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Summary.-A simple formula is derived for the separation of the laminar boundary layer. The method of derivation
and a key test suggest that it should be reasonably accurate and of general application, including particularly the
range of sharp pressure gradients and small pressure rises to separation.

In addition a partially new exact solution is found for the boundary-layer equations of motion; also the pressure
distribution is obtained for continuously zero skin friction, this pressure distribution being expected to attain any given
pressure rise in the shortest distance possible for a given laminar boundary layer provided that there is neither
transition nor boundary-layer control.

The final formula of the paper is given by equation (41); equation (43) is a simpler but rather less accurate formula.
The pressure distribution for continuously zero skin friction is represented by equation (39) and is shown in Fig. 3 as
curve (c).

Preface.-This paper is an abridged version of a thesis approved for the degree of Doctor of
Philosophy in the University of London.

1. I ntroduction.-With so many methods already existing for the prediction of laminar
boundary-layer separation, as for example in Refs. 1 to 7, some apology is perhaps needed for the
introduction of yet another. There does however still seem to be some requirement for a method
that combines, together with a reasonable combination of simplicity and accuracy, a direct and
intuitively helpful analysis of the flow. In particular this is true for application to small sharp
pressure rises, where many existing methods fail. The present method aims at satisfying this
requirement; it also considers the flow where the boundary layer is continuously on the point of
separation, this flow attaining any given pressure rise in the shortest distance possible for a given
initial boundary layer.

In the course of the analysis a new exact solution is discovered for a flow closely related to
laminar boundary-layer flow.

2. Physical Derivation (see Figs. 1 and 2 for a Summary of the Treatment).-2.1. The Outer
Layer.-Consider the flow in a boundary layer for which the pressure is constant between x = 0
and % = %0 and for which an arbitrary pressure rise starts at % = %0, as in Fig. 1.

Suppose first of all that the outer part of the boundary layer were to become inviscid for
% > %0' so that the total head along a streamline in this region remained constant. Then the
solution for the velocity profile would be

(!pu2
) (x, 'Pl == [(!pu2)(Xo, V)) - (P - Po)] if fJ, = 0 for % > %0, Y > Os •• (1a)

where 'lp = J: u dy, where the suffix 'lp on each side of the equation implies that all terms refer

to the same streamline, and where y > s, limits the whole application to the outer part of the
boundary layer.

To this partially inviscid solution has to be added an increment due to the effect of viscosity
between positions %0 and %.



Now the shape of the velocity profile in the outer part of the boundary layer is not greatly
affected by a pressure rise, provided this is small, despite the change in the general level of
velocity; consequently the viscous forces on any fluid element are the same to first-order accuracy
as if there were no pressure rise. But for no pressure rise the increment from viscosity between
positions Xo and x is just

[(!pUb2) (x, 'P) - (!pUb2) (xo, 'P)]

where U b is the Blasius flat-plate solution. Superposing this increment on the solution (la) gives

(ipu2)(x,'P) == [(iPUb2)(x,'P) - (P - Po)] for y > os, (lb)

the essential change between equations (la) and (lb) being the reference in equation (lb) to the
corresponding Blasius flow u; at x instead of to the original flow at xo•

With qualifications, equation (lb) represents a ' general' solution for the flow in the outer
boundary layer. The first equation, i.e., (la), is exact when the viscosity is zero in the outer
layer downstream of Xo ; equation (lb) is a closer approximation evolved from it in order to allow
for the omitted region of viscosity. The superposition of viscous and pressure effects in this
manner is asymptotically accurate only for short sharp pressure rises, but it is a vital step in the
physical derivation and provides a basis for convenient empirical extension to larger pressure
rises. The solution (lb) may be restated:

( ) (

Dynamic head at the same distanCe) (The increment of dynamic head that WOUld)
Dynamic head at any point along a given == downstream along the same initial _ be converted to static pressure, were

initial streamline streamline, were there viscosity-but there the actual pressure changes-but •
no pressure changes no viscosity

The utilitarian advantage of this as a statement of superposition is of course that it enables
the use in combination of two exact solutions, or integrations, of the boundary-layer equations
of motion, i.e., the Blasius solution for zero pressure change, and the Bernoulli equation for zero
viscosity. No intermediate step-by-step numerical work is required and results can be obtained
directly and explicitly at any position x.

The above can readily be confirmed algebraically by expressing the boundary-layer equation
of motion as

(6)

(5)

(3)

(2)

and

o (p 1 2) _ 02u
oS + 2PU - fl Oy2 ,

and then considering the first two terms in the Taylor expansion:

(P + ipu2)(x,'P) == (P ipu2)(x
o,'P) + [;5 (P + ipu2)] (x - xo) + ....

(x" 'P)
The first term on the right-hand side is independent of the pressure rise as the singularity at
x = Xo is confined to y = 0, and similarly for the second term as substitution from equation (2)
gives it t? be equal to f(02U/oy2)(x

o,'P) (x - xo) . Hence the left-hand side is the same as if the
pressure nse were zero, i,e.,

(P + ipu2)(x,'P) == (Pb + iPUb2)(X,'PJ ., (4)
provided higher terms may be neglected, and this equation represents the superposition result
-of equation (lb).

Extension of the same arguments gives the corresponding identities

( OU) (OUb)
oy (X,'P) = oy (X,'P)

(
1 02U) (1 02Ub)
Uoy2 (X,'P) = Ub oy2 (x,'P) , ..

the order of accuracy of equation (6), as far as it affects the present method, being equivalent to
that of the earlier equations.
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(7)

(8)

(9)

(10)

(11)

(12)

)
:. aty = O.

2.2. The" Sub-layer.-The above solution for the outer layer, by means of a principle of super­
position, is in contrast to the situation in the region very close to the wall-here called the
sub-layer. At all stations x the dynamic head is zero at the wall. Thus the inertia forces are
zeroand the pressure gradient force must be balanced entirely by the viscous force, i.e.,

(
Oau ) op

ft 0y2 Y = 0 = 0x

which is also a standard boundary condition from the equations of motion. But at separation

(OU) = 0
oy y ~ 0, x ~ X

sep
•

Further examination of the wall boundary conditions indicates that if 22pjox2= 0*,
03U
oy3 = 0,

04U
but oy4 =1= 0

(Ref. 8 shows that these hold at separation despite the singularity), while if (oujoy)y 0 == 0 at
all x, a concept for which reference may be made to Falkner and Skan's well known solutions,

03U .24u 2su
oy3 = 0, oy4 = 0, oSy = 0 ,

06U
but oy6 =1= 0

These being exact conditions, it follows that a good' fit ' to the velocity profile close to the wall
when x = xsep and 02pjox2= 0 is given by formally putting

2 1 op 4u=L. __ +L·h
2! p,ox 4!

provided h, considered as a disposable parameter, is given an appropriate value. Likewise,
2 1 op 6u=L' __ +~_'j

2! ft ox 6!
is a good fit when 02pjox2is such that (oujoy)y~O is continuously zero for all x. This procedure is
analogous to the Pohlhausen method. In the present application however it is applied only to the
sub-layer (roughly the part inside the point of inflexion) this having a simpler shape than the
whole profile and one that can be fitted quite accurately. A further difference from the Pohlhausen
method is that the type of curve used is varied according to the value of the higher derivative
02pjox2 in order to satisfy more boundary conditions and obtain a closer representation of the
profile.

