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Summary.—The method of expressing the velocity increment over aerofoils directly in terms of the section ordinates
(Refs. 1 and 2) is extended to cover also straight and swept wings of finite aspect ratio. The wings considered are
untapered in plan-form but may be tapered in thickness. The section can be of any given shape so that in this sense
. the analysis is more general than that of Refs. 3 to 6 which deal with wings of biconvex section.

The coefficients required in the calculation are tabulated for the centre-section of straight and swept-back wings
(p = 0 deg, p = 45 deg and ¢ = 60 deg) of aspect ratios 0-5; 1 ; 2 ; and 4, the wing of infinite aspect ratio having been
treated in Ref. 1. The remaining calculations can be made very quickly. -

Since wings of very small aspect ratio can be treated also by the method of slender-body theory, the relations between
linear theory, slender-body theory, and linearised slender-body theory are discussed. For the special case of ellipsoids,
the results obtained from the various methods are compared with the exact solutiqn. :

1. Introduction—Up to now the pressure distribution at zero lift on wings of any given
symmetrical section shape has been calculated only for straight and sheared wings of infinite
aspect ratio and for the centre-section of swept wings of infinite aspect ratio (see, e.g., Refs. 1
and 2). o 4 ST

On wings of finite aspect ratio the pressure distribution may differ from the.distribution on the
corresponding two-dimensional wing for several reasons. This can clearly be seen if the wingis
-replaced by equivalent source-sink distributions.: With a wing of finite aspect ratio, the source
lines are cut off at the wing tips. This affects the velocity component normal to the chordal
plane as well as the velocity increment in the direction of the main stream.

Further three-dimensional effects are produced by a tapered plan-form and by a spanwise
variation of the section shape. A tapered plan-form results in a pattern of source-sink lines of
varying sweep while changes in section shape (e.g., varying thickness/chord ratio) alter the local
strength of the source-sink distribution and hence the induced velocity.

So far, no attempt has been made to take all these effects fully into account. Approximate
solutions ‘can be obtained, if the simplifying assumptions of linearised theory or of slender-body
theory or of both together are made. This report deals with these three methods.

In the linear theory, it is assumed that the wing thickness is small compared with the chord
and the span. The effect of finite aspect ratio on the normal velocity component is ignored and
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the streamwise velocity component v, is calculated in the chordal plane instead of on the wing
surface. With these simplifications, the work reduces to finding v,(x,y,0) from the known source
distribution ¢(x,y) by evaluating a double integral over the whole wing area.

This integral can be determined explicitly for wings with biconvex or other related sectionsin
some simple cases, or otherwise numerically. Neumark and Collingbourne®* (1949 and 1951)
have given solutions for wings of finite aspect ratio, that are tapered in plan-form but not in
thickness/chord ratio; and Newby® (1955) has considered in detail the practically important case
of thickness taper; a simple case has also been treated in Ref. 7 (1950). Although Newby has
succeeded in establishing the general trends produced by the various parameters, the actual
results which he has obtained for the biconvex section cannot be applied with certainty to
conventional aerofoil sections. Anyway, pressure distributions can never be worked out in
advance since there are too many parameters involved, not only concerning the section shape
but also the plan-form of the wing. Newby has dealt with this dilemma by approximating
results obtained for the biconvex section, say, by factors applied to the standard distributions
for the infinite sheared wing or centre distributions, the factors depending on thickness taper,
plan-form taper, and sweep ; it is then assumed that the same factors can be retained for wings
with any given section shape where the two standard distributions can easily be obtained.

Here, another approach to the problem is attempted, applicable ab ¢nitio for sections of any
shape, whereby the main body of the numerical calculation is done in advance once and for all,
leaving a routine method which can easily be performed. This is possible for those plan-forms
and spanwise variations of the thickness distribution in which the spanwise integration of the
double integrals mentioned above can be performed explicitly, by using for the chordwise
integration the method of mechanical quadrature by Gauss. This method has been applied in
Ref. 1 to two-dimensional aerofoils, and it will be shown below that a similar treatment is possible
for wings of finite aspect ratio. In this method the velocity increment is expressed as the sum of
products of the section ordinates at fixed chordwise positions and certain coefficients, which are
determined by the geometry of the wing but are independent of the section shape. It is thus
possible to deal with wings of any section shape quite easily. These coefficients can be worked
out in advance. A routine calculation method is thus developed, which is very quick; and the
actual computing work is of the same order for the finite aspect ratio wing as for the two-
dimensional wing.

