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Summary.—This report, which is presented in two parts, develops an approximate method of estimating the effect
of structural deformability on the manoeuvre point of an aircraft. The introduction outlines the scope of the complete
work in relation to the work of Lyon and Ripley (R. & M. 2331 and 2415).

Part I opens with a detailed discussion of the structural deformability of wings, unswept and swept, and proceeds
on the basis of certain aerodynamic and structural approximations to derive relatively simple formulae for the
calculation of the shift of manoeuvre point due to elastic camber, elastic wash-out (wing torsion and bending, and the
effect of fuselage interference) and the direct effect of wing bending (which changes moment arms) on pitching moment.
A summary and discussion of some comparative calculations of the effect of elastic wash-out, using the present method
and that proposed by Lyon (R. & M. 2331) are included. They demonstrate the dangerously large shifts of manoeuvre
point which may arise from elastic wash-out with swept wings and show that while the present method is somewhat
less accurate than that of Lyon, it has the important advantage of being far less laborious in application.

Part II examines the effects of fusclage and tailplane deformability, and at the same time investigates the effect of
wing deformability (including root-region deformability) on the fuselage and tailplane contributions to manoeuvring
stability. Bending of the fuselage, torsion of the (unswept) tailplane and deformability of the tailplane attachment
are the main fuselage and tailplane effects considered, and among the subsidiary effects examined is that of engine
nacelles situated in the wing. : '

A simple procedure for numerical calculation of the fuselage and tailplane contributions to manoeuvre-point shift
is set out and illustrated by a worked example, which demonstrates how elastic attachments of wing and tailplane
may be used to augment the effect of the tailplane in counteracting the destabilizing effect of wing and fuselage.

A simple description of the method of analysis used in Part II, together with typical results obtained from it, is
given in section 12.

Introduction.—Following the publication in 1946 of R. & M. 2331*, theoretical investigation at
the Royal Aircraft Establishment into the effects of aero-elastic distortion on the stability and
control of aircraft was temporarily suspended. R. & M. 2331* had outlined a possible method of
estimating the effect of aero-elastic distortion of swept-back wings on stability and control
derivatives, so that in conjunction with R. & M. 24152 it provided a basis for investigating within
the general framework of R. & M. 2027, the overall effect on stability and control, of the aero-

elastic distortion of the complete aircrait structure. '

In Germany, Fingado had written a paper* on the effect of aero-elastic distortion on manoeuvre
point, and on coming to England he expanded and extended the work to incorporate new ideas

* R.A.E. Report Aero. 2320, received 3rd August, 1949. R.A.E. Report Acro. 2362.



and subsequent experience gained while working with Deutsche Versuchsanstalt fiir Luftfahrt
and at the R.A.E. in co-operation with German and British aircraft firms. Much of the later
work was carried out in collaboration with Taylor.

Fingado’s approach to the subject differs considerably from that developed by Lyon and
Ripley® and implied, though not developed, by Lyon'. The British method investigates effects
of deformability on stability characteristics such as manoeuvre margin by considering the effects
of such deformability on the values of the generalised stability derivatives 4, 4,, etc., while
Fingado considers directly the effect of deformability on the pitching moment of the aircraft.
Furthermore, while Lyon and Ripley leave their results in terms of general stiffnesses of the
various aircraft components involved, Fingado substitutes representative values for the stiffnesses,
arrived at from considerations of strength and stiffness requirements*. This enables him to
reduce the final result for the shift of manoeuvre point to a summation of terms involving only
the non-dimensional dynamic pressure number ¢ and certain ‘ construction figures ’ which are
functions of aircraft geometry, wing structural layout and limiting design conditions (ultimate
load factor and maximum permissible dynamic pressure). In this form, the result is very con-
venient for the rapid computation of the effects of varying such purely geometrlcal parameters

as wing aspect ratio and sweep angle and such structural parameters as the position of the wing
flexural axis.

In order to avoid undue complication, it has been necessary to restrict the investigation to
wings of constant chord and to make the assumption of a uniform basic lift distribution. The
method cannot therefore be expected to yield results of great accuracy for highly tapered wings
or for heavily swept wings of small aspect ratio, for which the basic lift distribution is far from
uniform. It has been used as the basis of an ab nstio investigation into the optimum layout
(from the point of view of aero-elastic distortion) of a fast subsonic long-range aircraft and it
would appear to be for this type of investigation where general qualitative, rather than quantita-
tively accurate, results are required, that the method is most useful. Where more accurate
results are required for some specific design, it would seem desirable to revert to the methods of
Lyon and Ripley. Allowance may then be made for the effects of wing taper, and the correct
basic lift distribution may be determined from lifting-plane methods.

When the various sections of the work had been completed by the respective authors, it became -

evident that considerable modifications to the lay-out of the report as originally planned, were
desirable in order to improve the exposition and to render possible more effective comparison
of the method with that of Lyon and Ripley. The work of rearrangement and general editing
was undertaken by Taylor. -

The report is presented in two parts, the first of which deals with the effect on manoeuvre point
of wing deformability, including the effects of sweep. The second deals, in the main, with the
effects of deformability of the fuselage and of an unswept tail unit, but at the same time applies
some results of Part I to determine the effect of wing deformability on the fuselage and tailplane

_contributions to stabilityt.

Although the derivation of the formulae is somewhat long and complicated, the method is
quite simple and rapid in application. For the numerical calculation of the various effects,
routine procedures are suggested in sections 9 and 17 of the report, and the reader who is interested
in the numerical application of the method, rather than in its theoretical background, need do
little more than study these sections in conjunction with Tables 1 and 2. 4

* These and other structural assumptions throughout the report have been fully discussed with Structures
Department, R.AE.

T Footnote (1956) : Originally the authors intended to devote a third part of the report to a consideration of the
effects of swept tail-units and to a detailed analysis of the effect of an elastic attachment of tailplane to fuselage, but
circumstances conspired to prevent the completion of this part of the work. However, the first two parts, here
presented, are self-contained and together constitute a complete method for estimating the effect of elastic deformability
on the manoeuvre point of an aircraft with swept wings and unswept tailplane.
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PART I
The Effect of Wing Deformability

1. The Elastic Deformability of the Aircraft Structure with Respect to Symmetrical Loads.—To
investigate the effects of elastic deformability of the aircraft structure, it is first necessary to
examine the character and range of this deformability. As the aircraft is assumed to be
symmetrical and it is intended to consider only a symmetrical flight condition (the pull-out), it
will be necessary only to consider the deformability with respect to symmetrical loads. The
most important deformations affecting the manoeuvre point are bending of the fuselage, bending
and torsion of the tailplane, angular deflections of the tailplane due to deformability of its attach-
ment to the fuselage, and twisting and bending of the wing. The fuselage and tailplane effects are
considered in Part II of the report, attention being concentrated in the present part on the wing
effects.

1.1. The Deformability of the Wing Structure—For simplicity we consider only constant-chord
wings, assumed in the first instance to be unswept. The deformability of a wing can, with
sufficient accuracy in most cases, be divided into two parts, viz., bending of the ‘ elastic axis *
and twist about that axis. We consider first the twist. Here we shall assume the wing to be
so constructed that the flanges take only a very small part of the strain energy due to torque,
as is the case with most wings, but not, for instance, with shellt wings.

Then a torque 7" about the elastic axis causes an angle of twist (or negative wash-out) per
unit length.
a6 T
dlyl G’

where G denotes the shear modulus and G the torsional rigidity. At, and in the neighbourhood
of, places where the twist is disturbed (for instance by cut-outs in the skin or by prevention of
warping of cross-section planes) it is generally possible to specify an equivalent &/ which does not
exactly equal the real G/, but gives—for all loadings of practical interest—a sufficiently accurate
ratio between torque and twist per unit length. To derive a representative value for the torsional
rigidity GJ, we start from the  aileron rolling effectiveness reduction factor at maximum permis-
sible dynamic pressure > which we shall denote by F.*. With well-designed wings this reduction
factor usually defines the minimum required torsional rigidity. It is given by

Ff*il'—i*) |

where ¢* is the maximum permissible dynamic pressure and ¢, , is the  critical > dynamic pressure
at which the factor becomes zero (see, for instance, Ref. 6). For an unswept wing of constant
chord and constant torsional rigidity (which, from the viewpoint of the weight of the torsion box
required for a given g, approximates to the best distribution for a constant-chord wing) and
average aileron/span ratio, the critical dynamic pressure is approximately

430 GJ
foe = (—_ﬁ S
c

* Any slender prismatic beam encased perpendicular to its generators has an ‘ elastic axis ’, characterised as follows :
any system of arbitrarily distributed forces perpendicular to, and acting on that axis, causes a pure bending deformation
(a parallel displacement of all sections lying perpendicular to the generators), and any system of arbitrarily distributed
couples about that axis causes a pure twist about the axis. If the beam is not exactly prismatic, or is otherwise
encased, there generally exists no elastic axis in the sense of that strict definition, but in many cases it is sufficiently
accurate to calculate the deformations by assuming the existence of such an axis. (For details, see for instance Ref. 5.)

t The term ° shell wing ’ signifies a wing with no concentrated spar flanges, for which both bending 'and torsional
stiffness are provided by skin and stiffeners. - '
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where c;/c denotes the mean aileron/chord ratio. (This equation is a somewhat extended form of
an equation given by Roxbee Cox®) Using this formula in the above equation for F/* and
introducing a ‘ dynamic pressure number ’ @ ‘defined as the ratio of dynamic pressure ¢ = 1pV?
to wing loading, we get '
A%
( C) Q*

GJ =430 I — F*

The two equations from which we have deduced equation (1) are correct only on the assumption
that air-compressibility effects are negligible up to the critical dynamic pressure, which for many -
aircraft types is not true. Equation (1) itself, however, assumes only that these effects are
negligible up to the maximum dynamic pressure, which even today* is still true for many aero-
plane types. Since, for some aircraft, the necessary torsional rigidity is determined not by
aileron effectiveness, but for instance by flutter considerations, we shall introduce a ‘ torsional
rigidity factor * F, so that (1) becomes
c:\*
-2 ¢

c
C] =435 1 —F~

It is easily established that if the elastic axis is swept back by an angle ¢, the wash-outt per
unit span} due to torsion is still given by 7/GJ where T is the true torque about the elastic axis
and G is the torsional rigidity of sections perpendicular to that axis. Comparing swept-back
and unswept wings of the same chord} and span, it is clear that for the same lift distribution,

Ty="T, (cos¢,

ws. ... (1)

WSF,.

and hence to obtain the same wash-out per unit span due to torsion with a given lift distribution,

we must have
(GJ)s = (GJ )40 cOS ¢ .

For a wing of infinite bending stiffness, neglecting the effect of sweep on the values of the
aerodynamic coefficients, this would lead to the equation

ey
GJ:( 4-35) § —?Ff*)

as defining the torsional rigidity required from aileron-reversal considerations. Introducing
again a torsional rigidity factor £,, we adopt the equation

(1-%) o

GJ] = 130 (1_F§*)WSF,COS¢ .. . .. .. (1a)

WS cos ¢

for the general case of a swept wing of finite bending stiffness, leaving discussion-of its accuracy
to section 4. When the wing is subject to aerodynamic or inertia loads, its torsional flexibility
will give rise to elastic wash-out, the magnitude and sign of which will be investigated in section 3.

Bending of the elastic axis can be split up into two components respectively in the directions
of the two principal axes of inertia of the wing structure resisting bending. For an unswept wing
with conventional structural lay-out, the longitudinal principal axis of inertia practically coincides

* Footnote (1956) : It should be borne in mind that this was written in 1949.

t 4.e., the spanwise change in angle of attack of chordwise sections.

I Throughout this report, the chord of a swept wing is measured parallel to the plane of symmetry, and the ‘ chord-
wise * direction is defined accordingly. Span is measured perpendicular to the plane of symmetry.
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with the zero lift direction. We shall first investigate the deflection curve which results from
bending about this axis. Ultimately, we require the derivative of the deformation with respect
to load factor, and here we may calculate this directly without first considering the deformability
(in this case the bending rigidity £I) because, in the case of the spars, as opposed to the torsion
box, the manoeuvring loads are critical. At the dynamic pressure for which we are investigating
the deﬂections, we shall assume the spar flanges to behave as follows: they remain unstrained
throughout their length at zero load factor, and at the proof load factor the stresses are every-
where equal to the proof stress. (The first assumption is often not fulfilled, because it requires
among other things, a wing shape without wash-out and with a profile havmg zero moment at
zero lift. The second assumption similarly does not always hold, but since they simplify the
investigation considerably, both assumptions will, at this stage, be considered to hold true.)

With the foregoing assumptions, the difference between the strains of upper and lower flanges

- is proportional to load factor, and at the proof load factor, is equal to the difference between the

proof tensile strain #,, and the proof compressive strain #,,. The proof strain for tension is equal
to the proof tensile stress p, divided by the elasticity modulus £ ; for all materials used in practice
this ratio is approximately (p./f,)(1/150), where f, is the ultimate tensile stress. The proof
compressive strain of centrally loaded, initially uncurved structural members equals (#,/£,)(1/150). -
Here p./f, depends fundamentally on instabilities arising at the higher compressive stresses,
which depend on the materials and type of construction. In the case of metal-covered wings
with spars (as distinct from shell wings, for instance), these instabilities are, in general, relatively
unimportant because of the large mutual effects of the structural members in supporting one
another. Therefore, for the compression flanges of a metal wing we can, in most cases, assume
the proof compressive strain ,, to be approximately equal and opp051te to the proof tensile
strain u,, of the same material, that is to say, equal to — (p,/£,)(1/150). The proof curvature

), - et

R/p — beam height ( wing thickness)
2 1 2
150 wing thickness £, °
constant in spanwise direction, the curvature will also be constant. Furthermore, its sign will

be the same over the whole span. Thus for constant-chord wings the curvature, expressed
non-dimensionally in terms of semi-span s, will be

is therefore equal to —= If, for simplicity, the wing thickness is assumed

__ 124
p ( 2)2 = T 1507 1 , for the proof load factor
R
__1pnd
150 fim, T’
1 n A4 :
= — 4zx— — , for an arbitrary load factor, where 4
150 %, © )

denotes aspect ratio, = the thickness/chord ratio of the wing profile, and #, the ultimate or
breaking load factor. Later, we shall need the derivative of the curvature with respect to load
factor ; it is given by :

o2
d d(é) 1 4
an d(z)z 150 n
s



By introducing a ‘ bending rigidity factor ’ F,, similar to the torsmnal r1g1d1ty factor ’ above,

we get
of 2
i d(?)]ﬂ 1 4

%;@J_—‘mm. .. .. .. .. .. . (2)

When we come to consider swept wings, it w111 be more convement to consider this result in the
form:

curvature of elastic axis = — L . .. .. .. .. .. .. (2a)

n, 79tcF,
(independent of sweep angle).

It should be observed that, because the mutual interactions of deformations and load distribu-
tion vary with dynamic pressure, equations (2) and (2a) will hold exactly only for one selected
dynamic pressure. It will subsequently appear (see section 3.1) that in the cases for which it is
legitimate to use these equations, the chosen dynamic pressure should be the maximum per-

missible for the aircraft under consideration. For lower dynamic pressures, the equations will
be only approximately true.

The stiffness in bending about the other principal axis of inertia must be large enough to
prevent excessive strains in the leading- or trailing-edge members of the wing. The maximum
bending moment about this axis occurs when the highest load factor is combined with the highest
lift coefficient: it can be shown to be about one-quarter as large as the largest bending moment
about the longitudinal principal axis. Hence the ratio between the section bending moduli
must be at least one-quarter, and the ratio between the moments of inertia at least 1/4z, the
moment of inertia about the vertical principal axis being at least 1/4r times as large as that
about the longitudinal one. In practice it is larger, being for tubular-spar wings about twice,
and for single-spar wings of conventional construction about three times as large* as the value
calculated here as a minimum. The authors cannot yet quote a corresponding figure for a two-
spar wing but it would certainly be larger than three.

When a wing is subject to aerodynamic or inertia loads it is apparent that its bendmg deforma-
bility will have no effect on elastic wash-out as long as the elastic axis is unswept. When, however,
that axis is swept, bending deformability will contribute to the elastic wash-out as discussed in
section 3. A further deformability which is important because it gives rise to an elastic camber
of the wing (see section 3) is the bending deformability of the wing ribs. The derivative of the
curvature of the ribs with respect to load factor, depends very much on the general structural
lay-out and in particular on the number and position of the spar webs, the distance between
the ribs which have bending stiffness, and the lay-out of the regions between them. With two
or more spars, the deflection curve of a rib will generally have two or more points of inflection
and therefore the effects will be smaller then with single-spar wings. For single-spar wings

with narrow rib spacing, a rough estimate—similar to that for the spar above—gives for ribs
Wlth no excessive strength:

4y =
an \R/mw ~ 150m,c7’
it being assumed that the ultimate compressive stress is half the ultimate tensile stress, due to

column failure and to the neighbouring skin being effective only in tension. Most aircraft have

much stiffer ribs, the ‘ rib-stiffness factor ’ F,, being usually in the region of 5. Introducing
this factor we get ‘ ‘

a (1 —1 :
an (F)rib = 150n,cc F,, o . . .- . .. .. (8)

* These figures were supplied by the firms Blohm and Voss, and Messerschmitt, respectively.
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In addition to rib bending, variation in load factor may give rise to changes in aileron hinge
moments which result in an automatic deflection of the ailerons working against their flexible
control circuits. Similar effects do not, in general, arise with flaps, since they are usually very
rigidly mounted with a self-locking device. Before proceeding to estimate the elastic wash-out
and the overall elastic camber of a wing under the loads arising from a pull-out, we shall consider
in some detail the deformability of swept wings.

. 1.2. The Deformability of Swept Wings.—The deformability of swept wings depends to a large
extent on the details of their structural lay-out. Since wide variations of detail design are
possible, especially near the root, it is possible, by suitable or unsuitable choice of lay-out, to
improve or worsen the effect considerably. At the same time, it is clearly impossible to derive
a formula of general validity, and accordingly we shall deal with the deformability of swept
wings by investigating a number of typical structural lay-outs, restricting the investigation to
the most usual and convenient case where the sweep angle is constant along the semi-span.

The investigation is most simple for those types for which the chord of the load-carrying
structure—apart from the ribs and perhaps from a negligibly thin skin—mnear the wing root is
so small compared with the other linear dimensions of the wing, that the effects of the oblique
encasement are negligible (Fig. 1). Structure (a.1) differs from (a.2), and (b.1) from (b.2) only
by a small locally concentrated disturbance at the root. Structures (a.2) and (b.2) are easily .
dealt with. The former has an elastic axis in the strict definition of the second footnote in
section 1.1 and does not offer any difficulties. With structure (b.2), sections perpendicular to the
direction in which an elastic axis could lie, change their shape with deformation of the spar;
therefore wing (b.2) has no elastic axis in the strict sense of the above-mentioned footnote.
Since, however, the elastic behaviour of sections lying in the direction of flight is the most important
feature from the aerodynamic point of view, wing (b.2) is very convenient for our later con-
siderations and we can consider its spar to be a kind of elastic axis in a somewhat looser sense.

The next structural lay-out to be dealt with is the single-spar lay-out with a.torsion box of
appreciable chord ratio. We consider wing (a.1) of Fig. 1, but with a skin, which may contribute
to torsional but not to bending stiffness, in front of the spar. The skin is assumed to extend
only from the wing tip to rib ¢, which is itself assumed to be completely rigid. Then for any
arbitrary load, the deformation can be compounded of two contributions, each of which can be
simply calculated. These are the deformation of the beam in the root region of the wing, and
the deformation of the outer region incorporating the torsion box. For each of these contributions
there exists an elastic axis in the exact sense, but for the combined effect there is no such axis.

At a given effective wing lift coefficient, the contribution of the root region has a far greater
influence on the effect of deformation on angle of attack of fuselage and tail unit than it has on
the aerodynamic pitching moment of the wing. If it is not required to investigate the effect of
root region deformability on wing pitching moment at all, we can substitute for the deformability
of the root region, a ball-joint with springs at a kind of elastic point of the root region. Such an
equivalent system promises to be very helpful in the consideration of aero-elastic problems of
swept wings.

Structural lay-outs having a larger chord ratio for the load-carrying structure, including
lay-outs with more than one spar can similarly be treated by using such an equivalent system.
This can be chosen so as to give the correct effects of the deformation upon the angles of attack
of fuselage and tail unit at a given effective wing lift coefficient. On the other hand, it completely
neglects the effect of root-region deformation on aerodynamic wing pitching moment at that
lift coefficient. This effect is negligible in comparison with the effect of deformation of the outer
region on wing pitching moment, if the span of the root region is negligible in comparison with
wing span, that is to say, if the chord ratio of the load-carrying structure near the root, multiplied
by the sweep angle, is sufficiently small compared with the half aspect ratio. This condition is
satisfied for most swept wing lay-outs except possibly for delta wings and it is therefore reasonable
to use the equivalent system here where it has the important advantage of decreasing the number

7



of variables. Accordingly, we neglect the effect of root-region deformability on wing pitching
moment and consider such deformability to influence the aircraft manoeuvre point only by virtue
of its effect on the angles of attack of the fuselage and tail unit. The magnitude of this effect
will be investigated in Part II of the report.

Having examined in some detail the character and range of the wing deformability, we are
now in a position to proceed with the development of the formula giving the effect of this
deformability on manoeuvre point. At the outset, however, we shall, in order to simplify the
investigation and to present the results more clearly, make some restrictive assumptions. The’
importance of some of these will be examined in section 7.

2. Imitial Assumptions and Approximations.—The wing is assumed to be a cantilever one with
no engine nacelles and to have constant chord and constant sweep angle 4. Dihedral effects are
neglected since they are small. Furthermore, the wing is assumed to have no wash-out for zero
external load. The deformability assumptions are taken from section 1.1, the elastic axis being
assumed to lie at a constant percentage of the chord and hence to have the constant sweep angle ¢.
Flap and aileron angles are assumed equal at all spanwise locations, to those of the unloaded,
and therefore undeformed, aircraft, and to be constant along the span. All deflections caused
by shear, and minor effects on load distribution such as are caused by non-linearity of the
stress/strain relationship, are neglected.

The wing outside the root region is assumed to have an aerodynamic axis in the exact sense,
the axis lying at a constant chordwise position and hence having, like the elastic axis, a constant
sweep angle ¢. (It should be noted that with tapered wings, the sweep angles of elastic and
aerodynamic axes are not, in general, equal and it is important to distinguish between them.
The analysis of the present report is, however, restricted to untapered wings.)

In general it will not be legitimate to neglect aerodynamic compressibility effects. In most
cases, however, allowance can be made for these effects by adopting suitable values for the
aerodynamic coefficients, and no further discussion of this point is called for here.

The spanwise distribution of lift corresponding to a uniform angle of attack distribution is
assumed rectangular, and the rotary damping of the wing is neglected (see section 7). The
weight outside the fuselage is assumed to be distributed with constant weight per unit span
along an inertia axis at a constant chordwise position.

The tail load is assumed to be negligible in comparison with the lift on the wing which is
therefore equated to the factored weight of the aircraft.

3. The Calculation of Elastic Camber and Elastic Wash-out.—In general, wing deformability
gives rise to camber of chordwise wing profiles. With unswept wings, this elastic camber is due
entirely to rib bending.” The radius of curvature of the rib camber-line is given by equation (3):

)
an (R a 150m,3cF,, ‘

From simple geometrical considerations (see Fig. 2a), the camber ratio y is equal to (¢/8)(1/R).,
and so equation (3) gives for unswept wings: - : ' '

dy 1 .
%——W .. .. .. .. .. . (4)

The elastic camber of swept wings depends on the direction of the ribs. If they lie in the direction
of flight (¢f. Fig. 1, structure b) we may assume chordwise sections of the wing to suffer no
deformation due to wing-spar bending and then, as with unswept wings, the elastic camber of
chordwise wing profiles is due solely to rib bending and is given by equation (4).

If the ribs lie perpendicular to the spar of a single-spar wing (cf. Fig. 1, structure a), contribu-
tions-to elastic camber arise both from rib bending and from wing-spar bending which in- this
case, changes the shape of chordwise sections. '

8



The radius of curvature of the rib camber-line is again given by equation (3) but the
corresponding contribution to the camber of a chordwise section is now given (see Fig. 2b) by :

dy (e d (1 _ cos® ¢
d—%’ o (g) d_% (-Z_e)rib €08 ¢ T lzoonurFr.b. )

The additional curvature of chordwise camber-lines due to spar bending can be shown by the
geometrical considerations illustrated in Fig. 3 to be sin® ¢ times the curvature of the elastic
axis whose value at load factor #, given by equation (2a) is: :

"
75n,cF,’
The additional curvature is thus
— # sin® ¢
. TSnpack,
and the corresponding increment in camber ratio is

—nsin®¢ ¢ —mnsin’¢

T5n.acF, 8 600F .z |
The combined effect on camber ratio, of rib and spar bending, in the case of swept wings with
ribs perpendicular to the spar, is thus given by: '

dy 17T cos®¢ sin® ¢
_%—%;%[12001?,_,,@%001«‘,1' O ()

For unswept wings and swept wings with ribs in the direction of flight:

dy 1
—%—Wg. P . . .. . .. .. (4)

We now calculate the additional wash-out due to torsion caused by a pull-out.

A pull-out causes in the wing, at a distance |y| from the plane of symmetry a torque T about
the elastic axis (positive if it reduces the wash-out) whose value, estimated without regard to
the effect of deformation on lift distribution, is given by :

o | W (e dey v W, |y
ml, =2 ) (1= 5 cosé

0
a V,ete,

etc., held constant.) In the above equation:

¢r denotes the chordwise distance of the elastic axis behind the line of aerodynamic centres
of the undeformed wing profiles, '

(Throughout this report the symbol (

) is used to denote partial differentiation with 7,

Aey the forward displacement of the aerodynamic centre of the wing profile due to elastic
camber (the value of this displacement will be derived later in equation (26)),

7 the chordwise distance of the inertia axis of the wing behind the elastic axis, and
W, the weight of the wing.

In conjunction with equation (1a) this gives as the effect of load factor on negative wash-out
per unit span : '

ki do 7 s-oT| 4801 —FF 1 (ep+ AeF_l_ng_wE(l _3_/)
on VdM]_Gfa’ﬂ y 4 (1_@)2Q*F, ¢ c W s
s s c
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Suffix , denotes an effect due solely to torsion, with benaing stiffness assumed infinite. Integrating
. with respect to |y|/s, we obtain the derivative with respect to load factor #, at constant speed,
of the local geometric angle of attack arising from wing torsion :

da| 7 48301 — FX) 1 ((erd ded)  r W[l 1/ |
). = (1_o O S A1 it RS STRNC
c
The integration constant K is determined by the condition that % must equal 1/Q.
14
‘ o _ 52 2\’
it gl =Ktk

we have for a wing of constant chord and aspect ratio about 7,
oC,
on

— (B_CL) (K, & 0-455K, 4 0-285K))
v 9% / ont) ‘
which may be verified by calculating two lift distributions. Small changes of aspect ratio have

a negligible effect on these figures. In our case we have, from equation (6):

K. — 4-30 (1 — F*) 1 ((ex + deyp) —I—?%
! (l_c_f)zQ*F, c c W
¢
and
— K
K, = 5 2.
) ... oC, 1 . . .
To satisfy the condition |y =0 the integration constant of equation (6) must be:
14
C1/8a\ 4830, ax 0285\ 1 — FF 1 ((er + Aey) g@z
] G I ol R (& Ol Tew
¢
_ Joa 4-30 i (1 —F* 1 ((ex+ deg) , v W,
ﬁ[%VL_T % 0-3125 T +ET/I7E‘ ,
(1=2)
where the suffix , means ‘ completely rigid *. Using this integration constant in equation (6) we
have:
oa| 1 _ [« 430 (1 —F*) 1 ((ex+des) | rWo Tyl 19\ 4. |
m )= EL S s el o] @

- C

=5 "

where the second term is due to the twist.