It will be noticed that this solution for the sub-layer is controlled largely by the value of opjox
at the local position x, i.e., the sub-layer is not a ' historic' region in the sense of being determined
from its own sub-layer profiles upstream. This is because the sub-layer is a region of ' viscous
control', the inertia forces being very small and the profile being able, and in fact being forced,
first to fit at the join with the outer layer-to this extent it is historic as the outer layer is historic
-and then to adjust itself so that the viscous forces balance most of the force from the local
pressure gradient.

All that now remains is to join these two parts of the profile, but before doing so it is worthwhile
to examine briefly both the development of these two regions and the transition between them.

* Equation (9) applies more generally than to 02P/2x2= O. The single condition for 22P/2x2, however, is chosen in
order to correspond with the mathematical derivation of section 3.

3
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(13)

2.3. A Picture of the Flow.-When the sudden pressure gradient is applied at x = Xo, conditions
at y = 0, x = Xo must change discontinuously in order that the boundary conditions
fl(2 2u/2y 2) = ap/ax may still hold. This point region here corresponds to the sub-layer. Other
than at y = 0, however, the only effect of the pressure gradient at x = Xo is to start to reduce the
dynamic head almost independently along each streamline, hence the principle of superposition
in the outer layer. At positions downstream of Xo the influence of the singularity has spread from
y = 0, and the sub-layer corresponds roughly to the region inside the point of inflexion of the
velocity profile. The limit of the sub-layer at any station x is readily obtained by an extension
of the present method, its limit being effectively finite, as assumed here, just as for an ordinary
boundary layer (strictly, however, both layers only gradually merge into the external flow, there
being no definite joining point). Only at y = 0 in the sub-layer does the viscous force exactly
balance the pressure gradient, while at the join with the outer layer the flow fully satisfies the
outer-layer conditions; the region between these two points, i.e., the whole of the sub-layer other
than for its boundaries, is a region of transition. This transition is brought about, algebraically,
by the higher terms shown in the Taylor expansion for the sub-layer, these reducing the value
of a2u/cy2 from a maximum at the wall to zero at the point of inflexion. Physically, the transition
is between a balancing of the pressure gradient by viscous forces and a balancing of it by inertia
forces.

2.4. The Joining Condition and the Final Results.-For joining the sub-layer and outer-layer
continuity is postulated in 'If, u, au/2y, and 22u/ay2. It is important to include 'If of course, it
being well known for example that small amounts of boundary-layer suction can significantly
affect separation. These four boundary conditions on the sub-layer are sufficient to finalize the
profile and to show that the position of separation must satisfy

[ ( ec )2J 02pC x----1 = 6·48 X 1O~3 when- = 0
p ax ox2

where Cp is the pressure coefficient Pse: U---f)} ,
2P 0

or, [Cp (x~a;rJ = 4·92 X 10- 3 (14)

when a2p /ox2 is such that (ou/oyL 0 == 0 for all x > Xo• It will be noted that the difference in
o2p/ax2 changes only the value ofthe numerical constant, as between 6·48 X 10 3 and 4·92 X 10- 3

•

The above results, i.e., equations (13) and (14), will determine the position of separation for a
given pressure distribution provided the value of 02P/2x2 is appropriate to the value of the
numerical coefficient employed and provided the distance to separation is small enough for the
derivation to remain valid..

The physical derivation that has just been given is summarized in Figs. 1 and 2, where suffix a

is used to denote the flow with pressure gradient.

The results of the physical derivation will be generalized and made more accurate in the next
section by exact fitting at four positions in the double-parameter field represented by (32P/2x2)xsep
and (xscp - xo).

As an extension of the above, integration of the differential equation (14), which must hold
at all points x > Xo, yields the pressure distribution for continuously zero skin friction:

c.... = O'223!10g ;01
2 / 3

(14a)

This pressure distribution is almost identical with that shown in Fig. 3 as curve (b). Its possible
practical significance is that, for a given initial boundary layer, and given neither boundary-layer
control nor transition, flow with continuously zero skin friction (i.e., flow which is always just
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at the point of separation) can be shown to attain any required pressure rise almost certainly in
the shortest posssible distance, and with the minimum growth of boundary layer. Hence, on
sayan aerofoil, it causes the minimum possible dissipation of energy and the minimum possible
increment of drag for the postulated conditions. This type of flow receives further consideration
in the mathematical derivation.

3. Mathematical Derivation.-The mathematical derivation considers in more detail and by
more exact methods the types of flow upon which the physical method has focussed attention.
The results from the physical derivation are first rederived in a nominally exact form, and are
then extended empirically to cover a wider range of types of pressure distribution.

The physical approach of the previous section has given a solution which applies to the limited
field of small values of (xsep - xo) , for two particular values of (a2pjax2)x; : (a 2pjax2)x; = 0, and

sep sep

(a 2pjax2
) " such that (aujay)y=o is continuously zero. Within this field the results would be

sep

expected to be roughly correct.

The mathematical method considers these same two values of a2pjax2 but obtains results
which are asymptotically exact as (xsep - xo) -+ O. To each formula it proceeds empirically to
add terms of higher order in (xsep - xo) in order to fit a known precise result at a large value of
(xsep - xo) ; this then covers the whole range of (xsep - xo) by interpolation. The two formulae
are finally combined by interpolation for a2pjax2

• Since the final formula is thus ( exact' as
(xsep - xo) -+ 0 and' correct' for some large value of (xsep - xo) for each of two values of a2pjax2

,

and since the corresponding interpolations are for only second-order effects, the final formula
should be reasonably accurate throughout the whole double range. It is afterwards shown that
the same formula should hold for all types of pressure distributions that are smooth near
separation.

3.1. The Exact Condition when (xsep - xo) -+ O.-This section must be started with a semi­
physical argument in order to show that for the asymptotic solution only, i.e., as (xsep - xo) -+ 0,
the initial Blasius velocity profile at x = Xo can be replaced by a straight line profile having the
same gradient aujay at the wall.

