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Summary. —The velocity distribution around the nose of an NACA 0015-64 aerofoil was found by experiment and
that around the nose of a Piercy 15/40 aerofoil by calculation for various angles of incidence and flap deflection. It was
established that at all incidences this velocity distribution is a function of the position of the stagnatlon point, irrespec-
tive of the flap deflection. '

This result is shown to be true generally, and it is suggested that use might be made of it in the design of a lift-
coefficient meter, which could also be used to give warning of a stall

1. Introduction.—There has been a good deal of interest recently in the direct measurement
of lift coefficient in flight and in the prediction of stalling. Several devices have been suggested,
of which one of the best known is the American ‘ safe-flight indicator ’. In effect, this gives
~warning to the pilot of the movement of the stagnation point past a critical posmon on a Cross
section of the wing. The claim of the designers that it functions independently of flap angle
implies that the stall always occurs with the stagnation point in approximately the same position.
This hypothesis is supported by the theoretical work given below, and has also been checked by

experiment.

The usual cruise procedure for long-range aircraft involves flying at constant lift coefficient
(or incidence). The problem of maintaining the required cruising conditions could therefore be
simplified by the use of a meter giving a direct indication of lift coefficient (or incidence). The
latter part of this report contains proposals for such a device, suggested by the experimental
results, and explains how it could also be used to give warning of a stall,

Previous work of this nature in Britain is limited to a report by G. E. Pringle published in
1941. Measurements of pressure were made at a point on the underside of the nose of a Spitfire
wing in flight and an estimation of stalling speed obtained. Satisfactory results were obtained

-as far as the experiments were pursued and the present paper suggests that a pressure difference
between two points on the upper surface of the nose should be used to measure lift coefficient.
This arrangement should give better sensitivity and more information. It is established that
while the relation between the pressure difference and lift coefficient would change with flap
deflection, the value of the pressure difference at which a stall is iminent vvould not. Hence
warning of a stall is obtained for any position of the flap.

2. Theory.—The calculation of velocity distributions about aerofoils is generally carried out
by the methods given by Theodorsen® and by Garrick or by modifications to these methods
such as those given by Goldstein® and by Thwaites. '
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" In Appendix I the features of Goldstein’s work of particular interest to the present problem
are summarised. The velocities at the nose and at a neighbouring point on the upper surface
of a Piercy 15/40 aerofoil* were first calculated in this way for various incidences and deflections
of a 20 per cent chord flap. The results are shown in Figs. 9 and 10.

Goldstein’s methods do not, however, lend themselves readily to a general investigation of the
effects of a deflected flap. Lighthill’s hodograph method® is more easily applied, and depends
upon the fact that log ¢/U and y are conjugate functions with respect to the argument ¢. They
are thus connected by the relation (Poisson’s equation) :

log—(qj(t) :é—t [ v (%) cott—zqsc&/).

Figs. 3 and 4 show the function y plotted against ¢ and x for a symmetrical aerofoil with
an undeflected flap and the front stagnation point at the leading edge. Tig. 5 explains the
method of dealing with the deflection of the flap mathematically. The centre-line of the aerofoil
for x > X, 1s supposed to deflect through an angle » but the chord-line is not supposed to alter
in relation to the forward part of the aerofoil. The flap is then drawn according to the equation
(x> X,): '

ay d
@y 1 B — ,
dx tan dy T T Ve

y, = tan
and the graph in Fig. 6 is obtained by assuming that the incidence of the aerofoil is altered so
that the front stagnation point remains at the leading edge. The rear stagnation point is always
taken at the trailing edge of the flap in accordance with Joukowski’'s hypothesis for the circulation.

This approach differs from Goldstein’s, both in the definition of the chord-line and in the
construction of the deflected flap, but by keeping the chord-line stationary with respect to the
forward part of the aerofoil, while the flap deflects, it avoids the slight distortion of the nose
shape involved in Goldstein’s method. These differences in shape are not likely to lead to grave
discrepancies in the calculated velocity distributions, and from Fig. 7 it may be seen that the

difference in chord-line can be allowed for by decreasing the incidence of Goldstein’s aerofoil
by an amount «,.