In the case of swept wings, the bending deformability gives rise to a second contribution to
elastic wash-out. In estimating this contribution we shall first use the bending deformability
assumptions of section 1.1. It should be noted that in general, because of the variation with
speed, of the relative effect of deformation on lift distribution, the assumption of constant
curvature for the flexural axis at a given load factor can only hold true for one speed—say the
limiting diving speed. It will appear later (see section 8.1) that it is legitimate to assume constant
curvature for the flexural axis at the limiting diving speed, only in the case of swept-forward
wings and of wings with a small amount of sweepback. For such wings the formula for elastic
wash-out due to bending, which we now develop, will be exact at the limiting speed, but will
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become somewhat inaccurate at lower speeds. For wings with sweepback so large that the
bending effect appreciably exceeds the torsion effect, the formula is basically unsound and must
be abandoned ; a more accurate solution for such wings, based on the revised bending deforma-
bility assumptions of section 4 will be given in section 4.1.

In considering bending, we must assume the wing to be loaded on the elastic axis and we
further assume the wing to have a rigid root region and attachment. Then, in accordance with
the definition of elastic axis, sections of the wing perpendicular to that axis are deflected parallel
to themselves (without rotation). From geometrical considerations illustrated in Fig. 3 it will
be seen that this deflection causes an elastic wash-out per unit span of :

0 ‘ -
- [—~a |;|j| = — tan ¢ X (curvature of elastic axis) .
b

By introducing equation (2a) into this formula, integrating with respect to |y| and determining
the integration constant as for equation (6) we get:

_[%V}b_ifltan‘ﬁ(lis‘_o-zxsﬂ... O 1<),

1580 #nzF,
The deformability of root region and wing attachment as derived above, has no appreciable
effect on the elastic wash-out. Equations (7) and (8) together give the following relation for the
elastic wash-out where the effect of the deformation on lift distribution is still neglected :

Baf \ Iyl 1w\ o vl _ .
_ A(a% V) _ DG[ A Q(s‘) _0 3125} . Dl[T 0 455}
where - '

5 _ 1075 (1 — F¥) <6F—|—A6F+Z’%)

8T QFF, (1_?_5)2 ¢ c W . (9)

C
and
_ Atané
Dy = 15051 F,

represent composite construction figures.

In the special case of ¥ = 0, which will be needed in Part II when considering the effect of
.deformability on fuselage angle of attack, equation (9) gives:

A <E“y_=°

’ )=~O-3125D6+0-455D1. e o)
% |y : .

To illustrate the order of magnitude of the elastic wash-out as given by equation (9) we express

s(2 e

™ 5|, for a completely rigid aircraft:

) at the Wi'ng tip as a fraction of the value of

oo
2ol go0
Nomlv)yy Q(a—CL) (0-1875D; — 0-545D) .
A

(a_oc oo
a% V)r

Fig. 4 shows the curves of

12

oo
a(5 |
Oy lyes against ¢ calculated from this formula for a typical fighter

on|y/,
11



with relevant data as given in the figure. The ratio is observed to be positive (corresponding to
wash-in at the tip) and of fairly small magnitude, for unswept wings. It varies considerably with
angle of sweep, decreasing rapidly with increasing sweep angle and becoming negative at a fairly
small positive angle. Further, at the maximum permissible dynamic pressure, its absolute value
is, in general, considerably larger than at the highest dynamic pressure possible in steady
horizontal flight. At the maximum permissible dynamic pressure, the geometrical angle of
attack at the wing tip decreases at 45 deg sweepback by about one half, and at 25 deg sweep-
forward increases by a half—that is to say to one and a half times—its original value. These
values of the ratio are quite important since they imply a very considerable effect of elastic
wash-out on the absolute magnitude of the angle of attack of the wing tip. Under the maximum
normal acceleration (# = 8) for all dynamic pressures, there is a reduction of nearly 4 deg for
45 deg sweepback, while for 25 deg sweepforward, there is an increase of about 3 deg.

1f the relative elastic wash-out occurring in a pull-out is not small compared with unity it has
a considerable effect on manoeuvring stability, as well as on the maximum lift coefficient attain-
able in the pull-out and on the stresses in the pull-out. Here we shall be concerned only with
the effect on manoeuvring stability. Before proceeding, however, we consider the circumstances
in which, as suggested earlier, the formula just developed (equation (9)) breaks down.

3.1. The Validity of the Bending Assumptions as Applied to Swept-back Wings—In developing
equation (2) it was assumed that at the dynamic pressure for which the deflections were being
investigated (normally a high value), the spar flanges would, over their complete span, be unloaded
at zero load factor and would have the proof stress at the proof load factor. This implied that
at the proof load factor, the curvature was at all points of the span equal to the proof curvature,
and that in the special case considered, of a wing of constant chord and thickness, the curvature
was constant (in magnitude and sign).

For swept wings, bending deformation produces positive or negative wash-out according as
the wing is swept-back or swept-forward ; in both cases, the corresponding torsional deformations
usually produce a negative wash-out. From Fig. 4, it is evident that the net wash-out due to
bending and torsion is likely to be zero at a quite small value of sweepback ; for larger angles of
sweepback, the net wash-out will be positive, while for smaller angles of sweepback and for all
angles of sweepforward, the net wash-out will be negative.

When the net wash-out is negative (sweepforward and small sweepback) there will be an
increase in lift coefficient from root to tip and it will follow that for a given load factor, the
bending moments on the wing increase as the dynamic pressure increases, so that the critical
bending moments occur at the maximum permissible dynamic pressure. In such cases, the
assumptions leading to equations (2) and (2a) are valid if they are associated with the maximum
permissible dynamic pressure. ‘The equations are then exact for that dynamic pressure but
hold only approximately at lower dynamic pressures.

When the net wash-out is positive (at the larger angles of sweepback) there is a reduction in
lift coefficient from root to tip and it will follow that for a given load factor, the bending moments
on the wing increase as the dynamic pressure decreases. Accordingly, if the spars are assumed
to have the proof curvature at a high dynamic pressure, they will have excessive curvature at
lower dynamic pressures. If, on the other hand, the proof curvature were to be associated with
a low dynamic pressure, then at high dynamic pressure the reduction due to elastic deformation
in angle of attack towards the tip would, in relation to the mean angle of attack, be relatively
greater than at low dynamic pressure. Then in some cases, the values of the wash-out calculated
from equation (9) might be such as to indicate negative angles of attack (and hence negative
loading) towards the tip, at high dynamic pressure. Thus, far from having the constant curvature

assumed in equations (2) and (2a), the spars would actually appear, from the calculations, to
have a reversal of curvature towards the tip.

It is apparent from these considerations of extreme cases, that in the general case of swept-back.
wings for which the effects of bending are large in relation to those of torsion, equation (9) is
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likely to lead to very inaccurate results. For the bending deformability of such wings we now
make new assumptions which, while still of an arbitrary nature, are nevertheless more logical
than the earlier ones. At the same time we shall take full account of the interaction of deformation
and lift distribution, and thus obtain formulae of equal validity at all points of the speed range.

4. Revised Bending Deformability Assumptions for Swept-back Wings with Bending Effect Large
i -Relation to Torsion Ejfect.—From the preceding section it is clear that for swept-back wings,
with bending effect large compared with torsion effect, the assumed bending strength should be
related to the bending moments occurring during a pull-out at low, rather than at high dynamic
pressure. At the lowest dynamic pressures, deformability effects are negligible and we may
assume a distribution of bending stiffness appropriate to the bending moments of an absolutely
rigid wing. ’

The general mode of elastic wash-out is unknown; it depends on load distribution and wice
versa. The exact solution of the problem would involve a complicated differential equation but
we shall simplify the solution* by assuming the wash-out, or more conveniently, the spanwise
increment of the lift coefficient, to result from the superposition of two terms of arbitrarily
chosen form with unknown coefficients D and H. Two expressions can then be obtained for the
incidence of the deformed wing, at a general spanwise location specified by a parameter {. By
equating the two expressions for two arbitrarily chosen values of ¢, a pair of equations in D and
H is obtained from which the values of these unknown coefficients may be determined.

Closer approximations would necessitate the assumption of more then two modes of wash-out
with correspondingly more equations in the unknown coefficients, arising from the fulfilment of
conditions at additional points of the span. In the limit, fulfilment of the conditions at all points
of the span would result in an infinite number of equations.

Choice of the two arbitrary modes of wash-out will be gﬁided by the consideration that the
modes should be sufficiently dissimilar and that the corresponding deflection curve should have
zero slope at the plane of symmetry. Linear and quadratic modes will in fact be assumed.

We consider as before, an aircraft of weight W with a wing of constant chord ¢, semi-span s,
aspect ratio 4 = 2s/c and constant thickness z¢, swept back by an angle ¢. The wing weight W,
is assumed to be distributed uniformly in the spanwise direction.

If the wing is regarded as an absolutely rigid beam we have, for bending about an axis
perpendicular to the elastic axis, under load factor #:

_ (W—=W,)s 17 |
B,_nm[l——;} R ¢ 1)

where B, is the bending moment (positive for upward load) about the specified axis at a per-

pendicular distance |y| from the plane of symmetry. We now assume a distribution of bending

stiffness such that, under the ultimate bending moments appropriate to the absolutely rigid

1vlving, the curvature of the elastic axis is everywhere equal to the ultimate curvature. We thus
ave:

EI = B,R, .. S o .. . .. .. (12)

where [ is the moment of inertia of a cross-section of the equivalent beam taken perpendicular
to the elastic axis, and R, is the ultimate radius of curvature. From section 1.1 we have

11
R,  75tc’

(13)

* For full details refer to Appendix II.
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Hence, from equations (11), (12) and (13):

n (W — W.)s X 75w<1 _ ol )
4 s

(EI) cos ¢ =

= (EI,) cos ¢>(1 — ljs)—|>2,

where I, is the moment of inertia of the section corresponding to y = 0. Introducing a bending
stiffness factor F, as before, we have:

(EI) cos ¢ = (EI) Cos<f><1 — lf[)z _ EmW = ZVw)S X 7516(1 ~ [f[)z. L (14

For torsional rigidity we retain the previous expression:
]
_ ¢/ O*
GJ = 4-30 1 — Fp*

It should be pointed out at this stage, that when the angle of sweep is large, the value of the.
torsional rigidity required for adequate aileron effectiveness, given by equation (la) with F, =1,
-is very inaccurate*.

WSF, cos¢. . .. e e e (1)

Since sweep reduces the aerodynamic coefficients (by some fractional power of cos ¢, we may
* assume), the equation in question somewhat overestimates the required torsional rigidity in the
case of infinite bending stiffness, but it is correct in representing it as a symmetrical function of
sweep angle with its maximum corresponding to the unswept wing. At a given sweep angle,
the required torsional rigidity varies considerably with bending stiffness. It increases with
decreasing bending stiffness in the case of swept-back wings and decreases with decreasing
bending stiffness for swept-forward wings. With a reasonable bending stiffness, the combined
effect gives a relatively small dependence on sweep for sweepback, and a much larger dependence
for sweepforward. The torsional rigidity required with large sweepback will usually be somewhat
greater than for the unswept wing while with large sweepforward, it will be much smaller than
in the unswept case. For any particular aircraft type these effects can be considered by calculating
the GJ required for aileron effectiveness on the lines of Ref. 7 and introducing a corresponding
value for F, in the formula of the present report. In some cases it may be more economical from
the weight viewpoint, or even necessary for the prevention of aileron reversal, to increase the
bending stiffness above that required for strength.

It will be useful to translate the rigidity assumptions of equations (la) and (14) in terms of
the non-dimensional stiffness parameters M, and L, of Ref. 7, which are defined by the equations:

s
ges®’
where 1, is the wing torsional stiffness (applied moment per unit twist about the flexural axis)

measured at a convenient reference section, and /, is the wing stiffness in bending about an axis
perpendicular to the flexural axis, defined by

P2

lqs:*é—

UL

Me:ﬁ;

L,=

where ¢ is the deflection produced by a load P acting at a reference station at distance / from the
wing root measured along the flexural axis.

* For details, see Ref. 7.
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For the illustrative examples of Ref. 7, the reference sections for both m, and /, are taken at
0-8s (the mid-aileron section for the wings considered). For considerations of flutter, the reference
section for /, is generally taken at 0-7s. -

We now derive expressions for M, and L, corresponding to the rigidity assumptions given by
equations (la) and (14) and appropriate to the critical dynamic pressure for aileron reversal,

i.e.,
%k

Q:qcs=‘(1—_—Fg>T)-

If distance along the flexural axis from the root is denoted by y’ = y/cos ¢, and if the reference
section is taken at y’ = y;" = yz/cos ¢ we have:

L _ gyl Y
m— Jo GJ T ), GTcosd
, oy
- T GJcose’
or putting y =0-8s,
__GJcosé
*7 0-8
Substituting for GJ from equation (la) we obtain:
— Fu% 2
(Ma)q=qc§=~%_5—)= 1-16(1 _"‘f) Focod. .. .. ... (15)

To obtain the corresponding expression for L,, we first find the deflection 6, produced by a
load P applied at a point of the flexural axis at distance {zs’ from the root, with a stifiness
distribution EI’ given by equations (12) and (14). It is -

8Ps"39
bp= 7
75F,,WWS< 1 — Waﬂ) cos ¢
_ Rl —1)
where e9r__f0 J.o(l_é_)zdéd;‘.
Then by definition,
| — P(lgs’)®
N ‘ 6R

75F e WS(1 — 1) cos* 42,8

8d9s
1f ¢ = 0-8, we have & = 0-3162 and then

. w.
— Fx(1 — e 2
(= FF) _ 5o mrF,(1 — F, )(1 W) cos? ¢

(L¢)q=qc§ - g*682 AQ* (16)

It may be noted that if the reference section for bending stiffness is taken at 0-7s, the numerical
coefficient in the last equation becomes 196. These expressions for M, and L, may be used in
conjunction with the curves of Ref. 7 to check whether the assumed stiffnesses are, in any
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particular case, satisfactory from the point of view of aileron reversal. Furthermore, they enable
us to calculate appropriate values of £, and F, in the case of a specific design for which stiffnesses
have been measured by the standard British method.

4.1. The Calculation of Elastic Wash-out for Such Wings—It is shown in Appendix IT that with
the rigidity assumptions of section 4 (equations (14) and (1a)), the elastic wash-out is given by:

da| \ aD _ ad Oy
_ A(% V) = 20— 0455 + 20 (2 — 0 285)}(3(2),1/1" L)
where ¢ is written for |y|/s. The change in angle of attack of the fuselage, with rigid root region
and attachment is given by:

A(%):_(0-455%)+0'285@)(39‘—)A N O 1)
i .

on an ) \2C,

14
and the relative elastic wash-out at the tip by:

— () .

a% Viy=s aCL
oo 0
(5

iD AH[ 3
) -0 aoc)io'%% +O'715%}(86L)A,m'
v/e '

The value of the latter expression at Q = Q* has been calculated for the typical fighter of Fig. 4
with ¢ = 45 deg, and is indicated on the figure. It it seen to be considerably less than the value
calculated with the earlier formula.

The quantities dD/dn and dH|dn in equations (v17) and (18) are very complicated and their
calculation is dealt with fully in the appendix. It is shown there that:

iD % — 77 dH _— 7+ 9% (19)
dn & ’ n — 2 '
where # = 0-5[(B; + B,) — tan ¢(B, — B,)] } :
20)
7" = 0-375(B; + B,) — 0-25 tan ¢(B; — B,)

and &, ¢, # and 2 are functions of the two variables

. Q 1:075¢e,[c (1 — Fy¥) (oC,
QBI—W F‘r (1__6_5)2 ( Boc )A/m
c

tan ¢ Q4 (%%")
and tan ¢ QB; = Hj”” ,
75nu1Fb(1 _ W)

which difectly involve the dynamic pressure number  and the geometrical and structural
features of the wing. The quantities (B, + B,) and {tan ¢ (B; — B,)} on which # and 7
depend are given by: ‘ ' '

1075 (e, | Wor\ (1 — E®) (aC\ . (aC, |
(Bl + B2> o FTQ* <T +W E) (1 . %)2 (a—(x)A/m - DG (Ta’)A/m o o (21)
C
o aC,
Atang (F) oC,
tan § (Bo — B) = ——gpt e — 2D1<Ta)A,,n’ R 1)
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and apart from the secondary effect of Q on (B, + B,) through the factor ;" = ¢ + 4ey, depena
solely on the geometrical and structural features of the wing.

Some graphical aids to the calculation of dD/dn and dH|dn are discussed in section 2 of
Appendix II.

Comparison between equations (17) and (9) shows that irrespective of the angle of sweep, we

‘may express the wash-out in the form:

A(g% ) — Dy(¢ — 0-455) 4+ Dy(2* — 0-285) .. .. .. .. .. (23
14
where for wings of large* sweepback
) dD | _ (Px\ dH
D7: (aC—"L)A/m% ’ - ( C )A/ﬂl% o h h a (248')

and for other* wings:
‘ D, =Dy — D5 _Dsz_%f. (24b)

5. The Effect of Deformability on the Pitching Moment of the Wz'ng.—'l‘he position of the aircraft

manoeuvre point depends directly on the quantity =< , the derivative with respect to

oC, |
lift coefficient, at constant speed, of the pitching-moment coefficient about a given centre of

gravity.

due to wing deformability. The pitching-moment co-

oCy

aC, |v

efficient C,, of the complete aircraft may be expressed as:
CM = Cyw + Cyp + Cur,

where suffixes y, » and  denote respectively contributions from the wing, fuselage and tail unit.
In virtue of its effect on the angle of attack of the fuselage, wing deformability affects C,, » and
Cyr as well as Cy 5 so that if 4y, is used to denote an increment due to wing deformability we

— = :A = A = A = -
W(acL v "\ aC, v T 4w oC, ‘V T v oC, |v

The last two terms are most conveniently dealt with in conjunction with the effects of fuselage
and tail-unit deformability and are therefore considered in Part II of the report. We now

— |,
forces acting on the wing and partly to a change in the aerodynamic pitching moment.

"~ shall have:

consider 4 W( ) which will be due partly to a change in the pitching moment of the inertia

5.1. The Ejfect on the Piiching Moment of the Inertia Forces.—If we relate the pitching moment

toa point of the fuselage near the wing root, all bending deformations of the wing result in a

change in the contribution of the inertia forces of the wing to the pitching moment, because the
moment arms of these forces are affected by bending, An approximate estimate of the effect
can be made without much difficulty when the bending deformability assumptions are the rela-
tively simple ones of section 1.1. For then, since we have assumed the wing weight to be
uniformly distributed along the span, it will follow that its centre of gravity is displaced by
one-third of the displacement of the wing tip. The displacement of the centre of gravity will
have two components corresponding respectively to bending about the two principal axes of

* The precise ranges of validity of the two sets of formulae are investigated in section 7.
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inertia. The longitudinal principal axis may be assumed to lie in the no-lift plane* of the half-wing
and at right-angles to the elastic axis. The downward displacement of the wing tip due to bending
about this axis is readily derived from equation (2a) as:

1 n A s D, A4QC,

300 %, tF,cos’ ¢ 2sin 24

where D, is given by equation (9). The forward inertia force whose moment arm is changed by
one- thlrd of this amount is equal to the product of the wing weight Wy, and the load factor in
the direction of the longitudinal principal axis which (see Fig. 5) is'approximately

Q[CD 0o CL (a“/aCL)m] »

where Cj, is the drag coefficient for the complete aircraft at zero lift.

The vertical principal axis is normal to the longitudinal axis and therefore, with our previous
assumption, normal to the wing no-lift plane, and the ratio of the moment about thls axis to
that about the longitudinal axis is (see Fig. 5):

W,
(o= Coo)

| 0=

where Cpp is the wing profile drag coefficient. If the bending rigidities about the vertical and

CL(BC ) Jcos ¢,

longitudinal principal axes are denoted by (EI), and (EI), respectively, the ratio of the curvatures.

and of the normal deflections is:

Cor— oy,
et

It follows (see Fig. 5) that the ratio of the rearward deflection of the wing weight c.g. parallel
to flight direction (seen from above) to the downward deflection is given by:

Cor— 02 Cpo
- Egg ( . WV;wa ] )“ Clacs) [eose

The downward inertia force whose arm is changed is approximately #W,. The change in
pitching-moment coefficient due to the change of moment arms of the inertia forces is now
readily established as:

1
AI(CMW) :W—QC Al(MW)
D4 W, = L
~ Bsin 24 W[ = Codlr CLg(aC—L)w
NN CC -
(EI), 1;% F\aC, ) o[ o h
W ,

-* We are considering a constant-chord wing of constant section, and if the effects of twist on moment arms are
neglected, the no-lift lines of all sections of the half-wing may be considered coplanar.
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5.2. The Effect on the Pitching Moment of the Aerodynamic Forces.—Elastic camber and
wash-out affect the aerodynamic forces acting on the wing and hence also the pitching moment
of those forces. Furthermore, the pitching moment is directly affected by a change, due to
bending, in the arms of the aerodynamic forces. We deal first with the effect of camber.

For a conventional wing section with a camber-line of constant curvature, the pitching-moment
coefficient ‘relative to the aerodynamic centre is about — (2-5y/8) where y denotes the camber
ratio and A the reciprocal of the Prandtl-Glauert factor for the normal component of velocity.
From equations (6) and (7), it follows that the change due to elastic camber, in the section
pitching-moment coefficient about the aerodynamic centre is, for unswept wings and swept wings
with ribs in flight direction,

2-5 7

ACorw :T m

and for swept wings with ribs perpendicular to the elastic axis,

2:5nl [ cos? ¢ _,_sinng]
g n,t | 1200F,, ' 600F,|"

Making the substitution # = C,Q and differentiating with respect to C, at constant Q (and hence
constant V) we obtain: | .

(7] )= o

AszW ==

-~

oCy

where, for unswept wings and swept wings with ribs in flight direction:

1 , ' L
D4:m. . g'.r.». e (26)

and for swept wings with ribs perpendicular to the elastic axis:

. 1 cost¢ . 2sin®
D4 T 4808nx |:F,.b. T F, ]

]

Corw ) is a measure of the forward displacement, expressed as a fraction

The Quantity Az(—ac—
I3 v

- of the chord, of the section aerodynamic centre, due to deformability. Elastic camber is thus

responsible for a forward displacement Ae, of the section aerodynamic centre given by :

4_5521)4@. e (26)

This affects the pitching moment of the wing not only directly, but also inciirectly, by influencing
the torque. This indirect effect is taken account of by the term Aeg/c introduced into equations
(7) and (9).

To calculate the effect of elastic wash-out on pitching moment and manoeuvre point we employ
a modified strip method, the theoretical basis of which is discussed in Appendix I. Using the
approximate result given by equation (14) of that appendix we assume the contribution (4,My)
to wing pitching moment, due to elastic wash-out to be given by :

N

oC s
A My = — 2g (ﬁ)Amtan qéfo Aac (y — 2) dy

where, for the time being, we assume m = 3 4 tan ¢. Hence

oC, t
ACrw — — 34 tanqs(——) f Ax(t — 0-5) d¢
Alm

do o
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and since — =0,

oC b0
- 1 et 2 2z
V) o ZAQ tang{) ( oo )A/m JIOA<874’

— _ 140 tan $ (%%)A/

J(c—05)ac

V.

1

D,j (¢ — 0-455)(¢ — 0-5) d2
0

1

+ D[ (& — 0-285)(c — 0-5) dC%

0

from equation (23)

— — 0-041654Q tan ¢ (EC—L) (D, + D) .

ad. Alm
From equations (24a) and (24b), we have for wings of large sweepback
dD | dH\ (9%
D+ D= (g +3) (36,

and for other wings,

D

D7 + Ds :—Zﬁ - Dl
so that for wings of large sweepback,
Cuw| \ — _ 0.04163 aD | dH .
‘As( o V>_ 0-04165A40 tan ¢ )d% - dﬂ% L e e
and for other wings, ‘
4, (BC‘Z 7| ) = D,g(— 0-02083D, + 0-04165D)
BCL v .
: oC, :
where DzzA(—a—> tang. .. - .. . .. .. .. (27Db)
& Alm X

In addition to the effect arising from elastic wash-out, bending exerts a direct effect on the
pitching moment of the aerodynamic forces, comparable with that investigated in section 3.1
for the inertia forces. As derived there for the case governed by the bending deformability
assumptions of section 1.1, the mean bending deflections of the wing, expressed as fractions of

the chord are:

D,AQC,

upward  Bsin%p (where D, is given by equation (9))
w
Cop— 57 C
. (EI), D,AQ |7°% W 7°" <, aoc) .
rearward : (ED). 6 sin 2 . VV[;” — Cr (-a—t?L | cos ¢ .

The coefficients of the aerodynamic forces whose moment arms are changed by these deflections
are respectively :

I?

= ,{ 0
rearward : Cpp— Cﬁ(%)w

L -

I?

upward :
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The contribution to the pitching-moment coefficient of the wing is given by :

D:AQ -~ am
A(Conm) = 6 sin 2¢ [C olr =2 )

CD PCL ’ CD OCL

~ 3 ot 2
1_~ —CL (E)w COS (]S

Combining this result with equation (2 ) and differentiating with respect to C, at constant ¥V
(and hence constant @), we obtain*:

where ‘ ‘ | | > #
S A AT

5.2.1. The direct effect of bending on the pitching moment of the acrodynamic and inertia forces for
wings of large sweepback.—Substitution of typical values in equations (28) indicates that this
effect is relatively small. Tt has therefore not been thought worth while working out a formula
for the more complicated case governed by the assumptions of section 4. The absolute magnitudes
of 4,(Cy ) and 4,(Cy; ;) in this case will certainly be less than the values given by the afgrnrmlaus:

MW )

oC,,
5.3. The Pztckmg Moment of the Wing in the Presence of a Fuselage. —When the middle portion -
.of a plain wing is replaced by part of a fuselage, the whole shape of the lift distribution is altered,
and for a given lift coefficient the wing bending moment is changed without any considerable
effect on angle of attack. The increase in bending moment is approximately proportional to

(CL)y=O CbF maxzq ]

with no fucelage

of sections 5.1 and 5.2 so that it is possible to set an upper limit to the contribution 4,, 4(

This should suffice for all practical considerations.

where by ... denotes the maximum width of the fuselage The factor of proportionality Cis of the
order of magnitude 0-1, being positive for low-wing and negative for mid-wing 1ay—outsT This
should be sufficiently accurate since the effect in question is comparatively small. The effect of
deformability on the increase in bending moment is given by :

oCy ~ Do, _g L
AB = C, (am)A/mcha(a V)chmxg..