Given that the pressure gradient apjax is zero for x < Xo and non-zero for x > xo, the point of
separation will approach indefinitely close to Xo as the pressure gradient becomes steeper. In
the limit, as (xsep - xo) -+ 0, the width of the sub-layer at separation also tends to zero and the
point of join between sub-layer and outer layer asymptotes to y = O. Thus within the sub-layer
although aujay remains finite all higher non-zero derivatives must become infinite. Consequently
for the joining condition it is immaterial to the sub-layer whether the (finite-valued) outer-layer
higher derivatives are zero or non-zero, provided the values of aujoy, and of course u and 'IjJ, are
correct. Thus the Blasius and the corresponding straight line profiles are asymptotically
equivalent as far as concerns the joining condition between sub-layer and outer layer.

It can further be shown for the two profiles that the outer-layer solutions also are asymptotically
the same as (xsep - xo) -+ 0; the pressure-gradient forces become infinite so predominating over
viscosity, thus the partially inviscid solution of equation (la) is asymptotically exact, and this
gives identical solutions in 'IjJ, u, and aujay for both profiles when y -+ O.

Thus it is concluded that for the exact asymptotic solution as (xsep - xo) -+ 0 the initial Blasius
profile at x = Xo may be replaced by an initial straight line profile with the same gradient au/ay
at the wall. The problem is therefore reduced to that defined by

u == my for x < Xo

ap
ax =1= 0 for x > Xo •

In principle precise solutions of the above are found for the two conditions, a2pjax2 == 0 for
all x > Xo (the corresponding condition in the physical derivation specified a2p/ax2= 0 only
at x = xsep) and a2pjax2such that (aujay)y~O == 0 for all x > X o•

5



.. (ISa)

The solution of u == my for x < Xo ; oP/ox = const for x > xo•

1 op
g=------.

fl oX

3.1.1.

Let

The transformation:
'l'1=~ •./ m '

_ guo
u=-­

m2
'

mv p pv= - and-.-=---~
-s' !U2 !PU2

.. (ISb)

reduces the equations of motion to
_au _au 32uu-+ v-= -- 1+-oX 0"Yj 3r;2

3u ov
ax+ 3r; = 0

with the boundary conditions and the problem represented by

u == r; at X < 0
3p
oX == 1 for X> 0

1jj = 0 = u at r; = 0

3u. 1
- -+ as r; -+ 00arj

[equation (17d) follows a posteriori from the differentiated equation of motion:

fl 3~ -~-~ = ')) ~~~J
and, from equations (17d) and (16),

(16)

(17a)

(17b)

(17c)

(17d)

02U
---+ 0 as r; -+ 000"Yj2

(P + !u2
) = const along a streamline, as r; -+ 00 .

The problem is now non-dimensional and so has some specific numerical solution, say

Xs<,p= C

where C has some definite and specific value.

Substitution of equation (18) into equation (15) gives that the general solution is

pm4

(Psep - Po) = -2 C, ..g
and further substitution of

(17e)

(17f)

(18)

(19)

(20)(
U 3)1/2

m = 0.33206 _0
,'))Xo

which is the value from the Blasius solution", gives that the exact asymptotic solution of the
original problem when oP/3x is constant is

where

[Cp ( Xo °3~fJ = a ,

a = 8C (0'33206)4 ...

6
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The exact solution has thus been obtained in principle and it remains only to find the' once and
for all' value of the constant C. Any of the more accurate standard numerical methods for
solving the laminar boundary-layer equations of motion would give this (except that the
singularity at X = 0 would need special attention) but with limited computational resources it
was found for convenience by an extension of the method used in the physical derivation of
section 2. The sub-layer velocity profile was expanded up to the tenth power in n (with a cor­
rection later for higher powers), not just at separation but at all positions X up to separation,
and the joining condition between sub-layer and outer layer then provided an (algebraically
involved) differential equation for the skin friction in terms of X. The solution was obtained
in the form of a series:

where

X = (p - po) = :4 (1 + 3t)(1 - W[1 + (31 T + (32 T 2+ ...J

t= G~t

T=n- 1) . .. (22a)

(3 = 1·626

(31 = 0·0562, (32 = - 0·0207

(Since the above is based upon a limited polynomial expansion from the wall used in conjunction
with the physical concept of a discreet sub-layer having a definite joining point with the outer
layer, Dr. G. E. Gadd has suggested an independent analysis for the flow in the neighbourhood of
the singularity at X = 0; this analysis agrees well with the above and is presented in Appendix 1.)

The series solution was continued numerically working in terms of the square of the skin
friction in order to" avoid some of the difficulties of the singularity at separation. The solution
just before separation was checked satisfactorily for consistency with Goldstein's solutions and
the actual position of separation was then readily obtained by extrapolation. The result was

Xsep = C = 0·0784 ± 4 per cent. .. (22b)

The present lack of precision in equation (22b) results from the limitation on computing
resources and is not relevant to the main thesis of the paper; thus for simplicity of presentation
and as the principle of the argument is not affected, it will be assumed that the precise value
of C is in fact 0·0784. Equation (19) then becomes

pm4

(Psep - Po) = 0.0784-2g

and equation (21) becomes

[Cp (x/o~rJ = 7·64 X to-3
•

(23)

(24)

3.1.2. The solution of u == my for x < Xo; (ou/oY)y=o == 0 for x > xo.-Suppose that the pressure
distribution is given by

P(x) = P(xo) +~ K(x - XO) 2/3 for x > Xo. (25)

7
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The transformation, similar to the standard U1 0C X" solutions,

(x - xo
) = X t

Vl/2Xl/3~

Y = K1/4

'IJl = X2/3Kl/4Vl/2SU)

reduces the equations of motion to

255" - 5'2 = 3(1 - 511/)

with the boundary conditions

So = 0 = So' .

The present analysis is concerned only with (oujoy)y~O - 0,

(26)

(27)

(28)

i.e., So" = O. (29)

Also, corresponding to equation (17d), the condition away from the wall is

vI / 2m
5" ---+ ]{3/4 = const as ~ ---+ 00 •

The first few terms of the solution in series using equations (27) to (29) only are

e 2 e ~11 16,816 es

5 = 3! - :3 71 + 16 TIl - 9 IS! + ....
This can be continued numerically to give

5" ---+ const = 2·2292 as ~ ---+ 00 •

(30)

(31)

(32)

(33c)

(33b)

Substitution of equation (32) into the fourth boundary condition, i.e., equation (30), gives that

[
vI

/
2m J4/3

K,o=O = 2.2292 (33a)

and further substitution for m from equation (20) gives that the required pressure distribution
of equation (25) is

pU0
2 (X )2/3(P - Po) = 0·23689 -2 ~ - 1 ,

t.e., c, = O·23689 (:0 - 1)2/3

this being shown in Fig. 3, curve (a).