In all theories of wing sections, a transformation is established from the section to a circle.
This defines a one-to-one correspondence between the points of the section and of the circle
which will be slightly altered when the flap is deflected. In Appendix I it is explained how
Goldstein derives a function ¢,, which is independent of the section shape and which takes
account of this alteration. In Appendix Il the problem is approached by Lighthill’s method
and a similar function ¢, is obtained and identified with Goldstein’s ¢,. The hodograph method
is then developed to estimate the effect of the deflection of the flap on the velocity distribution
near the nose of an arbitrary aerofoil. It is found that if the incidence and flap deflection are
altered simultaneously, so as to maintain a fixed position of the stagnation point, the velocity
distribution near the nose will remain constant, to a first approximation. It is reasonable, to
suppose that a nose stall will depend mainly upon this distribution, and it follows that such a’
stall will take place at the same position of the stagnation point for all values of the flap deflection.
The case of a rear stall will be more complicated but even this is likely to be influenced con-
siderably by the pressure gradient at the nose.

3. Experiment.—The aerofoil was a symmetrical one of the NACA series (0015-64)°. A split
flap was used and it was assumed that there would be a correspondence between the effects of
split and hinged flaps on the aerodynamic characteristics of an aerofoil. The aerofoil was studied
with flap deflections (as defined in Fig. 8) of 0 deg, 5 deg, 10 deg, 15 deg, 20 deg, and 60 deg,
and also with the flap removed. The angle of attack was measured relative to the chord of the
aerofoil, no account being taken of the flap (see Fig. 8).
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The chords of the aerofoil and flap were 5 in: and 1-25 in., respectively. The aerofoil was
placed in a tunnel whose working-section measured 7% in. by 20 in. Interference of the tunnel
surfaces on the velocity distribution about the aerofoil was therefore fairly small. The wind
speed was varied between 40 and 80 feet per second, giving Reynolds numbers between 10° and
2.0 x 10°. This low value of the Reynolds number would affect the precise nature of the
correspondence between the effects of split and hinged flaps referred to above, but this does not

~matter for the present purpose.

From measurements of pressures at several holes around the nose of the aerofoil, the ratio
of the velocity outside the boundary layer, at the positions of the pressure holes to the free-stream
velocity, was calculated, for angles of ‘attack up to the stall and each flap angle. The holes
were distributed around the nose as follows :— '

Lower surface Upper surface

Hole 4 3 2 1 0 1 2 3 4
number

xfc 0-0516 0-0258 0-0125 0-00359 0-0035 0-0122 0-0260 0-0485

yle 0-0411 0-0310 0-0227 0-0131 0-0125 0:0223 0-0312 0-0402

A nose stall was observed for each flap angle, except at 60 deg when a tail stall occurred.
There was, however, a  bubble separation ’ near the nose in this case.

The angles of attack for which the stagnation point was situated exactly at a hole on the
lower surface were found, and the position of the stagnation point is plotted in Fig. 12. Fig. 13
shows the difference between the velocity ratios at the first and second holes in the upper surface,
plotted against incidence for each flap angle. ‘

4. Discussion of the Results—The most striking feature of the results is the similarity of the
ways in which the velocity distributions develop, from the passing of the nose by the stagnation
point to the stall. Some typical velocity distributions are shown in Figs. 14 and 15, the latter
referring to an incidence just below that at which stalling occurs. It can be seen that the velocity
distribution round the nose is a function of the position of the stagnation point, and that stalling
occurs when the stagnation point is 3-8 per cent of the chord length from the leading edge.
The holes on the upper surface are not closely enough spaced to determine the velocity peaks
precisely, but it appears that the maximum value of the velocity ratio, and the position at
which this occurs, are constant for a given position of the stagnation point.

The pressure measurements may contain small inaccuracies caused by unsteadiness in the
flow. This was as large as 3 per cent at incidences near the stall. ‘

A more precise instance of the similarity of the velocity distributions is the fact that, with
only one exception, the stall occurs when the velocity at the first hole along the upper surface
becomes greater than that at the second. The difference between the velocity ratios at these
two points is plotted in Fig. 13. It varies linearly with incidence and therefore with lift coefficient.
It may also be noticed that the lines for each flap angle are parallel. The result was forecast on
theoretical grounds (Appendix II), and a system of parallel straight lines was obtained by
calculation (Fig. 19) for the velocity ratios at two points on the nose of the Piercy 15/40 aerofoil.

5. Applications.—1f now the velocity ratios at two holes in the upper surface could be measured
in flight, their difference would give an immediate indication of lift coefficient for a chosen flap
deflection and of a stall for any flap deflection. This would involve the division of the pressure
difference between the holes by the dynamic pressure of the free stream, and could be carried
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out by a mechanism similar to that used in a machmeter. The holes to be used on any aerofoil
would be on the upper surface near the nose, on either side of the point of maximum velocity
(whose position could be found approximately by Goldstein’s method). For best results one
hole should be on the flat part of the velocity curve behind the maximum. The velocity ratio
at this hole will not vary greatly with incidence, while if the other point is very near the position
of maximum velocity at the stall, the ratio there will increase rapidly with incidence.