Multiplying the bending moment by — 2 tan ¢ to get the pitching moment (see Appendix I) we
obtain the effect on pitching-moment coefficient as: <

Cyw | 00ty_g
( aCL V) D;;QA ( on V)
where , _ . .. .. .. e o (29
’ . meax_2 a(:L
Dy = 20,25 () tan

* C) » is assumed independent of .
T See Ref. 11.
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5.4. The Resultant Piiching Moment of the Wing.—The overall effect of elastic deformability
on the derivative of the wing pitching-moment coefficient, with respect to lift coefficient at
constant speed and constant elevator angle is given by:

5
Aw(a%w J=>a () @
0C; |va r=1 L 7 A
For easy reference, the details of the various contributions are summarized in Table 1. The
L . . L aD dH
expressions involve several intermediate expressions, viz., Dy, D,, . DG, 4 ( ) P i
: Bn vl dn ’ dn

which are set out in full in Table 2. They depend either directly or 1nd1rect1y on the geometry
and structural details of the ng and partly also on the condition of flight. - Dy, D,, Dy and D,
are pure ‘ construction figures’ in that they are independent of flight conditions if we neglect
Mach number and Reynolds number effects. The other quantities depend directly on flight

condltrons The primary effect of flight condltlon on 4 ( Cé” LA
L

) is given by the direct factor
Vo

Q occurring in each of the quantities 4,, 4,, Al seand 4,

6. The Effect on the Manoeuvre Point.—The value of 4 ( Cor ) is independent of the choice

L1V
of reference point for pitching moments, which may therefore be taken at the centre of gravity
. . . . . 2 .
of the complete aircraft. Now if C,; is referred to the aircraft c.g. the quantity — C_M is
L1V

the ¢ manoeuvre margin, elevator fixed ’, that is, the distance of the cg ahead of the ¢ manoceuvre
point, elevator fixed ’ expressed as a fraction of the wing mean chord (see Ref. 3). If the c.g.
is at the manoeuvre point of the datum (absolutely rigid) aircraft we have:

(ac-__M ):0. N 3
aCLV,nr ' . R

Then for the aircraft with deformable wing, but otherwise rigid, we have :

a(zM _ (ac:M ) \ 4, (aC >: 4, (aCM )
aCL Vi “aCL v/ y aCL Vo aCL Vo
o . BC oCy
in virtue of equation (31). The manoeuvre margin is thus — —=*| = — 4y (?— )Corn—
. L Vs L1V

~ pared with the zero margin for the datum aircraft. It follows that thére is a forward displacement -
of manoeuvre point, elevator fixed, due to wing deformability given by:

X, oC '
A ﬂ):ﬁ ( u ) R 7-
W(C aCL Vo A ’ ( )

7. The Respective Ranges of Validity of the Two Formulae for Elastic Wash-out. (Equations
(9) and (17).)—Equation (17) was developed using the bending deformability assumptions of
section 4, which were introduced to cover the case where, at the maximum permissible dynamic
pressure number Q*, the combined effects of bending and torsion produce a positive wash-out.
It will be valid, therefore only if, for any given positive load factor #, at the dynamic pressure
number %, the angle of attack at the tip (specified by £ = 1) is greater for the rigid wing than
for the flexible wing. Under subsonic conditions*, the effect of torsion is, in all practical cases, to
increase the incidence from root to tip, while- bendmg increases .or -decreases the incidence

* In this report, the term ‘ subsonic conditions ’ is applied to all flight conditions up to which the major portion of
the wing has remained free from shock waves. In the case of swept wings, the flight speed may already be supersonic.
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according as the wing is swept-forward or swept-back. We may therefore, at once conclude that
equation (17) is not applicable to a swept-forward wing. TFurther, unless the torsional stiffness
of the wing is infinite, there will be a range of angles of sweepback for which the effect of torsion
on the incidence at the tip is greater than the effect of bending ; over this range equation (17)

will not apply.
Confining our attentions now to swept-back wings we may develop a criterion for testing the
validity of equation'(17) in any particular case. :

7.1. The Validity Criterion.—Throughout this paragraph, suffices , and ; are used to denote
the rigid and flexible wings respectively while asterisked quantities are appropriate to Q = Q*.

For the rigid wing at-dynamic pressure Q* we have, from equations (5) and (6) of Appendix II:
s (_95)
((x‘?’)5=1 o Q* BC—'L 4 5
and for the flexible wing, using equations (7) and (8)

‘ o |
= a* D* H*) (% )
(ﬂf)C— “ —}— ( + ) (BCL) A

From equations (6) and (10)

x_ (.@f‘_) — (0-455D% - - 285H* (ﬁ)
' =gelag), AT Mee )
and hence
oo\ n [ oo
_* = (0-545D% + 0-715H* (—_ -*-(—_) .
((xf)C ( _}— X ) 8 L’ Alm + Q‘ aCL A
Thus
(4, — o)or* — — (0-545D% - 0-715H%) (-ai‘i) L 33
' BCL Alm .

and equation (17) will be valid only if:
(O(,, - ocf)C=l* >0 ;
je.,if 0-545D% 4+ 0-715H* < 0.

Now D* and H* are linear functions of # which vanish for # = 0, so that dD*/dn and dH*/dn
will be of the same sign as D* and H* respectively for positive #. The inequality may therefore
be written in the form:

aD* aH*

This is shown in the appendix to lead to the condition:

¥k — K7* <0, T R - 7

_ 0-2378 — 0-02390*B, + 0-02250*B, tan ¢ o5
= 0-3094 — 0-01690%B, + 0-01430*B, tang' = = = O
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For fixed values of the construction ﬁgui’es B, B, B, and B, and of the maximum dynamic

pressure number Q*, the minimum value of ¢ for which equation (17) is valid will correspond to
the positive root of the equation :

u* — Ko+

which is a quadratic in tan . Substituting for #* and 7* from equations (20) and for K from
‘equation (35), and simplifying we arrive at the equation :
B* + By

(62-63 — 1-6280Q*B*))

(43-09 + 0-88550*B,*) (By* + By)| |
_§ o (B3_B4)§_0 .38

to determine the critical value of b.

It may be noted that B,*, B,, B;, B, are actually functions of ¢ in virtue of their dependence.
on the factor (9C,/8«),,, which varies with ¢. The critical value of ¢ will, however, usually be
quite small, and since (8C,/0«) 4, varies very little for small values of ¢, it will be sufficiently
accurate to use the value corresponding to ¢ = 0 in calculating B,*, etc., for equation (36).

For values of ¢ less than the critical, including negative values (sweepforward) the bending
assumptions of section 1.1 are valid, and equation (9) gives the elastic wash-out with an
accuracy which, at the limiting speed, depends only on the effect (usually small) of neglecting
the interaction between deformation and lift distribution in calculating the torsion effect. At
other speeds, the accuracy of the estimated bending contribution is also dependent on this
neglected interaction (see section 8 (c)). As ¢ decreases to zero and thence to negative values, the
relative elastic wash-in at the tip increases (see section 3 and Fig. 4), and accordingly, the effect of
deformation on lift distribution increases. Thus, while the error in equation (9) should be small

at the limiting speed, for all angles of sweep less than the critical, it may become large for large
angles of sweepforward at low speed. '

8. A" Review of the Assumptions and Approximations—(a) The assumption that the basic lift
distribution is uniform is very inaccurate for wings of small aspect ratio and large sweep angle.
It will be shown in section 11.1, however, that the bending-stiffness assumptions are such as to
compensate for this inaccuracy as regards the bending term, thus considerably reducing the
overall error. Although recent advances in lifting-plane theory make possible an accurate
determination of the lift distribution in any particular case, it is clearly impossible to derive
generalised formulae of the type developed in this report, which would take account of the
variation of lift distribution with wing plan-form.

(6) The variation of the rotary damping coefficient m, of the wing due to distortion has been
neglected and we now consider to what extent this is justifiable.

For a rigid aircraft, the rotary damping of the wing gives a rearward (stabilizing) shift of
manoeuvre point of magnitude — m,/u, where m, = (1/pSc*V)(eM [28) and u = W/gpSc, 6 being
the angular velocity in pitch. Approximate calculations for constant-chord wings indicate
that — m, is of the order 4 0-2 for unswept wings and that it increases with both aspect ratio
and sweep angle so that for aspect ratio 6 and sweep angle 45 deg, it is of the order 1-0.

In practice, ¢ is never likely to be much less than 10 so that the effect of the basic m, on the
manoeuvre point of unswept wings is unlikely to exceed 2 per cent of the chord, and the change
in m, due to distortion will cause a shift of manoeuvre point of less than this amount With a wing
of aspect ratio 6 and sweepback angle of 45 deg, the basic m, gives a rearward shift of manoeuvre
point of the order (1/z) X ¢. For a small heavily loaded fighter giving a minimum x (at sea-level)
of the order 100, the shift would be of the order 0-0lc while for a very large aircraft for which
w might be as low as 10, the shift would be of the order 0-10c. -
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Approximate calculations indicate that at high dynamic pressures, distortion will considerably
reduce the value of — m, and may, in extreme cases where the bending stiffness is low (corre-
sponding to a low value of the ultimate load factor) largely eliminate the stabilizing effect of
wing damping. Thus the forward shift of manoeuvre point due to the effect of distortion on s,
for the wing plan-form considered may be expected to vary from less than 0-01c for 4 = 100 to
about 0-07¢-0-08¢ for # = 10. It should be noted that, in general, this contribution to the total
shift is relatively small in comparison with the shift due to the elastic wash-out arising from the
basic lift distribution.

It may be concluded from the foregoing that, having regard to the general degree of accuracy
which it is expected to achieve with the methods of this report, it is-justifiable to neglect the
variation of wing m, due to distortion except for large aircraft with wings of high aspect ratio,
large sweep angle and a low ultimate load factor. For such aircraft operating at high speed, it
may be anticipated that distortion will, to a considerable extent, eliminate the appreciable
stabilizing effect of wing damping which is obtained at low speed. If the effect of elastic wash-out
is estimated by a method more exact than the present, then the effect of distortion on s, should
" be included.

(c) Allowance is made for the effect of deformation on lift distribution in developing the
expression for elastic wash-out applicable to wings of large sweepback. In deriving the other
expression for elastic wash-out, the contribution due to torsion has been calculated without
regard to the effect of deformation on lift distribution, while the formula for the bending contribu-
tion is exact for the limiting speed but becomes progressively less accurate at lower speeds, due to
the variation with speed of the relative effect of deformation on lift distribution. The net error
in the calculated wash-out should be small at the limiting speed, but at low speed might become
large for wings with large sweepforward (bending contribution large).

(d) In accordance with the procedure usually adopted in stability theory, the tail load has been
neglected in comparison with the lift on the wing. On modern aircraft, for which the ratio of
tail area to wing area is relatively large, this assumption may lead to errors of just appreciable
magnitude (see section 3 of Ref. 3).

(¢) Only wings of constant chord have been considered because of the excessive degree of
complication involved in attempting to include the effects of taper in general formulae of the
type here developed. With tapered wings, it is necessary to distinguish between the sweep angle
of the elastic axis and that of the axis of aerodynamic centres; the difference is especially im-
portant for wings of small aspect ratio.

(f) It has been assumed that no engine nacelles are installed in the wing. An approximate
estimate of the effect of an engine nacelle, given in Part II of the report, shows that the effect
is favourable and may be appreciable in magnitude.

. (g) Of the remaining assumptions, those of constant sweep angle and of constant torsional
rigidity are the most important, but detailed discussion of them lies outside the scope of this
report.

9. Suggested Procedure to be Adopted in Numerical Calculations.—(a) If the wing is swept-back,
calculate the construction figures B,*, B,, B; and B, set out in Table 2 and also the quantities:

(i) #* = 0-5[(B.* + B,) — tan ¢(B; — B,)]
(ii) 7* = 0-375(B,* + B,) — 0-25 tan ¢(B; — B,)

(iii) Q*B,* and tan ¢ Q*B,.
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From Fig. 12, read off the value of K appropriate to (iil). Calculate the quantity (#* — K7°%).
(0) If @ — K¥* is negative : |

(i) Calculate the quantities QB,, tan ¢ QB;, # and 7° appropriate to the dynamic pressure
under consideration

(ii) Obtain values of &, ¢, # and 2 by interpolation in the graphs of Figs. 6 to 9

(iii) Obtain values of dDjdn = (% — F¥°)|? and dH|dn = (— V* + 9 %)/2 from the charts
of Figs. 10 and 11 or by direct calculation

(iv) Calculate the construction figures D,, D;, D, and D; set out in Table 2.
(¢) If w* — K7°* 1s positive :
Calculate the construction figures D, . . . Dy set out in Table 2.

(d) Calculate from the formulae set out in Table 1, the values of the separate contributions to
PE
oC, |va
wing deformability on wing pitching moment from the equation:

=) = an (5], ) - 50 (52])
)71 r=1 I

¢ oC,
(e) For the estimation of the effects of fuselage and tail unit, the change in angle of attack of the
fuselage due to wing deformability is required. This can be calculated from the equations:

V) ) dH)(@oc

aD
— (0-455 — 4 0-285 — || —=
( an T an/\oC,
— 0-3125D, + 0-455D, , if ¥ — K7r*>0.
10. Consideration of Some Limiting Cases for Swept-back Wings.—10.1. The Swept-back Wing
of Infinite Torsional Rigidity.—This case is interesting in that we are able to express the quantities
Ag (BCJK’ ) and 4 (—aa““

P2 on
results in a pair of curves. Further, by considering what happens when the bending stiffness
tends to zero, we are able to obtain an indication of the probable accuracy of the method.

) and hence determine the forward shift of manoeuvre point due to the effect of

) i e — Kyt <0
Alm

ooty _ o
A( on

) as functions of the single parameter () B; tan ¢) and to present the
14

For the wing of infinite torsional rigidity B, = B, = 0, equations (20) reduce to:

%:—O'Stan¢(B3—B4):_0-5Bstan¢(1_%ﬂ) ]
7 = — 0-25 tan ¢(B3—B4):—0-25B3tan<,6(1—-W’”> l'
“and equations (22) of Appendix II to
# =1+ 0-189108; tan ¢
Z = 0-5 + 0-0738QB; tan .
0B, tan ¢ a

7 =1+ 0-2186(QB; tan ¢
% =0-25 -+ 0-0781QB; tan ¢
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Writing y = QB; tan ¢ and substituting for #, ¥°, »°, ¥, ¥, & from (37) and (38) in equations
(23) and (24) of Appendix II we obtain, after some algebraic simplification :

(1~ %)
db _ \" W x(0-0624x + 0-500)

1+ 0-2309y + 0-00546x*

an Q 1+ 0-2309y - 0-00546y*
W,
iD (1 o W) 0-04152x*
an Q 1 + 0-2309x + 0-00546x*
| (%)
cZD + W) x(0-02088y + 0-500)
dn O 1+ 0-2309; & 0-00546
1 W
aH ( - W) x(0-01656x + 0-2275)
0 455 + 028 == "0 T 02309 % 0-0056,¢"
Hence from equations (27a) and (18):
u () .
aC, | v x(0-0008697y + 0-020825) (39)
A tan ¢ (1 _ W) — T 4 0-2309y + 0-00546x"
Q (Bocyzo' ) _ x(0-01656x - 0-2275)
(1- @) (@i) o |,) ~ 4o
W aC"L Afm

These quantities are plotted against x = QB; tan ¢ in Figs. 13 (Curve (a)) and 14 (curve (a))
respectively.

10.2. The Swept-back Wing of Zero Be%dmg Stiffness.—This case has no practlcal significance
but is of interest in providing some check on the accuracy of the results obtained by using the
formulae developed for wings of large sweepback.

As the bending stiffness tends to zero, B; and hence yx tends to infinity, in which case the
expressions on the right-hand side of equat1ons (39) and (40) tend respectively to 0-1593 and
3-033. Thus, for the case of a swept-back wing of infinite torsional rigidity and zero bending
stiffness, the formulae give:

)=0-1593Atan¢(1—%”) N ()

(BCM
oC; |v

(42)

: 3-033(1 _ Vﬁ) (l)
A(aOCy=D _ W aCL Afm
on v/ Q ’

Provided that OB, remains finite, the limiting values of dD/dn and dH|dn as given by equations
(19) when B; tends to infinity, are respectively
— 1143 (1 - V—Vﬂ)
4 and
Q- Q
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The corresponding values of 4,

(i{iy > nd A( 9% _o

L |V aCL
are then identical with those given by equations (41) and (42) which are thus applicable for
swept-back wings of zero bending stiffness with any positive degree of torsional rigidity.

) derived from equations (27a) and (18)
14

0
A near approximation to ‘the correct value of 4 ( Cor
L

)in this special case can be arrived
at as follows.

14

For an absolutely rigid wing, the lift distribution would, depending on aspect ratio, lie between
a rectangular distribution corresponding to infinite aspect ratio and an elliptic distribution
corresponding to small* aspect ratio. The manoeuvre point for wing alone would accordingly be
located in the plane of symmetry at a fore-and-aft location corresponding to the quarter-chord
point of a chord situated somewhere between 0-5s and 0-424s from the plane of symmetry.

In the non-rigid case with zero bending stiffness, only that portion of the lift which balances
the wing weight can be supported by the portions of the wing outboard of the root, and the
remaining lift must be assumed concentrated on a narrow strip, symmetrically disposed about the
centre-line. The bending line of the wing must deflect so as to counteract the torsional deflections
and maintain the uniform distribution of lift which is necessary to balance the uniform distribution
of weight and ensure that the bending moment is zero at all points of the wing span. If the
torsional rigidity is infinite, there are no torsional deflections and the bending line must remain
straight, except in the immediate vicinity of the root, where large curvature is necessary to
provide an abrupt change in angle of attack between the outer portions of the wing and the
narrow central strlp

The manoeuvre point corresponding to the first part of the lift is unaffected by deformability.
For the remaining part of the lift, the manoeuvre point may be assumed to coincide with the
quarter-chordt point of the centre- Tine chord so that, in relation to its position for the absolutely
rigid wing, there is a forward shift of an amount lylng between

0-5s tan ¢ = 0-25A4c¢ tan ¢
and ‘ 0-424s tan ¢ = 0-2124c¢ tan ¢ .

Combining the two lift distributions we get : '

0-2124 tan ¢ (1 _ %) < |:A (acM w )

)} < 0-254 tan ¢ <1 e (43)
W 8ClL v true W

the actual value of [A 3(% )] depending on aspect ratio. Thus from equation (41) and
L |V

true

the inequalities (43) we see that for the limiting case of zero bending stiffness, the formula for
the wing of infinite torsional rigidity givest:
)]

(%
eCy
)

[43(@4

* The actual value depends on the sweep angle ; for example, for a constant-chord wing of sweepback 45 deg it is
about 2. .

0-637 <

< 0-751. N 27

true

+ With swept-back wings, the local aerodynamic centre at the root lies aft of the quarter-chord point, and the forward
shifts of manoeuvre point are less than those quoted, so that the accuracy of the formula is somewhat greater than the
inequalities (44) would indicate.
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To assess the accuracy of the formula when the bending stiffness is large, we consider the slope
at x = 0 of the curve (a) in Fig. 13. This is readily deduced from equation (39) to be 0-020825.
With the original bending assumptions of section 1.1 the shift of manoeuvre point due to elastic
twist in the case of infinite torsional rigidity (Ds = 0) can be derived from equation (27b) and
Table 2 in the form:

9Cy
As(acL V)W = 0-020825{tan ¢ OBy} . .. .. .. .. (45)
4 tan qS(l — VVE)

This linear function of x = QB;tan ¢ is plotted as curve (b) of Fig. 13 and it will be observed
that curves (a) and (b) have the same slope, viz., 0-020825at x'= 0. Now in the neighbourhood
of y = 0, where the bending stiffness is very high, elastic deformations will be so small as to
have negligible effect on the lift distribution and accordingly the assumptions used in deriving
equation (27b) are valid in this region. Curves (a) and (b) therefore both have the correct slope
at x = 0.

It is thus established that the correct curve in Fig. 13 should be tangential to curve (b) at y' = 0,
and at 100/y = 0 should have an ordinate lying between 0-25 and 0-212, according to aspect
ratio. TFurthermore, it is reasonable to assume the general shape of the curve to be that of
curve (a). Curves (c) and (d) of Fig. 13 have been drawn to satisfy the above conditions, and
are considered to give a good approximation to the true shlft of manoeuvre point for wings of
infinite and small aspect ratio respectively.

From equation (40), the slope at x = 0 of the curve (@) in Fig. 14 is seen to be 0-2275. With
the original bending assumptions we have from equation (10) and Table 2, putting Dy = 0:
ot

Q y=0} __ nN.
(1_%)(%) A( a%)_02275
W BCL A/fm

This linear function of x = QB;tan ¢ is plotted as curve (b) of Fig. 14 and it will be observed
that curves (a) and (b) have the same (correct) slope, viz., 0-2275, at x = 0.

(46)

QB; tan ¢

If we approach the limiting condition of the wing of zero bending stiffness by considering a
narrow central strip of wing of area S supporting a load #(W — W,), with the factored wing
weight nW,, supported by the remaining area S{1 — (4S/S)}, it is evident that as 45 tends to
ZETO (correspondlng to zero bending stiffness) the limiting value of 4 (de, _o/0%) derived from

consideration of the outer wing area (which tends to S) will be finite, while the limiting value of
A(doy/dn) corresponding to the central strip whose area tends to zero, will be infinite. In the
limiting condition there would thus be an infinite discontinuity in angle of attack on either side
fo the wing centre-line for any non-zero value of the load factor .

The foregoing does not appear to provide a basis for modifying curve ( a) of Fig. 14. It seems
reasonable to assume, however, that over the practical range of values of x (up to x = 25 say)
the order of accuracy of curve (a) of Fig. 14 should be about the same as that of curve (a) in -
Fig. 18.

11. Comparative Calculations of the Effect of Elastic Wash-out by the Methods of Ref. 1 and of the
- Present Report.—Of the various contributions to the shift of manoeuvre point of the wing alone,
only that due to elastic wash-out is likely ever to become dangerously large and to necessitate
special counteracting measures. It has therefore been considered desirable to obtain an indica-
tion of the probable accuracy of the present method of estimating elastic wash-out and its effect
on manoeuvre point, by carrying out comparative calculations for a particular example, employing
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in turn the methods of Ref. 1 and of the present report In applying the latter method, the
theoretical value (8C,/d¢),s for unswept wings was first used for the effective local lift slope
corresponding to a wash-out. After comparison with the results obtained by the method of
Ref. 1, this was modified to (8C,/0a),,, for the particular wing under consideration and to
(aCy/ aoc) a/ms (M =3 + tan ¢) for the general case. (For details, see section 11.1 and Appendix I.)

The data assumed and a summary of the calculations are set out in Appendix II. It was thought
desirable to consider a wing of fairly high aspect ratio and large sweepback angle in order that
the effect in question should be large; the combination of 4 = 6; ¢ = 45 deg, was selected
because for this plan-form, the basic lift distribution, calculated by a lifting-plane method, was
available in Ref. 9, while the incremental lift distribution due to wash-out could be readily
estimated by the method of Ref. 10.

Bending and torsional stiffnesses were assumed in accordance with equations (14) and (1a).
putting I, = F, = 1. It was realised that in the case of a particular aeroplane, the stiffness
distributions would almost certainly differ from those assumed, so that for the application of the
method of this report, it would be necessary to estimate approximately the values of F, and F,
which would make the distributions given by equations (14) and (la) equivalent to the actual
distributions, which could themselves be used when applying the method of Ref. 1. There
seemed no point, however, in introducing artificial discrepancies between the distributions
assumed for the two methods in this example, which thus serves purely to indicate the extent
to which the inaccuracies of the aerodynamic assumptions affect the estimations of the shift of
manoeuvre point-due to elastic wash-out by the method of this report. .

The principal results for the maximum diving speed of the aeroplane (g = 1070 1b/{t?
Q = 21-4) are summarized in the following table and in Figs. 15 to 20.

TABLE 3
. . Present Present
Method of method using method using
Ref. 1 aC oC
{(Lyon) a_L) 8 L)
* /a3 &/ i
oG
Ootp
= 0-743 0-700 0-723
o)
Doy /y
Forward shift of manoeuvre point due to elastic Wash-out 0-133 0-172 0-155
A2z X m.p. ‘
¢
- Increase in fuselage angle of attack 0-0048 0-00597 0-00533
<8ay 0 ) ‘
Ao, _gforn=28 . 2-20 deg 274 deg 2-44 deg

11.1. Dizscussion of Results.—The method of the present report as originally applied appears
to overestimate the shift of manoeuvre point by approximately 30 per cent and the increase in
fuselage angle of attack by nearly 25 per cent. This can be accounted for by two facts:
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(@) Due to the assumption of uniform basic lift distribution right out to the tip, the elastic -
wash-out is overestimated by about 12 per cent over the inboard 70 per cent of the semi-span
and by an increasing amount over the remaining part of the span (see Fig. 19).

(It should be observed, however, that if the bending-stiffness distribution of the wing considered
were to correspond, not to a uniform basic lift-distribution, but to the actual lift distribution
(as it would, presumably, in practice) then the elastic, wash-out as calculated by the method of
Ref. 1 would be greater than that indicated in Fig. 19. It should, in fact, be more nearly equal
to that calculated by the present method, which would remain unaltered since the bending-
stiffness distribution to be used in this case is implicit in the method and is, in fact, that originally

assumed. ‘

This result is to be expected since the combination of lift and bending-stiffness distributions
used in the present method is such as to give a uniform spanwise stress distribution at low speed
(the stress being equal to the proof stress at proof load factor). The bending deflection curve at
low speed is accordingly independent of the individual lift and stiffness distributions and should
be 1dentical with that derived using Ref. 1. At high speed the result is affected by the interaction
of the deformations and lift distribution and thus depends on the assumed lift distributions for
¢ wash-out without lift “which are different in the two cases.

Calculations show that in these circumstances, the present method underestimates the wash-out
at maximum speed by amounts which vary from less than 6 per cent over the inboard 70 per cent
of the span to a maximum of 12 per cent at the tip.]

(b) The approximate strip-method which is used to estimate the aerodynamic effects of elastic
wash-out, and which in the first instance, assumes a mean effective local lift slope equal to
(0C,/9w) 4,5, leads to a gross overestimate of the lift increment due to wash-out over the outer
20 per cent of the semi-span, where the lift increment should actually decrease rapidly to zero at
the tip itself (see Fig. 20). In order to assess the magnitude of this effect, an estimate has been
made of the mean effective lift slope which, used in conjunction with the mode of wash-out
calculated by the method of Ref. 1, gives the correct value for the shift of manoeuvre point as
calculated by that method. This was found to be 1-97 as compared with the value of 2-30 of

(BC—L/BOL)A/;;.

The calculations using the method of this report have been repeated employing this reduced
value in place of (8C;/9a),;. The resulting change in the incremental lift distribution due to
distortion is shown in Fig. 20 and the revised values of [(0C.[dar)/(2C,[0us),], A(x,,[c) and
Aa,_, are given in Table 8. It will be noted that the initial differences from the values obtained
by the other method have been approximately halved; the residual differences are due to (a)
above.

The reduced value of 1-97 for the mean effective life slope is found, by interpolation in the
results of Ref. 9, to correspond to an aspect ratio of approximately A/4. This result is used in
Appendix I as the basis for a proposal that, in general, the mean effective lift slope corresponding
to a wash-out should be taken to be (9C,/3a) 4, with m given approximately by m = 8 -~ tan ¢.
This should reduce very considerably the errors arising from the aerodynamic approximations
involved in the calculation of the effect of elastic wash-out on manoeuvre point by the present
method. Although the method, as applied to wings of constant chord, may remain somewhat
less accurate than that of Ref. 1, it has the important compensating advantage (apparent from
the summary of calculations set out in Appendix III) of affording a great saving in time, by
eliminating most of the laborious computational work involved in the latter method. If the
present method is applied to wings with taper, or to wings having stiffness distributions other
then those assumed, there will of course, be some further loss of accuracy.