The coefficients can be worked out for wings of any given aspect ratio with linear plan-form and
thickness taper. However, the numerical calculation of the coefficients is rather lengthy. There-
fore, numerical values of the coefficients have been given only for three simple cases:

(1) The centre-section of rectangular wings of constant section shape

(ii) the centre-section of rectangular wings for which the thickness-chord ratio is varying
linearly along the span :

(iii) the centre-section of untapered swept wings, ¢ = 45 deg and 60 deg, of constant section
shape. :

The coefficients are given for wings of aspect ratio 0-5 and greater, since for smaller values of
the aspect ratio the simpler method of linearised slender-body theory may be applied. The
determination of the coefficients is described in sections 2, 3 and 4.

The assumptions made in linear theory and their effects on the velocity distribution are
discussed in section 5. Here a simple way to obtain a better approximation near the leading
edge is suggested.

For the three cases, in which the coefficients have been calculated numerically, the effect of
section shape is shown in section 6 by comparing the calculated velocity distributions on wings
with a conventional section shape (RAE 101) and with biconvex section. This comparison is
made to illustrate how far the results for wings with biconvex section give the general trends
due to the various parameters and how much the actual values for a conventional section shape
may differ from those for a biconvex section. -
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The application of the results obtained by linear theory to sub-critical compressible flow is
briefly discussed in section 7. Supersonic flow is not treated at all.

For wings of very small aspect ratio, it is possible to justify the assumptions of slender-body
theory, namely, that wing thickness and span are small compared with the wing chord. The
application of slender-body theory for the determination of the thickness effect on small aspect
ratio wings, as given, e.g., by Adams and Sears® (1953), is discussed in section 8. The work is
- reduced to the determination, for each transverse plane, of a two-dimensional velocity potential
which has a given derivative normal to the boundary of the cross-section. A method is given for
determining this potential, if the cross-section is bounded by a simply connected curve, <.e., if
the trailing edge is straight or swept forward. The determination of the required conformal
transformation of the cross-section into a circle is not discussed here. Finally the combination
of linear theory and slender-body theory, as suggested by Keune® (1952), is discussed.

In the last section the velocities on ellipsoids with three different axes are calculated by the
various approximate methods and compared with the exact solution.

2. Rectangular Wings of Comstant Section Shape—In this section the simplest case, namely
rectangular wings with the same section along the whole span, is treated.

A rectangular co-ordinate system #, y, z with the x-axis along the main stream and y in the
spanwise direction isused. The origin,x = 0, y = 0, z = 0 is at the leading edge of the centre-
section. All dimensions are referred to the wing chord ¢, which is taken as unity. The semi-span
of the wing is s. )

A straight wing of constant chord and the same symmetrical section shape z(x¥) along the
whole span in a uniform flow of velocity V, at zero lift can be represented by a distribution of
source and sink lines, — s < y < s, in the chordal plane; the strength ¢(x) of the source lines
according to linear theory is

az(x)

gy =2V,=3 .. .

This source distribution produces at a point (¥, v, 2 = 0) in the chordal plane a velocity
component v, in the direction of the main stream:

x — x

1 , +s a .
2,(2,9,0) = de J_SQ(xLL)yZ y Ear iy v R . . (2

The integration with respect to y can be done first, i.e., the velocity dv, induced by a single
source line is determined first. '

g(x’) _dx’ s—Y s+y
av,(%,y) = dn x — %' ,:{(x X+ (s — y) -+ (v— 2+ (s _{_y)z}uzji

and therefore

(3)

o e ) A
lx_li/rlr_l)()dv,, (xy) = 5 x—x’_slif}n dv, (xy) . .. .. .. .. .. . (4)

This means that for pivotal points close to the source line the effect of the finite source line is
the same as that of an infinitely long source line, as can be seen directly from Fig. 1.

