator discs (i.e., for machines with blade spacings such that  aerodynamic 
interference may be neglected) 

(b) for actuator discs closely spaced. 

The actuator discs may be placed in the plane of the trailing edges of the blades, or at the 
blade centres of pressure. 



To estimate the magnitude of the differences between the  various theories the direct problem 
of a single compressor stage has been considered, the stage consisting of one rotor and one s ta tor .  

The velocities at entry to the rotor and at exit from the stator are axial; the tangent of the 
outlet angle from the rotor varies linearly with radius and is equal to uni ty  at the tip radius, 
i.e., tan/3 = r/rs = R. 

The hub-tip ratio is 0.4 and the ' aspect ra t ios '  of the blades 1/b are chosen as (i) 2.1, and 
(ii) 4.2, assuming negligible axial clearances. When the actuator discs are placed at the centres 
of pressure of the blades it is assumed that  the distance of the centre of pressure from the blade 
trailing edge is two-thirds of the blade width, i.e., (a/b = 2/3). 

Such a stage is similar to an axial-flow-compressor test stage installed in the Cambridge 
University Engineering Laboratories. The tip diameter of this compressor is 14 in. and the rig 
is designed for 6,000 r.p.m. If a mean axial velocity of 200 ft/sec is assumed, the flow parameter 
(U~/Cx~) = 1.83, where Us = blade-tip speed; Cx, = axial velocity at upstream infinity and is 
assumed constant. 

2. Approximate Methods of Calculating the Flow through an Axial Turbo-Compressor Mach ine . -  
The general methods developed using actuator-disc theory are used to calculate the flow through 
the model stage and are compared with Railly's theory, and with radial equilibrium solutions. 
The positions of the actuator planes are illustrated in Figs. 1 and 2 for each method. 

Method 1.--Radial Equilibrium Conditions at the Trailing Edges of the Blade Rows 
For this theory conditions at stations (02), (2e) and (2) become identical, as do stations 

(4e) and (4). 

The radial equilibrium condition at the trailing edge of a rotor is then expressed by :  

dH2 dC;  1 (rC,,2) d - -  (2) 
C.,  d r -  + r 2= ~ dr . . . . . . . . . . . . .  ' 

where C,,2 ---- U -- C.~2 tan/32 

and Ha ---- H1 + U(C,,2 - -  C,,I). 

For the particular example of the model stage, tan/~2 = r / r s  = R , 

and dH2 d {U(U -- C~2 tan G)} 
d r  - -  d r  

Then equation (2) reduces to" 

dC.2 C.2 / 2R ] 2UsR 
dR q- I1 T R - b -  (1 + R~) ' 

which gives an exact solution" 

U, R= 
c,2 + c 
<-i = (1 + R 2) . . . . . . . . . .  (3) 

where P~ is a constant to be determined from the continuity conditions: 

C,2R dR = C.,R dR 
Rh Rh 

and is given thus" 
Us 2 

P 1  ~--- 
2 ,~ 

04],~ 
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Similarly at the trailing edge of the following stator" 

dC~4 1 d dH4 
C~ ~ -  + ~(rC..) ~(rC..~) --  dr 

where C,,~ = C~4 tan ~ .  

For the particular example, tan ~4 ----- 0 ,  

so £hat : 
Cx~ dC.~ dH~ 

dr --  dr 

d 
--  d;{U(U -- C.~ tan 3~)}, 

whence it may be shown" 

C~4 

. . . . . . . . . .  (4)  

(s) 

Where Q1 is a constant and is determined by trial and error from the continuity relation. 

I t  iS 0f interest to note that  if the outlet air angles /~ and ~ are assumed constant with 
iflcideiice, then the off-design conditions are easily obtained by using a different value of 
U,/C~I . 

Actuator-Disc General Theory. 

By using the result that  the axial velocity at an actuator disc stationed at the plane x ---- 0 
is approximately (C~1 + Cx~)/2, where Cxl and Cx~ are the axial velocities at upstream and 
downstream infinity (x = - - ~ ,  + ~) and also assuming that  the radial velocity at any point 
(r, x) is given by" 

$=oo 

c~ = ~ {exp (k,.)}f;(r) . . . . . . . . . . . . .  (2)  
i = 1  

it may be shown that  the axial velocity is given approximately by:  

Cx= C. (Cx,~-- C.) } 
- -  2 e x p { - - ( k ~ / Z ) }  ~ > 0 

c~ = c~ ,  + ( c x ~ -  c , , )  , . .  . .  (6) 
2 exp  {(kx/l)} x < 0 

where l is the blade height and k is determined uniquely by the hub-tip ratio of the actuator disc. 

This theory is developed in Ref. 5, and is given in Appendix I. 

Further, the effect of neighbouring blade rows is obtained by superimposing the vortex sheets 
due to each disc, and then subtracting the vortex sheets at infinity. (The analysis is based 
Upon the values of k obtained from the isolated actuator-disc theory and the justification for 
this approximation is investigated in the calculations for the model stage.) 

if the actuator discs are placed at the trailing edges of the blade rows the axial velocity at the 
p th  disc C~0p is then given by:  

C.op Cx,+~ + C~, __ q=P-I~C -- ) = ~, j . + , _  c ~  { e x p - ( k q ~ , & ) }  
2 q-~=l \ 2 

3 
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where C,,p, C,,,,+1 are the axial velocities tha t  would exist at upstream and downstream infinity 
of the p th  row if that  row were isolated, due to the discontinuities in tangential  velocity and 
vorticity at that  row. 

C,q, C,q+~ are similarly defined and x,~ is the distance (always positive) between the p th  and 
qth rows. 

(Equation (7) is also obtained in Ref. 5 as in Appendix I.) 

If, however, the actuator discs are placed at the blade centres of pressure then the axial 
velocity at the p th  trailing edge C,,~ is given by : 

q=* (C~q+~ - C,q) {exp -- (kqXp~q/lq)} Cxp~ = C , ~ , + I -  ~ 2 
q = I  

, . . . . .  + £ - • --(kqx,,qllq) } (8) 
q = p + l  \ 

where Xp~q is the distance between the p th  trailing edge and the qth disc. 