The present method is, therefore, particularly to be recommended for investigations in which
great accuracy is not the first essential, but which require a rapid assessment of the effect of
varying selected design parameters.
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TABLE 1

The Contributions to AW( o

V,'q) '

L

Increment

Due to :

Given by
equation number

Formula

(a) Criterion %* — K7°* < 0 }

(b) Criterion %* — K7 >0

“

0Cuw
aC,

)

Elastic camber arising from rib
bending and spar bending

(26)

D@

DyQ

“

aC.M w

oC,

)

Elastic wash-out due to wing torsion
and bending

() (27(a))
(6) (27(b))

. dD . dH|
0-041654 tan gb{% +d_14,} 0]

D,Q(— 0-02083D, - 0-04165D,)

0Cy Direct effect of bending on the pitch- (&) (28) see section 4.2.1 D D,Q
A1+4< Yol ) ing moment of the inertia and
L aerodynamic forces acting on the
© wing
o : . dD dH\ [ %
0Cuw Fuselage interference in connection | (@) (29) and (18) | D;Q <0-455 — 4+ 0-285°~ || =
A5< ac ) with wash-out dan an /) \oCyz/ 4 .
v () (29) and (10) D,0(0-3125Dg — 0-455D,)
Note : Expressions for the construction figures Dy, . . . Dy are given in Table 2.

The derivation of the quantities d.D/dn, dH [dn is given in Appendix II ;
the construction figures involved, B, .

.. b, are given in Table 2.



TABLE 2

'. : . 2
The Construction Figures Dy, ... Dy and By, . .. B, Reqmred wn the Calculation of A4y, (a(C,“M )
LVa
Fig. Formula Equation in text
A tan ¢ -
D, 150m,<F, ®)
D, A(@_@) tan ¢ (27b)
aOC Alm
’ . Fma.x aC
Dy 20y —— S ( o A/mtan ¢ (29)
1
D 180 e F
(wings with ribs in flight direction) . (26)
1 [cos2 ¢ + 2 sin? qS:I '
480 frgz| Fop, 7,
{wings with ribs perpendicular to elastic axis)
A4 (ED), W o ( > 8a> ' :
D 1 —  cos? YWCho— 3
5 B sin 2’¢[ (E7)," ﬂ [C’”’ W oo =% )oe\ac (28)
D ( ) 6F+ Aey Z%z) ' ‘
Where — = 4Q | (26a)
B, 1.275 (ep + dey) (1 — Ff ) (acL> (15)
Q*F. ¢ (1 92/ ajm . Appendix 1T
Q F, ¢ W ( B c_5> 00/ 4pm Appendix 11
By acL> - (17)
. Afm Appendix I1
75n,0F, (1 _ %ﬂ)
WT
B, W”’Ba
Note : (1) By* is the value of B, When Aepfc = D,Q*.
(2) m ==3 4 tan ¢
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PA RT I

The Effect of Deformability of the Fuselage and of an Unswept Tailplane

12. A General Survey of the Effects to be Considered.—To investigate the effect on manoeuvre
point of deformability in any part of the aircraft structure, we have to compare the pitching
moment of the actual (deformable) aircraft with that of the corresponding completely rigid
aircraft, at the same speed and load factor, which.implies the same wing lift coefficient*, and
hence the same angle of attack of the wing mean no-lift line. The most important effect of
fuselage and tailplane deformability will be to change the angle of attack (and hence the pitching
moment about the aircraft c.g.) of the tailplane. This angle of attack will also be influenced by
deformability of the wing and of the wing-fuselage attachment. Since the geometrical relation-
ships between the angles of attack of the tailplane, fuselage and wing of a deformable aircraft are
somewhat complicated, we shall, at the outset, need to define them precisely.

12.1. The Geometry of a Deformable Fuselage and Tailplane in Relation to a Deformable Wing.—
First we consider a side elevation of the hypothetical, completely rigid aircraft (see Fig. 21a).
It will clarify the argument, without fundamentally affecting it, if we make certain simplifying
assumptions. We will assume the undeformed wing to be of constant chord and constant
symmetrical section, and to have no wash-out. Then the camber-line of the undeformed root
section will coincide with its chord line RR’ which will also be the no-lift line of the section and
will be parallel to the wing mean no-lift direction.

Let C be the three-quarter chord point of the section; then since the zero-lift d1rect1on of a
section coincides approximately with the tangent to the camber-line at the three- -quarter chord
.point, C may be taken as a wing-root reference point and CR, the no-lift direction, as a wing-root
datum line. We will now suppose the wing elastic axis to intersect RR" in a pomt E, and assume
for bending considerations that the fuselage is encastré at a section through E, which may be
adopted as a convenient fuselage reference point. Then if F is the point of the fuselage coinciding
with C, EF (regarded as the tangent to the camber-line at E) may be taken as a fuselage datum
line, coincident with the wing root datum line. The inclination of EF = CR to the wind direction
will give both the mean angle of attack @, of the rigid wing, and the angle of attack «, of the
rigid fuselage, corresponding to flight at a given speed " and load factor #». The root section of
the fuselage may be assumed to lie in the plane through E to which EF is normal, and if this plane
is represented in side elevation by N'EN, then (EF, EN) represents a pair of rectangular axes
~ to which deflections of the fuselage and taﬂplane may conveniently be referred. In particular,

the angular setting ., of an arbitrary chordw1se section of the tailplane will be measured relative
to EF.

Fig. 21b presents the correspondmg p1cture for the actual deformable aircraft at the same
speed V and load factor #. The wing mean no-lift line must still lie at an angle of attack &, to
the wind direction, but owing to the effect of elastic camber the wing-root section will have
changed its Shape—the camber-line having become curved—while due to elastic wash-out, the
wing-root datum (no-lift direction) as given by the tangent to the new camber-line at C, will -
have changed its direction relative to the mean no-lift line by an angle 4,x,. If the W1ng—fuselage
attachment is completely rigid, the fuselage datum will lie along EF,, the tangent to the camber-
line at E, and will be inclined at an angle 4,0, to the wing-root datum ; the fuselage-root section
will be represented by EN, normal to EF,. In the more general case of a deformable attachment
(see section 14.3) the frame of reference (EF,, EN,) will have moved through a further angle
Ao into the position (EF, EN). The angle of attack of the fuselage datum to the free stream
will now be given by:

' oy = oy, + diog + Az“z:‘]’ Aoy .

Deformability of the fuselage, the tailplane, and the tailplane-fuselage attachment will have

changed the setting (relative to the fuselage datum ET) of the arb1trary chordwise sectlon of the
tailplane by an amount 4%z, .

* Here we are ignoring the tail lift in comparison with the wing lift.
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With the fuselage datum and its relation to the wing-root datum and wing no-lift direction
thus clearly defined, we may proceed to discuss in general qualitative terms the effects on
manoeuvre point of wing, fuselage and tailplane deformability (including fuselage-wing and
tailplane-fuselage attachment deformabilities), before developing in detail a method of deter-
mining quantitatively the effects in question. '

12.2. Qualitative Survey.—To focus ideas clearly, we may consider an aircraft with wings
having a sufficient degree of sweepback to ensure that the effect of bending deformability on
local angle of attack exceeds that of torsional deformability. Then, as may be deduced from
Part I, there will be a forward shift of the manoeuvre point of the wing alone, due to wing
deformability. At the same time, for a given speed and positive increment of load factor, the
wing-root section will acquire an additional negative camber, and an increased angle of attack,
as compared with the corresponding rigid wing. - Then, as explained in section 12.1 and Fig. 21,
if we assume for the moment that the wing-fuselage attachment is completely rigid, the angle of
attack of the fuselage datum will be increased by an amount (4,ex + 4,0z), and consequently the
(generally) destabilizing pitching moment of the forces acting on the fuselage will be increased, .-
thus giving a forward shift of manoeuvre point. .

If the fuselage, tailplane, and tailplane-fuselage attachment were completely rigid, the setting
of the tailplane relative to the wing mean no-lift direction would also increase by the amount
(dy0p + Ay0z), and its angle of attack would increase by some fraction of this amount, depending
on the additional downwash at the tail due to the < wash-out without lift * distribution of wing
angle of attack. Accordingly, the stabilizing effect of the tailplane would be increased, and the
manoeuvre point shifted rearward, thus offsetting, at least partially, the destabilizing effect
of the wing alone. '

In the practical case, where the fuselage and tailplane (unswept) are not completely rigid, the
bending of the fuselage, and the torsion of the tailplane, will give rise respectively to negative
and positive* increments of mean tailplane setting, with.corresponding negative and positive
increments of stability. | ' ‘

For a high-speed aircraft with highly swept wings of moderately large aspect ratio (4 == 6),
the net increase in stabilizing tailplane effect, due to wing, fuselage and tailplane deformability
will probably not be sufficient to offset the combined destabilizing effects of wing and fuselage.
Thus in an illustrative example worked out in section 17.2 for an aircraft of the plan-form
illustrated in Fig. 23c, the various shifts of manoeuvre point at the maximum permissible dynamic
pressure were as given in the following table:

Shift due to Forward shift Rearward shift
Effect of wing deformability on manoeuvre point of wing alone .. -0-155¢ —
Effect of wing deformability on fuselage angle of attack .. .. _ 0-050¢ —

Effect of wing, fuselage, and tailplane deformability on tailplane

contribution .. —_ ‘0-095¢

The net forward shift of manoetvre point was thus 0-11c.

12.2.1. The effect of elastic attachments of the wing and the taslplane to the fuselage.—Any inherent
deformability in the attachments of the wing and the tailplane to the fuselage may have
important effects on the manoeuvre point. At the same time, by appropriate design of the
attachments in question, deformability may deliberately be introduced as a means of adjusting
the stability of the aircraft.

* Assuming the aerodynamic axis of the tailplane to lie ahead of its elastic axis.
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In analysing the effect of an elastic attachment, it is convenient (see 14.3) to substitute for the
actual deformability, a ball-joint, located at a point of the wing (or tailplane) root region, which
may be regarded as the elastic axis of the attachment, together with a torsional spring restraining
the relative angular deflection of the wing (or tailplane) and the fuselage. ‘The direction of the
relative deflection will depend on whether the axis of the attachment is located ahead of, or

behind the point of application of the resultant aerodynamic and inertia force acting on the
surface due to change of load factor.

In the case of an elastic wing attachment, the deformability will give rise to a third increment
Asap in the fuselage angle of attack. If the increment A5 corresponding to a positive increment
of load factor is positive, both the stabilizing fuselage effect and the stabilizing tailplane effect
will be increased, so that the resultant effect may be either stabilizing er destabilizing. Opposite
effects will, of course, result from arranging the attachment to give a negative 4zuz .

~In section 14.3, rough limits for the quantity 4, are determined from considerations of
. flutter and of the additional weight of the elastic attachment. For the example of section 17.2,
the maximum effects on manoeuvre point were estimated to be given in the following table :

Sign of dyuy for positive Maximum increment in reé.rward (stabilizing) shift of manoceuvre point due to:

i t of load fact . .

nerement of foac factor The fuselage - The tailplane Fuselage and tailplane.
Positive .. .. .. .. —0-165¢ 0-256¢ 0-091c
Negative .. .. . .. '0-165¢ —0-256¢ - —0-091c

It will be observed that the net forward shift of manoeuvre point (0-11¢) due to deformability
of the wing, fuselage and tailplane at the maximum permissible dynamic pressure, could be
practically eliminated by a suitable elastic attachment of the wing.

The effect of an elastic tailplane attachment will be considered in detail only for the special
case where the axis of the attachment is located at the elevator neutral point, so that the effect
of the attachment deformability is to increase the angle of attack, and hence the stabilizing
moment, of the tailplane, when the aircraft is subjected to a positive increment of load factor.
Limits are set to what may be achieved in this way, by considerations of tail unit flutter, and of
elevator effectiveness. Only the latter aspect has been considered in the present work (see
section 13.3), and on the assumption that the minimum permissible elevator effectiveness factor
at the maximum dynamic pressure is 0- 2, the maximum stabilizing effect of elastically mounting
the tailplane of the aircraft considered in the example of section 17.2 was -estimated as 0-40c if
the wing attachment was rigid, or 0-68¢ if it had the maximum permissible deformability. In
either case, the overall effect of aircraft structural deformability at the maximum dynamic
pressure, would be a large rearward (stabilizing) shift of manoeuvre point.

It is hoped that this survey of the effects to be considered, will help the reader to perceive the
ends to which the inevitably tedious algebra of the succeeding pages is directed. The results of
the analysis provide the basis of the routine procedure, described in section 17.1, and illustrated
by a worked example in section 17.2, which may be adopted in numerical calculations.

13. The Deformability of the Fuselage and Tailplane Structures.—The three main effects arising
in a consideration of fuselage and tailplane deformability, as affecting manoeuvre point, are:
(2) bending of the fuselage aft of the wing
() torsion of the tailplane*

(¢) the angular deflection of the tailplane arising from the deformability of its attachment
to the fuselage.

* With swept tailplanes, bending of the tailplane would also have to be considered.
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These three deformations together produce a change 4%, in the setting %, of each chordwise
section of the tailplane, relative to the fuselage datum defined in section 12, and illustrated in
Fig. 21. In general, 4y, will vary across the span, but aerodynamically, the effect may be
assumed equivalent to a rigid-body rotation of the tailplane through an angle 4, which may be
assumed, with sufficient accuracy for our purpose, to be equal to the mean value of Az, deﬁned

by:
. 1 s }
A’?_r = QJ‘OT Anry dy s

where s is the semi-span of the tailplane which will be assumed (see section 18.2) to be of constant
chord.

Any dépends on the flight conditions, as specified by the non-dimensional dynamic pressure

dynamic pressure (g)

number Q = (Firehare2) and the load factor n. We may write (see Ref. 12):
Ang = — 05,0 — wiQ + w.n . .. . .. 47

where the first two terms are due to the aerodynamic forces arising respectively from a mean
tailplane angle of attack &, and mean elevator deflection 7, while the last term is due to the
inertia forces acting downward at the tail-end of the aircraft. The coefficients w,, w, and @,
may be referred to as ¢ deformability coefficients ’; w, and w, are each due partly to the deform-
- ability of the fuselage, and partly to that of the taﬂplane and its attachment, while w,, is due
almost entirely to deformability of the fuselage and of the fuselage-tailplane attachment since
the elastic and inertia axes of the tailplane will be nearly coincident.

18.1. The Bending Deformability of the Fuselage—The contributions to the deformability
coefficients arising from fuselage deformability are due to vertical bending of the rear fuselage.
It should be noted that the bending deflections may be accompanied by a bodily rotation of the
rear fuselage in the vertical plane, due to shear in the neighbourhood of the wing attachment
(see Fig. 22). This rotation which, as observed in Ref. 2, section 3.30, may increase the change in
tailplane angle by as much as 50 per cent, does not, however, affect the deformability coefficients
as defined above. It may be regarded as a contribution to the deformability of the wing-fuselage
attachment which is discussed in section 14.3. -

To derive an expression for the vertical bending stiffness of the fuselage, we shall first assume
the structure to be just strong enough to withstand the ultimate design loads arrived at from
strength considerations. It should, however, be borne in mind that a minimum value for fuselage -
stiffness is set by the stiffness criterion of Ref. 13 (a), paragraph 7*. In many cases, the criterion
will be automatically satisfied if the fuselage has adequate strength, but in other cases, particularly -
where the aircraft has a very slender fuselage, combined with a large maximum dynamlc pressure
* number Q*, and a high Mach number, it may be necessary to provide a reserve of strength in
order to satisfy the stiffness criterion (see section 13.1.1).

For an approximate numerical calculation, we consider the fuselage to be replaced by a beam
of constant depth %, encased at the section through the elastic centre of the wing-root section,
normal to the fuselage datum (see section 12). We suppose the beam to be loaded with a force
.P, acting at a point to which we shall refer as the ‘ elevator neutral point '+. P, is assumed to
be sufficiently small to avoid straining the beam beyond the elastic limit. We suppose the .

* Footnote (1956): Certain Ministry of Supply Design Requirements were ‘ built in” to the method of this report.
These requirements were those currently appearing in A.P. 970 when the report was written (1949-50). In the
meantime, various amendments have been introduced into A.P. 970, but it has not been thought worthwhile to revise
the text to take account of this. Accordingly the details given against item 13 in the list of references are those
appropriate to the year 1950. However, a footnote has been added to the list to indicate Where the corresponding, -
but not necessarily identical, requirements are now set out in A.P. 970.

t 1.e., the centre of pressure of the additional aerodynamic loading on the tailplane resulting from a change of elevator
angle at constant tailplane angle of attack,
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elevator neutral point to be at a distance /, from the aircraft centre of gravity, and the latter
point to be a distance /; aft of the section at which the beam is assumed to be encased. Write

Zﬂ’ - Z.” —l— lG . .
Let 4 P;, denote the design tail loads corresponding to proof load factor (equal down- and
" up-loads being assumed for simplicity). Now suppose the flanges of the beam were designed
so that when the load P, acting at the elevator neutral point was equal to + P, the stresses

in the compression flange were everywhere equal to the proof stress. Then if By denoted the
bending moment at any section, we should have: . : ‘

B

T |

. S T O,
d By _ @z
an I, de2

where #, is the proof compressive stress for the material of the flanges (< #,, the proof tensile
stress),

I F is the moment of inertia of a cross-section of the beam,
d*z[dx" is the curvature of the beam,
and E is Young’s Modulus.

It would follow that the change in tailplane setting die to a downward tail load P, was :
(AWT)F:(CZ_Z)' _Bpll’z%é’— .
x=ln’

)., “LE"TEh
and for a tail load P,, measured positively downwards:
_p2 P
(AnT)F - E h PTp’
or since Zf;j, = I]:;u s |
where f, is the ultimate compressive stress and P,, the ultimate tail load,
_ f.2," P,

(Anr)e =5 5" 5.

If now, we introduce a fuselage rigidity factor F F(> 1) to cover cases where there is a reserve
of bending strength, we have: :

(anr) _ 1 f2 1
F

873,, FeE b |Pr,|
or

anT) 2L 1

2Ty g S

(aPnF 'F h IPTul (49)
where | KF:L]:”—

If the depth %, of the fuselager structure taking bending, is not constant along its length, we
may replace % in the above formula by a mean value % defined by :

i Lt ()

where # is the distance along the fuselage datum measured from the wing attachment.
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The distribution of bendmg rigidity (EI ) is given by equation (48), with the rigidity factor Fj
incorporated, as: ‘

EBih _ . EP(l, —x)h

E Pyl — x)h
— Fch—-Z——. (50)

We now consider the beam of depth %, with stiffness distribution corresponding to (50), under a
load P, < P;, (measured positively downwards) acting at the tailplane neutral point, whose
distance from the aircraft centre of gravity is denoted by Z,. - Writing

oc = Zoc + lG »
we readily derive the curvature of the beam in the form:

P2 Pyl —x) Pl —x2f 1
&~ EI,  Prl —xhEF;’

and integrating with respect to x between 0 and 7,, and then differentiating with respect to P,
we obtain the result:

() _i(d_z‘) I U U A Ty
oP,), 0P, \dx)._,,  Fy|Pr,JE & Jya—¢""°

where ¢ = %/l and @ = [,[l,’. Evaluation of the integral leads to the equation:
(anT) —K,2 2K 1

é?a h IPTuI .
: , PR/ L' . .. .. .. .. N 62 ))
where ’ -Ka_l, Z,lg (M) .
and 8 =1"—1

The centre of grawty of the rear end of the fuselage, including the complete tail unit, will
usually lie somewhere between the points of application of the forces P, and P,. Hence if P,
- denotes the inertia force acting at the tail, (9y./0P,)r will lie between (anT/ 0P,)r and (anT/ oP,)r,
and as a reasonable approximation, we may assume :

e\ o 2 1 ' |
(é—P—)_KF—k—P;. P )

13.1.1. The fuselage vigidity factor Fo—The factor F must clearly not be less than unity ; in
addition it must be sufficiently large to ensure that the stiffness criterion of Ref. 13(a), paragraph
7 is satisfied. With the parabolic bending mode assumed in section 13.1, the fuselage vertical
stiffness F,, of Ref. 13(a) is given a,pprox1mate1y by:

(P4, )

L

using equations (49), and the minimum value which will satisfy the criterion is given approxi-
mately by the equation: :

s (i) =12
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where @, is the dynamic pressure number and 1/8, = 1/4/{1 — Mach ‘number)®} is the
corresponding value of the Prandtl-Glauert factor approprlate to the d651gn diving speed at a
height of 10,000 feet,

S, S are respectively wing and tailplane areas,
and W is the all-up weight of the aircraft.
It follows that F, must not be less than:

Sr
FF0:12'1f S

'f:o]fQ

i

% 3 e 23

Pr]
and hence we must have:
Fy,>1-0and F, > Fyp,. .. .. .. . (54)

18.2. The Deformability of the Tailplane.—Deformation of the tailplane comprises bending and
twist. Bending of the tailplane affects its lift, and in consequence the aircraft pitching moment,
only if the tailplane is swept. It is proposed to consider in this part of the report, only unswept
tailplanes, and accordingly, we shall be concerned here, only with torsional deformability. In
the interests of simplicity, we shall assume* that bending and torsion are taken by different
structural parts, and in particular that torsional stiffness derives entirely from a torsion box in
the rear part of the tailplane formed by the skin and a vertical web. We further assume that the
tailplane is cylindrical (so that tailplane chord, elevator chord and aerofoil section are all constant
across the span), and that it has only one spar, lying at a distance er behind the aerodynamic
axis. The elastic axis is assumed to coincide with the spar.

We shall base our torsional rigidity assumptions on the stiffness criterion of Ref. 13(a),
paragraph 2. In addition to satistying this criterion, the distribution of skin thickness must be
such as to ensure that when the tailplane is subjected to the ultimate design torque 7';,, the skin
shear stresses nowhere exceed the permissible design value. At the same time, considerations of
the minimum gauge which is practicable from the manufacturing point of view, will set a lower
limit to skin thickness. However a general numerical investigation, supported by current
statistical evidence suggests that the stiffness criterion will be the critical factor in the case of
most aircraft for which the manoeuvre point is seriously affected by structural deformability
(that is to say in the case of very fast aircraft of all sizes, and in the case of very large aircraft
of moderately high speed)}. Accordingly, we now consider what torsional rigidity is required to
satisfy the above-mentioned criterion. We shall assume the skin thickness and hence the section
torsional rigidity to be constant across the span, since, with such a distribution, the criterion
can be met with a minimum weight of torsion box.

The minimum torsional stiffness 7", measured at 0-8s,, which is requlred to satlsfy the cr1ter10n
is readlly shown to be given non- dlmensmnally by:

,(T)mm:g ( )Qd
Wer Ba
3 0-545 for tailplanes without end-fins
"7 1 0-852 for taﬂplanes with end-fins /
and the minimum value of the section torsional rigidity G J which is related to 7', by the equation:
1 087 ] 0-8s
— = Ay, = — T
=1, e =
* The assumption is not strictly valid in the case of tailplanes of shell design, or in the case of taﬂ?lanes with two
spars, for which some torsional stiffness is supplied by differential bending.

+ In particular this is likely to apply to all tailed designs with highly swept wings (for which the overall effects of
deformability are most serious) since the design speeds of such aircraft may be assumed to be very high.
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" is then given by:

(GJT)min —_ 7 (_&") Q_@
WSy *\S/ 8,
0-218 for tailplanes without end-fins
where : €, = ; : ]
0-341 for tailplanes with end-fins

In the above equations,
' ¢r, g, Sy denote respectively-the chord, semi-span and area of the tailplane,
W is the aircraft weight in the flight condition under consideration,
S is the wing area, |
Q. is the dynamic pressure number, and - ‘
1/8, = 1/4/{1 — (Mach number)?} the corresponding value of the Prandtl-Glauert factor,
appropriate to the design diving spéed at a height of 10,000 feet.
We now consider the tailplane under an arbitrary tail load P;. If, for simplicity, we assume
that the basic spanwise distribution of load is rectangular, with a constant chordwise position
for the local centre of pressure, and if we neglect the effect of deformability on the distribution,

the torque at a section distant v, from the plane of symmetry will be given by Tx{1 — (yr/s1)}
“where T denotes the root torque. The twist 6, at this section will be given by: .

R i Ty Yz _ Ty [ yrz]
o= [ e (1 =% o =1, T g,
if GJ; is constant. We shall assume that the change in zero-lift direction, or mean tailplane
setting (474)r due to tailplane twist is equal to the mean value of 6, given by : ;

_ T, 1 p2f 97 Tr sr
6<T GJrsy J‘o (JT , Z:ST) ayr Gfr 3" .7
on St ] '
(5—TT)T__3——G]T e e .. .. .. .. .. (56)

where for tailplanes just satisfying the stiffness criterion, G/, is equal to (GJ1)mi as given by
equation (55). More generally, introducing a torsional rigidity factor F,’(>1) to cover cases
with a reserve of stiffness, we have: ‘ :

%)-_L Sz . |
(aT”_F,’3(G]T)mm' O 7/

Now, denoting by w, ., w,, and w,,,, the values of the deformability coefficients for an unswept
tailplane with the structural lay-out described above, and with a completely rigid attachment
to the fuselage, we have (from equation (47)) :

w __1(3"7_T) _ 1[(8_%) 0Py | a’?f) aT“}
=0 Q Gl o——Q 0P,/ r oty (aTraT dor

w :_1(%)’__1[(8_%) QJ_%JF(%) a:ru]
" Q om/o Q 'aPnF on 'BTTn r 0n

Thus we have

V
‘o
X

_' Ian; s on ¢ aP';n onNr T,
wmﬂ— (W)D ——(aPm)F 8% _*— (aTTm)T a%
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where all the derivatives of #, with respect to forces and torques have been derived above but -
the .derivatives of the forces and torques with respect to «;,  and # remain to be considered.
The derivatives of the forces are readily deduced to be:

BPO‘_M__ oC, 7\ Sz

aO(:T— (aOCT)r_‘S—W

oP, 3C, 2\ Sy

an__( )—§W L (59)-
0P, |

Tn

where the suffix , denotes ‘ completely rigid * and W, denotes the weight of the rear end of the
fuselage, mcludmg the complete tail unit. The torques T, and T, are obtained from the
corresponding forces P, and P, by multiplying — P,/2 and — P,/2 by their appropriate moment
arms about the elastic axis of the tallplane these are respectively e; and — (6/ — ¢7). Hence

0Ty, _Q (aCL T_) Sy We,

aO(T 2 aO(.T S
oT Q (oC S (60
Tn _ __ ¢ LT __T _
and , —an—”_ 2( o )1 5 W(sl — e;)

We shall neglect the torque 7, corresponding to P, since in most cases the moment arm
about the elastic axis will be very small. Thus

aTTm__'
=00 (e

Using equations (49) to (52), (55) and (57) to (61), we obtain the following approximate equations
for the deformability coefficients of the rigidly mounted tailplane:

waoﬁ(acw) [ FZKala' W S, o tr B \ .

. Doty h |Pr,| S C—T Q.
o (%Cer 2L W 5S¢ — ez Ba
Z%“(M)Imh\ 1s+% = d |
me“'KF' 7 W IPTul . : % . . (62)
) OFi§2 for taﬂplanes without end-fins
h % = = :
where 7%, 0-944
DA for tailplanes with end-fins

13.3. The Deformability of the Tailplane-Fuselage Attachment—The deformability of the
tailplane-fuselage attachment gives rise to additional terms Aw,, etc., in the formulae for the
deformability coefficients. The attachment may be considered to be replaced by a hinge, repre-
senting the elastic axis of the attachment, about which the complete tailplane is assumed to
rotate relative to the fuselage, under the cons_tramt of a torsional spring of stiffness 4. Let ¢,
denote the distance of the elastic axis of the attachment behind the axis of aerodynamic centres
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of the tailplane (considered here as completely rigid) and assume the inertia and elastic axes of
the tailplane to coincide at a distance behind the aerodynamic axis, to be denoted by e;. Then
we have:

; e, (0C; 1 ‘STWCT
Awa_ _C_T( 8951‘ )r§ A
Aw, = (8] — e,) (ECLT) iT Wer > (63)
CT 87’] » S Z‘
_(er e\ WpWer
aw = (2= 2) 5

where W, denotes the weight of the tailplane, including end-plate fins and rudders, if any.