The total velocity increment is by equations (1), (2) and (8):
vx(x,y)_ljllﬁ[ s—y s+ j| ax’
Vo ~al2@ {m— 2P+ s — 0P T {G=aF+ s typrlr—x O
3
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Since, when the aspect ratio is not too small, the difference between the velocity distributions
on the finite wing and the infinite aspect ratio wing is small, we write the velocity on the finite
aspect ratio wing as the sum of a two-dimensional solution and a correction term. In the two-
dimensional case, the limit as s— oo, the integral of equation (5) can for fixed positions #, be
determined as the sum of products of the known section ordinates and certain coefficients, which
are independent of the section shape (see-the Appendix and Ref. 1):

v, .

x vy A - 1 1 d d ’ N_l -
v, (% ) [ z _x_,zga)(xy): > sz L. .. .. .. .. (6)

[)dx, 96,, — % g S

By equations (5) and (6) the velocity on the finite wing becomes:

0.(%,) . Ll de [{(x — ) + (s — )% — (s — )
7 ZS”@“)_;L%;'{ : {Zcx—x’)sz—]—j()s}—y)z}l/sz >

{r =2+ s+ 97— (s —I-y)] dx’ ' 7
{(x_x’)2+(s+y)2}1/2 X — x . . e
The integrals in equations (5) and (7) are of the type:

1*dz flxx') dx’ ' '
]:;JQG—E—’W .« .. .. .« ‘.- .« .. (8)

This is similar to that for the velocity increment of the two-dimensional wing, equation (6), when
the source strength ¢(x') = 2V (dz/dx’) is replaced by 2V, (dz/dx")f(x,x'). The corresponding
section shape is however varying with the pivotal point x. It is therefore not advisable to
apply equation (6) directly, since it would involve the working out of a series of new section
shapes. But, as shown in the Appendix, integrals of the type of equation (8) can for fixed points
% = x, also be approximated by sums of products of the section ordinates z, = z(x,) and new
fixed coefficients which are independent of z(x) : '

Lftde flax)ax "5 af(x,,x’
JOfov _) %’ = Z S,(lu? {f(xwxlt) + (xv - x,u) L(dx—,—“)>xlj Ly - . s (9)

=1

n
The necessary conditions are that the function f(x,x’) and its derivative df (x,%’)/dx’ must be
finite and continuous in the whole interval 0 < " < 1.

The velocity increment at a point (x = x,,y) on a rectangular wing of constant section z(x) can
therefore be calculated from the formula :

M:SM(%)—NEE@@ SO ¢ 11)
where " ‘ ‘
sy [ME b PP s o) 1= wl )
P - w5 — ) 2G5 — 5 + (5 — Y1
_I__l_{(xv _ xu)z + (S +y)2}1/2 _ (S +.y) - 1 (xv — xu)a(s —l_y) . :I
2 {(x, — %,)° + (s + )32 2{(x, — %,)* + (s + )P~

— 1 oI ) o)
= S 2{(951, — %”’)2 + (s — y)2}3/2

_@+ﬁm%—%fﬁk+ﬁﬂ (11)
2{(% — x#)Z + (S + y)?}s/z - . . .. ..

SO=0. ...




Equatlon (12)'is a consequence of the fact that the integrand in equation (7) vanishes for ¥" =
as can be seen by writing equation (7) in the form:
v.(%,y) ,y) SO IJII az { , x—x

28 ([G— 2+ =) P x— 2 F (5 — 9/ s —

0

+ 2172 v nijz }dx
{x—x YT — 2+ s+ )+ s+ ]!

This agrees with equation (4) which states that in the neighbourhood of the source lines the finite
source lines give the same contribution to the velocity increment as the infinitely Iong lines of
the two-dimensional wing.