Marble has given a solution of the inverse problem in which the distribution of tangential  
velocity is initially specified, but  the direct problem (that of determining the flow conditions if 
the air angles are specified) results in a series of functional equations, since the change in whirl 
velocity at the p th  row is itself dependent npon C, 0p. Methods of successive approximation to 
solve this problem are given below in Methods 3 and 4. 

Method 2.--Isolated A ctuator Discs placed at the Trailing Edges of the Blades 
If the rows are sufficiently far apart the effects of blade interference may be neglected and the 

following analysis is developed. 

Bragg and Hawthorne 3 have given a general equation for the incompressible, axially symmetric 
flow on either side of an actuator disc: 

dH l [o dO ,Trl 
d r ,  - -  r e + . . . . . . . . . . . . .  ( 0 )  

Across an actuator disc: 
Hoe = Hol  + A W ,  . . . . . . . . . . . .  (10) 

where A W is the work done on the fluid by  the moving blade row and is given by:  

AW = O ' ( < , o e -  C,,01) . . . . . . . . . . . . .  (11) 

From equations (9), (10), (11): 

l l d (rc"°~)l @re d{u(c"°e--C'~°l)}' l~o~r + rC,,oe 4 (rC,,oe) = ~o~r + rC,,o~ ~ 

which may be written : 

d (rC,,0,) (12) d (rC,,0e) = v0~ + (C, ,o,-  U ) ~  . . . . . . . . .  

But Bragg and Hawthorne have shown that  O,  H are functions of ~, and for small streamline 
displacements, will be approximately constant at a given radius on either side of the disc. 
Further, Ruden's assumption (Appendix I) may be made, that  the tangential vorticity is 
approximately a function of radius alone. 

Thus '101 - - / h  = -- -- dr 
1 1 

T ] 0 2  - t , -  "172 7---- 
(ac 4 ; c .  

. . . . . . . .  (13) 
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Further C,~ot ----- C.m tail ~oi = C.~ tan ~ ,  ] 
[ and if the disc is placed at the trailing edge of the blades" 9 

C,,o~ = U -- C.o~ tan/~o2 ----- C.~2 tan a2 ) 
l 

(14) 

But 

Hence equation (12) becomes" 

dC~ d 
dr + C, o2 tan/~o2 ~ { r ( U  -- C,o~ tan/3oJ} 

dC,~ d {rC, t tan al} 
- -  dr + (U -- C,I tan ~) ~ . 

C,o~ = C, o2 -- C,~ + C,~ (Ref. 8), and the further approximation is made tha t :  
2 

rC, o~ ~-- d~ 
dr " 

d 1 d 
dW rC, o~ dr' 

so that  : 
dC.2 tan ~o2 d Ir l u _ (C,I + C,~ ) 

_ tiC,1 2(U -- C,1 tan ~) d (rC.~ tan cq) (15) 
dr r(C,~ + C~) dr . . . . . . .  

This may be written as an equation of the form : 

dC,~ C,~ ~ + A~(r)C,2 ~7-  + B~(r)C.2 - /  C~(r) dC,~ -)7- q- D2(r) = 0 . . . . .  (lSa) 

A similar analysis for a disc representing a stator (AH = O) gives: 

dC~ tan ~o, d I (C~3 + C~,) 1 
dr @ r dr r 2 tan ~o~ 

dC,3 2C,3 tan ~3 d 
= dr + (C.3 + C,~) r dT(rC*" tan ~) . . . . . . . . .  (16) 

which reduces to a similar differential equation in C, ~: 

C,~ 2 + A~(r)C,~ dC.~ ~- + B4(r)C.4 + C~(r) dC.4 - - 5  + D,(r) = 0 . . . . .  (16a) 

Equations (15) and (16) are general for any actuator discs placed at the blade trailing edges and 
operating at planes sufficiently far from other discs that  the effect of blade interference is negligible. 
Thus the veloci ty  profiles through a turbo.machine may be obtained row by row by assuming 
the axial velocity upstream of a row is given by that  at downstream infinity in the solution to 
the preceding disc, and the whirl velocity upstream is specified by the conditions immediately 
downstream of the preceding disc. 

Thus A(r), B(r), C(r) and D(r) are all known for the direct problem and equations similar to 
(15) and (16) may be found. These are usually non-linear differential equations but are easily 
solved graphically, by successive approximation and integration. I t  is of interest to note that  
equations (15) and (16) take into account a variation in inlet total head and axial velocity. 



For the model stage accepting a uniform upstream profile equation (15) reduces to:  

dR 1 -[- + C~2R = ( 2 U , -  C~,)R, 

which gives an exact solution: 

{2Ut 1) R 2 

c .  (9 + R2) , • . . . . .  

2( ' -  2u,  
where P2 = 3 -- 2 

from the continuity relation. The equation for the following stator reduces to: 

dC~ a 

d R - -  

But C.~ tan ~ = 

where tan/302 = R and C~2 = 

dC,3 2C~, d (RC,8 tan ~3) 
dR + C~3 + C,~ tan e~ ~ 

(U C~1+C~22 tan /~02) 

C=~ is obtained from equation (17). 

The resulting equation is solved graphically. 

(17) 

(18) 

Method &--Isolated Actuator Discs placed at the Centres of Pressure of the Blades 
By equating dH/dw on each side of an actuator disc placed at the blade centres of pressure, 

equation (12) is obtained as before. However, the whirl velocity C,02 is no longer specified by 
the axial velocity at the disc, but by the conditions at the trailing edge. 

The whirl velocity is approximately constant downstream of the disc since 0 = rC, is constant 
along a streamline and radial displacements are small. 

Thus C,, o2 ---- C,, ~, ] 

J 
( 19) 

and C,,2, = U -- C~2, tan P2, ' . . . . . . . . . . . .  

where C.~, is obtained from equation (6). 

( c ,~  C,1) C.2, C., 
• 2 ' • • . o 

where a is the axial distance between the planes of the centre of pressure and the trailing edge, 
and K~ = {exp (-- karl)}. 