The overall deformability coefficients of an unswept tailplane with elastic attachment are
now given by :
W, = W, + 4w,

w, = w,, + 4w, Tk . . .. (64)
wm = wmo _I_ Awm

The effect of the elastic attachment is seen to depend on two parameters, namely e fc; and
Wee/4, defining respectively the position of the elastic axis of the attachment, and the flexibility
of the hypothetical torsional spring. The latter can, in general, be varied by the designer within
wide limits, the upper limit being set by considerations of elevator effectiveness and of tail unit
flutter. For the present we consider only the problem of elevator effectiveness.

We may define an elevator effectiveness factor F, (a function of dynamic pressure ¢, comparable
with the rolling effectiveness factor F, of Part I) by the equation:

F,=1-1

[/}
where g, , denotes the critical dynamic pressure with respect to elevator reversal. It is, of course,
essential to avoid elevator reversal within the flight speed range, so that F,* = (F,),_, must be
positive ; in. fact, general strength considerations for the tail unit will impose a minimum positive
value for F,*, say 0-2. We now derive a formula connecting the effectiveness factor F,* at

g =g* with the deformability coefficients w, and w,,.

The condition for zero elevator effectiveness on pitching moment about the aircraft c.g. is

clearly:
85'('T _ Z < 877 )r

8—77_— —l:'(aCLT) '

aOCT

(65)

Now, if the elevator effectiveness is zero, the angle of attack of the wing « is unaffected by 7,
and the change in tailplane angle of attack &, due to a change in % will be equal to the change in
tailplane setting %, so that we must have:

0dr  Onr
B T . e . . .. .. .. (66)
and then, from equation (47):
08,  —w ' ' | ' :
a—ﬁ—i_l_—; .. S .. .. .. (67)
g
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Now at Q = Q,, = Q*/(1 — F,*), equations (65) and (67) are both Qalid, and it therefore follows

that:
(aCL T
1—F* Doty ),la /
___.Q__;k._._—wn aCLT)—l—rlfwa. . (S .« . .. .. k68)
( on /. ‘
The elevator effectiveness factor F,,* corresponding to a rigid tailplane-fuselage attachment is
given by : '
0CLr
.1~F770*_. ( aO‘T )rla
__Q_*___w,lo 5C. . Z}—w“ .. .. . .. .. .. (89)
( on )

where w,, and w, , are given by equations (62). From equations (68), (69), (64) and (63) we now
obtain the relationship between the elevator effectiveness factor F,* at the maximum permissible
dynamic pressure, and the flexibility of the tailplane-fuselage attachment, in the form:

1
WCT__ {Fnﬂ*_ Fn*}@: (70
7 —§<ac”)< _zm)szeA' )
S\ Bar /, 7,, Cr

The maximum permissible value of We, /4 (corresponding to the minimum permissible torsional
stiffness of the attachment) associated with a given value of ¢,/c, is obtained from equation (70)
by substituting for F,* its minimum permissible value. The corresponding w, is the minimum
(or maximum negative) permissible from the point of view of elevator effectiveness, and its value
depends to a large extent on the position of the elastic axis of the attachment. In the special
" casel where the axis coincides with the elevator neutral axis (e, =/, — /,), the deformability of
the attachment does not affect w,, so that w, = w,, and the minimum permissible w, can be
calculated from equation (68). '

If we write
By = % - A77T 3

where » denotes the angle of attack which the tailplane would have if the aerodynamic and
inertia forces acting on it had no effect on its incidence, then equation (47) gives:

Ao e wxQ — 0,70 + w,n
Nr 1 _|__ waQ .

From this it will be seen that tailplane divergence will occur if w, < — 1/Q, so that the minimum
permissible value of w, from the point of view of tailplane divergence is — 1/Q*. From equation
(68) it is clear that the minimum permissible value of w, from considerations of elevator
effectiveness is certainly greater than — 1/Q* if w, > 0 so that tailplane divergence sets the limit
to w, only if w, is negative which, in practice, can be so only if the tailplane is swept forward.

18.4. Calculation of the Deformability Coefficients : Some Numerical Approximations—Calcula-
tion of the basic coefficients w, ,, etc., from equations (62) involves an estimation of the quantity

K, = (1/F3)(f.J]E) (equation (49)) and of the ultimate design tail load Py, (including the inertia
forces on the rear end of the fuselage).

+ The general case was to have been considered in more detail in the proposed.Part IIT of this report which was,
however, never completed. ‘
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For an existing design it will normally be possible to calculate K by substituting in equation
(49), values of the various parameters appropriate to the specific design, while the ultimate tail
load P,, will be known from routine strength calculations. For rough estimates in the early
stages of a design, or for general investigations involving a qualitative assessment of the effects
of varying specified design parameters, we may derive approximations for the quantities in
question.

18.4.1. The quantity Kzp—
K . ifc_ 1 ftfc

P F,E  FREf,’ .
For materials likely to be used in practice, f,/E is approximately equal to 1/150, while f, depends
on the instabilities (such as column failure and plate buckling) occurring in the compression
members of the structure at the higher compressive stresses. For the plating and stringers of a
shell fuselage, and similarly for the struts of a framework fuselage, all of which are supported
only weakly (if at all) against such instabilities, f,/f, = 0-5. Hence for a rough approximation,
we may take

1
and we thus have, from equation (49) :

onr\ 1 .1 '

<8—R7)F—150FFzPTu .. .. . . .. . .. (49&)
Similarly equations (51) and (52) give respectively :

Co(omr\ 1 KJL' 1

(E)F*ISOFF Lep e .. (la)
and o

onz\ 1 1/ 1

(E)F_WFFWF;’ e )
where Fp>1-0and Fp > Fr,; O (<1
and from equation (53):

: A Sl W Qy

Fro=0 O403§ T Pl fy (53a)

18.4.2. The ultimate design tail load P;,—For aircraft stressing purposes, the ultimate tail
- load for a specific design must be determined from a consideration of the various flight conditions
detailed in Ref. 13 (3), and since it is impossible to generalise as to which condition will be critical,
it is not possible to give an approximating formula applicable to all designs. The reader who is
familiar with the requirements of Ref. 13 (), and expetienced in their application, will readily
~ derive for himself an approximate value, appropriate to any design, actual or hypothetical,
which is under consideration. For the non-specialist in such matters, approximate formulae are
developed in Appendix IV which should be applicable in a good proportion of cases.

. 18.5. The Effect of Wing Sweep on the Deformability Coefficients.—The expressions for w,, and
w,, established in equations (62) hold independently of the angle of sweep of the wing. It is,
however, interesting to consider how the values of these coefficients will be affected . when, for a
given design, the sweep of the wing is varied, while maintaining unchanged all the other main
characteristics. The only factors in the equations for w,, and w,, that will be affected are
l,, =1, + lsand I,/ =1, + l;. It may be assumed that the distance between the tail unit and
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the aircraft centre of gravity is not appreciably altered, and further that the wing aerodynamic
centre remains fixed relative to the centre of gravity. Then /, and /, remain unchanged and we
are concerned only with the change in /; (i.e., the distance of the centre of gravity aft of the
encastré section of the fuselage). If we assume the aerodynamic centre of a half-wing of constant
chord to lie at the quarter-chord point of the section 0-45s, from the root, it will follow that
for a constant-chord wing of sweep angle ¢, the value of /; will be about 0-455 tan ¢ greater
than with the unswept wing, and the values of w, , and w, Wﬂl be increased or decreased according
as ¢ is positive (sweepback) or negative (sweepforward)

The third deformability coefficient w,, , will be similarly affected, but in this case an addltlonal
effect of sweep arises when the sweep angle is positive; for then the inertia forces of the middle
part of the fuselage, including those of all equipment,' useful load and, in some cases, power
plant contained therein, bend the rear fuselage and therefore affect the angle of attack of the tail
unit. 'We now make a rough estimate of this effect. Denote the weight in question by W, and
consider it concentrated at a fixed fuselage location, which may reasonably be defined as lying
in the encastré section of the fuselage when the wing is unswept. When the wing is swept back
at an angle ¢, the weight W, will lie at a distance of approximately 0-45s tan ¢ aft of the encastré
section, and under load factor % there will be an inertia force #W, producing, over a length of
fuselage 0-45s tan ¢, a bending moment decreasing linearly from 0-45s #W, tan ¢ at the encastré
section to zero at the assumed location of W,. TFor our present purpose, it will be good enough
to assume the bending rigidity (EIz), of the relevant portion of fuselage to be constant and equal
to its value at the encastré section. Then from equation (50), (putting x = 0), we have:

E

2f.
== 150P; I, hF

using the approximation of section 13.4.1.

(EIF)O = PT uln,’hFF

The effect in question thus gives an additional fuselage curvature which, with our assumptions,

nWstan¢0 9(f)to zero. This

decreases linearly over the length 0-45s tan ¢ from the value FoDy il E

gives an additional 4%, equal to:

: ic)
0-45s tan & 0-9nW s tan ¢ (E
2 FFPT’L‘hZ !
o f)ns tan®¢ W, 1
— 0-2025 (E o P

1 ns*tan*¢ W, _1_
1500 L'h P, Fg
corresponding to an increase int w,, of amount
s*tan®*é W, 1
Asn == 15000,7% Py, Fa \
With negative (forward) sweep, there is no , such effect on w,, because the additional fuselage

bending now occurs outside the region between wing and tail unit. To cover both swept-back
and swept-forward wings in a single formula, we may write

s Lt w1 (1 ) )
#1800 Lk W Pp Fr 2 I o o
where the numerical factor must be regarded as very approximate.

46




It may be noted that the bending relief provided by the additional inertia forces considered
above, should make it possible to reduce the bending rigidity E [ of the fuselage and still maintain
adequate strength.

14. The Effect of Wing Deformability and Wing-Fuselage Attachment Deformability on the Angles
of Attack of the Fuselage and Tailplane.—In section 13 we were concerned only with the effect of
fuselage and tailplane deformability on the setting of the tailplane relative to the fuselage datum
defined in section 12. The contributions of fuselage and tailplane to the aircraft pitching moment
at a given speed and load factor depend, however, on their respective angles of attack which,
as already pointed out in section 12, are influenced by deformability of the wing, and of the
wing-fuselage attachment. The change in the angles of attack, arising from this source, is
measured by the angular deflection of the fuselage datum relative to the wing mean no-lift-line.
There are, in general, three contributions to this relative deflection, arising respectively from :

(a) elastic wash-out of the wing
(b) elastic camber of the wing ,
(¢) deformability of the wing-fuselage attachment.

The first of these produces an angular deflection of the wing-root datum relative to the mean
no-lift line, while (8) and (c) together produce an angular deflection of the fuselage datum relative
to the wing-root datum (see Fig. 21b). We now considér the three contributions in turn.

14.1. The Effect of Elastic Wash-out of the Wing—The Change in angle of attack of the wing-root
section due to elastic wash-out has been investigated in Part I, where the result is given by
equation (23), putting ¢ = 0%, in the form: :

(Bocy —0
on
Now if a; denotes the angle of attack of the fuselage relative to the free stream, then the change

(4,07) in az due to elastic wash-out will be equal to the change in «,_,, S0 that we have:

do oo
A (=E — A 2=
() =4 (%

on
14.2. The Effect of Elastic Camber.of the Wing.—The elastic camber of the wing, arising from
rib-bending and spar-bending has been investigated in Part I, from equations (4), (5) and (26)
of which we may deduce that the camber ratio y is given by: _ -

)=— 04550, —0-285D,. .. .. .. .. .. .. (B

v

):—0-455D7—O-285D8.. .. (T3)
Vv

dy B
“in 25 D,

where, for constant-chord wings with ribs perpendicular to the spar,
1 cos’¢ | 2sin® ¢
D= g0z | Fo * By

and for constant chord wings with ribs in the flight direction, } . Equation (26)

1
* = 180pnsF,,

D

hT This neglects the effect of fuselage width, assummg, in effect that the wing root coincides with the centre-line of
the fuselage.
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The curvature of a wing chord was shown in Fig. 2(a) to be given by :
1 8

R ¢’

positive radius of curvature R corresponding to positive camber, which is induced by negative
Lift. ' o

In accordance with the assumptions of section 12, illustrated by Fig. 21b, the deflection of the
fuselage datum relative to the wing-root datum is equal to the angle between the tangents to
the camber-line at E (elastic centre) and C (three-quarter chord point).. Hence the contribution

o

to 4 (——1E '

P ) due to elastic camber is given by:

(2] ) = [P = — (05— %) eib(3)

on
_ _gf{o.5_ ¢\
o 8<O5 c)d%’

where e; denotes the chordwise distance of the wing elastic axis aft of its axis of aerodynamic
centres; or substituting for dy/dn :

a“FI)_ 98D, (0-5 _ & : .
2 (| ) =38-26D, (05 (1

14.3. The Effect of Deformability in the Region of the Wing-Fuselage Attachment—Some
reference was made to this effect in section 1.2 of Part I when discussing the general question of the
deformability of the root region of the wing. Numerical assessment of the effect was, however,
deferred to the present part of the report. As suggested in Part I the effect of wing root-region
deformability on the angle of attack of the fuselage can most conveniently be estimated by
assuming that for the actual deformability is substituted a ball-joint, located at a point of the
root region which can be regarded as the elastic axis of the attachment, together with a torsional
spring restraining the relative angular deflection of wing and fuselage. For our present purpose,
we do not need complete data for this equivalent system ; all that is required is the corresponding

14

ooy

on ‘V
The approximate limits within which this quantity must lie can readily be estimated, in the case
of an unswept wing, by consideration of this purely torsional elastic attachment of the wing
to the fuselage. '

increment As( ) in the rate of change of angle of attack of the fuselage, with'load factor. '

If it is stipulated that deformability of the attachment shall not reduce the critical dynamic
pressure for wing flutter by more than 20 per cent (an arbitrarily chosen, but reasonable figuret)
the maximum torsional deformability due to the attachment is given roughly by:
dy| _0-20-7s
da#|  0-8 GJ.’ |
where p is the angular deflection of the wing-root section relative to the fuselage, due to an applied
torque .#, ‘ _

(75)%

s is the wing semi-span, : ‘
and GJ is the section torsional rigidity of the wing (assumed constant).

+ We are considering here the maximum amount of flexibility that may deliberately be introduced into the attachment .
as a device for adjusting the aircraft stability. The inherent flexibility of a nominally rigid attachment would -
normally be much less than this. In all cases, the flexibility of the attachment should be taken into account when
assessing the flutter speed which should still exceed the design diving speed by the currently accepted margin.

$ Equation (75) is derived from the assumption that (flutfer speed)? is proportional to the wing torsional stiffness
(applied moment per unit twist), measured at an appropriate reference section, here taken to be 0-7s (¢f. wing torsional
stiffness criterion of Ref. 18 (¢)). The relationship is applied in turn to the case with, and the case without, an elastic
attachment.
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Now dy/dn = (dzp/d,//) (d#[dn) is, like A |dn, proportional to the distance between the axis
of the attachment and the point of application of the resultant aerodynamic and inertia force
due to change of load factor. This distance may be varied by changing the position of the
attachment axis, but an upper limit is imposed by the fact that the weight of the attachment
structure will also increase in some manner with increasing distance. For, under proof load factor,
the elastic energy to be stored in the attachment structure is: :

dy dy (&Z/r!) n?,

%(%Xw)n=np:%wt()un:% d% d%

while the energy which can be stored per unit attachment weight, with proof stresses in the
attachment structure is} p?/2E¢, where o denotes the weight per unit volume of the material,
p its proof stress, and E Young’s Modulus. The weight penalty is therefore:

_1 TP
aw =13\ 7% ( )2E %
or since
np _n2
—fz’
AW—l d“") “?'

For materials of practical importance

f(fVE__({1VE
E—(F) Za (m) = = 380 ft.

Using this value in the last equation, eliminating 4.#/dn by means of the relation
dyldn = (dy|d.#)(d.4[dn) ,

and substituting for |dy/d.#| from equation (75) with GJ as given by equation (1) of Part I,
we obtain :

. c:\2

aw o WOF(1-%) g
W T 43Tt (1 — FF) (%)

where ¢ is measured in feet.

A
If —T/_II;K — 0-01 is taken as a reasonable maximum value, we obtain:

g

The deformability of the wing attachment is thus estimated to lie between two values of opposite
sign but equal magnitude, z.e.,

n 1 \/(1°43 ftl — FE*)
' % (1 — _Cf) ¢ FQ* ]
“ c

T See, for instance, < An Introduction to the Theory of Elasticity’ by R. V. Southwell (Oxford, 1936), p. 34.
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It should be noted that the effect in question may be larger with small than with large aircraft.
By introducing a ‘ root-region stiffness factor* F,, (| F,, |> 1) we obtain:

43(8% V) _ Az[i’(‘*_ﬁgﬁ J -— (11 - %)\/(1-463 ft (1 ;QF;*)) (76)
oM 1 — >

on
Combining equations (74) and (76), we have :

A further deformability effect associated with the region of the wing-fuselage attachment has
already been alluded to in section 13.1. This is the angular displacement of the rear fuselage
due to shear in the vicinity of the wing attachment. The effect which may, in some cases, be
quite large, will vary greatly according to the structural lay-out of the region concerned, and no
attempt will be made to establish a formula for it. It should be noted that the effect should
be allowed for, in estimating the vertical stiffness of the fuselage, and that an upper limit to the
permissible magnitude of the effect is therefore imposed by the stiffness criterion of Ref. 13 ()
paragraph 7.

15. The Effect of Fuselage and Tailplane Defoymability on the Manoewvre Point—As was seen
in section 6 of Part I the forward shift of manoeuvre point (elevator fixed) due to deformability -
is given by:

Axm.p. — A (aC_l'M ) .. .. .. . .. (78)
c aClL Il/',n

where C, is the pitching-moment coefficient for the complete aircraft about its centre of gravity.
To estimate the contribution of fuselage and tailplane deformability to the shift, we must therefore
estimate the effect of such deformability on the pitching moments of the forces acting on the
fuselage and tailplane. As we have already seen, the angles of attack of these components,
during a pull-out at constant speed with elevator fixed, are affected by wing deformability.
Thus in comparing the pitching moments of the forces acting on the fuselage and tailplane of a
deformable aircraft with those for the corresponding rigid aircraft, we shall be taking account
not only of the deformability of the fuselage and tailplane themselves, but also of this indirect
effect of wing deformability. The direct effect of wing deformability on wing pitching moment
is, of course, a separate matter, already dealt with in Part 1.

15.1. The Effect of Deformability on the Pitching Moment of the Aerodynawmic Forces Acting on :

15.1.1. The fuselage—In estimating the pitching moment of the aerodynamic forces acting on
the fuselage, we shall first neglect the effect of fuselage bending, which will be briefly dealt with
in section 16.1. As an approximate expression for the fuselage moment coefficient of a rigid
aircraft, referred to the wing area and wing chord, we may assume (see Ref. 11):

'r 7 (F Quy’
72 g B 2
%L oy bp? dx 2f0 By bt dx
Cyur=g5——<—— =5 e -

2 Sc

where oz’ is the local angle of attack of the fuselage axis at a section, distant x from the nose,
where the fuselage width is b;; the integration being performed over the total length /; of the
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If o, were unaffected by the wing’s presence, and thus equal to the angle of attack

fuselage.
relative to the free stream, we should have dap [0y = 1 and hence
1
. OF be? dx
Cor 7 2= 205 — S

Where j b2 dx is the volume of the body of revolution based on the plan of]the fuselage.

Defining a factor F; by the equation

F g,

f = byt dx

Fr= lebFZ dx
We. may write in general,
7 [°F

o .
aC-MF o~ ZF 4 0 F dx
aOCF v - z SC ’

where the value of F,is 1-0 if the increment in a5 has no influence on the wing’s velocity field,
but is otherwise, as yet, undetermined.

. The derivative of Cy with respect to lift coefficient is now giveﬁ by:

aCMF _0 aCMF _ Q(aCMF' V) (aa%F V)

oC, 0ot
Of the quantities occurring in this formula, only (F 7 ai; ) is affected by the elastic deforma-
V ! .

tions, and from sections 14.1, 14.2 and 14.3 we have:

(e ] ) = ]) + mon ] + ()
where the three terms are given, apart from the factors F,, by equations (73a), (74) and (76). The
quantities 4, (Z%f V) and 4, (%L%F V) correspond respecti\}ely to elastic camber of the wing, and
deformability of the wing attachment, which have little effect on the induced velocity field of

L)

the wing, and accordingly we may assume that F,, = F;3 = 1-0. The quantity 4 (aai%

il ZFbZd
Zfo rax o
_ZQ—Sc—(lfan

arises from elastic wash-out of the ng which affects its lift distribution, and consequently the
velocity field induced by that distribution. Thus in general F,, # 1- 0. We may now write

(F,a“FV) FHA(%;FV)+42(%%FV)+A3(% ) SR .o (79)

\on |y
i due to deformability is given by :
v

L

)= pas(r

and then the increment in 9 M

ddp ‘
'a’?v) S (- 1)
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where

i *
Dy=2-te—. (80a)
The factor F;,.—The factor F,, is defined by the equation:
1 !
(lebFz dx) Fp— f”ﬁ bt dx
0 o Op
g oe®| ;. |

_fo T P L (81)

where &(x) is the distribution of downwash aiong the body axis due to the wing. (Ahead of the

wing, e(x) will, of course, be negative corresponding to upwash.) The quantity g;_(x) ||‘_ ,
' . : y=0 Crs
corresponds to a ¢ wash-out without lift * distribution of wing angle of attack. The problem of
evaluating the downwash field for a swept wing with arbitrary angle of attack distribution can
be solved by one of several lifting-plane methods of which those of Schlichting (Ref. 10) and

Multhopp (Ref. 14) should ultimately be the simplest to apply. When complete details of these
‘ oe(x)
1 — -
. aocy:o cL¥
and hence to evaluate the integral (71), for any specific case. Alternatively, by performing a

series of calculations with systematic variations of the main geometric parameters involved, it
should be possible to devise charts for the rapid assessment of the factor F,.

methods are availablet, it will be a fairly simple matter to calculate the function

It may be remarked that since the fuselage contribution to manoeuvre-point shift is relatively
small, it is not usually essential that F,, should be estimated with great accuracy. The value
of the factor has therefore been estimated for a few wing-fuselage arrangements, using the method
of Schlichting (Ref. 10) to determine the downwash distribution, and from the results plotted in
Fig. 26, the reader should be able to obtain a fair idea of its value for other arrangements.

Appendix V gives details of the calculations which relate to a fuselage in the form of an ellipsoid
of revolution of axis ratio 7 : 1, associated with constant-chord wings of aspect'ratios 3 and 6,
and sweepback 0 deg and 45 deg. All the wings were assumed to have the same area, the span
of the wings with aspect ratio 6 being taken equal to the length of the fuselage. With the wings
at a conventional location on the fuselage (mean quarter-chord points at 0-4/; from nose) the
values of F,, are as given in the following table.

Typical values of the factor F, (see Fig. 26)

Aspect ratio of wing
Sweepback of wing
(deg)
3 -6
0 0-34 0445
45 ‘ 0-24 . ©0-45

+ Footnote (1956): Certain difficulties which arose in connection with Schlichting’s method were never completely
resolved and Multhopp’s method is, therefore, to be preferred when an accurate solution is required. ‘
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15.1.2. The tail unit.—We consider the aircraft flying at constant airspeed, and investigate the
derivative with respect to lift coefficient, of the pitching moment of the aerodynamic forces acting
on the horizontal tail unit. =

With the mean effective elevator éngle assumed fixed, we may write

aCMT - STZ (aCLT) aO—CT 8
= — & - 2
eCy v Sc dar /, 8C, vz (82)
where only L“_T contains deformability effects. The mean angle of attack of the tailplane, &;
IARE
may be written : :
Gr=op + (r)o + Ay — &+ 05 .. .. .. .. .. (83

where (), denotes the tailplane setting for the unloaded, and therefore undeformed, aircraft;
Any is the change in setting due to deformability (given by equation (47)), ¢ denotes the mean
angle of downwash over the tailplane span, and «, the additional angle of attack due to angular
velocity in pitch. It is readily shown that:

(2] )= L
oC.lv 2
where p, = g—pVSVZ—is‘ the ¢ aircraft relative density . Using equations (83) and (47), and noting
that 8_1:; = (), we obtain ;
oC,|v ,
9ar 1 [aaF 2s 1 ]
—| == — —= 5 Coe .. . .. (84
oC, v 1+wllal.lv 3C, V+ 21 + (84)
In this equation, %, and w, depend directly on the bending deformability - of the fuselage and
the torsional deformability of the tailplane and its attachment, while &L_F “and a—f— depend
v v

indirectly on the deformabilities of the wing and its attachment to the fuselage. Equation (84)
may be rewritten

dar| 1 [(aar’ ) | (ang 9z ) }
it — e A= — — »
aCLlV,Z 1 + wocQ aCL Vir _'_ ‘ BCL 14 aCL 14 —l— “ Q
where , |
28 ) [a(ocp — &) ] 1
—_— = . .. .. .. .. .. .. 85
<aCL V 7 . aCL Vly + 21“1 ) ( )

Comparing with the value (B&f

~L

) for the completely rigid aircraft, we obtain as the increment
‘V;] oy

Y| (%_—T— ) due to deformability :
Liv -
a(Zr| )= 2| ()
oC.lv C,|v ’ aC,v/+

o0&
v oG,
08
v aC,
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)—I—w,,,Q—waQ( V” L )

_ 1 I:A (aocp
1+wQl \aC,
Oy

oC,

:;.M‘aﬁ
1+ w0l \aC,
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We may introduce some previous results into this equation. Thus

) =2l 4Gl
ofaz) - o))+ 4]
:Q[A(a“g—;" V)+A M%“—) V} L. (8

from equations (73a) and (77). Deformability affects the downwash angle in virtue of the elastic
wash-out of the wing which it produces. We denote the ratio between mean additional downwash

and additional angle of attack of the wing at y = 0 by aaa d ; clearly this ratio cannot exceed-
' Y = 0 EL,V . o
unity. We may write ' o
b : ok du - | ' ‘
a(ZE] ) = A=) (8
(BCL V) ¢ 0oty _o| ;v on |y . 88)
Combining results (87) and (88) we have:
et GH G CH ooty — Oyo)
(5]~ 21) = o 1 i) + =)
<8CL v oC.|v ¢ on |y 00ty | LV ™ on v
and introducing this into equation (86) we obtain:
o8 08 ooty — oty_o)
Al =2 ) ( _ i ) ALAEE y=0/
' (BCL v 1 00y | Cr¥ - on -

J)=irap4 (5
(5

—w (S )| e e e (89
—l— wm woc acL V)r:| ) ( )
. . . aCMT . .. 0T | . 0%
From equation (82) the increase in —=%—| . corresponding to this increase 4 (—_ ) in (—_
L v , oC, |v oC.|v
is given by :
A(aci“ ):DwA (ai} ) : T , .
oCL v szaCZV - . U 1)
R o 0CLr
where D, = < ( o )r

To calculate 4 (&L_T
oC

L
(63) and (64) ; if P, is not known at the outset, an approximate value may be determined in

) by equation (89), we must first calculate w, and w,, using equations (62),
v

aOCT
2C,

the manner set out in Appendix IV. The quantity (

oo
Al —=2=2
( on

) is given by equation (85),
Viy .

a(“F — °‘y=0)

) by equation (73a) and 4 2 by equation (77).
14 on i% :

0
aocy=0 oLV
at the tailplane due to the < wash-out without lift * distribution of the wing. This, like the
distribution of downwash along the fuselage axis (see section 15.1.1), may be determined, for a
particular case, by a lifting-plane method such as that of Schlichting (Ref. 10) or Multhopp
(Ref. 14), and in due course it should be possible to prepare charts for the determination of
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To evalua_te the factor (1 —

) we must know the spanwise distribution of downwash



08[0a,_, as a function of wing and tailplane geometry, for typical distributions of wing wash-out.
Meanwhile, to give the reader an indication of the value of the factor in question, the spanwise
distributions of downwash behind the four wings used in the investigation of the factor F,,
(section 15.1.1), have been determined by Schlichting’s method and the results plotted in Fig. 25.
Some details of the calculations are given in Appendix V. The wings were assumed all to have
the same area S and the downwash was evaluated in the lifting plane at the same distance 1-024/S
behind the wing mean quarter-chord point in each case. Fig. 25 indicates that for unswept

0¢ | )
0y _o | TV

tailplanes of span equal to one-third of the wing span, the values of the factor (1 —

would be approximately as given in the following table:

. 0& sr 1
Typical v'ozluesA of t}%e Jactor ( 1— P EL,V) Jor < =3
Sweepback of wing Aspect ratio of wing
(deg) S o
0 0-43 © 0-56
45 0-51 0-64

15.1.3. The fuselage and tasl unit combined.—Combining equations (80) and (90), we héye:

aC dot
A(2Carer ):‘D A(F——F ) D A(—_ ) L e
(5&7],) =pea(rgy] )+ Dua(GZ|, .o

representing the overall effect of aircraft structural deformability on the derivative of the
pitching-moment coefficient of the aerodynamic forces acting on the fuselage and tail unit.