(13)

Equation (13) shows that the integrand vanishes for ' = x even when the pivotal point x
coincides with the leading edge, since

d
Iim xdz 0
x—>0" X

This means that equatlons (10) and (11) hold for » = N, i.e., %, = 0, with S®(0) from equation
(6-16) in Ref. 1 and

(— 1) —1 2sind,

O
) Sult = N (1 -+ cos#,)?" (14)
Since . :
s =10 for v -~ u even
s =0 fory +peven. .. .. .. .. .. .. (15)
From Co
s — s
[IV N—u,N—»
and , ) . : :
(x, — %) = [(1 — xN_v) — (1 — xN_“)]f = (Xy_p, — Xy_,)* .. .. .. (18)
it follows that
e A

' To determine the Veloc1ty increment on a finite wing by equations (10) and (11) is still tedious,
but the coefficients s can be calculated in advance.

For the special case of the centre-section, y = 0,

2, — )+ 5
(% — w597

s — sty [ 1— (17

The velocity increment can within linear theory be calculated from equation (10) to any
desired degree of accuracy by taking in equation (9) a large number (N) of points along the chord.
It has been shown in Ref. 1 that it is usually sufficient to take N = 16 when determining the

basic term S®(x). The required value of N for the term Z sz, can be found by evaluating

the term for various N or more easily for wings with blconvex section by comparing the result
from equation (10) with the exact result obtained from equations (5) or (7) by explicit integration.
Such a comparison is made in section 6; it shows that for spanwise stations that are more than
half the wing chord away from the t1ps or for the centre-section of wings with an aspect ratio
greater than one, it is sufficient to take N = 8, i.e., to approximate the section shape by an
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interpolation function which has the correct values at the leading edge and trailing edge and
7 points along the chord. This is advisable only for the correction term whilst the basic two-
dimensional term S®(x) should be calculated with N = 16. This is the reason for expressing the
velocity increment by two sums since thus a smaller number of coefficients s need to be worked
out. The numerical values of the coefficients s¥, from equation (17), for the centre section of
wings of aspect ratio 4, 2, 1 and 0-5 are given in Table 1. Some calculated pressure distributions
are plotted in Figs. 3 and 4 and are discussed in section 6. The calculations have been restricted
to wings of aspect ratios greater than 0-5, since for wings with very small aspect ratio the method
of linearised slender-body theory may be applied. The velocity on wings of small aspect ratio
is of interest, when investigating the velocity on wings in subsonic compressible flow by means
of the Prandtl-Glauert analogy. At sub-critical speeds wings with an aspect ratio of less than
0-5 are seldom of interest. A wing with aspect ratio 0-5 is analogous to a wing of aspect ratio
1:6 for a free-stream Mach number M, = 0-95; or to a wing of aspect ratio 2-5 at M, = 0-98.
Moreover local supersonic regions must be expected below those Mach numbers in many practical
cases, and this will invalidate the assumptions made in the theory, anyway.

3. Rectangular Wings with Linearly Varying Thickness/Chord Ratio.—This section deals with
straight wings of constant chord with the same section shape along the span but with a thickness/
chord ratio that is decreasing linearly from the centre-section to the tip. In linear theory, a wing
given by

2(xy) = 2(x0)(1 — d]y])
is replaced by the source distribution :
glry) = oy = 0)(1 — o]y

zzm@@%iga—awm.. e 1),

Denoting by ¢, and #, the maximum thickness of the centre and tip sections,

b O 1)

To evaluate the streamwise velocity increment produced by this source distribution, we again
determine the contribution of one source line first, ¢.c., we perform the integration along v. The
source line at ', — s < 3’ <'s, 2 = 0 produces at the point x,y,2 = 0 the velocity component

0 I,O (Z ,d ! ) . 4
d'Ux(x,y) = J_sq—(x—_)inhxi (1 + (Sy ) {(x _ x/)zx_I_ <j} _y/)z}s/z
sq(x',0) dx’ dy’ , x— x'
+ Jo p. (1 —oy") {(x ZX T (y ——y’)“‘}3/2
__q',0) _dx’ [ s—y n s+
= pp X — x {(x — xr)z + (S _y)z}l/z {(x _ x/)z _l__ (S +y)2}1/2

(x — &) — (s — ») (x — %)° 4+ (s + )
o [{<x — T (s — " T =2 T (s T 9) P

o 2{(96 — x)? ’i‘yz}lm}} .