Thus 

dC,~ d { r (V - -  C.~° tan ~ , ) }  -t- C.~ tall /~2e~ 

dC, l d (rC~ tan ~1) 
- -  dr + (U -- C,, tan ~) ~ 



The same approximation as before is now made for d/d~o at "the disc, i.e., 

d 2 d 
d~ r(C,~ + C~) dr' 

so that  

dC~ 
dr 

_ _  _ 2 IC,2 ( 1 K~)r(C,2 -/+ Cxl ( ~ )  I C x , )  tan $ , e d l r ( U  - d r  lC*=( 1 K ~ ) +  ~ K~ l tan/~"e)l 

_ dCx, 2(U -- C,~ tan ~,) d (rC, z tan ~1) . (21) 
dr r(C,l -4- Cx~) dr ' " . . . . . . . .  

which may be solved for C,~ if the distribution of C,~, tan a,, tan g2~ with r are known. Similarly 
for a stator" 

dC.~ 2C., tan ~3 d (rC.a tan ~a) (22) 
- dr + r(C,~ + Cx~) dr . . . . . . . . . . .  

Once again a step-by-step solution from a known entry velocity profile is possible through a 
turbo-machine. 

Such equations have been solved for the model stage in which 

1/b = 2- 1, 4.2 and a/b = 2/3. k (for r,/rt, =: 2'. 5) - 3.23 (from Jahnke and Emde~. 

Blade Interference.--For a turbo-machine of n blade rows, if blade interference is to be 
considered, the problem may be treated as one involving n unknowns. These unknowns are the 
n distributions of trailing vorticity/7 with radius that  exist behind the n actuator discs replacing 
each blade row. These values of trailing vorticity are assumed constant with radius between 
the discs. I t  is, however, more convenient to consider these unknowns as Lhe n values of axial 
velocity tha t  would exist far downstream of each blade row, since a knowledge of the tangential 
vorticity after the p th  row dC~p/dr enables C,p to be determined from continuity. I t  is assumed 
that  the velocity distribution far upstream of the first row of blades is known. 

The method of solution of this problem first involves guessing the 'downstream inf ini ty '  
distributions of axial velocity and it is suggested that  the values obtained from radial equilibrium 
theory (Ref. 1) (calculated from the known variations of outlet air angle with radius), form a 
suitable starting point. From the values of hub-tip ratio the values of hi, k, . . . kp, kq . . . k,, 
for each actuator disc are established. 

Method 4.--Actuator Discs placed at the Trailing Edges of the Bla&s--Blade-Interference Theory 
The simplest approximation consists of supposing that  the actuator discs are placed at tile 

trailing edges of the blades. Then the axial velocity at the p th  disc (C,0~) is calculated using 
equation (8) and the guessed values for the ' downstream infinity ' axial velocities. 

For each blade row it is now possible to obtain a differential equation similar to equations (15) 
and (16) for the isolated discs, but the whirl velocities at the trailing edges of the p th  disc will 
now be specified by (U -- Cx0p tan/~0p) for a rotor, or by Cxop tan ~0p for a stator. 

The flow through each blade row is ill fact treated as an inverse problem, i.e., an actuator disc 
across which there is a specified change in whirl velocity. I t  should be noted that  the same 

7 



approximat ion  as before is used for d~p --  r{(C~**~ + C~,)/2} dr, al though Cxo~ is not  now equal 
to the ar i thmet ic  mean  of C,p and C,p+ ~. Thus the equation for a rotor, say the p t h  row, similar 
to equation (15) is:  

dC~,.~ 2C~o~ tan  13op d {r(U --  C~o, t an  GJ} 
dr (C~p+l + C~p)r dr 

dC~p 2(U -- C~o(p_~)tan ~olp-~)) d 
- -  dr r(Cxp,~ + Cxp) dr (rC~ol~_~) tan ~o~p-~)) . . . . . .  (23) 

where C~op, C~o/p-~l are given from equation (8) and the guessed values of C~2, C~, . . . C~,~. 

Or for a s ta tor :  

dC~p+~ 2C~o~ t an  ~op d 
d~ + (C;7~+; T ~ ?; (~<o, tan ~o,) 

dC~, 2(U --  C~o(,_~)tan G(p-~I) d {r(U - -  Cxo(p_l) t a n  G:p-~)} (24) 
= dr + r(C~p+~ + C~p) dr . . . . .  

The n differential equations thus  formed are in tegra ted graphical ly  to give n new values of 
C~2,...Cxp, C~ e . . .  C~,+~, which m a y  be used to repeat the procedure for a second approximat ion.  

For  the  example of the  model stage there are two unknowns,  the axial  velocities Cx2 and C,~ 
t ha t  would exist far downst ream of rotor  and stator.  There is in this  case no need to perform 
the  successive approximat ion  suggested above for the  general case, since the two differentia) 
equat ions m a y  be combined to give a more direct solution. 

From equat ion (7)" 

C.o~ = C.o2 -- C~ + C~ 
2 

C~o~ = C~o~ -- C~2 + C.~ 
2 

+ K~(C. - c . ) ~  

2 I Kb(Cx2- Cxl ) 
2 

. . . . . . . . . .  (25) 

where Kv = exp (-- kb/l), in which b is the  axial distance between the blades and l is the  blade 
length. 

F rom equations (23) and (24)" 

dC~ 2Cxo2 tan  13o2 d {r(U - -  C~o2 t an  13o2)} 
r dr - -  ( 0 ~ 2 + C ~ )  dr " " . . . . .  

dC,4 dC.2 2(U -- C~o2 tan  t3o2) d {r(U - -  C~o2 t an  13o2)} 
and r dr - -  r ~ -  + (C~2 + C~4) d-) 

Combining equations (26) and (27)" 

r dr - -  r - - d r  -[- (C~2 + C~a) C~o2tan 13o2 dr 

Subst i tu t ing  for C~o2 from equation (25) • 

1 (u  - Go2tan &2)(G2 + G~)t 
(C~2 -4- C~) Cxo2 tan  13o~ t 

< < j  + I , -  



This differential equat ion ma y  be integrated graphically to give a relation be tween (Cxd/Cxl) and 
(C,~/C,~), which together  wi th  equations (25) and (26) enables (C~2/C~1) to be calculated. Wi th  
(C,,/C,I) and (C~/C,~) known, (C~o,/C~) and (C~o~/C,I) are directly obta ined from equat ion (25). 
This has been done for two examples ill which 1/b = 2-1 and 4.2. 