Oty

15.1.4. The complete aircraft.—The overall effect of aircraft structural deformability on the
pitching-moment coefficient derivative of the complete aircraft is obtained by adding to the last
result, the effect of deformability on the derivative of the wing pitching-moment coefficient.

8Cu _) is described in Part I,
V.

The method of estimating the latter effect, denoted by A( o

L

Thus we have for the complete aircraft:

(21,0 -5 ) - o0
oC, |vs oC, v oC, vz
- jeC oo du
— A% ) D A(F—F ):D A(-.-T ) (92
(BCL v + Dl Ton |y . oC, |v (92)
where 4 (ac“f 4 _) can be calculated from Part I, and where
L Vi '
1
ZLF byt dx
Dy = Z“Sc
Dm_—SC(aO{'T)r’
Vi (F ,%;F )is deduced from equations (79), (73a), (74), (76) and (81), and 4 (S—E—T )from
14 L . . . v

equation (89). The forward:éhift of manoeuvre point due to deformability (in terms of wing
chord) is, by equation (78), equal to the value of 4 ( 2?‘“

L

) given by equation (92).

V.o
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16. Discussion of Some Hitherto Neglected Ejffects.—The main analysis has, at some points, been
simplified by neglecting certain effects, and in reviewing these, we now consider the orders of
magnitude of the more important ones.

16.1. The Ejffect of Fuselage Bending on the Pitching Moment of the Fuselage—In estimating
the effect of deformability on the pitching moment of the fuselage (section 15.1.1) the bending
deformability of the fuselage itself was neglected. In assessing the magnitude of this neglected
effect, we consider in turn the deformability of the parts of the fuselage lying respectively in
front of, and behind the wing.

16.1.1. Bending of the front part of the fuselage—In a pull-out under load factor #, the front
part of the fuselage will bend downwards under the dominating influence of the downward
inertia forces. For the purposes of a rough numerical calculation of the maximum effect, we may
assume the relevant portion of the fuselage to have no reserve of strength, and replace the actual
bending structure by a beam of constant effective depth %, with flanges designed so as to have
the proof compressive strain at the proof load factor for the wing. Then the curvature of the

centre-line will be given by: ‘
(1) _ln
R)y  Ehmn,
Now if for our present purpose, the forward fuselage is assumed to be built in at the wing-root

quarter-chord point and x is the distance measured forward from this station, the increment in
local angle of attack of the fuselage is given by

“1 2
Asop() — — L(E)F dx= —%%g— (x > 0)
_or using the approximation
2f, 1
E 150’
Sy 1
Asop(%) z_i}img (x> 0).

The resulting change in fuselage moment is approximately equal (see Ref. 11) to:
, i g
— %gjoNﬁ (4,050 % dx

! ,
= 7—; qfON AlanFZ dx
if by = 0 at the nose of the body. Substituting for 4,x, we have

!
MMy = — 0-01 1 2 o™ 4.2 dx

),
where [,y denotes the length of the front part of the fuselage, which for simplicity, we will assume
to be in the form of half an ellipsoid of revolution. Then we may write '

br \* x\?
(meax) B 1 - (E) ’

27 2
MMy = — 0-0025 et 2

in which case

hoom,
and -
27 2
Al(ic_ﬂ )=Q§—a—(—AIMF) — — 0-0025 Jroay” @
oC, |y on\ Scqg /|, Sch mn, ‘
_ . : bl;‘mnx ? ZN B Q l
=0 0025(—0_) (?) (ﬁ)(n_)A R ()
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This corresponds to a rearward (favourable) displacement of the manoeuvre point, the approxi-
mate magnitude of which we now investigate.

Typical values for by .../c and c/k, associated with an average aspect ratio, say A =5, would
be 0-6 and 1-75 respectively, while Q/n, will seldom exceed 5-0, so that the numerical value of

. 2C
th tit A< wr
the quantity 4:(=—72

L

) is not likely to exceed 0-0016 (/y/c)®. The value of the parameter Jy/c

v

will be of the order 1-5 for an unswept wing (4 = 5) at a conventional location on the fuselage ;
this value would give a rearward shift of manoeuvre point of 0-36 per cent of the wing chord.
IyJc will decrease as the wing is swept back, and increase as the wing is swept forward. As a
maximum value we may assume 2- 5, which gives a maximum rearward shift of manoeuvre point
of 1 per cent of the wing chord.

16.1.2. Bending of the vear part of the fuselage.—A contribution to fuselage moment arises also
from the bending deflection of the rear part of the fuselage. We may write

AZ(——acyF ) = a(AZCMF)' a(AinT) — a(AzcmF)l a(A_Z_&T)
oCy |v3 o(4myr) lvz 9C. |y 3(dm) |v; 90

where (44) and (4,%;) denote respectively the equal changes of tail setting and tailplane angle '
of attack due to bending of the rear fuselage. Now

—_— = — A Fl ——= »
and from equation (89), putting terms due to wing-deformability and wing attachment-deforma-
bility equal to zero, and neglecting w,, we have:

A(ai ) _ — (:0 (9_«_ )

14

aC.|y) 1+ (w)rQ \oC,
where (w,)» denotes the value of the deformability coefficient corresponding to a completely rigid
tailplane and attachment.

With the assumptions of section 13.1, the fuselage bending line is approximately parabolic,
and hence if we now measure x forward from the elastic centre of the wing-root section, we have

Aap = 77 (Ana) (x < 0)

[+4

and the corresponding changé of fuselage moment is given by

0 . -1
AzMFzggf | Azocpbpzdngg%ﬁff * xbat dx
—ip (3 0

where [, denotes the length of the rear fuselage and may be assumed approximately equal to
1-17,’. Hence ' :

0(4:Cyp)| = 1 7
8(42771«) V,;_ZScl“’ 0

As a shape for the rear fuselage, we assume for simplicity a cone of length ., so that

R 2
xb? dx .

bF: meax (1 _i_zc—i) .
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Then

a(AszF) o~ 0. V mealea’
B(Aznr) v,% = 0-158 Ae
and ' ‘
8Cus o™ 0-158(,) 0 (bmx)z(l;) 1 (22 )
A —_ = — ) — |\ = . .. .. ..
2(. oCr w3 1 + (w,)Q c ¢/ ANoCL|y/, oY

" For an aircraft with unswept wing of aspect ratio 4 = 5 we inay take as typical values at Q = Q*:

(wa) FQ L meax loc, ( 0 &'T )
— _ —(-25;, 2= _—-0.6; *=2-8; (=£ =0-125.
’ 1 _|— (woc>FQ c c GCL Vie
Then from equation (94)
(6Csi s )
A, (=2 = _ (-
3( i 0-001

corresponding to a rearward displacement of manoeuvre point by 0-1 per cent of the wing chord.
The value of /,'/c would be somewhat higher if the wing were swept-back and lower if it were

swept-forward ; the rearward shifts of manoeuvre point would be correspondingly greater or
smaller.

16.1.3. Combined effect of front and vear fuselage bending—From the examples considered in
sections 16.1.1 and 16.1.2, the combined effect would appear to be very small for aircraft with
unswept or swept-back wings, the net rearward shift of manoeuvre point due to the effect of the
bending on fuselage moment being not more than about 0-5 per cent of the wing chord. With
swept-forward wings the net rearward shift might be as much as 1 per cent of the wing chord.

16.2. The Effect of Engine Nacelles in the Wing.—When considering the effect of elastic wash-out
of the wing in Part I, it was assumed that no engine nacelles were installed in the wing. If, in
fact, the aircraft under consideration has its power plants installed in nacelles ahead of the wing,
they will, in a pull-out at load factor #, give an additional torque in the inner part of the wing.
In making an approximate numerical assessment of the effect, we may consider the additional
torque to be due to the weight of those parts of the installation lying ahead of the wing leading

edge, the residual power-plant weight being included in the estimate of the wing weight parameter
W, (see Part I). ‘

For a typical twin piston-engined aircraft with unswept wing, we may assume the weight
ahead of the leading edge to be one-fifth of the all-up weight, and its centre of gravity to lie at a
distance 0-75¢ ahead of the wing elastic axis, so that the additional torque is — 0-075#W¢ for
each side of the wing. If the wing torsional stiffness is assumed to be in accordance with equation
(1) of Part I, the additional angle of twist per unit length would be:

( do. ) _ —0-161x(1 — F*)
o \d|y] (1 _ %)ZQ*SFT .

In practice, the torsional stiffness of the inner part of the wing will be about three times the mean
torsional stiffness so that if, as typical values, we substitute (1 — F*) = 0-8, ¢;fc = 0-25,
Q* = 15 and F, = 1-0, we obtain as the additional angle of wash-out per unit length

( da ) 0-0051%
— A -
AU o | _ |
If the distance between the two nacelle centre-lines is equal to one-third of the wing span, the angle

of attack of the fuselage will, due to the effect in question, be larger than that of the wing at
the nacelle centre-line by approximately 0-0017# radian == 0-1 » degree.
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In making a rough estimate of the effect of this additional elastic wash-out on the manoeuvre
point, we may neglect the effect on wing pitching moment and on downwash. Then we obtain

from equation (91), as the effect of power-plant moments:
)

)+ Dllodmv(
D, -+ ﬁ-@ Dy

oC,

cotp

X,
| ﬂ) =D Anac <—
nac ( ¢ QQ a%

)

— 0-00170 3D9 + T Do

Oy

- = QAnac ("%

from equation (84)

with D,, D,, given by equations (80a) and (90). . Representative values for these two coefficients
would be Dy, = 0-2, D,, = — 1-8, while for a rigidly attached tailplane, w, would be of the order
0-01, so that at the maximum dynamic pressure (¢ = 15) we should have :

Anac (x,zp) = 0'0255(()’2 — 1 '565) s g— 0-035 .
The effect is thus seen to be favourable, and of perceptible magnitude.

It is not proposed to investigate in detail the corresponding effect for the case of an aircraft
with swept wings. It may be observed, however, that an aircraft with heavily swept wings will
normally have jet power plants which are relatively lighter than piston-engine installations and
moreover, will have much smaller moment arms relative to the wing elastic axis, so that the |
torsion effect will be much smaller. Furthermore, the additional bending moment due to the
power units will now decrease the wash-out, thus tending to neutralize the torsion effect.

16.3. An effect of Deformability on the Manoewvre Point with Elevator Free—Attention has so
far been confined to the effects of deformability on manoeuvre point with elevator fixed, and it is
not our intention to enter into a detailed discussion of the ‘ elevator free ’ case. Nevertheless
there is, in this connection, one effect which should not be overlooked, since by accident or
design, it may exert an unfavourable or a favourable influence on stability.

The effect in question arises when the elevator has some form of local aerodynamic balance.
To simplify discussion, we may assume that the elevator itself is perfectly rigid, and furthermore

that its 4, ‘(: %{ ’ ) would be zero if the tailplane were completely rigid. Since the tailplane is
T |5
, , | . 0
not in fact rigid, but twists nose-up under an up-load, and wice versa, the value of a—z,:T-
- : LV
: 55
(and hence of —e
L
Consequently, for a given C,r, corresponding to a given mean tailplane setting and tailplane -
twist, there will be a contribution to elevator hinge moment due to tailplane angle of attack,
whose sign will depend on whether the local aerodynamic balance is situated inboard or outboard.
With a horn balance, for instance, the hinge moment will tend to increase the elevator angle,
and hence to produce a rearward shift of manoeuvre point, elevator free.

)Vwﬂl be larger over the outer part of the tailplane span than over the inner.
. , ,

17. Procedure to be Adopted in Numerical Calculations.—To complete Part IT of the report we
now summarize the procedure to be adopted in numerical calculations of the fuselage and tailplane
effects, illustrating it by a worked example, which will also serve to indicate the order of magnitude
of the effects, and how they are made up.
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17.1. Procedure.—1. Fuselage Contribution.—

. . . 0
(@) Calculate the following contributions to 4 (ai; ) :
12
Contribution l Due to Equation Remarks
of text
4, %‘% ) Elastic wash-out of wing (73a) For calculation of D,, Dy see Part I
12
Oap . . . Cop
4y | == Elastic camber of wing (74) | Small compared with 4, ({ =
on |y on |y
y Doy Deformability of wing attach- . .(76) F,, =41 gives maximum perniissible
s\ on |, . ment ‘ positive and negative values of this contri-
bution which may, to a large extent, be
controlled by designer

() Estimate the value of the factor F,,, either directly on the lines of Appendix V, or by
reference to Fig. 26. '

(¢) Calculate the quantity 4 (F i,

) from equation (79).
v

s
(d) Calculate the fuselage construction figure:
1
. f OF bt dx
De=2""g—

(e) Calculate
y (aCMF

00y
prmmmy A _—
oC, V) D0 (FI on

This gives the fuselage contribution to the forward shift of manoeuvre point.

) (equation (80)).

II. Tailplane Contribution.—

(@) In the first instance, neglect any deformability of the tailplane attachment, and calculate
the deformability coefficients w, = w,, and w, = w,,, from equations (62), using equation (51)
to estimate K, and equations (49), (53) and (54) to estimate K. In the absence of more precise
information, the approximation f,/E = 1/300 may be used (see section 13.4.1). ‘

If the ultimate tail load Py, (which, it should be noted, should include the relieving inertia load
due to the tail-end weight W) is unknown, an approximate value may be estimated using
Appendix IV.

0%y
() Calculate (a C

L

0y g
4 ( on

) from equation (85) and obtain values of -

Vir
242(?&
v

Oty
V) =4 (W

from the preceding fuselage calculations.

a(“F - O(y=0

on

)andA

38

) appropriate to a tailplane of the given span,

14 v

(c) Estimate the downwash factor (1 —

a%=o LV

either directly on the lines of Appendix V, or by reference to Fig. 15.
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(d) Calculate 4 ( G ) from equation (89).

L\v

(e) Calculate the tailplane construction figure :

DlD - SC ( aOCT ), )

0Cu 7 ) (95(T
= DA {—

aC, |y TG,

This gives the tailplane contribution to the forward shift of manoeuvre pomt and will normally
be negative.

(f) Calculate 4 ( ) (equation (90)).

14

(g) Maximum effect of a deformable tailplane attachment with axis coinciding with the elevator
neutyal point.— :

(i) Calculate w, = w,, from equation (62), and substitute in equation (68), with F,* equal
to its minimum permissible value, to obtain the minimum permissible value of
ww = (woc)mjn' ‘ '

(ii) Calculate from equation (69), the elevator effectiveness factor F,.* corresponding to a
rigid tailplane attachment, and then calculate the ﬂex1b1hty of the attachment
corresponding to w, = (w )rmn from equation (70).

(iii) Calculate Aw,, corresponding to the elastic attachment from equation (63) and hence
obtain w, = w,, - 4w, (equation (64)). ‘

0
(iv) Re-calculate the quantity 4 (—5.—‘_1’ ) ,
aC, | )

in equation (90) to obtain the tailplane contribution to shift of manoeuvre point
including the effect of the elastic attachment.

using the new values of w, and w,,, and substitute

ITII. Complete Avrcraft.—The forward shift of manoeuvre point for the complete aircraft is
obtained by adding the fuselage and tailplane contributions as calculated above, to the shift
for wing alone, as calculated by Part I of the report.

'17.2. Illustrative Examples.—An aircraft with the following geometry, illustrated by Fig. 23c,
has been considered :

Wing :
Constant-chord, 4 = 6, ¢ = 45 deg.

Other wing particulars, and overall aircraft particulars, as specified in the example of
Appendix III.

Fuselage :
Ellipsoid of revolution ; axis ratio =7 : 1.
Length /, = wing span.
angl g}lnejan quarter-chord point at 0-4/, from fuselage nose (Root quarter-chord point at
F,
Tailplane :
Constant-chord, unswept, without end fins,
Sy 1 e 1S, 1
Ar=40, $=3 "= T=§
Distance from mean quarter-chord point of wing to quarter-chord point of tailplane
= 2-5¢ (= 1:024/5).
Elastic axis at 0-4cr; " eyfer = 0-15.
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Additional data, assumed or devived :
© Aircraft c.g. (aftmost position):
0-4c¢ behind leading edge of mean chord.
Therefore I,= (2-5 — 0-15)c = 2-35c.
I, = distance of c.g. aft of root of wing elastic axis
= 1-5¢c. |
Therefore 1, =1, + I, = 3-85c¢.
Aerodynamic centre of wing + fuselage (rigid) :
0-25¢ behind leading edge of mean chord.

Mean depth of fuselage structure, effective in bending :
, 1 ’
. Distance between tailplane and elevator neutral points:
6l = 0-25¢, = 0-125¢ .

Therefore 4, — 1, + 8l = 3-975¢; % 6.2,
Tail volume ratio Sgi“ = 0-392. .
aO('T 4 877 4
W oz, Wr 4.
7= 0-05; , W 0-015
ooy — £) :\
—_— = == M 2
Aircraft relative density (at sea-level):
w o
H1 = mﬂ = 43 B

Crmx (plain wing) = 1-4.
Wing ribs in flight direction.
Wing rib bending factor F,, = 2-5..
Wing and tailplane torsional rigidity factorsiF., ¥, = 1-0.
Pitching moment of inertia of aircraft, less tail end of fuselage =i’ Ti?V L, with 4" = 0-075.

For the purposes of this example, assume:

Q. 0% 21-4 an.
ﬁd o ﬂ*séa-level - '\/{1 - (085)2} o 40 6 )

Reguived to calculate : :
Shift of manoeuvre point at Q = Q*, M = 0-85 (sea-level conditions).
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Summary of calculations :

Following the procedure laid down in section 17.1, the following quantities have been
calculated :

I. Fuselage.—
(a) 4, (%f ) = 0-00533. (See Appendix III, section 2.2.1.)
)
4,(%2| ) = 0-00065
on |y
dup| \ _ 0-0101 _
As(a—% V) =7 where | F,,|> 1-0.
(b) ~ F;y = 0-45 (from Fig. 26). , ,
(¢) 4 (E%F ) = (045 x 0-00533) + 0-00065 + > 2121
v ’ L e

0-0101
YO

r.r.

= 0-0024 + 0-00065 +
@ D, = 0:77; D)= 16:48.

Gl ) - a2
v o [

() 4 ( oC,
= 0-0395 (contribution due to wing elastic wash-out)

-+~ 0-0107 (contribution due to wing elastic camber)

0-165
TF,,

= 0-0502 +

(contribution due to elastic wing attachment)

0-165
Frr. )

Forward shift of manoeuvre point with rigid wing attachment (F,, — ) = 0-050c.

Limiting values of forward shift, with elastic wing attachment corresponding to F,, = 4~ 1:
0-215¢c for F,, = 1

— 0-115¢ for F,, = — 1.
IL. Tailplane—
(@) (i) Estimation of uitimate tail load Py, by method of Appendix IV :
WehaveV," = 0-8V"*; Q. = 0-64Q*

_m _ 8 o _. *
QZ—CLmax—~1.4__5 71 = 0-267Q

| Vy = 4/(0-267)V"* = 0-517V"* .
From equation (1) K = 0-102 radn/sec?.

From equation (7) — %—) = (0-0045.
1
From equation (9) [Pro| _ 0-75 (1) — 0-0455¢ ;
, 12 2-35¢ + £,0) .
or — 0-8955 g W) 0-0455E + 000247 ;

whichever is the greater.

2-35¢ + 1,(Q,)
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Values of 1,(Q) for Q = Qu, Oy :

L,(Q) = 1,(0) + forward shift of manoeuvre point of wing plus fuselage due to
deformability at dynamic pressure number Q, ‘

where 1,(0) = (0-4 — 0-25)c = 0-15¢

The forward shifts due to deformability have been estimated by the methods of Part I and
the present report as follows (wing elastic camber and attachment deformability neglected) :

Contribution due to Q=0 Q=0,
Wing .. . .. 0-123c ) 0-053c
Fuselage .. .. .. 0:033¢ 0-015¢

Total .. - 0-156¢ 0-068¢

Hence we have:
1,(0) = (0-150 + 0-156)c = 0-306¢
1,(0:) = (0150 4 0-068)c = 0-218¢,
and it follows that:

lf;%‘ = 0-0521 (the second expressions above being equal to 0-0379) ,
or Bﬁ/_“i = 0-625.

(i) Estimation of K, and Ky :
From equation (51) K, = 0-888.

From equation (49) K = Qf)(l)—FF . (%ﬁ = 3&))
From equation (83) Fp, = 2:705 .
Therefore .
From equation (54) F; > 2-705.  We take Fp = 2-705.

(Note that for the aircraft under consideration, the stiffness of the fuselage is determined by
the criterion of Ref. 13 (a), and not by strength considerations.)

1
=300 x 2-705°

(iii) From equations (62): ‘
W, = Wyo = 0-0073; w, = w,, = 0-00118.
(b) From equation (85) :

(&
oC,

Hence K

) —0-2116 .

Vir
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From fuselage calculations:

! . aO{, -0 \ . a“F o .
4 (ﬁ V) — Al(W V) — 0-00533,
?(oer — o, _o) Yy 0-0101
4| K teml| | 0-00065 + .
(c) From Fig. 25 |
(1 _ o )20-65;
aO(';]/=0 C-;L,V
\ (@) From equation (89):
35 ) 21-4 [ ' { 0-0101‘ }
A=E =210 . —0-
(52| ) = 7156 |0-00846 -+ |0-00065 + == — 0-00036
0-1872
— 0-0895 + =7
(¢) Construction figure Dy = — 0-392 X 3:5=—1-372.
R Tomn ) j 0-187
A — _ —— » . .
() (acL )= — 1872 0-0695 + 7|
0-256
= — |0-005+ 5.

Hence the tailplane contribution to rearward shift of manoeuvre point is 0-095¢ if wing
attachment is rigid, while the limiting values of the contribution, with elastic wing attach-
ment, corresponding to F,, = 4 1 are:

0:351¢ rearward shift for F,, = + 1
and 0-161c forward shift for F, — — 1. - N

Combined effect of fuselage and rigidly mounted tailplane :

Resultant rearward shifts of manoeuvre point due to fuselage and rigidly mounted
tailplane are: ‘

Wing attachment Resultant rearward shift of m.p.
Rigid ' (0-095 — 0-050)c = 0-045¢

Elastic; F,, = + 1 (0-351 — 0-215)c = 0-136¢

. Elastic; F,, = —1 (— 0-161 + 0-115)c = — 0-046¢

Maximum stabilizing or destabilizing effect of elastic wing attachment is -+ 0-091c.
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(&) Maximum effect of a deformable tailplance attachment with axis coinciding with elevator
neutral axis :

Assume minimum permissible elevator effectiveness factor F,* = 0-2.
(i) From equation (62):
w, = w,, = 0-0105 .
From equation (68):
(®o)min = — 0-0208 .

(if) From equations (69 )and (70) respectively

F,* = 0-801
(WCT) — 0-1945.
2’ max
(iii) From equation (63):
dw,, = 0-00029 .
and hence  w, = 0-00118 — 0-00029 = 0-00089 .
) L ) 21-4 [ 0-0101 :I
Adl\—=| | =—=10" . -00440
(iv) (acL ] 0-355 0-00411 + — ~+ 0-00089 + 0-004
0-3895
= jose 55
Therefore
0 . ‘
4 ( Cus ) = —1-372 30-362—|—0 3895;
aCL 14 [
' 0-534
= Jowe 22

Hence, if wing attachment is rigid, the maximum contribution of an elastically mounted
tailplane to the rearward shift of maroeuvre point is 0-496¢; the limiting values of the

rearward contribution with a deformable wing attachment are — 0-038¢ (F,, = — 1) and
1-030¢ (F,, = + 1).

Combined effect of fuselage and elastically mownted tailplane :

Resultant rearward shifts of manoeuvre point due to fuselage and elastically mounted
tailplane are: '

Wing attachment Resultant rearward shift of m.p.
Rigid (0-496 — 0-050)c = 0-446¢
Elastic; F,, = + 1 (1-030 — 0-215)c == 0-815¢
Elastic; F,, = — 1 (—0-038 4 0-115)c = 0-077¢

- The increases in manoeuvre margin due to making the tailplane attachment elastic in the
three cases are respectively 0-401¢, 0-679¢ and 0-123c.
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IIL. The Complete Aircraft—From Appendix 111, section 2.2.1, the forward shift of manceuvre
point of wing alone (elastic wash-out effect only) is 0-155¢. Hence, the net forward shifts of
manoeuvre point for the complete aircraft with the various combinations of wing and tailplane
attachments are as follows :

Attachments
No ' - Net forward shift of
' ' manoeuvre point
Wing Tailplane
1 Rigid ' Rigid (0155 — 0-045)c = 0-110¢
o . F, =1 . | (0-155 — 0-136)c — 0-019¢
z | Blastic pr__ ;| Rigd (0-155 4 0-046)c — 0-201¢
3 R'igid Elastic (0-155 — 0-446)c = — 0-291¢
(Fp* =0-2)
o L=1 Elastic (0-155 — 0-815)c = — 0-660c
4| Blastie Fm_ Ty (B =0-2) | (0-155 — 0-077)c — 0-078¢

17.3. Discussion.—The aircraft considered, with rigidly attached wing and tailplane, will, at
its maximum dynamic pressure, suffer a considerable forward shift of manoeuvre point.
Deformability of the wing attachment will decrease or increase the forward shift, according as
the root region deformability factor F,, is positive or negative. By deliberately designing the
attachment to give a positive value of F,,, the forward shift can be practically eliminated.
Either on its own, or in conjunction with a suitably designed elastic wing attachment, elastic
mounting of the tailplane is a powerful device for eliminating any destabilizing shift of manoeuvre
point due to the wing and fuselage.