The lift coefficient at a cross-section of a finite wing is directly related to that of the whole
wing, and only a simple calibration would be involved. For purposes of stall warning it would
be desirable to choose a cross-section near the origin of the stall and for this some experience
might be necessary. ’ '

6. Conclusions.—The velocity distribution around the nose of a given aerofoil is a function
of the position of the stagnation point. This has been established for the extremé case of a
- 25 per cent chord flap at 60 deg and shown theoretically to be true for any aerofoil.

Further, if an aerofoil stalls from the nose, the stall will take place at the same positions
both of the stagnation point and of the point of maximum velocity, for all flap deflections.

Use may be made of these facts in the design of a lift-coefficient meter which would also give
warning of a stall independently of flap deflection.

NOTATION
Chord length of the aerofoil
Velocity at a point on the aerofoil
Free-stream velocity

Distance along the aerofoil chord from the leading edge

Complex potential function

Distance of a point on the aerofoil surface from the chord
Circle plane

Angle of incidence

¢
q
U
x
X, Position of the flap hinge on the aerofoil chord
w
Y
Z
o
f
14

: Angle between the tangent at a point on the aerofoil and the chord
e0) = ¢—0
¢ Aerofoil plane
n Flap angle of hinged flap
u Flap angle of split- flap
cos™' (1 — 2%)
®, = cos (1 —2X)

¢ Argument in circle plane

I

A Value of ¢ for the aerofoil with flap angle # and with the front stagnation
point at ¢ = — B '

4



REFERENCES

No. : Author Title, etc.

{ G.E. Pringle .. .. .. .. Stall-warning devices. A.R.C. 5049. 1941.

2 T. Theodorsen - .. o .. Thleé)g%f of wing sections of arbitrary shape. N.A.C.A. Report 411.

3 S. Goldstein .. .. .. . Approxunate two-dimensional aerofoil theory. Parts l—V I. C.P.68
to 73. May, 1942 to August, 1945.

4 C.N.H. Lock and J. H. Preston . A new type of aerofoil section. Aircrafi Engineering. April, 1939.

5 M. J. Lighthill .. .. . .. A new method of two-dimensional aerodynamic design. R. & M. 2112,
April, 1945.

6 J. H. Abbott and A, E. von Doenhoff .. Theory of Wing Sections. McGraw-Hill Book Co. 1949.

APPENDIX I

Goldstein®, following Theodorsen, transforms the aerofoﬂ to the nearly circular curve
2 =aet? by means of the transformation :

! “ '
and then to the circle :
z2 = @ eht®

by Z": 2 ex—xo-{—i(()—qS) .. .. . . . . . . (2)

$=x+1 |
i jll )
= N

/

T 7

From (1) he deduces the approximate equations (putting 42 = 1, y small) :
¥ = $(1 — cos 0)
Yy = }ysin 6 ’

and from (2) by Poisson’s equation that :

1" — | ,
8(¢>)=¢—9=2_%J_%C?t¢2tdt- . . .. . .. (4)

Adding the effect of thickness and camber, he puts vy = y, + v, along the upper surface, and
=y, — v, along the lower surface, and from (3) and (4) it is obvious that then & = ¢, + ¢,

along the upper surface, and ¢ = ¢, — ¢, along the lower surface.

For an aerofoil with a hinged flap put ¢, = &, -+ £, Where g, = 0 when n = 0.
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Then, the centre-line corresponding to e, = ¢, is (A = chord of flap) :

¥, = mx, 0 < x < X,, where m, :’«/(1 _Sl}rblzzinz "

= my(l — x), X, < x < 1, where m, = tan (y — tan~! m,).

4
7
i Ean'm,=dy ;‘h ltsm~ mzx 1 s ",
7
This gives
&y = — % l:ml tan g — m, cot ;J log, Z%?Z_—T—% -+, — % (my + m,),

o .
= m, — — (m; + my), when 0 = 0,

14
and this is plotted in Fig. 11 for a 25-per cent chord flap deflected 60 deg.
For the velocity distribution round an aerofoil, Goldstein obtains :—
qg ., (1=2¢) . . o
7= e Tl T i o) {sin (¢ 4+ «) + sin (o + B)}, where g = ¢(a),
=0, when ¢ = — 20 — 8.