Method 5. - -A ctuator Discs placed at the Centres of Pressures of the Blades--Blade-Interference Theory 
If the actuator  discs are placed at the  centres of pressure of the  blades as Marble suggests, 

then  the  whir l  velocities are defined not  by the  axial velocities at the  discs themselves but  by  
the  axial velocities at the  trailing-edge positions (C~1,, C~2~ . . . C ~ ,  C,~ . . . C .... ) downst ream 
of the discs. 

These whirl velocities are:  

for the  p t h  row, if a rotor C,~p, ---- U --  C,p, tan  $p~ 1 , . .  . .  .. . .  (29) 

for the  p t h  row, if a s tator  C,,:o~ ---- C~p~ tan  ~p~ J 
where tips, ab~ are the  rotor  and stator  exit  air angles at the  trailing edges, measured relative to 
the  blade rows. 

Since the  value of O ---- rC,~ is constant  along a streamline be tween the  discs, for small s t reamline 
displacements the whirl velocity C,, is constant.  

Thus the  whirl  velocity Cu just downst ream of an actuator  disc is defined by  the axial veloci ty 
at the  following trailing edge. 

The me thod  of solution of the problem is similar to tha t  of Method 4. The ' downs t ream 
inf in i ty '  values of axial velocity are guessed and the  velocities at  the trailing-edge stations are 
calculated using the principle of superimposing the individual  trailing vortex sheets due to each 
blade row, and subtract ing those extending from ups t ream to downst ream infinity. 

For the  trailing edge downst ream of the  p t h  row the  axial velocity C~p~ at tha t  s tat ion is given 
by :  

q=' (C~+I C~,,) 
= + { e x p  ( -  

q=l 

q=p+l 

where x~q is the  distance (always positive) be tween the  qth row and the p t h  trailing edge and 
the flow is incompressible. 

For. each disc a differential equat ion is obta ined similar to equations (15) or (16) but  the whirl  
velocities just  downst ream of the disc are the  same ,as those calculated for the  trailing edge:  

for the  p t h  row a rotor C 0p ---- C,,p~ ---- U --  C,p~ tan  ~p~ 

for the  p t h  row a stator  C,~op = C~p~ = C,p, t an  %~. 

Thus for the  p t h  row if a rotor : 

dC~p+l 2C~p~ tan  Sp~ d {r(U -- C~pe tan/~p~)) 
dr r(C,p+l + C~p) dr 

dC~p 2(U - -  C,(p_l)~ tan  ~p_~)0) d 
-- dr r(C~p+~ + C~p) dr (rC~tp_l)~ tan  ~(p_~)~) , 

or for a s tator  : 

dC~p+~ 2C~p~ tan  %° d 
dr + r(C~,+~ + C,,) -dr {r(C,*~ t an  %e)} 

dC.p 
- 2 7 +  

2(U --  C,(p_~)~ tan  fl(p_~)~) d (r(U -- C~(p_~)~ tail fl(p_~),)}... 
r(C~+l + C~p) dr 

9 

. .  (30) 

. .  ( 3 1 )  



The n equations for the n blade rows are then s imply solved by  graphical integrat ion and the  
result ing values of ' downst ream inf in i ty '  axial velocities may  be used in a second approximation.  
For  the  model  stage" 

and 

c . ~  = c.~ + K~_~(C~, --  C. )  _ K~(C~ --  C . )  ~ 
2 2 

c~ ,~  = c~o  - K o + ~ ( C .  - -  C ~ )  _ K o ( C ~  - -  C . )  " 

2 2 

K~_~ = exp [{-- k(b -- a)}/l], where 

• . . . . . . .  ( 3 2 )  

K~ = exp (--hall) ,  K~+b = exp [{-- k(a + b)}/1], 

in which b is the axial distance between the discs (i.e., the blade-row centres of pressure), and 
a is the  axial distance between the actuator-disc stations and the trailing edges of the  blades. 

But  

Then as in Method 4" 

dC,, dC,~ I (U -- C,~ t a n / ~ ) ( C , ,  + C~)I 
dr -- ~ 1 + (C,~ + C~)(C,~ . t a n / ~ )  " 

C~2~ = C,~ (1 K~ K~-~-~Kb-~) + ~_~C,~ +_ff C~I 

~_ ~ ~ + ( 1 - K ~ - ~ ) c . ~  

whence the  me thod  of solution is the  same as before. 

(33) 

Ultimate Steady Flow.--Stages deeply embedded  in an axial-flow turbo-machine may  be 
considered as identical  pairs of actuator  discs and the  distr ibution of the  tangent ia l  vort ic i ty  ~ 
is the  same after each rotor row. C, R is defined as tha t  axial velocity tha t  would exist far down- 
s t ream of the rotor and is related to ~R by ~R = --  (riCeR/dr). Similarly the distr ibution of 
tangent ia l  vort ic i ty  ~s = --  (dC, s/dr) is the  same after each identical  stator. 

If the  rotor, say the  kth  row is considered then  along a streamline" 

H,o = H,o_I + A W,, . . . . . . . . . . . . .  (34) 

where H~0_I is the  s tagnat ion el l thalpy after the  (k --  1)th disc 

HT0 is the  s tagnat ion en tha lpy  after the kth  disc 

A W~ is the  work done on the  fluid by  the kth row. . 

For  the (k + 1)th row, a s tator  row: 

A W~+~ = 0 ,  

H~ = H~+~ . . . . . . . . . . . . . . .  (35) 

Then from equations (34) and (35), along a given streamline H1,+1 = H~_I + A W~. 

Differentiating with respect to ~0, 

(dH~+q (dH~_ 4 d (~w~), 
d~ ]=~ d~ ] + ~  
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but  using equation (9) for the (k -- 1)th row, a stator" 

(d.~_~ 1( ~0 4 ~d.~+~ 
d~ ] = r  ~ ~sr + Os d~o! = \  d~o ] 

for small streamline displacements. Hence d(AWk)/dr = 0. Or approximately" 

d (~W~) 0 ,  . . . . . . . . . .  

d~ 

result originally given by A. R. Howell 7 and used by Railly 6. 