This pressure distribution is one of a family; the family provides a set of new exact solutions
of the laminar boundary-layer equations when u =my for x < X o, each member having
(oujoy)y=o = const for all x > Xo.

Appendix II shows that of the above-mentioned family of pressure distributions the one
giving flow with continuously zero skin friction has the greatest pressure rise at any station x for
given Xo and m. It seems likely that in practice the corresponding pressure distribution for
continuously zero skin friction given initially an ordinary boundary layer attains any given
pressure rise in the shortest distance possible, and with the least dissipation of energy, if there
is to be neither transition nor boundary-layer control.

Differentiation of equation (33e) shows that it satisfies

[C p (Xo °o~rJ = 5·91 X 10-3.

8

(34)



3.2. Extension to Larger Values oj (Xsep - xo).- 3.2.1. Replacement oj Xo by xsep.-Comparison
of equations (13) and (14) with equations (24) and (34) indicates two differences between the
results of the physical derivation and those so far from the present section. The difference in
the constants is due to the approximation made in the physical derivation for the sub-layer
profile shape; hence the mathematical constants are used and the physical discarded. On the
other hand the difference between xsep and Xo corresponds to an allowance for viscosity in the
outer layer between x,ep and Xo, as shown by equations (la) and (lb) (the mathematical method
has implicitly neglected this by specifying u == my at x = xo) . Hence xsep is incorporated into
the mathematical result. The two formulae become

(35)

for ~~ = const,

while for To =: 0,

[C p (x °3~rlep = 5·91 X 10-
3

• (36)

The corresponding pressure distribution for To =: 0 becomes

Cp,To=:O = O·23689 [loge(:JT/3 (37)

as illustrated in Fig. 3, curve (b).

These formulae are (still) asymptotically exact as (xsep - xo) tends to zero and they have a
larger useful working range in terms of (xsep -- xo) ; they will now be fitted to exact results at
large values of (xsep - xo).

3.2.2. Empirical fitting to the exact result oj Howarth.-Substitution of the' unfitted' formula
into the Howarth pressure distribution gives separation at (3x = 0·108 in place of the exact
result (3x = O' 120. Since the Howarth pressure distribution is an extreme departure from the
short sharp pressure gradient for which the formula is asymptotically exact this reasonably close
result suggests that the remaining second-order affects of the parameter (xsep - xo) are small and
that an arbitrarily linear interpolation for (xsep - xo)!xsep, arranged to precisely fit the Howarth
result, should give reasonable accuracy over the whole range. The formula for 3P!ox = const,
i.e., 32p!OX2 = 0, thus becomes

[Cp (x 3oc:rJ = 7·64 X 10-3 (1 + 0·35 XsePx: X
o
) . .. (38)

(The coefficient 0·35 is much larger than the initial discrepancy as a cube-root operation is
involved in finding the pressure rise to separation.)

Actually as the Howarth pressure distribution has a small, but non-zero, value of 22p!OX2
, it

has to be used indirectly via the final formula of the paper in order to obtain the above result
for 32p!3x2 = O. The principle followed however is the same as if the exact result were known
beforehand for 32p!OX2 = 0 instead of for the Howarth distribution, and as if this exact result
were used directly to extend equation (35) to become equation (38).

3.2.3. Empirical fitting to Falkner and Skan's exact X" solutions.-A special case of Falkner
and Skan's exact X" solutions is that giving continuously zero skin friction. At all stages the
boundary layer has' similar' velocity profiles. The flow with a Blasius profile at x = Xo and
zero skin friction continuously thereafter initially has the double profile of sub-layer and outer
layer, but eventually the sub-layer spreads throughout and at large values of (xsep - xo) it must
asymptote in shape to the profile of Falkner and Skan's solution. It can be shown that the
exact conditions required to give this asymptotic approach will be satisfied if and only if the

9
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parameter (()2jv)(3UI/3x) asymptotes to the Falkner and Skan value, i.e., - 0·068 (Refs. 10
and 5). The modifications required are shown in Figs. 3 and 4, calculation of ()2 being by means
of the Energy Equation". The new pressure distribution can be represented by

\ x (X) 1
2

/
3

Cp,To=='U ==. 0·2369 /1'01310ge Xu - 0·013 Xu - 1 j (39)

It would again appear that a full range of (xsep - xu) can be included without serious error.

Equation (39) and Fig. 3, curve (c) represent the final pressure distribution for continuously
zero laminar skin friction; the correspondingly extended separation formula (this time using a
linear form in (xsep - xu)jxuinstead of in (xsep - xu)jxsepas for equation (38)) becomes:

[Cp (x 3Cp)2J = 5·91 X 10-3(1 - 0.025 xsep - xu) . . . (40)
ax sep Xu

3.3. Interpolation for General Values of (j2p j3x2.-The formulae

[Cp(x ?OC;)2J = 7·64 X 10-3(1 + 0·35 x x Xu)

and [Cp(X~oc;rJ = 5·91 X 10-3 (1 - 0'025
x ~o X

o
)

(38 bis)

(40 bis)

apply respectively to the pressure distributions represented by o2pjox2 ==. 0, and o2pjox2 such
that To ==. 0 for x > Xo' Suffices sep are taken as understood.

As the two formulae are closely similar, intermediate types of pressure distribution may be
treated by an arbitrarily linear interpolation for 32pj2x2 (although at large values of (xsep - xu)
the difference becomes rather great to be so bridged). Moreover the resulting formula should
be quite reasonably accurate when used as an extrapolation for covering the whole range of
22pj2x2, since it can be shown firstly that To ==. 0 gives the maximum possible negative value of
32pjox2, and secondly that 32pjox2 ==. 0 is close to the middle of the range of possible values of
a2pjox2, that is for pressure distributions that are smooth prior to separation. Using this linear
interpolation for 32pjox2at all stations x, the final result is fitted by

[c ( OCp)2] = 7.64 10-3 (1 + 0.35,1) (1 + 0'46CpCL 1 + 0,14,1)
p x 3x X Cp'2 1 + 0.80,1 (41)

where ,1, a derived parameter equal to Cpj{x(aCpj3x)}, is introduced as the interpolation parameter
in place of (xsep - xo) , as Xo would not in practice be well defined. All values in equation (41)
refer to conditions at separation, but for the final application x becomes an ' equivalent' distance,
as given later by equation (42).

Equation (41) so far applies to the double parameter (P",,1) family of curves sketched in Fig. 5,
but the next sub-section shows that it is of general application.