It should be noted that in practice, flutter considerations may restrict the degree of stabilization
which can be achieved by means of elastic attachments, to magnitudes less than those calculated
in the above example. ‘

LIST OF SYMBOLS

A, A, Aspect ratios of wing and tailplane
Ay, A,y .. A, Fourier coefficients
B Bending moment about an axis perpendicular to the elastic axis
for the deformable wing : '
B, Bending moment corresponding to B, for the rigid wing
By Vertical bending moment on fuselage
B, B, B;, B, Construction figures (see Table 2)
Cy Elevator hinge-moment coefficient
C.,C. Local and overall lift coefficients of wing
Crr Tailplane lift coefficient
C M Pitching-moment coefficient
Chro Drag coefficient for complete aircraft at zero lift
Cop Wing profile-drag coefficient
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(EL), (ET),

—F(;: Fn Fr.b.
F

r.r,

LIST OF SYMBOLS—continued

Unknown coefficients in expression for lift coefficient (equation
(9) of Appendix II) corresponding to assumed linear and
quadratic modes of elastic wash-out

Construction figures (see Table 2)
Construction figures (see equations 23 and 24)

Fuselage and tailplane construction figures (see equations (SOa)
and (90)) -

Young’s modulus of elasticity

Bending rigidities about longitudinal and vertical principal axes
respectively

Wing stiffness factors (equations (2), (1a) and (3))
Wing root-region stiffness factor (section 14.3)
Fuselage stiffness factor (éection 13.1)

See equation (53)

Fuselage vertical stiffness of Ref. 13(a)

Tailplane torsional stiffness factor

See equation (81)

Aileron and elevator effectiveness factors (see Part I, section 1.1
and Part IT, section 13.3)

Shear modulus

Moment of inertia of cross-section of beam representing wing
taken perpendicular to elastic axis

Moment of inertia of cross-section of beam, representing fuselage
for bending considerations

Polar moment of inertia of cross-section of equivalent torque tube
taken perpendicular to elastic axis

Section torsional rigidities of wing and tailplane (sections normal
to elastic axis)

Function of (Q*B;) and (Q*B; tan ¢)—see equation (35)

- See equations (49) and (51)

Lift

Non-dimensional bending stiffness of Ref. 7.
Pitching moment

Non-dimensional torsional stiffness of Ref. 7
Torque applied about axis of wing attachment

Tailplane loads arising respectively from change of tailplane
angle of attack and from change of elevator angle (positive -
downwards)

Inertia load acting at tail (positive downwards)
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Qer

F, G, P AW, X, Y, &

U, r

3

%, %,
br
C, Cr, C¢

€y

LIST OF SYMBOLS—continued

Accelerating and balancing tail loads (Appendix IV), (posiﬁve
downwards)

Proof and ultimate design tail loads (positive downwards)

Dynamic pressure number (= Zht i)

Critical dynamic pressure number for elevator reversal

Radius of curvature of beam

Wing and tailplane areas

Wing and tailplane torques about their elastic axes

Tailplane torsional stiffness measured at 0-8s, (Ref. 13(a))

True air-speed ; equivalent air-speed

Total aircraft weight

Weight of middle portion of fuselage (see section 13.5)

Weight of tail-end of fuselage, including complete tail unit

. Weight of tailplane including end plate fins and rudders

Wing weight
Functions of (QB;) and (QB, tan ¢)—see equations (22) and (25)
of Appendix II

Functions of B,, B,, B, and B, and ¢é—see equation (21) of
- Appendix II :

See equations (55) and (62)

Width of fuselage

Wing, tailplane and aileron chords (taken parallel to plane‘ of
symmetry)

Distance of elastic axis of tailplane attachment behind aero-
dynamic axis of tailplane

Chordwise distance of wing elastic axis aft of its axis of aero-
dynamic centres '

er + deg
Forward displacement of section aerodynamic centre due to
elastic camber

Distance of tailplane elastic axis behind aerodynamic axis
Ultimate stress
Depth, mean depth, of fuselage structure taking bending

Pitching moment of inertia of aircraft less tail-end of fuselage
(weight W)

Fuselage length

Length of fuselage, ahead of wing-root quarter-chord point, and
ahead of wing mean quarter-chord point respectively

Length of fuselage aft of elastic centre of wing-root section
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LIST OF SYMBOLS—continued-

Distance of manoeuvre point of aircraft less tail, ahead of aircraft
c.g. (a function of Q)

Distances from aircraft c.g. to tailplane and elevator neutral
points respectively

Distance of aircraft c.g. aft of section at which fuselage is
assumed encastré

l, + l;, and I, 4 I respectively

=1 =1

Load factor
Proof stress
Dynamic pressure

Critical dynamic pressures for aileron reversal and elevator
reversal respectively

Angular acceleration (see Appendix IV)
Chordwise distance of inertia axis aft of elastic axis

Wing and tailplane semi-spans (measured perpendicular to plane
of symmetry)

Proof tensile and compressive strains

Deformability coefficients defined by equation (47)

Values of w,, etc., corresponding to rigid tailplane attachment
Co-ordinates relative to axes fixed in the aircraft

Increment ; increment due to wing deformability

Angle of attack ; mean angle of attack

Local angle of attack of fuselage axis in presence of wing

Additional angle of attack of tailplane due to angular velocity in
pitch

V (I — (Mach number)®) = 1 = (Prandtl-Glauert factor)
Wing camber ratio

Angle of downwash from wing

Mean value of & across tailplane span

Spanwise parameter = %

Elevator angle, mean elevator angle

Angular setting of arbitrary tailplane section relative to fuselage
datum

Mean effective tailplane settiﬁg relative to fuselage datum
Angle of wash-out of wing
Angular Velocity in pitch
Angle of twist (or negative wash-out) of tailplane
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7.b.
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v, etc.)

LIST OF SYMBOLS—continued

oy — Any = angle of attack which tailplane would have, if
forces acting on it did not affect its incidence

Stiffness of hypothetical torsional spring representing deform-
ability of tailplane attachment

W gpSI,

Air density '

Weight per unit volume of wing-attachment structural material.
Thickness/chord ratio

Angle of sweep, positive for sweepback

(@B, tan ¢)
Angular deflection of wing-root section relative to fuselage due
to applied torque .#
Sujfixes
Corresponding to actual aspect ratio
Cdrresponding to an aspect ratio 1/m times the actual aspect ratio
Fuselage
At reference section
Tailplane
Wing
Due to bending
Compressive
At design diving speed for 10,000 ft.
Flexible
‘Manoeuvre point
Corresponding to y = 0
Proof '
Completely rigid
Due to rib bending
Tensile
Ultimate

Due to torsion

Indices

At maximum permissible dynamic pressure

Other Symbols

Denotes partial differentiation with V, etc., held constant
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APPENDIX I
An Approximate Strip Method for Estimating the Aevodynamic Effects of Elastic Wash-out

1. Bending Moment in the Plane of Symmetry Due to a Symmetric Wash-out.—We establish an
approximation for the effective local lift slope corresponding to a symmetric wash-out, by
obtaining, on the basis of lifting-line theory, an approximate formula for the bending moment
in the plane of symmetry. '

Consider in the first place an elliptic wing, unswept, of span 2s and root chord ¢, (aspect ratio
A = 8s/ac,). ' . ,

Write y = — scosf
| C=1C¢psino. |
Assuming the circulation in the form of a Fourier series,
F(6)=43V2Ansinﬁ6 .. .. . . e (D
it is easily shown* that the downwash is given by: '
A wsin =V ZnAd,sinnd, .. | .. .. .. .. .. (2)
and the local lift coefficient by: A

_2r() 8 . ’
CL—T———?ZA”SIHWB. .. .. .. . ... e (3)

- But C; is related to the local effective angle of attack. Thus

cL=am(a—T—lﬁ) T
where a, = (?—g—L) .
oa /o,

Substituting for C, and w from (3) and (2), we have:

| S A mp + 1) sinnd =pasing, .. .. .. .. . (5

S S
where p=gs = 7~
Thus r {Z A, (nu + 1) sin nb} sin n6 d6 = j‘"”“ sin 0 sin #6 46 . - (6)
0 . cJo

For an arbitrary symmetric angle of attack distribution, the even terms vanish, and the odd
terms are given by:

2 L, . 2u s
Al—mfodsln Bda—mf—sacdy
and | o
An:aﬁl—)foasinﬂ sin %6 4o .

* See, for instance, H. Glauert: * The Elements of Aerofoil and Airscvew Theory > (Cambridge University Press).

73



The bending moment in the plane of symmetry is given by:
s /2
gf Crey dy = — 4qs3f % A,sinnd sin-20 46
0 - 0 ’
4
= 2¢s* % (— 1)=-n/2 o

If the « distribution is a symmetric wash-out giving zero overall 1ift, then since the total lift is

R

proportional to 4, we must have 4, = 0 and therefore, in the case of an elliptic wing fs ac dy = 0.
0

Equation (7) gives the exact lifting-line theory result for an unswept elliptic wing, and applies
to any symmetric wash-out.

If we now assume that A4, is the only non-zero boefﬁcient then:

¢, =% 4,sin 30, 7
and it follows from equation (5) that the wash-out is a parabolic one given by:
o= A8y + 1) sin 36 {As(3s + 1) (dcos? 0 — 1) .- .. .. (9)
s sin 6 b
From equations (8) and (9) we have, since ¢ = ¢, sin 6 and 4 = 8s/nc,:
oC L) wAp @, ‘
(b_« = = = a4,3 = constant;
Do 3 +1 3a, e
nA
e 1 ' oC;
by lifting-line theory [a /s = (—a—;) 4 ,3} .

Thus, in the special case of an elliptic wing with a parabolic wash-out giving zero overall lift,
we may use an improved strip method for calculating the bending moment which is given by :

Bozqf CLcydy=q(aa—Q) foccydy. . .. .. .. (10
0 X/amdo

This result is quoted in Ref. 8 by Truckenbrodt who has shown that equation (10) gives a fair
approximation to the general result (7) in the case of unswept wings with arbitrary symmetrical
wash-outs of the type associated with the problems of this report, for which the major contribution
to the zero-lift bending moment, as given by equation (7) with 4, = 0, comes from the term in 4,.

When we come to consider wings of arbitrary chord distribution it must be noted that the
strip method and lifting-line theory yield the same condition for zero lift only in the case of an
elliptic wing. This implies that in using a strip method for the calculation of the zero lift bending
moment, it is necessary, in general, to measure the wash-out from the wing no-lift line appropriate
to the strip method. Thus « is replaced in equation (10) by (x + %) where in accordance with the
strip method :

—j:occdy
e

Thus for unswept wings of arbitrary chord distribution, we may assume the zero-lift bending
moment to be given by:

k (11)

Boﬁq(a—cL) [+ heyay, O 0
) Jat 473V 0 A
where % is given by equation (11).
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For the special case of constant-chord wings,

k:—%f«@,

wi nedfS) [[eo- L asis]

_ aCL S
—Q(W)A,afo“( —5)ed.

This equation may also be tolerably accurate for unswept wings with other chord distributions,
but for swept wings, some further refinement may be tentatively suggested on the basis of the
comparative calculations for a wing of aspect ratio 6 and sweepback 45 deg (tan ¢ = 1), discussed
in section 11.1 of the report. Those calculations indicated that for such a wing, greater accuracy
would be achieved by substituting (8C,/ Ou) 40 fOr (0C,[0a) 4/5, and employing the simplest formula
of interpolation with respect to tan ¢, it may be suggested that in general (¢C./0a),,s should
be replaced by (8C,/0) 4/ Wlth m =3 + tan ¢

We are thus led to the equation:

B, —_f[(ac )A/mf:a(y —é)c.dy .. .. . N .. (18)

as representing the best general approximation in our present state of knowledge. The coefficient
m will depend on sweep angle and, to a presumably much smaller extent on aspect ratio and
chord distribution. As the best available approximation, subject to modification in the light of
future experience, we write:

m==3+tand. .. .. .. .. .. .. .. (13a)

2. The Pitching Moment on a Swept Wing Due to a Symmetric Wash-out with Zevo Overall Lift.—
We may apply the approximate result of the last section to obtain an approximation for the
pitching moment due to elastic wash-out on a constant-chord wing with aerodynamic axis swept
back at an angle ¢. If equation (12), with 4/3 replaced by A4/m is assumed to give the no-lift
bending moment for such a wing, then the pitching moment for a half-wing, referred to the
point in which the aerodynamic axis meets the plane of symmetry, is clearly given by that
equation with the moment arm y replaced by — ytan ¢. It then follows from equation (13)
that the pitching moment due to an elastic wash-out 4o, which gives zero overall lift, is given by :

AM__—Zg( CL)A/ tanqs‘f:Aocc(y—g)dy .. . .. .o (14)

where m==3 - tan ¢ .

3. Approximate Relationship Between the Local Angle of Attack and the Local Lift Coefficient.—
We can separate the local angle of attack mto two parts thus:

w=a+ da .. . U . .. .. (15)

where & is a uniform angle of attack across the span and 4o is a wash-out yielding no overall lift.
Now when we have either (a) an elliptic wing or (b) a constant-chord wing with an assumed
rectangular loading, the lift coefficient is constant across the span. It therefore follows, that
under these conditions we can write :

&zak%ﬁ... e e ..f@

Bk aCL A4
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The remaining term Aw of equation (15), which is a ¢ zero-lift wash-out ’, can be dealt with by
the approximate methods of section 1 of this appendix, from which we have derived (8C,/9¢) 4/,

(m == 3 + tan ¢), as a generally acceptable approximation for the local lift slope. We may thus
write:

0
e = CO 58],
L "

so that

»=G5) + €= ), @)

The first term is consistent with the assumption made throughout the report, of rectangular
loading for the constant-chord wing at uniform angle of attack

APPENDIX II

The Calculation of Elastic Wash-out for Swept-back Wings with Bending Effect Large in
Relation to Torsion Effect

1. Theory—If we consider the deformation of the wing to consist of bending about an axis
perpendicular to the elastic axis, and torsion about the elastic axis, we may write:

® = oy - COS ¢ fﬂ de]y’l— sin ¢ fo ﬁd\y’],
~ where o is the angle of attack in the plane of symmetry (y = 0),

« is the local angle of attack for the sectlon at a perpendicular dlstance y from the
plane of symmetry,

|3'| is distance measured along the elastic axis (so that |y|=y"|cos ),
T is the true torque about the elastic axis (positive if it reduces the wash-out),

B is the bending moment about an axis perpendicular to the elastic axis (positive if
it tends to bend the ng upwards),

and GJ, EI denote respectively the torsional and bendmg rigidities of wing sections normal to
the elastic axis.
Then

I T vyt B
a=a0+f0 —dely|—tan¢f0 Zpdlyl )

By considering the aerodynamic and inertia forces acting on an elementary chordwise strlp at
dlstance v from the plane of symmetry, we have:

ar . W, ) ‘

d(s—__mj_ CLCQ(eF_{’AeF)‘{‘?’%%sCOS(ﬁ .. - | .. . .. (2)
a*B : W,

dis — |v]) 2:00545 CLCq—%Z (3)

where ¢, is the chordwise distance of the elastic axis behind the line of aerodynamic centres of
the undeformed wing profiles,
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Aeg is the forward displacement of the aerodynamic centre due to elastic camber,
and 7 is the chordwise distance of the inertia axis behind the elastic axis.

Hence, writing ¢’ = e, —}— Aep, we have:
J

v — flylfs 171 COSqS
-+ (E;?)ncﬁw L.(l _M)Zfz_mﬁ_m Creq
S

ap, must be chosen so that

Cueges’ + 32l dis —|y]) d]y|

nogeldls —ly) ds—ly) dlyl. &)

"

Co= o )

where C, is the mean value of the lift coefficient. We now assume, in accordance with the
approximation established in Appendix I, that « may be expressed in the form:

«=Cy <8()L)A +(C—Cy) (aaCmL)A,m ’

where the suffices 4 and A /m denote that the respective lift slopes are appropriate to the actual
aspect ratio and to an aspect ratio, 1/m times the actual. Hence we may write:

~ ot oo
«=C\(g),~ ), )+ o)
t aClL A4 aC‘L Alm + aCL Afm
~a (), el -
NC g QUG NGy
Also
o
d— g = (Cy — CLO)(ac)A/m e e
We now assume the mode of deformation to be such that we may write:
2
a:a0+D"—3:—|+H'(is’), S )
where D" and H' are constants, as yet unknown. Then in virtue of equation (7):
2
CL=_CLO+D%~|+H({) e
where :
D=D (aCL) and H = H' (aCL) :
oo Alm oot Afm
Comparing with the derivation of _8% in sectiori 3 of the main text, we take *
‘ & v
€, = Cy+ 0-455D + 0-285H .. S .. .. (10)
_n | |
Q

* Equation (10) is correct for a constant-chord wing of aspect ratio 7 with the angle of attack distribution given by
(8), although it is not strictly-consistent with (9) which is derived using the approximate relationship (7).
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from equation (5). Hence

CLO=15—0-455D—0~285H, VR O )
and so ) ‘ '
cL:g+D(%—o-455)+H (yg) —0-285‘. N v

If we substitute for C,, from equation (12), then equation (4) gives the change in angle of attack
between an arbitrary section and the section in the plane of symmetry due to the lift distribution
(12) acting on a wing with the assumed distributions of bending and torsional rigidity. Equation
(7) with C, given by equation (12), gives the corresponding change derived from purely aero-
dynamic considerations. Physically, the value of (« — «,) derived from deformability assumptions
should, at all points of the span, equal that derived from the lift distribution. We therefore
equate the two expressions for (¢« — «,) in equations (4) and (7) respectively and, substituting
for C,, from (12) we obtain the following relation between the unknowns D and H:

[P ({)162),.-

coSd) nyf mH + D(IM 0.455) —|—H((%)2 — 0-285) chF’ 4 —Ig%”yn} a(s — |y|) aly]
o Mo R ARC TR
S ,

+ H%(%)z — 0-285

oW, |
g — g2 n] dls — 1) dls —ly]) dly] -
Making the substitution - N - |

Wl _ o
5 = ¢ .. .. .. . .. . . . .. (13)
and differentiating with respect to », we get:
aD H
an ¢ d% -

trt(1 . dD dH 2_‘. o m .
QBlf‘,Lg@er_n(C—O‘*%“r%(é 0285)Edéd.‘3f32fﬂfcd5d5

1 pl dH .
+tan¢QBf f“ —0-455) + 2° (éz—O-ZSS)EdCdCdC
——tangABf 1_@ ffdm:dc N ¢ 2

where _ ’ '
n» _ (9C, cep's* cos ¢ W
B= (%), er s

1-075 ¢, (1 — F.%) (ac‘L>
Afm

T ey i
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from equation (la) of the main text,

_(3C, stcosé W,
B2 - (a—m)A/m G] % 4
10757 W, (1 — F¥) aCL)

R,

c

B — (aCL) sc w
* 7\ 0 ) m (EL) cosd S
- aC

w5, (
75n,,rﬁb(1—%) oa L amm | |

 from eqﬁation (14) of the main text,

Boo (G s W
! - ( ‘?“ am (EQ)gcos ¢ 2s

- (%%) e T
75n.< F, (W’”ﬁ'— 1) Afm

W, ,
=37 B, RO § 1)

- In the expression for B,, the quantity ¢,” = ez + 4e, depends on Q, since 4e, is proportional
to Q. Apart from this secondary effect, the coefficients B,, B,, B; and B, are independent of the
particular flight condition under consideration. They depend on the geometry and the structural
features of the wing and may be referred to as ‘ construction figures .

- Performing the integrations involved in equation (14) we finally arrive at the equation:

iD .  dH ,,
St r=

0B, [¢(1 — 0-5¢) @1 + £(0-045 + 0-2275¢ — 0- 1667:%) 2D

- £(0-0483 4 0-14257 — 0-0833¢%) %] + Byr(1 — 0-5¢)
| c1 e D
—I—QB?,tan»qS[—Q@—C(O 08332 -+ 0 1058) 7
iH
— £(0-027787* 4 0-0833¢ - 0-1075) %]
+B4tan¢é. O 0.1)

This equation is always satisfied for { = 0, since both sides reduce to zero. From physical
conditions, this result is to be expected, because the expression on each side is proportional to
the difference in angle of attack between sections lying respectively in the plane of symmetry
and at distance {s from that plane. Clearly each expression must vanish in the plane of symmetry
for which { = 0. It is not possible to satisfy the equation at all other points of the span because
of the restrictive assumption that the wash-out corresponds to a superposition of only two distinct
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modes. Tt is in fact possible to satisfy the equation at only two further arbitrarily chosen points,

since D and H are then uniquely determined. As our two points we select { = 1 and { = 0-5
and substituting these values in turn, in equation (20) we obtain: :

g 0-5[(B+ By —tang (B, B)] — b [1—0-10580B, - 0- 18910, tan 4]
an (1 — 0-10750B, + 0-2186QB, tan ¢) ’
and :
- [0-375(31 + B;) — 0-25 tan ¢(B; — B4)] — % [0-5-0-0585@31+0-0738@Bs tan ﬂ
= (0-25 — 0-05460B; | 0-07810B, tan ¢) ‘
If we write :
% =05 [(Bl + Bz) — tan Sb(Bs - B4)] . . (21)
9 = 0-375 (B, + B,) — 0-25 tan ¢(B; — By) o
# =1— 0-1058QB, + 0-1891QB; tan ¢
# =0-5 — 0-05850B; + 0-07380B; tan ¢ -
@ =1 — 0-1075QB, 4 0-21860B; tan ¢ I
# = 0-25 — 0-05460QB, +-0-0781Q B, tan ¢
the two expressions for aH|dn become::
iD. dD
@_%—//%_%—%%
dn o Y o A ’
from which we deduce:
iD Zu — Y¥r _
an T W — ZY (23)
aH vy — XU
n T W — x4 (24)
or, writing _
& A . )
F = %:W,.e@://—ﬁ.l,o@———éﬁ’—{—g@ .. .. (25
dD % — FVr
=7 | (26)
dH _— 7 + %% | ‘
= (27)

From equations (7), (8) and (13):
oo
g = 2y (2=
, o (DC + A5 (aCIL.)A/m
where, from equations (6) and (11):

7 Boc) ( aoc)
=2 (2%) — (0-455D + 0-285H) (=
(X-O Q (BCL 4 ( B _l— a ) aCL A/m
— , — (0-455D - 0-285H) (-—i“—) .
' EaC‘L Afm
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Hence

do=o — o, = 3D(C — 0-455) + ﬁ( o O 285)‘ ( CL)A/W’

or differentiating with respect to # at constant flight speed V" we obtain the following relation for
aD aH

elastic wash-out:
):_ (e —0455) + 27

o
— 4 (8%

The change.in angle of attack of the fuselage with rigid root region and attachment is given by

substituting |y|= ¢ = 0 in the last equation. Thus

()
|4

on
2. Graphical Aids to N umerical Caloulation—As will be seen from equations (28) and (29), the
calculation of the quantities»A(g—Z ) and A( aog%" ) involves the calculation of dD|dn and
* . 14 14
dH |dn from equations (26) and (27) which involve in their turn, calculation of the quantities
%and 7, #,%,2 and 2. In the expressions for # and ¥° (equations (21))

52—0'285)“%‘)%. (2

II

A
0455 0-285 7% )( ) . N '
( —|— d% 6CL Alm ( )

(B.+ B) = 1FOQ7£( L 0)((11“%_5)) (%%)A/ (30
and o i
(Ba——B4)=(1—%)B3=%. N ¢ )

Apart from the secondafy effect of Q on (B; + B,) through the quantity e’ = ey + deg,
(B; + B,) and (B; — B,) and hence % and 7° depend solely on the geometrical and structural
features of the wing and must be directly calculated.

F,%,? and 2 are given in (25) as functions of %", &, @ and & which from equations (22) are
observed to be linear functions of two variables, viz.,

I

(931)2%102 (1:25)(88_%)“”, L3
(1-2)
and
, QAtandn(acL) |
(QBs tan ¢) = WA”", O 2]
75u,2F, (1 _ W’”)

and thus directly involve the dynamic pressure number @ in addition to the geometrical and
structural features of the wing.

" To facilitate calculation, the four functions &, ¢, ¢ and 2 have, in Figs. 6 to 9, been plotted
against (QB;tan ¢) for various values of (0B,), while for rapid estimation of the quantities
aDjdn = (— % + F7)/(— #) and dH|dn = (— 7" + 9 %)[2, nomograms have been prepared
and are presented in Figs. 10 and 11.
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3. The Validrty Criterion.—In section 7.1 of the main text the criterion for the validity of
equation (28) is obtained in the form:

*
0- 545d—D——l—O 715@5—<0

Using equations (23), (24) and (25), this becomes:

1

0-545(z*u* — ¥*7*) 4 0-TIS5(w*7* — F*a*), < 0.

Now within the practical ranges of values of Q*B,* and Q*B; tan ¢ considered for swept-back
wings (viz., 0 < Q*B,* < 2 and 0 < Q*B; tan ¢ < 25) Z* and #™* are seen from inspection of
the relevant equations (22) to be both positive, while from Figs. 6 and 7 it can readily be
established that #*#* is greater than unity so that the factor (1 — #*%%*) is negative. It follows
that the inequality to be satisfied is:

(&% — 0-7622 %)% < (W* — 0-76220%) 7%
ie., {0-3094 — 0-0169Q*B.* + 0-0143Q* B, tan ¢}*
< {0-2378 — 0-0239Q*B,* -+ 0-02250%B, tan $}7°* .

The coefficient of #* is always positive within the ranges of Q*B * and Q*B, tan ¢ considered,
and hence the inequality may fmally be written :

* - K7r* <0, .. .. .. .. .. .. (34
where ‘

0-2378 — 0-02390* By* - 0-0225Q* By* tan ¢

K = 573004 — 001690 B,* & 0-01430%B, tan §

The function K is plotted against Q*B; tan ¢ for various values of Q*B,* in Fig. 12..

APPENDIX III

Numerical Example of the Effect of Elastic Wash-out :
Summary of Comparative Calculations by Two Methods

1. Assumed Data.—1.1. General.—

W = 12,500 Ib n, = 12-0
W, _ 014 Maximum normal acceleration
w n =80
S = 250 ft* Q* = 21-4 (corresponding to
4 =6 : V = 647 m.p.h. at sea-level, Mach number = 0-85)
T =0-12 Elastic axis at 0-40c
¢ = 45 deg Inertia axis at 0-45¢
cfe = 0-25 Therefore 7/c = 0-05
F#=0-20
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1.2. Stiffnesses.—Bending and torsional rigidities of wing assumed to be as given by equations
(14) and (la) respectively with F, = F, = 1-0. Effect of rib bending neglected (de, = 0).

EI=5-18 x 10°7(1 — ¢)*1b ft?
GJ]=7-73 x 10°1b ft*.

1.3. Aerodynamic.—ILow-speed overall lift slopes (from Ref. 9, solutions 14 and 25)

— (@) — 3.365
oo ) 4_¢
»(aC_L) —2.30
du A/3=2 )

Since calculations are purely comparative, no compressibility corrections will be applied to these
coefficients.

Basic spanwise lift distribution and position of local aerodynamic centre : See Figs. 15 and 16.

(a) For method of Ref. 1.—Spanwise distribution and local aerodynamic centres as given by
Ref. 9.

(6) For method of present repori—Uniform spanwise distribution. Local aerodynamic centre
at 0-23c (constant). This is the estimated mean value across the span, weighted with respect to
distance from centre-line. Corresponding value of ez/c is 0-17.

2. Dervved Quantities for Q = Q* = 21-4 (g = 1070 1b/it?).—2.1. Method of Ref. 1. (Notation as
given wn Ref. 1.) Note—All integrations have been carvied out graphically—The bending and
torsion modes ¢ and x corresponding to the bending moment B, and torque 7, due to the basic
loading are shown in Fig. 17.