(36) 

Method 6.--Actuator Discs placed at the Trailing Edges of the Blades--Ultimate Steady Flow 
If the actuator discs are placed at the trailing edges of the blades then" 

d 
dr [U{(U -- C~oR tan $oR) -- C~os tan ~os}] = 0 . . . . . . . . .  (36a) 

Then if all infinite number of identical rows is considered, using equation (12) the axial velocity 
at any rotor disc C~oR is given by" 

% -  I 

C~R+ C,s 
2 

C x O S  " * " 

Thus equation (36a) becomes" 

l(ex  

+ (C'R 2 ;'s) I (exp -- - 

2/kb) + (exp 4kb 
, )1 

- - ) I  

- - ) I  

d [U{U -- C~oR(tan/~oR + tan ~os)}] = 0 
dr ' 

the result derived by Railly by  superimposition of radial velocity fields. 

Thus for the model stage in ultimate steady flow" 

d (AWk)= d {U(U--C~oRR)}=O, 
dr 

whence C,0R = f2 + (Constant/R2) . 

From the continuity relation the constant is determined and for the 
(U,/C~ = 1.83)" 

C~oR C.os_ 1-83 0.381 
- -  , . . . . . . . ° • 

C~1 C.1 R ~ 

. . . . . .  (37) 

particular example 

. . . .  ( 3 s )  

Method 7.--Actuator Discs placed at the Centres of Pressure of the Blades--Ultimate Steady Flow 
If the actuator discs are placed at the centres of pressure of the blades then the equation (37) 

remains unchanged and C~oR -- C~ os, although in general the values of C~ R and C~ s will be different 
from those used in Method 6. 

11 



However, the axial velocity at the trailing edge of any rotor is not the same as that at the 
'trailing edge of a stator. For if the blade spacing is b, and the distance between the plane of the 
centre of pressure and the trailing edge is a, then for identical blade rows" 

Cx Re ; Cx R 

c , ~  = c ~  

k (C's -- CxR) Iexp -[ 

k (C~R -- Cys) Iexp 

+ 

(c~R- c,~) 
2 [exp 

(C,s - c,~) k [exp 
2 

(Cx~- C~s) L [exp + 
2 

+ (C,s--2 C_.R) [exp 

Cx Re 

k(3b + a)l + "1 (b + a ) l  + e x p l - -  ~- . .  

k(2b + ~)1 +" 1 ~I + exp!- f 

k(3b ~)I+ .] ( b - - a )  l + exp l - -  7 -- . .  

k (4b a) l + . . .  l , ( 2 b -  a) l + exp l - -  F -- 

k(3b+~)t + . . .  ] k (b-t-a) I + exp l - -  7 

+ l-  + °/1 1 
-7, 

k (4b a)l + " "l l - - / k - ( 2 b - - a ) } + e x p l - - 7 ,  -- , 

=/= C,~se . 

(39) 

(40) 

The criterion d(A Wl,)ldr = 0 is still valid but the work done across a disc is defined by the 
whirl velocities at the trailing edge positions, 

; [U{(U -- C:~R, tan/~R~) -- C~s~ tan ~s~}] = 0 . . . . . . . . .  (36b) i.e., 

This equation is not sufficient to determine the flow as in Method 6 since C,R~ ~ C,s,, and a 
method of successive approximation must be used. C,R and C.~s may be guessed and two 
differential equations are integrated graphically. 

Thus for a rotor: 

dC, R 2C, R~ tan /3R, d 
d r  -- r(C,R + C,s) {r(g  -- C,R~ tan /3R,)} 

__ dC, s 2(U - -  C,s. t a n  ~s . )  d 
dr r(C~R + C~s) ~ (rC~se tan ~s~) . . . . . . . . .  (41) 

And for any stator: 

dC, s 2C~s~ tan ~se d (rC, s~ tall ~s~) 
:-d7 + r(C~R + C~s) dr 

dC~R 2(U -- CxR~ tan ~R~) d {r(U -- C, tan/~R~)} 
dr + r(CxR + C,s) dr R . . . . .  

12 
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These two equations together with the values of C,R~, C,s~ obtained from equations (39) and 
(40) and the guessed values of C,R, C,s enable a solution to be obtained, or alternatively either 
equation (41) or equation (42) may be used together with (36b). 

I t  is of interest to note that  for the model stage the criterion d ( A W J d r ) =  0 gives the 
distribution of C~ R~ with radius immediately since tan ~s~ = 0, and this gives C, Re as identical 
to C, oR = C, os calcalated in Method 6. Then referring to equation (41) : 

dC, R dC~s 
dr - -  d r '  

d 
d C,  tan = 0 since tan ~s, ---- 0 a n d ~  

Hence C,R = C~s + constant. 

The continuity relation requires tha t  this constant should be zero so that  C,R = C,s = C, oR 
= C, os = C,R~ ---- C,s~, i.e., there are no discontinuities in tangential  vorticity across the discs. 

Method 8.--Actuator-Disc Theory~Addi t ion  of Radial Fields ( Railly) 

Calculations for the model stage receiving a uniform upstream profile alone using the theory 
of addition of radial velocity fields have been made for comparison .with Methods 2, 4 and 6 
(1/b = 2.1, 4.2). 

Values of K~ calculated from Railly's analysis are: 

1 
(a) ~ = - 2 . 1  K~1---- 0"191 K~ ---- 0.192 cf. K b = 0 . 2 1 4  

from the isolated-disc theory 
l 

(b) ~ = 4 . 2  Kb1=0"436  K b 2 = 0 " 4 4 6  cf. 0.462. 

The addition of radial velocity fields gives the same result as Methods 6 and 7, for the model 
stage in ultimate steady flow. Methods 6 and 8 would give identical results for any given 
distribution of outlet air angles, /~R and as, in ultimate steady flow, but  Method 7 in general 
gives different values for C,R,, C,s~. 

Off-design Performance. The exact solutions for Methods 1 and 2 have been used to compute 
the axial velocity at exit from the model stage rotor for U~/C,I = 3 .0  assuming that  the outlet 
angles ~, remain unaltered. 