3.4. Generalization to all Pressure Distributions.-3.4.1. Other shapes between Xo and xsep.-Even
for a given x, Cp, (dCpjdx) and (d2C

fJdx
2) at separation, the pressure distribution between Xu and

xse!' will still have a range of possible shapes corresponding to a range of values of Ci", Cp
I V

, etc.,
at separation. However since in any case we have, in effect, specified the following conditions,
namely that C; = 0 at x = xu, that x, Cp, Cp' and C/ are given at separation, and that the curve
is a ' smooth' one (see below), the distribution between Xu and xsep has already been defined
within fairly narrow limits and we should not expect any very important effect from the possible
variations that remain. On this basis it may be concluded that a pressure distribution of
arbitrary shape between Xo and xsep, whether or not it precisely fitted one of the double parameter
family of curves, should still satisfy the final formula (41).
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The above assumes a smooth pressure distribution whereas experiments with separated flow
sometimes show quite sharp changes of pressure gradient prior to separation, as in Fig. 6. How­
ever, the main utilitarian purpose of a formula is to predict whether a given design-pressure
distribution will cause separation. Such a pressure distribution would be smooth; consequently
a practical formula does not lose in usefulness by being unable to treat irregular shapes.

3.4.2. Initial favourable pressure gradients.-An initial favourable pressure gradient is replaced
in the calculation by an equivalent distance with a main stream velocity constant and equal
to the peak mainstream velocity in the actual flow. The momentum thickness at Xo is taken as
the criterion of equivalence as this is not affected by the internal readjustment of the profile such
as takes place just downstream of Xo when the actual and the equvalent profiles tend to become
of similar shape. Actually the two profiles are likely to be almost identical at Xo itself, as the
momentum thicknesses are thus given equal and, having oP/ox = 0 in both cases (the actual
distribution having a pressure peak of xo) , both of the wall derivatives uo" and U O

III are also equal.
On the above criterion the Thwaites" or the Energy Equation" gives

Ix. (U )5
Xo = 0 U: dx' (42)

where x is the equivalent distance and x' the actual distance. (A very similar conclusion follows
also from the formula of Wa}z12 or from that of Young and Winterbottorn't.) With the use of
this equivalent distance formula (41) now holds for general types of pressure distribution provided
that their form is smooth.

A simpler approximate formula may be taken as

[Cp (x °oc:rJ = 7·64 X 10- 3
, .. (43)

all values still referring to conditions at separation and x still being the equivalent distance as
above.

4. Discussion.-4.1. A Critical Test.-Hartree2 has made a precise numerical calculation for
the modified pressure distribution from Schubauer's ellipse", Fig. 7b. This calculation provides
what appears to be the only reliable test data available, experimental work generally allowing
too wide a range of interpretation as regards the gradient of pressure oP/ox. With the notation

Ustr = undisturbed mainstream velocity

Uo = peak mainstream velocity

x' = distance from actual leading edge

x = distance from the equivalent leading edge

the data can be summarized:

U0
2 = 1·677Ustr

2, occurring at x' = 1·30;
at separation

U1
2 = 1·540Us tr2; x' = 1·983

1 dp _. . 1 d2p
J'- •

1 U 2 d- - 0 3516, 1 U 2 d 2 - + 0 18.
2P str X 2P str X

The initial favourable pressure gradient is such that the equivalent distance x as calculated by
the Thwaites' or Energy Equation formula of equation (42) is given by

x' - x = 1·30 - 0·923 = 0·377 for x' > 1·30.

11



The above data reduces to

C; = 0·0817 at separation when

x = 1·606; C!-.Cp = 0.2095 . d
2

Cp ~ + O·11 .
dx 'dx 2

Thus, for substitution into the formula,

dC
x-P = 0·337'

dx '
LI = 0·243; CC~~/1 = 0·2045.

p

With these values substituted the formula should give a value for Cp close to the accurate
value above of 0·0817. This will now be tested on both the full formula of equation (41) and the
approximate formula of equation (43); afterwards are given the positions at which each of these
formulae would have predicted separation had the true separation position not been known.

(a) The full formula at the true separation position gives

C - 7·64 10- 3 (1'085)(1'0815) = 0·0791
p - X (0'337)2 .

This result is 3·2 per cent low on pressure recovery compared with the true value of 0·0817.

(b) The approximate formula at the true separation position gives

7·64 X 10-3 .

C, = (0'337)2 = 0·0674.

This result of the approximate version of the formula is 17· 5 per cent lower than the true
value of the pressure recovery.

(c) When the full formula is used to predict the position of separation the error is appreciably
less than for the calculations above as Cp, x, and dCpldx all increase together. It gives separation
to be at x' = 1· 976, instead of at the true position of x' = 1· 983, and then the pressure rise is
given by Cp = 0·0802 which is 2 per cent low.

(d) Similarly the approximate formula if used to predict the separation position gives it to be
at x' = 1· 945 with the pressure rise 10 per cent low.

Conclusion from the Test.-With errors of only 2 per cent and 3 per cent in the pressure rise to
separation the test has provided a confirmation of the final version of the formula. The distance
of the separation point from the leading edge-an easier prediction than the pressure rise-is
given almost precisely.

The test confirms also the usefulness of the approximate version of the formula in cases where
a somewhat larger error is acceptable.

It should be noted that although the agreement in this test could still conceivably be a
coincidence, such does not seem likely, as with the method of derivation whereby the formula is
based on four exact results with interpolations only for factors of secondary importance, all that
would seem required from such a test is to show that no gross factor has been ignored and that the
interpolations do behave smoothly as assumed. On this basis, the method of derivation, together
with the results of the test, indicate that the formula should give at least quite reasonable accuracy
in general cases.
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4.2. Examples.-In addition to the test of section 4.1 the following will be worked as examples:
(a) The Howarth distribution, U1 = Uo(1 - fJx).

Since this has been used implicitly in the empirical extension of the formula the exact answer
will be expected.

(b) The pressure distribution given by C; = x[c.
(c) The pressure distributions given by Cp = (x - xo)/c.
(d) Also, in connection with the general application of the formula, reference is made to the

prediction of laminar boundary-layer shock-wave interaction.

Example (a).-The Howarth distribution', U1 = Uo(1 - fJx).

This distribution has been used in the empirical extension of the formula. I t is illustrated in
Fig.7a.

Since U1 = Uo(1 - fJx),

U1
2

(fJ X
)C, = 1 - U

0
2= 2fJx 1 - 2 '

dCp 2 (1 ) d d
2C

P 2 2dx = fJ - fJx an dx2 = - fJ ,

1 _ fJx
A _ Cp _ 2

LJ - dCp - 1 - fJx'
x dx

These algebraic values could be substituted into the formula and the resulting equation solved
for the position of separation. Here it is sufficient to verify the result.

At fJx = 0·120, which is the exact position of separation as found by Howarth' and confirmed
by Hartree",

dC
C; = 0·2256; x d: = 0·211

L1 = 1·067; Cp' = 1·76fJ

CCC,( = - 0·1455.
p

With these values the formula gives
C = 7.64 10-3 (1' 374)(1 - 0,042)

p X (0' 211)2
= 0·226 as required.