Corresponding deflections at reference section (wing tip) are:
2,0 = 0-467n
0,, = 0-00868~

Rates of change of internal elastic energy G with the co-ordinates #, and 6, are:
s 2
°G_ . N ! (B") dy, — 3640,

(1)

02, EI
oG st 1 Ty\2 ‘ @
—_— —_ . 5
5 ef C]( ) dy, = 3-72 x 10°,
Wash-out relative to the root is:
daz\ .
Y = — (c?y?) sin Iy - 6 cos I’y
where 2=z, , 6 = x0,, I'; = 45 deg, v, = 27-4¢,
whence |
b
 ooss, o)
Y = —0-04465z,T + 0-7076,x . .. . .. .. (3)
(@)...
dg
(@) o
The mode i = & say, is plotted in Fig. 17.
(Ez)c=1
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Laft Distributions Due to Umit Modes of Wash-out, @ and x.—The lift distribution due to each
unit mode has been obtained by superimposition of a ¢ wash-out without lift * (W.W.L.) distribu-
tion (associated with a certain change «, of root angle of attack) and the ¢ lift without wash-out’
(L.W.W.) distribution corresponding to a uniform angle of attack — «,.

The W.W.L. distributions have been calculated by the method of Ref. 10 and are given by:

Mode,(b
%}L — 0°0483e~4" — 0-0144 sin® — 1-8336 sin 30 + 0-2196 sin 50
where 0 = cos™' ¢ and ¢, :é =3¢, . @
with  « = — 0-4897
Mode x
%i: 0-0746e~4+* — 0-0168 sin 6 — 1-5936 5in 36 - 0-3900sin 50 | . -
with o= — 0-5712

The distributions are shown graphically in Fig. 18. The L.W.W. distributions are given by :

Cu _ (a_C;L) o Cuon _ 3.505 Cuo o
""'ao aOC A= ~ . * ~ ° b .. .. . o u ‘.

=6 CLO Lo

. Using equations (3), (4), (5) and (6) the incremental lift distribution due to the washout v has
been estimated in terms of z, and 0,, and the corresponding increments of bending moment and
torque added to B, and T, to obtain the bending moment B and torque 7 for the deformed wing.

The virtual work W, and W, done by the external forces in unit changes of z, and 6, have then
been calculated from the expressions:

¢ d®B
W, —fo ¢>@;zdyf

Sf arT
W":fo X(—;ny) ay;

and equated to 9G/dz, and 9G[06, (equations (2)) respectively. The resulting simultaneous
equations in z, and 0, for ¢ = 1070 1b/ft* and load factor # are: '

7-398z, — 70-96, = 1-609% }

W

8)

and 5-51z, + 247-10, = 3-017x
whence 2, = 0-276mn )
and 6, = 0-006807%

Equations (3), (4), (5), (6) and (9) have now been used to obtain the incremental lift distribution
per unit load factor 4,C;;[n at ¢ = 1070 1b/ft* when the root angle of attack remains unchanged.
- The increment in overall lift coefficient has been calculated from the equation:

Alc_L_ Y A,Cr
T_LT‘ZC' R 6 1)
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Estimation of Ejfective szt Slope A.—

For the rigid wing :
Cn W|S 0 )
W= g — im0 0-04675 .

For the flexible wing at the same root angle of attack:

€ _Cu 2y
CL0+f 1CLLdC
| . f Agudc:
Therefore '_LI;—Z_I_*_W’ .. . . - (1)
a—:O-743 |

from detailed calculations so that to maintain same overall lift with deformable wing as with
rigid wing, the root angle of attack must be increased in the ratio 1/0-743 = 1-346. '

Elastic Wash-out from Root to Tup for Flexible ng at Same Overall Lift as Rigid Wing.—
From equations (3), (9) and (11),
%:1-346%:—0-0166@+O-00578X. o (12

The elastic wash-out calculated from equation (12) is shown in Fig. 19.

Resultant Lift Distribution for Same Total Lift—

(/2 — 1 346[CLL0 + AICLL:| .
7 7
' A4,:Cpy
. Crr Crro 7
Therefore g .1 -346 ‘. + 0-04675 (18)

The resultant Lt distribution calculated from equation (13) is shown in Fig. 15.

Second Approximation to Modes of Distortion.—The first part.of the calculation has been
repeated using the lift distribution given by (13) for the estimation of B, and 7,. The resulting
modes ¢, and x; are shown in Fig. 17. Since they differ little from ¢ and y, the remainder of the
calculation has not been repeated.

Shift of Manoeuvre Point—1If the effect of rotary dampmg is neglected, the shift of manoeuvre
point due to the change in wing lift distribution 1s given by: :

: x, i Colx - A
Aﬂ>=fA_—LL— .. .. .. .. .. .. (14
( [# 0 CLEO CdC ( )
CLL CLL CLLO
where , A=l == — =2
CL?O Cz;o CLO
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is plotted in Fig. 20, and » is the distance of section aerodynamic centre ahead of any convenient
datum point, say the leading edge at the root. For the wing considered:

—x=—¥Cs—|—eF
¥ (s gl
or o= (3§—|—C)
- so that
=)= ol
A(C LAC.LD e+ Z)ac. .. (1)

The integral has been evaluated to obtain the result:

4 (M):o-lss.
[

Change tn Fuselage Angle of Attack.—

Root angle of attack for rigid wing = Cpola
| _0-04675%

- 3-865
= 0-0139%

Increase in root angle of attack for deformable wing = 0-846 x 0-0139%

' = 0-0048»
Forn = 8§,
Increase in root angle of attack da,_,

= Increase in fuselage angle of attack =8 X §7-3 x 0-0048

= 2-2 deg.

2.2. Method of Present Report. Note: The Calculations Summarized Below were Performed
for Q = Q*. '

Values of Construction Coefficients By, . . . B, and the Parameters QB, and QB tan ¢.—The
values calculated directly from the relevant equations are :

B, =0-0280, B,=0-00115, B;=0-1487, B, = 0-0208.
@B, = 0-599, (QB;tan¢ = 3-18.

Values of the Functions &, 4, ? and 2.—These are derived from Figs. 6 to 9 as # = 3-51,
¢ — (0-4555, # = — 0-912, 2 = 0-277.

- Values of % and V. — -
% = 0-5[(B, 4+ B,) —tan ¢ (B; — B,)] = — 0-04938

7 = 0-375(B, - By) — 0-25 tan ¢ (By, — B,) = — 0-02105 .

Values of dD[dn, dH |dn.—
aD % — F7r

= ——— = —0-02685
dH -y tex
= ———p—— = — 0-0053.
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Elastic Wash-out from Root to Tip for Flexible Wing at Same Overall Lift as Rigid Wing.—

B2 (@D, 9 (o)
n  \duw ' dn 0C/ 4z

= — (0-01167¢ + 0-002303¢%) .

The elastic wash-out calculated from equation (16) is shown in Fig. 19.

Calculation of Shift of Manoewvre Point—

X oC
A —”"—f")zA( =
(c *\ aC,

aD dH
V) 0-041654 tan ¢ 302 -+ in Q

=0-172.

Change in Fuselage Angle of Attack.—

4 (a";—y;“ V) —— (0-455”;—;) + 0-285 ‘%{) (%)m
— 000597 .
For #n = 8, 4a,_, = 8 x 57:3 x 0-00597
| = 2-74 deg.

Estimation of Effective Lift Slope.—
For the rigid wing C,, = 0-04675%

C.o _ 0-04675n
(aC'L) 3-365
A

k3

=0-0139% .

Root angle of attack =

For the flexible wing at the same C,:

Root angle of attack = (0-0139 + 0-00597)n = 0-01987x .
(52)
day/  0-01390
(BC‘L) T 0-01987

St

0-700 .

Therefore

Incremental Lift Distribution.—

Crr — il_)_ O d_H 2 .
A(C—M)——Qd%(é—OALSS)—[—Qd%(C—0285)

= 0-294 — 0-575¢ — 0-113¢%. ..

(16)

(17)

This is shown in Fig. 20 for comparison with the other method ; the resultant lift distribution for

the deformed wing is shown in Fig. 15.
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2.2.1. Repeat caloulation using reduced value for W.W L. lift slope (see section 11.1 of main text).—
(aCL

k3

) = 2-30 is replaced by 1-97 throughout.
A/3

Then: ‘
B, =0-024, B, = 0-00099, B,=0-1273, B, = 0-0178.

OB, = 0-513; OB, tan¢ = 2-722.

F =355 ¢=0-461; 2= —0-917; 2=0-274
¥ = — 0-04225: ¥ = — 0-01801 ‘
4D g.0238: PE _ _ 0.0054

an dn

Shift of Manoeuvre Point.—
| y (”‘_ﬁ) —0-155
C —_—

Change in Fuselage Angle of Altack.—

4 (aiﬂ’ )=0-00533.
on |y
For n = 8, Aw,_o =8 X 57-3 x 0-00533

= 2-44 deg.

Estimation of Ejfective Lift Slope.—
Root angle of attack of rigid wing = 0-0139% .
Root angle of attack of flexible wing = (0-0139 4 0-00533)x .

_ = 0-01923#% .
B
dotp 0-01390
Therefore 2C,\ — 001923 0-723
(a‘xlf“)r
Incremental Lz’ft Dustribution.—
4 (%) = 0-262 — 0-505¢ — 0-1156,% . . .. (18)

Lo

This is shown in Fig. 20.

APPENDIX IV

- Approximate Estimation of the Ultimate Tail Load PT » Required in the Calculation
of the Deformability Coefficients w,, etc. ‘

The required tail load P, will be the resultant of the aerodynamic tail load corresponding to
a particular flight condition, and the relieving inertia load due to the weight W, of the tail-end
of the fuselage (including the complete tail unit). The proposed approximation for Py, is based
on a consideration of three symmetric flight conditions corresponding to points A, B and E, on
the basic flight envelope of Ref. 13(b) (Fig. 1), under pitching acceleration as specified in para-

graph 5 of Ref. 13().
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At a point of the flight envelope where the equ1valent air speed is V' (corresponding to dynamic
pressure number Q) and the normal acceleration coefficient is %, the specified angular acceleration

gis:

V'
4= Kn — 2'de radn/sec®
, 5.5 % 10° , . e (1)
where K= 7 65 + — radn/sec?

if V'*is the maximum permissible equivalent air speed in ft/sec, and
W is the all-up weight of the aeroplane in Ib.

The balancing tail load P,, (measured positively downwards) including inertia relief is given by :

and the accelerating tail load P, (measured positively downwards), including inertia relief, by:

iy WG iy KnWi, V'* ,
_Pu:ngng =P V) .. .. (8

where . C,,, = aircraft pitching moment coefficient at zero lift, assumed for simplicity to be
independent of speed,

I, = tail arm, measured from aircraft c.g.,

L(Q) = distance of manoeuvre point of aircraft less tail, ahead of aircraft c.g. (function

of Q),

i’ —Ig I} = pitching moment of inertia of aircraft less tail end of fuselage (weight W;).

The resultant tail load P is this given by:

nwWi,(Q) + C,.QWe , :
— P =— P L — uW,— P,(n, V') . .. 4
( + ) Z + lm(Q) f ( ) ( )
It should be noted that in calculating lm(Q), account must be taken of the shift of manoeuvre
point of wing plus fuselage, due to deformability. Furthermore, the minimum value of 7,
corresponding to the aftmost c.g. position will normally give the maximum tail load.

The coefficient C,,, will generally be negative, but its absolute value may be unknown. We
therefore proceed on the arbitrary, but not unreasonable assumption that the value of C,,, is
~ such as to give equal up and down tail loads respectively in the high speed pull-out case at

speed V" = 0-8V"* and the maximum normal acceleration coefficient #,, and the high speed

inverted pull-out case at speed V," and normal acceleration coefficient — %11'. Thus, writing

1WZ7H 1 CmO IW ’
( 1 Q1) = z EQ‘)I—_Z;(QJ UL — W, — P(n., V,)

1 (i) These two cases correspond to points B and E of the flight envelope, except that to simplify the analysis
" somewhat, the speed for the inverted pull-out is assumed equal to-that for the normal pull-out, »iz., 0-8V"* instead of
0-7V'*,

(ii) It may be recalled that when investigating the bendmg deformablhty of the fuselage (section 13.1), equal up and
down values of the ultimate tail load were assumed
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and
iy

B — A WL,(0)) + CosQiWe o
~ P 0) = T 500 Y= B )

we assume

Pln, Q) = — P4, 0.)

and noting that
P, Vy) = = §Pulm, V)
find :
— _ﬂlm(gl) _ Wf 7/1’1} l _}— Zm Ql
Com =g Ol S e
and

where from equation (3)

_PVY) i KLV v
T ST e ()

Equation (6) may be assumed to give the maximum unfactored tail load unless, with the value of
Cwo given by equation (5), the low speed pull-out case corresponding to point A of the flight
envelope gives a greater load. At A, n = #, and if we denote the speed by V', the tail load is
given by:

V IWlm 2 CmD 2W V ' ’
— P(ny, Q,) = e 2?3‘2(@ j Q:We W — 7. Pn, V)

=W [LZQZ) W, Vi P(Vy ):|

la + m(QZ) W Vg, 7’1/1W
IW Q2 m(Ql) W Pzz(Vl’) Zoz + lm(Ql)
=M by L i et e
_ 10y
W [m 14 Q m(Ql) . Ef 1 — l% la + lm(Ql)‘
! l _l_ lm W * 1 Zoc _I_ lm(QZ)

1 Q2 lm(Ql) _ lm(Q2)

19, LT L0) and putting
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The magnitude of the ultimate design tail load |Pr,| may now be taken as the greater of the
two expressions (6) and (8) with #, replaced by #,. Thus

Prel _o.5sfy bW RO

n, W b, + 10,00, W mW o)
1 Qe) { 4(Q:) W, _ P(V)) vy PVy)
o ' 51 B I@ gla + (@) N Wf oW § B (ﬁ’ N 1) mW

whichever is the greater,

% being given by equations (7) and (1).
1

APPENDIX V

The Downwash Field Due to the * Wash-out without lift * Distribution of a Deformable Wing,
and its Effect on Fuselage and Tailplane Contributions fo Manoeuvye-Point Shift

1. Introduction.—To provide a basis for the rough estimation of the fuselage factor F;, (section

15.1.1) and the tailplane efficiency factor (1 _ o s V), (section 15.1.2), the method of
Ls

ooty
Schlichting (Ref. 10) has been applied to calculate the distributions of downwash along the axes
of symmetry of wings of the four plan-forms shown in Fig. 23, and also to calculate the spanwise
distribution in the plane of each wing at a typical tailplane location.

The wings were of aspect ratios 8 and 6, and angles of sweepback 0 deg and 45 deg, and the
spanwise distributions of downwash were worked out at a distance of 1-02 4/S (S = wing area)
behind the mean quarter-chord point of each wing.

In a specific problem, the actual distribution of wash-out would have been calculated using
Part I of the report (see equation (23)), but for the present purpose, it was considered sufficiently
accurate to assume a linear distribution given by

oc=oc0(l —Zl%l)

in each case.

2. Résumé of Method of Calculation.—In this application of the Schlichting method, a single
vortex line* at the quarter-chord position was assumed, and with three pivotal points taken on

the three-quarter-chord line at'—?;l = 0, 0-5 and 0-866 respectively, the downwash was calculated

as the sum of three Fourier term contributions in the case of the unswept wings, with the addition
of a fourth contribution, arising from the ¢ Middle Function’ of Ref. 10, for the swept wings.

In the cases A =6, ¢ = 0deg and A = 6, ¢ = 45 deg, the coefficients a,, a;, a; (and a)
appertaining to the various contributions were obtained by solving the appropriate sets of
equations appearing on page 44 of Ref. 10, the unit coefficients on the right-hand sides of the
last two equations in each set being replaced by values of «f«, appropriate to the stations

lg—f—’ = 0-5 and 0-866 respectively (i.e., afo, = 0, — 0732 respectively).

* Kinked in the case of the swept wings.
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For the remaining wings, 4 = 3, ¢ = 0 deg, and 4 = 3, ¢ = 45 deg, Table 14 of Ref. 10 was
used to set up the corresponding sets of equations which were then solved as before.

Tables 5 and 8 of Ref. 10 were used in evaluating the Fourier term contributions, while the
contribution from the ¢ Middle Function ’ was derived from equations (57) and (58) in the case
of the axis of symmetry distributions, and by calculation from equation (87), using Table 2%
in the case of the spanwise distributions at the tailplane. ‘ :

3. Results of Calculations and their Application.—The results of the calculations are given in .
oe(x)

0% ,o |y

Fig. 24 which shows the variation of the quantity (1 —

) along the axis of symmetry

EL-V)

The results of Fig. 24 have been applied to estimate the value of the fuselage factor F,, defined
by equation (81) of the main text:

of each wing, and in Fig. 25 which gives the spanwise variation of the factor ( 1— Z;(y )
y=0

at the tailplane Jocation for each case.

lF IF
(e x e
0 0

The fuselage has been assumed to have the shape of an ellipsoid of revolution of length /; = 4/ (6S)

and axis ratio 7 : 1, and the fore-and-aft position of the wings relative to the fuselage has been

varied. Fig. 23 shows typical arrangements, with the wing mean quarter-chord point at 0-4/,

from the fuselage nose. The factor < 1 — 2;—(96) B V) has been taken equal to zero along the
=01Cr,

chord of the wing, where the flow is comple’gely guided (cf. Ref. 15, section 5); elsewhere the

distribution was assumed to be given in Fig. 24.

0&(x)

0%t,_g

1 —

b dx .

Cr,V

In Fig. 26, the factor F,, has been plotted as a function of /y/l» (= fraction of fuselage length
ahead of wing-root quarter-chord point) for each wing. Typical values, corresponding to the
actual arrangements shown in Fig. 23 are:

Aspect ratio of wing
3 ’ 6
Sweepback
of wing Fpy
(deg) '
0 0-34 0-45
45 0-24 0-45

From the curves of Fig. 26 it is seen that F;, increases with wing aspect ratio and with sweepback
and also with the parameter /y/l;. It will vary with other parameters such as the shape of the
fuselage and its size in relation to the wing, but no detailed investigation of their effect has yet
been attempted.

*It was considered sufficiently accurate to assume the value of the Middle Function contribution at the tailplane to
be equal to its value at infinity downstream.
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The problem of estimating F;, is, of course, closely allied to that of estimating the shift of
aerodynamic centre due to a body, and the reader who wishes to pursue this topic further may
find Ref. 15 (sweptback wings) and Refs. 16, 17 and 18 (dealing with unswept wing-body
combinations) of some assistance. '

Reference to the curves of Fig. 24 shows that the value of the downwash behind each wing

rapidly approaches its asymptotic value at infinity, so that for all practicable locations of the
. » !

0ct,_o

in Fig. 25, from which may be deduced, as typical values of the tailplane efficiency factor

(1 . 08
00y_p

tailplane in the plane of the wing, values of (1 — - V) should differ little from those given
_ -

- V) for a tailplane of span equal to one-third of the wing span:
I

Aspect ratio of wing
3 ‘ 6
Sweepback 3 93 g
of wing 1—
(deg) Oty
0 0-43 0-56
45 0-51 ‘ 0-64

These values indicate a tendency to increase both with increasing aspect ratio and with increasing
sweepback. The factor would also increase with increasing tailplane span.
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Fi1G. 1. Structural lay-outs of swept-back wings with a
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Fic. 2a. Unswept wing and swept wing with ribs in
flight direction.
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Fic. 2b. Swept wing with ribs perpendicular to spar.

Fics. 2a and 2b.@ Elastic camber of chordwise wing sections due

to rib bending.
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Fic. 3. Effect of wing bending on wash-out and camber of swept wings with ribs pe'rpendicular to elastic axis.
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Cg . .
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<: 015
r . .
c * 008
Y= 014

12,500L8

250 FT?

(AT SEA-LEVEL, M=0.75)

DESIGN DATA.
MAX. NORMAL Acct =8¢

Ny = 15 x8 =120
Q* = 21-4 (CORRESPONDING
T0 V=647 M.PH, AT SEA-

LEVEL, M=0.85)
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Fé = F-q = |0,
Frt 50
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05 -o0.25
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0-75 110

5
TAN ¢ (SWEEP BACK)

WASHoUT
=0.2 SMAXIMUM LEVEL
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® - o~ ¥
o6 VALUE FOR ¢ =45° Q= Q

USING WASHOWT FORMULA
OF SECT. 4.1,

F1c. 4. Relative wash-out at wing tip of typical fighter during a pull-out.
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COMPLETE AIRCRAFT

C. & LIFT CoEfF,
Cp = CORRESPONDING DRAG
COEFF,
CbeZ DRAG COEFF AT ZERO.
chQW

oo

 AERODYNAMIC % INERTIA
FORCES ON WING
W = AIRCRAFT WEIGHT
Wiz WING WEIGHT
Cp,, = WING DRAG COEFF
Cop = WING PROFILE DRAG
COEFF. .

FLIGHT DIRECTN

BACKWARD FORCE

BENDING OF ELASTIC AXIS
ABOUT VERTICAL PRINCIPAL
AX|5

ASSUME = =~ Sino(;cos .
LOAD FACTOR IN ZERO LIFT DIRECTION.

=- ax (AERODYNAMIC FORCE COEFF. IN ZERD
LIFT DIRECTION)

% Qx (CD- -L.‘°<) '

= QX{CD‘C-IE(S%)A

= Qx [CD- (-ZLZ{(a—a)?;'—]
2

= Qx [C'-"o

C
LoaD FACTOR PERPEN

( DICULAR To ZERO
LIFT PIRECTION & n =

EL'Q

WING FORCE COEFF. IN ZERO LIFT DIRECTION,

~ ~ 5 fd W, =
~ [CDO- CE (B_CL)""} —Wv! + CL.o( - CDW

= [cosez(3)] e ecfB) ) -,

WING. FORCE COEFF. PERPENDICULAR T0 ZERD
LIFT DIRECTION = C_ (, _ﬂ)
W

BACKWARD FORCE COEFF,
DOWNWARD FORCE COEFF,

= CDP_\%\,CDo - (ac()
C, (1- ) "\C @

NoRMAL FORCE COEFF.
DOWNWARD FORCE COEFF

= [Cop- Wacy,, | - /3a
[g_"(_;'?_)ff C*-(TCLQ cos ¢

N
W

= RATIO OF BENDING MOMENTS ABOUT
THE TWO PRINCIPAL AXES

REARWARD DEFLECTION (PARALLEL To FLIGHT
DIRECTION) OF POINT ON ELASTIC AXIS
= (NORMAL DEFLECTION) x cos ¢

F16. 5. Relationships required for the calculation of direct effect of wing bending on pitching moment.

98



(o¥08)

(3]

66 -

55

4.5

4.0

3:5

3-0

2-5

2:0

~———

\\\\x
\ \\ h4 e & | = 0.1075Q B, +0- 2186 TAN $. Q B
. Vi 0 F = —_— = 1 3
\§§ 2~ VALUES OF Q B, y Oz 0-25-0-0546 Q B, 4 00781 TAN§ Q B;
\x\ -
=
%\\
° ——— |
0-2 ] |
0-4 | l
0-6
08
I "°l\ V?Lusls,orq.e.
. |
© I 2 3 4 5 & 7 8 9 10 i 12 13 & 5 1 17 1B 19 20 U 22 23 24 2B

TAN ¢ Q B,

F1G. 6 The function %.



001

Fi1c. 7. The function #.

0-50
. \\
0.dt \\\\ @ =%: _ "0-5-0.0585 Q.B, +0-0738 TAN § Q B
g §§ VALUES OF Q. B, -0 -0:1058 Q.B, +0-189 TAN § Q Bs
0-44 NN
2NN
%%k\
\\\\ -
042 \\ESE\‘\
T~
040
0.38
© + 2 3 4 5 & 7 8 9 1o 0 12 13 14 5.16. 17 18 19 20 21 22 23 24 25
' g TAN $.Q.8, _



101

12

-0

09

0-8

07

Fic. 8. Th'e‘ function” .

TANG.Q.B;

2:0
/I'S
1.0
/o-s P=W-FX =
(o]
4 AN ==
// VALUES of @8, // =
/ /é/lﬁ VALUES OF QB
'\ = \ \ /’A 5OF a5,
\ .
\\§\ :.-—‘ w0
§§ — 207
t 2 3% 4 5 6 7 8 9 10 WM 12 13 14 15 6 17 1B 19 20 20 22 23 24 25



23 24 25

22

21

20

19

I8

17

e

15

14

z-o/\/ALuEs of Q B,

Q B;

4)'3

9=-(%-9%Y)

TAN

)

10

0-45

0+40
0-35
2

0-30
025
020

102

F16. 9. The function 2.



/
/

/‘
/
e
/

]
/

AT RN
MUV AN
I TN

V- 0'02/"'0"0
/

\

e 00 = - —— — = _/_..

DS 48630/1/PS. 106076 10/56 CL

S
.n\Ul
Ko
: 3 3 s 2
-m //////////H/r
Y memmw”u////r
u% .v.WtﬂQQ
i :NDVQQ
"o
¥ =
T




03

02

[»N

0:5
0.7%

-1:0

=0

2

e s
==
|
_l
|
]
|
|
I
|
|
l
|
I
l
|
I
|

T"ZL +e0)77%

..o.

/

=03

-0 4

e
—

- 0.5

C

-012

BRRRN
S130382F
: AV
m
RN
> |
5 | |
|
X |, R 2
N Lol N
3 SN "
B ///oww ek
2 % R N



€01

1-2

\
\
\

=

)
\\\

10 v =
K % s

ALUES OF
0 AN o &8

08

\\\\\
/.

\\ 05
\ 1+ 0
\ 1+ B
‘ 2:0

0:2378 -0:0239Q% B, + 0:0225TAN 9 Q" B
0:2094 - 0-0169 Q* B, + 0-0143TAND Q¥ B,

07

AN

06

10 12

13 . 14

"TAN © Q.Bj
F1c. 12, The function K.

5 16 17 18 19 20 21 22 23 24

25



F01

CURVE (6) GIVEN BY EQUATION (39) IS / CURVES (O'&(D) . CURVE (a)

025 ——— DERIVED HWSING THE BENDING ASSUMPTIONS. MOBIFIED To GIVE THE ]
: APPROPRIATE TO SWEPTBACK WINGS WITH CORRECT RESULT FOR ;
BENDING EFFECT LARGE IN RELATION TO ZERO BENDING &/
TORSION EFFECT (SECT. 4) 3« ALLOWING (6’) STIFFNESS. v/
FOR EFFECT OF DEFORMATION ON LIFT Y/ o,/
. 020 b— DISTRIBUTION : (d) ,///
A a_cM) CURVE (&) GIVEN BY EQUATION (45), 1 @ N Y
oC,/w DERIVED USING THE SIMPLE \ ) AN
TAN §.A (|- Y BENDING ASSUMPTIONS OF SECTL: 7.
% NEGLECTING EFFECT OF B /|
0-18—— DEFORMATION ON LIFT o _
DISTRIBUTION. L
010 / ’/”/’ ”/// //
/ ,”:r’i:;i:’:::'(’/
e @)
O'DS - — ’y
o
oo
" ¢ ,
v o s 8 7 e 5 4 3 2 1 o
1 1 1 1 1 il 1 1 1 ! | | ! 1 | J
T ] T T T 1 | 1 ] | LI | [
! 2 3 4 5 6 7 g8 9 0 1 12 13 41516 18 20 25 30 4050 100 500
. X = (TAN $.Q-5) : %

F1c. 13. Swept-back wing of infinite torsional rigidity ; shift of manoeuvre point due to bending.
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Fic. 18. Constant-chord wing, 4 = 6, ¢ = 45 deg; position of local aerodynamic centre.
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Fic. 21. Effect of deformability on fuselage angle of attack and on tailplane setting.
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Fic. 22. Diagrammatic representation of fuselage rotation due to shear in
neighbourhood of wing attachment.
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Fic.24. Curves of upwash and downwash on the axes of symmetry of four constant-chord wings
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