3. Discussion of Calculations.---The calculation of axial velocity at rotor and stator trailing 
edges for the eight methods used are shown in Figs. 4 to 18. 

The flow parameter UtICa1 has been chosen as 1-83, and for the methods involving the 
estimation of blade interference values of lib = 2.1, 4.2 and a/b = 2/3 have been used. 

In general the radial equilibrium solution (Method 1) has been used as a reference velocity. 

In the discussion the effects of blade interference, positive interference from another disc is 
defined as that  causing tile axial velocity at the station considered to become more distorted 
from the value Cx/C,I ~ 1.0. Negative interference implies tha t  an external blade row is 
inducing a return to the undisturbed upstream velocity distribution. Thus it will be apparent 
that  for the model stage the effect oi the stator upon the rotor is a positive interference effect, 
but  negative interference is induced at the stator disc by the rotor. 
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Figs. 4 to 6 compare the radial equilibrium approximation (Method 1) with a calculation for 
isolated actuator discs at the blade trailing edges (Method 2). There is a considerable difference 
in the computed axial velocities at the rotor trailing edges and at the stator-blade root. 

Figs. 7 to 9 show the results obtained if the actuator disc is placed at the centre of pressure 
of the blade (Method 3). For the low aspect ratio blade (l/b = 2.1 a/b = 2/3), Fig. 7 shows 
this calculation to be near the radial equilibrium solution but the ratio l/b = 4.2 gives all axial 
velocity C,~ little different from Method 2. 

Figs. 8 and 9 suggest only small differences between the calculations for the stator. The 
calculations for l/b = 2.1 are almost identical with those for lib ---- 4.2 and are not plotted. 

Comparisons between Methods 4 and 8 and for blade interference have been made and excellent 
agreement is obtained. This is illustrated in Fig. 10. The rotor trailing-edge velocity is 
identical for l/b = 2.1, and the differences for l/b = 4.2 are small. Similar calculations for 
Cxo~/C,~ and C~4/C~ give close agreement, and the determination of the attenuation constant 
k~ shows bu t  small differences (see above). 

The general effects of blade interference are therefore shown using the methods employing the 
concept of constancy of trailing vorticity (Hawthorne. Ref. 5. Appendix B). 

Fig. 11 illustrates the small positive interference effect of the stator upon the rotor for 1/b = 2 .1  
and a larger induced distortion from C~/C,~ = 1 for lib = 4.2. Method 4, in which the discs 
are placed at the trailing edge, is employed. 

Negative interference is shown by  this method in Fig. 12, but Fig. 13 again suggests that  the 
calculation of C,~ varies little with the method chosen. 

Figs. 14 to 16 illustrate Method 5, using blade-interference theory with the discs placed at the 
blade centres of pressure. 

For the axial velocity at the rotor trailing edge, the separate effects of (i) placing the disc at 
the trailing edge (Fig. 7) and (if) positive interference from the stator (Fig. 11) are combined 
(Fig. 14) and the result is little different from the radial equilibrium result. The calculations for 
1/b = 2- 1 are not shown, as these are almost identical with the Method 1 results. 

However, i f  the radial equilibrium calculation is fortuitously accurate for the rotor because 
of positive interference, negative interference at the stator trailing edge illustrates wide differences 
between Methods 1 and 5. 

The axial velocity for the model stage in ultimate steady flow (C,0~ --Cx0s = C~R -~ C~s) is 
shown in Fig. 17, and suggests a reversal of flow at the root. Once again the comparison is 
made with the radial equilibrium solutions for the single stage. 

Although the differences between the various theories will be greater because of the low 
hub-tip ratio chosen, the flow parameter U~/Cxl is small judged by modern compressor practice, 
and this small value tends to minimize these differences. This is illustrated in Fig. 18, which 
compares Methods 1 and 2 for the rotor, at U~/C,I = 1.83 and 3.0. 

The results of these calculations are summarized in Table I which shows the difference in 
axial velocity from root to tip, as calculated by  various methods for positions 02, 04 and 4. 

If Method 5 is considered to be that  giving the most accurate calculations, then it is seen 
from the table that  while other methods may give agreement at one trailing-edge position, the 
results for the other trailing edge are not accurate. 
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TABLE 1 

Differences in Cx root to tip 

Method 

1. Radial equilibrium 

2. 

. 

. 

5. 

Widely spaced discs at blade 
trailing edges 

Widely spaced discs at blade 
centres of pressure 

Discs at trailing edges. Inter- 
ference theory (Hawthorne) 

Discs at centres of pressure. 
Interference theory (Haw- 
thorne) 

(C~ o~)~i~ - (C~o~)roo, 

0"47 

0-27 

0.40(  

(Cx 04)tip - -  (C:~ o4)root; 

1"05 

0"80 

0"66 

0"75 

0"63 

0 " 8 2  

I 
6, Ultimate steady flow .. 2.0 I 2.0 
7. I 

(C~4)tip- (C,4)root 
C ~  ~_ . 

1 " 0 5  

1"07 

1-01 

O" 97 

1" 04 

1 "09 

0"82 

0"93 

4. Conclusions.--The comparisons of the actuator-disc theories suggest that  the choice of the 
position of the plane of the actuator disc is important, and that  methods in which the discs are 
placed at the trailing edge of the blades may not be as accurate as the original radial equilibrium 
theory. 

For large aspect ratios (lib > 3) the trailing-edge-disc methods may be more satisfactory, but 
then the effects of blade interference are considerable unless the axial clearances are large 
compared with the blade width, a configuration not encountered in modern turbo-machines. 

For low aspect ratios (lib < 3) blade interference effects become less important, but the placing 
of the disc at the trailing edge becomes a larger approximation. 

The excellent agreement between the theories for blade interference suggest that  the use of 
the attenuation constants k~, as determined from isolated-disc theory, is justified in a theory 
taking into account blade interference. I t  is therefore suggested tha t  Method 5 is of practical 
use for axial-flow compressor and turbine designers. The disc is placed at the centre of pressure 
of the blades, but  the possibly considerable effects of blade interference are not neglected. The 
values of k~ are determined directly from the hub-tip ratio. 