Example (b).-The pressure distribution given by C, = »[c, or U1
2= U0

2(1 - x/c). This, a
special case of Example (c), has a constant pressure gradient right from the leading edge. One
immediately obtains:

Cp"=o
x

Cp = - '
c'

c ,-1.
p - c'
L1 = 1·0.

GY = 7·64 X 10- 3(1' 35)(1 ' 00) .

(~r = 10·32 X 10-3

C; = ~ = 0·218.
c

Hence, at separation

Therefore

13



Example (c).-The pressure distributions of Fig. Sb, given by C; = (x - xo)/c, or
U1

2 = U0
2(1 - (x - xo)/c), for x > xo, and C; = 0, or U 1 = Uo, for x < xo. This has a constant

pressure between x = 0 and x = Xo and a constant pressure gradient starting at x = xo. It
represents a family of pressure distributions with say xo/c, = xo(dCp/dx), as parameter. It yields:

x - XO
C--~-"'p - c'

C I_!.
p - c' C/ =0

Ll = x - xo •
x

Hence, at separation

x ~ X
o~: = 7.64 X 10- 3 (1 + O'3S x ~ X

o
) (1' 00) .

For very small C; the asymptotic behaviour is

x - Xo = C ,...., 7.64 X 10-3(~)2 .
C P Xo '

x -':-0 X
o

,...., 7·64 X 10-3(:J3

(and also, by eliminating (~) ,

(
X - xo) oc Cpscp3/2 (still for small Cp)) .

Xo sep

The general result satisfies

~ = 0.1970 [_X__ + 0'3SJ1
/
3

C X - Xo

and this readily leads to the results given in Table 1 below and Fig. Sb (using (x - xo)/x as a
calculation parameter). This table shows the pressure rise to separation and also the distance
to separation as functions of the strength of the adverse pressure gradient.

To solve, for example, the less direct problem of what pressure rise could be obtained at the
trailing edge of an aerofoil by a linear pressure gradient starting at mid-chord (with no suction
or transition), one has: »[x; = 2·0 and hence (x - xo)/xo = 1,0, so that the table immediately
gives for the conditions at the trailing edge:

C; = 0·131, i.e., U1/Uo = 0·932.

TABLE 1

4 OJ

0·184 0·218

0·046 0

1 2

0·131 I 0·161

0·131 0·081

0·099

0·198I
!

0·386 0·242

----1----1------------1---1---

0·907

---"----------------~""._--~"-"

4·24

.._-~--"----_ _---

I:0 ~.:U~2 ~~ OJ I
I

__ x•• ~" x,-- ~-I-l--.-~0-X-I0·---4"-I--l-.0-I-X-l·-~--2-_*__~ I---.I----- _

Cp sep 0 14'24XlO-41 0·916xlO-2 0·0429 0·0805

Example (d).-In Ref. 16 the basic physical method, but not the actual formula, is appro­
priately adapted and used for predicting laminar boundary-layer shock-wave interactions. At
least good qualitative agreement is obtained.
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4.3. Some Criticisms.-A few criticisms of the method are given but these would not appear to
detract seriously from its use.

(a) The method of treatment of the laminar boundary layer as presented in this paper has been
developed for the situation where one requires a prediction concerning separation, and it is not
generally suitable for the calculation of the boundary-layer thicknesses such as e and 6*. In
cases where, having ascertained that separation would not occur, one required to calculate say
the momentum thickness e, as when finding the {drag' of an aerofoil, the most suitable method
is probably that of the Thwaites", or Energy" Equation, which gives e with accuracy and speed.
Refs. 12 and 13 (Walz, and Young and Winterbottom) are likewise suitable for calculation of
the momentum thickness.

[One valuable exception to the above generalization concerning in particular the displacement
thickness 0* is the prediction of laminar boundary-layer shock-wave interaction. Since at least
in the initial stages of this phenomenon the pressure rises are sharp and the values of C, are small,
the basic physical method is valid without the empirical extensions of the full formula, and, as
previously mentioned, the author of Ref. 16 has made an appropriate adaptation in order to be
able to readily calculate the relation between 0* and the pressure distribution, in explicit but
general terms. This calculation is a necessary step in solving the interaction process between
boundary layer and pressure distribution.] .

(b) If calculating from an experimental pressure distribution the formula requires to a con­
siderable accuracy the value of the pressure gradient oP/ox at separation. In practice this would
require, in a separation region, a steady flow, with accurate readings from closely grouped static
tappings; otherwise what at first would appear ample evidence may be found to be capable
of a wide interpretation as to the distribution of pressure gradient oP/ox and hence a very wide
interpretation of (oCp/OX)2in the formula; the uncertainty is usually aggravated by the proximity
of a point of inflexion in the pressure distribution. This difficulty, however, should not be regarded
as a disadvantage of the method; rather, it represents the behaviour of the laminar boundary
layer which is highly sensitive to the values of the pressure gradients just in the region of
separation (see also Ref. 17).

(c) Several further calculations would be needed to establish the formula to a higher accuracy.
These calculations would include obtaining the coefficient to a higher accuracy, finding a new
coefficient to strengthen the extrapolation for positive p", and working a special case for a third
point at an intermediate value of zl with p" = O. It is possible also that the higher derivatives
at separation, 03P/OX3 and above, that reflect the general shape of the pressure distribution,
could be significant, and the argument for neglecting them is in any case only tentative. It does
strongly suggest that in general these are not important but in extreme cases the formula should
be used with care.

(d) In special circumstances the concept of an equivalent x is not always valid. For example,
it would not apply to the pressure distribution of Fig. 8a where a sharp pressure fall is immediately
followed by a sharp pressure rise. In the limiting case this becomes an r impulse' of pressure
change as in Fig. 8b and this need not affect the boundary layer as a whole whereas the
equivalent-distance concept could suggest separation. The concept of an equivalent x should
be valid, however, when the favourable pressure gradient occurs sufficiently far upstream for
its effect to have distributed itself through the boundary layer before the separation point is
reached, and in general this condition would seem likely to hold. In the above connection also
there might be some difficulty in deciding, for curves such as that of Fig. 8c, whether the
calculation should be on a basis of U; at A or Uo at B; B would be used when the second pressure
gradient is relatively steep and occurs some distance downstream of the first, while for large
smooth pressure rises after B, either basis should be valid and lead to the same result.

(e) It will be found on a closer examination of the algebra of the physical method that, as a
result of neglecting the higher terms in the expansion for the Blasius comparison profile, the
picture as given is true only for very small pressure rises. A priori one does not know even the
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order of magnitude of the higher terms that must occur in the formula for its application to
larger pressure rises, and it is only the empirical extensions which show that these terms are not
large and hence are then able to give the formula a valid overall application.