Thus, if the flap is deflected through an angle  and the stagnation point is at qS — §, the incidence
of the * aerofoil chord ’ as defined in the text is,

&= — '2‘(‘_ d+ 85(”) + Ecﬂ(n) + acn(n)) — %,
= — 3(— 6 4 By + B, + 2a,), where 8, = e,(n) + e,(7).

APPENDIX II

Assume the free-stream velocity at inﬁnity to be unity.

Letc_z—+—a110gz—|— + —|— ...... , say.

ac
Then I —}— + —|— ...... .

dw i e_“’ 2¢ sin «
Now =T g + PR

ié_‘ — o—tu 0_1 0_2 _! é
and hence dw_e +z+z2+ ...... _qu,
i.e., log ;ZC — log g + ¢y and — log ¢ and y are conjugate functions in the Fourier sense.
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Hence if z = 7 e Poisson’s theorem gives :

, 1 [ t— » '

logq()—“z—J_ v(4) cot 5 dé. .. .. .. .. .. .. (1)
Now put x = ;(1 — cos §) and define a function & such that &(6) =¢ — 6. When the front
stagnation point is at ¢ = — § (the rear one being always taken at the trailing edge of the flap),
for any given aerofoil, 5y, = f,(¢), say, and if the stagnation point is moved to ¢ = — 2 — g,

2at+fV o = fo(¢) + g(ﬁb):
where g(¢) =0, —f<é <2 — 20—
| =, —2—f<$<—p
1| ¢
By (1), loguult) = 5 | fild) cot—" ds,
and hence
10gassde () = 10 (zf)+i'_ﬁ i
a0 \2) = 108 g9, 2] ﬁ m cot ——d¢
_t_B : ;
= log 49, (?) —J ’ tz 5 cot u du, where u = d)—} ,
‘sin <oc + d - @>)
= logyg, (¢) + log| N
sm< > '

Therefore

2aisfs ($) _ sin $(2x 4 4 + ) _sin($ + o) + sin (o + ) @)

o (#) sin (¢ + 8) sin¢ -+ sin g S

This is a well-known result (Appendix I) and is merely an example of the method which will
be applied to the case of an aerofoil with a hinged flap.

It is assumed that the deflection of a hinged flap is equivalent to a change in the camber-line
of the aerofoil, and that deflection of the flap through an angle » merely decreases by an amount
» the inclination to the aerofoil chord of the part of the surface behind the point X,. For simplicity
the chord-line is not varied with #, but the ¢ aerofoil chord ’ is defined as the line joining the
leading and trailing edges at # = 0. The angle of incidence of the aerofoil is the angle between
the aerofoil chord and the direction of flow at infinity. ‘

Then for a flap deflection of 17,' e, and f,(¢) may be defined so that ¢, — 0 = ¢, + ¢, where
e, = 0for n =0, and ;_, y, = f,(¢), with the stagnation point at § = — ﬁ — &
n

Now, by Riemann’s theorem, conformal transformation is umque. Hence Goldstein’s e,
(Appendlx I) may be identified as an-approximation to e, above. e, is plotted in Fig. 11 for a
25-per cent flap deflected 60 deg and it is suppbsed that since de, /d@ is small near the nose, so
also will be ds,/d0. _
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Graphs of jy, and eV against ¢ would look something like :

Ll
2

_/IM|=1

. A - .
:\ t ‘ — :\ : \\ ; o)
- A+ \\j -TT\".TH/;} 57(0)__ \\"/r 7

ﬁ7 =E77(7T) :

I

(N

I
7— -
for a symmetrical wing with a trailing-edge angle of 24.

It can be seen that f,(¢) = f,(¢ + ¢,) and since ¢, is small : : 4
Fid) = f(¢ — e,). e e e (3)

Let the points £ 6, in the upper and lower surfaces of the aerofoil with deflected flap corres-
pond to @,, and — @,,, respectively in the circle |z] = const. Now put :

s =HO) @ ARG
where gd) =0, —f 4+ e <¢ <2 — 20— 4 ¢,
=@ —20—f 45, <$p<—f+s,
and hi¢) =0, — &, <¢ < D,
=—9,— 0, <¢ <2 — O,
Now,
%J h(ﬁb)COt—Ei ¢>=,2%J( ’)cotudu,

C

21

— logSin 4 sin $(2, - ¢)
sin (®,, — ?)

n
. 1 l . .
sin §@,, 4 3£ cos @, |2 ¢ small,
1 L 1 1
sin 5P, — $tcos 1+ D,

+ cot 19, sin cD,ﬂ
log
1———cot1d5 sin $9,,

=log A + log B

== log

-



. ’ ’ n ¢ 2 n
where ‘ A= <1 4 écot %(D,,,)m (1 + Qcot 5P, + f_l cot?1o,, + ...... )2"

=1+ —~t4coti®d,+cot}d,) +...... ,

Rl

and B=1—549%,, — ®,)cot3®,, + ...... ..