In turbo-machine design, Method 5 would be used for the first few stages, after which the 
flow would be expected to approximate to the ultimate steady flow condition soluble by Method 7. 
Equation (8) may be readily adapted to give the axial velocities at the blade leading edges for 
determination of the incidences. 

A further modification of these methods for the off-design condition may be to allow for 
variation in outlet air angle and blade losses in the equating of dH/d~ across the disc, using 
cascade resulfs and the incidences obtained from the first approximation to obtain values of these 
two new variables. 

I t  is important  to note that  Methods 5 and 7, while taking into account any non-uniformity 
in:entry axial velocity profile give no estimation of the growth of the boundary layer through a 
compressor. 

15 



NOTATION 

Referring to Figs. 1, 2 and 3, the following notation is used" 

Co-ordinates" r,  O, x .  

C, Radial velocity 
C,, Tangential velocity 
C, Axial velocity 
0 ---- rC, ,  Tangential momentum 

= ( a C , / a x )  - -  ( a C , / a r )  Tangential vorticity 
~0 Streamline function defined by :  

= r C x  = - 

H Stagnation entha lpy .  
r, Tip radius 
r~, Root radius 
R = r / r t  Non-dimensional radius ratio 
X2 Rotor angular velocity 
U = ~ r  Blade speed 

Absolute air angles 
fi Exit  rotor air angle measured relative to the moving blade 
l Blade length in radial direction 
b Blade width in axial direction 
a Axial distance between planes of blade trailing edge and centre of pressure 

Subscripts" 

1 

2 

3 

4 

01 

02 

03 

06 

2e 

4e 

R 

S 

OR 

0S 

R e  

S e  

t 

h 

Superscripts" 
t 

Conditions 
Conditions 
Conditions 
Conditions 
Conditions 
Conditions 
Conditions 
Conditions 
Conditions 
Conditions 
Conditions 
Conditions 
Conditions 
Conditions 
Conditions 

far upstream of a rotor 
far downstream of a rotor 
far upstream of a stator 
far downstream of a stator 
immediately upstream of a rotating actuator disc 
immediately downstream of a rotating actuator disc 
immediately upstream of a stat ionary actuator disc 
immediately downstream of a stat ionary actuator disc 
at the trailing edge of a rotor-blade row 
at tile trailing edge of a stator-blade row 
far downstream of a rotating actuator disc in ultimate steady flow 
far downstream of a stat ionary actuator disc in ultimate steady flow 
at a rotating actuator disc in ultimate steady flow 
at a s tat ionary actuator disc in ultimate steady flow 
at the trailing edge of a rotating blade row in ultimate steady flow 

Conditions at the trailing edge of a stat ionary blade row in ultimate steady flow 
Relating to blade tip 
Relating to blade root 

Denotes perturbation to the axial velocities at infinity (upstream or down- 
t C t stream) in the neighbourhood of an actuator disc, e.g., c ~ ,  ~2 • 
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A P P E N D I X  I 

Three-Dimemional Flow in an Axial  Turbo-Machine 

1. The Apibroximate Solution for Flow through a~¢ Actuator Di sc . - -An  a p p r o x i m a t e  so lu t ion  of 
t h e  a c t u a t o r - d i s c  p r o b l e m  m a y  be  o b t a i n e d  b y  a s s u m i n g  t h a t  t h e  t ra i l ing  v o r t e x  lines lie on  
cy l indr ica l  sur faces  concen t r i c  w i t h  t h e  axis  of  t h e  annulus .  T h e  rad ia l  veloci t ies  a re  not ,  however ,  
neg lec ted ,  so t h a t  t h e  cond i t ion  for  s t r e a m  surfaces  a n d  vo r t ex - l ine  sur faces  to  be  t h e  s a m e  is 
no  longer  satisfied. 

Cx I 

r t + oo 

Cx i + Cx t. Cx 2 + Cx 2 Cx 2 

rh 

Cr 2 Cr I 

~=--+X 

FIG. A.1. 

W i t h  th is  a s s u m p t i o n  it  m a y  be  shown  (Ref. 8) t h a t  t h e  axia l  ve loc i ty  a t  t h e  a c t u a t o r  disc is 
(C~1 + C~2)/2 w h e r e  C~1 a n d  C ~  are t h e  axial  veloci t ies  a t  in f in i ty  u p s t r e a m  a n d  d o w n s t r e a m  
respec t ive ly .  W i t h  t h e  n o t a t i o n  of t h e  f igure C~I' a n d  C~( are  t h e  p e r t u r b a t i o n s  to  t h e  axia l  
veloci t ies  in t he  regions  x-----0 to x ~ - - o o  a n d  x- - - -0  to  x--~ + o o  respec t ive ly .  At  x - - - -0  

1'  = - -  1) 1 2  a n d  2'  = - -  2 ) / 2 .  

Since it  is a s s u m e d  t h a t  t h e  r ing  vor t ices  pass d o w n s t r e a m  a long cy l indr ica l  surfaces  t he  va lue  
of t h e  t a n g e n t i a l  vo r t i c i ty ,  v, a t  a n y  rad ius  will be  c o n s t a n t  a n d  is equa l  to  its va lue  a t  inf ini ty.  
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Vorticity components in a flow with velocities C .  C,. C. and co-ordinates r, 0, x, are $, ~, ¢, 
where for axially symmetric flow: 

~x 

~C~ aC. 
'~ = a - 7 -  a-7 

a (rC,,) -- rar  (!) 

For incompressible, axially symmetric, flow the continuity equation is 

(rC) + a (rc,,)= o 
ax  ~; . . . . . . . . . . . . . . . . .  

~cr~ ~ (c.~ + ~c~')  - a c ~  Hence ~ -  ~x ~r Or . . . . . .  

or ~ C . ~ _  OC.( 
~x ~r 

A similar equation applies upstream of the actuator disc. 
incompressible flow may be written" 

a C /  1 ~ (re,,)= O. 
ax + r ~ ;  . . . . . . . .  

Differentiating equation (4) partially with respect to r and substituting from equation (3)" 

a=C, 1 aC~ C~ a2C~ 
ar 2 q r ar r = + Ox 2 - - 0  . . . . . . . . .  