4.4. Comparison with other Methods.-As has been mentioned in the Introduction the present
method has been developed in order to obtain a simple workable formula and one that gives a
clear intuitive understanding. Comparison of its results with those of certain other methods is
shown in Table 2 below and in the subsequent Case C. The rapid method of calculation of
Von Doenhoff" is not quoted in the table but it uses results from calculations by Karman and
Millikan's method of Inner and Outer Solutions.

TABLE 2

Values of the Pressure Rise Cp at Separation as Calculated by Various Methods
(The results are shown also in Fig. 7)

Case A: The pressure distribution of Howarth, U1 = Uo(l - (3x): Fig. 7a.

Case B: The pressure distribution of Hartree: Fig. 7b.

Pressure distribution Case A Case B

----------------------I~------------I-------

Exact result-> Cp = 0·2256 at fJx = 0·120

Result by the Pohlhausen" . . · . · . · .
method of:

Karman and Millikan" · . · . · .

Thwaites" . . ·. · . · .

Cp = 0·287 at fJx = 0·156 I not known* _

Cp = 0·194 at fJx = 0·102 Cp < 0·063t

Cp = 0·221 at f3x = 0·117::: C; = 0·063§

C; = 0·0740

C; = 0'080211

Cp = 0·205 at Bx = 0·1085

Cp = 0·226 at fJx = 0·120:::

Approximate formula
Present paper ------------1--------------1--------­

Full formula ..

-------'-----------------------------,,-------

* The Pohlhausen result is not known for the Hartree pressure distribution.
t Karman and Millikan's method gave Cp = 0 ·063 (Ref. 17) with approximately Schubauer's original pressure

distribution and would therefore be expected to give C; < 0·063 for Hartree's pressure distribution, as this has a
steeper pressure gradient. (Ref. 18 gives a somewhat larger pressure rise than Ref. 17, the value being sensitive to the
pressure gradient in the assumed polynominal pressure distribution.)

::: Both of these methods use empirical fitting to the Howarth distribution.
§ This is from a calculation on the basis of Ref. 5 but using Hartree's modified pressure distribution in place of

Schubauer's.
II This is the result of the critical test applied in section 4.1 to the method of the present paper.

Case C: The third pressure distribution is the general one of a steep adverse pressure
gradient being applied abruptly at some point say x = Xo' According to the methods of,
for example, Pohlhausen, Von Doenhoff and Thwaites, a pressure gradient of finite steepness
can be sufficient to cause immediate separation with zero pressure rise. The present paper
however suggests that some (non-zero) pressure rise must always precede separation unless
the pressure gradient is infinitely steep. The only exact solutions known for this case are
those derived in sections 3.1.1 and 3.1.2, and in Appendix I of the present paper.

4.4.1. Comparison with Thwaites' method.-The method of Thwaites is particularly appropriate
for pressure distributions in which the pressure rise to separation is large, whereas the present
method, before its empirical extension, is appropriate rather for small pressure rises to separation.
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The method of Thwaites uses what can be interpreted as a shape parameter; this shape parameter
involves the momentum thickness e, but, by using a very simple formula for e, Thwaites makes
the method a particularly practicable one.

For obtaining a single result which will apply to all distributions one could extend either of
these results to cover the whole range. Extension of the shape-parameter method would meet
the complication that, when the pressure rise to separation becomes very small and tends to
zero, the value of the shape parameter employed would increase rapidly and tend to infinity.
Also it would have the slight disadvantage of working in terms of the indirect variable e rather
than the distance x direct. These factors suggest that it is more suitable to extend the result
for small pressure rises to cover all cases, as has been done here, although it is possible that
under certain circumstances it would be more appropriate to apply the shape-parameter criterion;
in such an event it may be preferable to have a range of values for this parameter and to choose
the appropriate one according to the values of the pressure rise and of a2pjox2

, rather than to
specify a fixed value as at present is recommended in that method This range of values in place
of a single value would closely correspond to the interpolations which make the difference between
the full and approximate versions of the formula of the present paper.

The actual parameter used in the method of Thwaites is (e 2jV)(aU
1jax) and, for large pressure

rises, and for a given type of pressure distribution (i.e., effectively for a given value of a2pjax2
) ,

this parameter has an almost fixed value at separation. An interesting comparison with this
result is that, for very small pressure rises, the present method shows that C//2(e2jv)(aU

1jax) is
fixed at separation.

The above comparison refers only to the calculation of the separation condition; for other
calculations the remarks of section 4.3 (a) apply.

5. Conclusion.-The method of derivation and the satisfactory key check-test suggest that the
formula presented in this paper should provide a reasonably accurate solution for laminar
boundary-layer separation. The formula is simple and rapid to use and its principle is simple
to understand.

During the course of the paper the pressure distribution is derived for continuously zero skin
friction, this attaining any given pressure rise in the shortest distance possible for a given laminar
boundary layer. A new family of exact solutions is found for the boundary-layer equations of
motion, but for rather special conditions in the external flow. These exact solutions are exact
solutions for the boundary sub-layer.

The final formula of the paper is given by equation (41) ; equation (43) is a simpler but rather
less accurate formula. The pressure distribution for continuously zero skin friction is represented
by equation (39) and is shown in Fig. 3 as curve (c).
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Parameter

Skin friction

v

p

m

v

s

x

u

y

P
Po

x'

LIST OF SYMBOLS
Distance around the surface from the (equivalent) leading edge (see

equation (44))
Distance around the surface from the actual leading edge
Value of x at the beginning of a sudden adverse pressure gradient
Distance from the surface
Distance along a streamline
Local velocity along a streamline, or local velocity parallel to the surface

(these velocities are taken numerically equal in boundary-layer
theory)

Local velocity perpendicular to the surface

fy d quantity of flow (per unit spanwise width) between the wall
ou y, and the point considered

Undisturbed mainstream velocity
Peak mainstream velocity
Local mainstream velocity
Local static pressure
Peak suction static pressure, corresponding to U;

Pressure coefficient PipU~o = (1 - g::) = proportion of the peak

dynamic head that has been converted to static pressure. The
pressure coefficient and its derivatives all take for reference the static
pressure and the mainstream dynamic head at the point of peak
mainstream velocity, and not conditions at infinity

Ll - Cp/ (x aae;). This is a parameter behaving like x~ X
o but used in place

of it as Xo will not in practice be conveniently or well defined.
Partial differentials with respect to x

Partial differentials with respect to y
Fluid density
Fluid viscosity

Fluid kinematic viscosity = I!
p

= fl(~~) 0

= (~~t
e Momentum thickness of boundary layer

0* Displacement thickness of boundary layer
as Value of y at the edge of the sub-layer

K, g, 14" v,p, X, 'YJ, C, a, t, T, fJ, fJb fJ2' x,~, S, h, j are sundry quantities used during the algebraic
manipulation and defined during the text.