S

Now #[2n is small and so also are the cotangents, since 4w <(&,, @,) < =. Further, by
Appendix I, (9, — @,) ==&, + sm(@n) :

and this will in general be small and.positive. Hence near the nose when # is small 4 and B will
be very close to unity and on opp051te sides of it.

| M
Hence, 1 h () cot —¢ d¢ == 0, When ¢ is small. .. . .. )
2| 2 . .
Also L N L P t—i”d by equation (3
SO 5| Ja(@) co 5 =5 ) Jol¢ — &,) co ¢, by equation (3),
1 (" e
— £ (0) —
=5 fold — &, + ,(0)) cot—*'—”—é—— aé,
1) B o0 4
-5 {fo@) + (5,0) — >d¢i’}c el =ty
J —= |
. : . _ t—e,(0) —¢
Near the nose |e,(0) — ¢,| is very small (see Flg. 11) and elsewhere |¢,(0) — &,| and |cot ”—2—[

are small if ¢ lies near the nose while (df,/d¢) = (dy [dx)(dx[d6)(d0[d¢), = (I/R sin 26{1 + da/d¢)}
where R is the radius of curvature of the aerofoil surface. ‘

This also is small and so : ‘ )
1" ’ — &,(0) —
- Q;J fi#) cot 52 dp = o J fu#) cot Lm0 =4 4y,

gt —el0) . e (@)

Hence by equations (1), (8), (4), (5) and (6) using a method similar to that in the derivation
of equation (2) : :
N B sin 3¢ + 8 — &,(0) + 2}
]'Og 2G+ﬁ—5,ﬂqfi (t) - log ﬂqﬂ {t 87](0)} + Og Sin J"{t + ﬂ — e (0)} 3

. . sin {t — £,(0) + «} 4 sin (o 4 §)
— log #90 {t 11(0)} -+ lo 1 Sln{f — ( )} + sin ﬂ

= 10851 090{? — e,(0) .

Now let the points § = 6, in the aerofoil with undeflected flap and 6 = 6, on the aerofoil with
deflected flap correspond to the points ¢ = ¢ — ¢,(0) and ¢, = ¢ respectively on | 5 | = const.
9 ' ‘



Then 108 st e G (0) = 108 sarp—c, 4y (02),
and 108 s 90 {t — £,(0)} = 108 401490 (04).

Also \ t— 0, = & + &, ==&, + £,(0),

and Ct— e, (0) — 0, = &,

Hence 6, = 0,.

Further, the stagnation-point positions are ¢, = — 20 — § + ¢, in the case of the deflected
flap and ¢ = — 200 — f in the case of the undeflected flap correspondmg to 0 = — 20— B — &,

in each case.

It has therefore beeni shown true that for a given p051t10n of the stagnation point and for any
flap deflection, the velocity distribution around the nose is constant, with the position of the
point of maximum velocity (if this is near the leading edge) and the magnitude of the
maximum velocity the same to a first approximation. Now it is the velocity distribution
around the nose that determines a nose stall, and such a stall will therefore take place with the
stagnatlon point in the same position for all ﬂap deflections.

At the point 6, with 1nc1dence «,

saisdo (0) = C {sin (¢ + &) + sin (x + £)},
== C {sin¢ + sin g + « (cos¢ + cos )},
=D+ Eux

= satpre, s (0), |
where the incidence is now (Appendix I), 4 o’ :4oc + $¢,(0) — 38, — «,.
Hence for.incidence o« :
ore, 0y () = B + Cla — o),
=(B——Coc)—|—Coc—(B+Coc)——Coc

and so if the velocity at a point near the nose is plotted against incidence (measured relative
to the aerofoil chord) a family of straight lines, each pertaining to one value of 7, is obtained.

It is interesting to note also that «,, 8, and ¢,(0) are linear with » and hence so is o' (Fig. 11).
Thus in Fig. 9 there are two families of parallel streught lines, one fo1 particular values of »
and the other for particular values of «.
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Velocity distribution just before the stall, u = flap angle
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