(2) 

(3) 

The equation of continuity (2) for 

(4) 

(s) 

~ o o  

A standard procedure for solving this equation is to write Cr = ~ {exp (k~x)}f~(r), where 
i=I 

k~ with i = I, 2, 3, etc., are a number of constants whose values depend on the boundary 
conditions. Then : 

{exp (k~x)}f~ "(r)+ r l ~ { e x p ( k ~ x ) } f ~ ' ( r ) + ~ (  - - ~ l ) { e x p ( k ~ x ) } f ~ ( r ) = O . . .  (6i 

Hence for all values of i since this equation must be satisfied at all r and x > 0 or x < 0, 

The general solution of this Bessel's differential equation is" 

f,(r) = A & ( < , )  + B~Vl(<r) . . . . . . . . . . .  (8) 

Hence the radial velocity is given by :  

C~ = Z {exp (k~x)} {AJ,(k~r) + B~Y,(k~r)} . . . . . . .  (9) 
i 

Since at the boundaries of the annulus r = r~ and r = r,, C, = 0. 

A~J,(k~r,) + B~Y,(k,rt) = 0 

and AJ~(k~rh) + B,Y~(k,r~) = 0 

or J~(k,r~,) Y~(k~r,) --  J~(k,r,) Y~(k,r~) = 0 . . . . . . . . .  (10) 

This equation gives an infinite number of values of k~, the first six of which are tabulated for 
various values of (r,/rh) by  Janke and Erode (p. 205). 
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Since the  values of  ki only depend on the  values of rt and rh, t h e  solutions for C, 1 and C~ 2 are 
symmetr ica l  about  the  actuator  disc. 

Subst i tut ing for C~ in equat ion (4) and integrat ing to obtain C, '  be tween the limits x = 0 
a n d x  = -¢- oo- 

1 r [{exp (kix)}/ki] [fi'(r) + rf~( )] = C~' . . . . . . . . .  (11) 

Now since Cr and C,' = 0 at x = ± oo, ki is negat ive for x > 0 and positive for x < 0. 

Insert ing the values for Cx' at  x = 0" 

1 r (12) 

If only the first root of equat ion (11) is taken, then" 

C~l' : (exp kx) (C~ - C~I) 

,_-  - { o x p  
X2 2 " 

Hence if l is the  blade length" 

(13a) 

(13b) 

/ 3"16x~(C~--C~) (14) 
< : :  - te:,:p 2 . . . . . . .  

The value of 3 .16 is correct for rt/rt, = 1.5 and varies between 3-146 and 3-23 as r,/rl, varies 
from 1.2 to 2 .5  respectively. 

2. Blade-Interference Theory.--Between each blade row in the  compressor, sheets of tangent ia l  
smoke-ring vortices exist which are identified by  the  value of C~ at  downst ream infinity. These 
are shown diagrammatical ly  in Fig. 2. 

FIG. A.2. Diagrammatic representation of sheets of tangential vorticity between blade rows. 

If tile p t h  row of blades shown in Fig. A.3 is considered and all the  vor tex sheets of neighbouring 
blades are superimposed:  

~ I___ __ _ 

p + l  

.o_oooooooooooooo~P- 2 
p+2 

FIG. A.3. 
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The sum of all these vortex sheets is pictured below where the compressor has n stages: 

p - 2  p - !  P p +  I p + 2  

2Cxp + 

Cxp+ I + Cxp _ I 

+ • . . . . . . . . .  

Cx n + Cx 2 

2 Cxp+l + 

Cxp +2 + C~p 

Cx n + Cx 2 " 

FIG. A.4. 

Hence between the (p -- 1)th and the p th  rows the vortex sheets obtained by superposition are : 

q=2 

Downstream of the p th  row and ahead of the (p + 1)th the vortex sheets sum to" 

q=2 

Hence the vorticity pat tern may be obtained by summing the vorticities of all rows taken 
separately and subtracting the sum of all the vortex sheets due to each blade stretching from 
upstream to downstream infinity. This procedure is shown diagrammatically in Fig. A.5 for a 
single stage : 

FIG. A.Sa. Actual vorticity. 

A 

FIG. A.Sb. Each row taken separately. 

, v V V V v v v v v v  v v v v V v V v v V # v ~  
v V V v V v v v v V V V ~  ~ v v v V v v v v V v V V V V V  

FIG. A.Sc. Sum of vortices due to each row taken separately. 
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FIG. A.5d. Vortex sheets extending to infinity which require to be subtracted from (c) to give (a). 

The induced axial velocity at the p th  row due to the qth row when the vortices of all rows are 
taken separately is from equation (14), 

When q < p" 

lex ( 
_--(C~,q+~2 + C~,q) + (C~q+I2-- C'~q)( 1 - - I  exP (--kqlq x~q) }) -- C~q . . . . .  (15) 

When q > p" 

= C~q + {exp ( ---/q 2 

= - - k~ x,~)1 ) - c ~ , ~  (16) 

where Xpq is the magnitude (always positive) of the axial distance between p th  and qth rows and 
C, le is the average axial velocity at the qth row: 

W 
c . , ,  = p . , = ( r  = _ rZ) . . . . . . . . . . . . . . . . . . .  (17) 

From the sum of the above induced velocities must be subtracted the effect of all the infinitely 
long vortices due to each blade row as shown in Fig. A.5. This latter effect is: 

( c . -  < , , )  . . . . . . . . . . . . .  (18 )  
g=2 

Hence, tile total induced velocity is" 

-- 2 (C•q- C,,q), . . . . . . . . . .  ( 1 9 )  
q=2 

noting that  the -¢- sign is taken when q < p and the -- sign when q > p. The induced velocity 
may also be written : 

p+l ~ " 
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Hence the axial velocity at the/sth row is : 

q=I 7q 

q-q2~2l (C';q+~2 C,q)lexp ( _  ~xpq) I . . . . . . . .  (21) 

or for incompressible flow: 

q=p+l 2 lq . . . . . . . . .  

Similarly. it may be shown that the axial velocity at a point Xpe between the/5th and (15 + 1)th 
rows is given by: 

C:;pe : Cxp+l-- '2~=i (Cxq+l; C~;q) lexp (-- ~q X, peq) l 

where x m is the distance (always positive) between the plane x ---- xp~ and the qth disc. 
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