Suffix sep refers to conditions at the position of separation. The whole separation formula and
most of its development refers to this position but for convenience the suffix is generally omitted.

Suffix b refers to the' Blasius' or flat-plate comparison flow.
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APPENDIX I

The Solution in the Neighbourhood of the Singularity at x = xo, with Finite Pressure Gradients
By G. E. Gadd, B.A., Ph.D.

With reference to the problem of section 3.1.1, it is possible to obtain an independent solution
which fits the boundary-layer equations (but not the full equations of motion) in the neighbour­
hood of the singularity in the pressure distributions at x = xo• The solution is as follows:

The usual incompressible boundary-layer equation of motion is

au au 1 dp 02Uu-+v-=----+v-.ox oy p dx oy2

Differentiating with respect to y and using the equation of continuity we obtain

02U 02U 03U
U ox oy + V oy2 = V oy3'

u = my + u',

Put

au'
r=-

oy

and linearizing the equation we obtain for near the wall and x slightly greater than Xo the relation

or 02 r
my ox = v'oy 2'

(The linearizations involved can be justified a posteriori.)

(
m )1/3

'YJ = 3'1' y(x - XO) - 1/3 .

Suppose the adverse pressure gradient is abruptly applied at x = Xo' For x slightly less than xo,
u = my near the wall (see section 3.1 ; m is of course related to xo) , and o2ujoy2 is zero at the wall.
Hence putting

The equation becomes 'YJR - 'YJ2R' = R"

where dashes denote differentiation with respect
02U dp

fl, ay2 = dx ' becomes

(1)

to n- The boundary condition at the wall,

R' = (3V)1/3l dp .
m fl,dx' 'YJ =0.

The solution of equation (1) satisfying this boundary condition can easily be shown to be

R = (3V)1/a! dP'YJ + AF
m fl, dx

where A is an arbitrary constant,

and F == 1 + IXl'YJ3 + IX2'YJ6 + ... + IXm'YJ
3m + ...

where rIXl = i
~ IX2 = - lo

l~;~.~ ~; ~;m + 2)IXm +1 = - (3m - l)rxm .
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But

(47)

As has been pointed out by Dr. Stuart an alternative relation for F, more suitable for use at
large values of n. is

J'1
3

/
3 JOF = - 3-4/3'fj co t-4/3 e- t dt + 3-4/3'fj co t- 4/3(e-t - 1) dt

so that as 'YJ ---+ 00

F ---+ 3-4/3Jco t-4/3(1 _ e-t) dt == G.
'YJ 0

(The approximate value of G is 0,94.)

At large 'fj therefore

R' ---+ (3V)1/3 ! dp + AG .
m u d»

,_ (3V)1/302U'
R - 2'm oy

Hence R' must e-e- 0 at large 'YJ since, except very near the wall, the fluid must behave as if inviscid,
so that the velocity gradient with respect to y remains the same just downstream of xo as it was
just upstream of xo• Hence the constant A is finite and determinable; consequently R, u' and u
are everywhere finite and determinable.

It is readily shown that the above solution, using the value G = O· 94, leads to the following
asymptotic behaviour at small values of (x - xo) :

(aU) 1 dp (V )1/3- ,....., m - l'536(x - XO)1/3- - -
oy 0 p, dx m

The solution given in the text as equation (22a) leads to the same asymptotic form but with
1.546 in place of 1·536.

APPENDIX II

Proof that Continuously Zero Skin Friction Gives the Fastest Possible Pressure Rise when
u == my for x < Xo and (ou/oy)y~O = constfor x > Xo

The pressure distributions which give (au/oy)y~O = const for x > Xo when u == my at x < Xo
are all contained in the family of exact solutions of section 3.1.2. Equations (25) and (30) show
that the fastest possible pressure rise corresponds to the largest possible value of K and hence
to the smallest possible value of the limit of 5" as ~ ---+ 00. All the members of the family can
be represented by appropriate values of So", which corresponds to (ou/oY)y~O' and flow with con­
tinuously zero skin friction is represented by So" = O. It is therefore required to show that

[ -:>5
0

" (lim 5")] = 0 .
u 0 <+co So"~O

Differentiation of equation (27) with respect to some parameter, say r/J, gives

25 oS" + 25" 05 _ 25' aS' = _ 3 oS!!, (46)
or/J ar/J or/J or/J .

If differentiations with respect to r/J and ~ can be commuted this becomes

25 0
2

[oSJ 25" [oSJ 25' a [oSJ 30
3 [oSJ

0~2 or/J + or/J - a~ or/J = - o;a or/J .
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Suppose now that the function 5 throughout equation (47) is some particular integral, say
5*, of equation (27), i.e., 5* satisfies three specific boundary conditions, and suppose that 5* is
known but [05* 10¢J is not known. Then equation (47) becomes a third-order differential equation
for oS*lo¢ with known coefficients in terms of 5*, i.e.,

(47a)

(48)

If, further, there are two such parameters ¢, say ¢1' and ¢2' and if these have OS*IO¢l = as*la¢2
for three independent boundary conditions, then the complete solutions [05*la¢lJ and
[05* 10¢2J, which would be obtained from the third-order differential equation (47a), must be
identical. Two such parameters are 5 0*" and ~ itself; it is assumed that

02 02

0';050*" - 050*"0';

at

and then the three boundary conditions are

j
05* 05*

05
0
*" = 0 = --ar = 5*'

a 05* 05*' = ! as* = S*"
~ = 0 \ 0'; 35

0
*" = aso*" = 0 ee o~

(49a)

(49b)

(49c)

I t therefore follows that

[~] = [~S*]
05 0*" - a,; (50)

(51)

(52)

provided 5* is a particular integral of equation (27) satisfying equation (49). [Actually the set
(49) represents three independent conditions for equation (47a) but only two for equation (27).J
Equation (50) can be verified by expansion in series.

In particular, and again using (48),

[
05*"] [85*"]lim as *" = lim --at = lim S'" = 0 .

~+oo 0 <+00 ~ ~+oo

Again commuting limits (51) becomes

8 [1' S*"] - 005 *" im -.
o ~+oo

This is the result required as (49b) gives that S* = [S] 5
0"=0

•

The utilitarian significance of this proof probably lies in the indirect support which it gives to
the proposition that the quickest possible pressure rise for a given boundary layer whether laminar
or turbulent is that with continuously zero skin friction. This proposition in turn suggests that the
most efficient type of aero foil not having external boundary-layer control is, as regards lift/drag
ratio, that with laminar flow for the forward portion of the chord, transition, and then zero tur­
bulent skin friction for the remainder of the chord.
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