Fory > 0:

i) =T 725 0= o [ x')f et e
o[ T
+ e ii+ymﬂ—qw—wy+ywﬂ @)
and x@ggmmw=ﬂ£mﬂ 5”x??
::ﬁ;;y)xff;, (21)

which means that for a pivotal point near the source line the velocity increment is like that of
an infinitely long source line of a strength that is constant along the span and equal to that at
the local station considered.

Using equations (5), (10) and (20), the total velocity increment is:

x(wa) (1 o (Sy |:S‘(I) 2 Sl(ti ’u—'
zflldz e 211/2 56, 1 (3—|—y) dx’
——5[EJ0W{(%—’G) ‘l‘y}/x_x J x_x —}—(s+y)2}”2xy—x’
L1 dz (s, — x)? e =) dx' )
o EJOQW [{( — x')2 + ( 2}1/2 +{ ' 2 ‘I‘ S _[_y)z}1/2:| P PR (22)

The integrals are again of the type of equation (8), but the derivative df(x,x’)/dx’ of the term
flxx') = {(x — x)® 4 %}/ in the first integral is discontinuous for y = 0 at the point " = x,
jumping from — 1 to -~ 1. This means that the approximation (9) must not be used for the
integral

1 ax’
Vh_r;t fod A +y2}1/2x — '

Furthermore, for small values of y the derivative is changing fairly rapidly in the neighbourhood

af(x,x")

of x" = x, which implies that an interpolation formula for z(x’) 7 Which takes into account

only a few values along the chord (such as N = 8) need not give a good approximation.
This is not a special feature of the present method, but will arise in all methods for numerical
evaluation of the double integral, e.g., in the method by F. Hjelte® (1952) which consists in * dividing
- the wing area into a number of small subregions, performing the integration approximately in
each of them, and adding the results.’
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For y s 0, by equations (9) and (22):

vx(pr;:*)z(l—‘sy[s‘“ Z_ }—6ZHW O 1

where

(v, — %,)°

S,(Z,) = Sp(,lp) [{(XV -— xﬂ)z + yz}”z — {(xv _ xu)z X yz}1/z

B y(s + ) _ y@+w%—WN
6 —2)* + (s + )37 {6 —2)* + (s + 9"
(xv — x,u)z . ‘(xv _ xll)z

2 = w)T (s — )T 2l — )P (s )P

(2, — 2,)°[(%, — %,)* + 2(s — 3)*] n (%, — 2,)°[(%, — %,)* + 2s + y)’f]}
2{(x, — %) + (s — )P 2{(x, — %)* 4 (s + )77

Y PR L CASEO E S L P
v {(x,, — xu)z _I_yz}l/z {(xv — xﬂ)z T (S _}_y)2}3/2
<x—x)(3—3’)2 (%, — %,)*(s + ) »
o _(])_2{(% —x +( 2}3/2—]_2{% ___x +(s+yz}3/2:i- .. .. . (24)
s —= 4

which follows from eqﬁation (21). Again the coefﬁments st can be worked out in advance.

In the numerical examples given in this report, only the most interesting station, the centre-
section y = 0, has been considered, the coefficients for other sections have not yet been calculated.

At the centre-section, y == 0, by equation (22):

N—1
11dz dx’. lldz x—x) dx’
=0 [ odx’ A 2}1/296 —x' Jod% {(x, —x) + "} P x, — x’i| <o (29)

As stated above, the approXimation of equation (A-6) cannot be applied to the integral
Jl az dx’

vdx’ 7, — ' 2}1/296 — %’

. df (x,x") . . . . . ..
since fg;, ) is discontinuous at ¥” = x,. But it can be determined explicitly.

The result is

Ydz {(x, — xR “r dg tdz 2 9z(x,y)
JMzT—x:}* ix' = | 2 = 2(w,0) = — 3 . (28)

since z(x,y) = 2(x,0)(1 -- & |¥]).

A 20 ) - ) c 4. .
On the whole, the existence of a term VV = —g(-yl = 2— z(x,0) which is proportional to
[

the shape z(x) itself, is an important feature introduced by the thlckness taper. Without thickness
taper, only two kinds of terms occurred in the expressions for the velocity increment: one being
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~similar to that for two-dimensional aerofoils; and on swept wings a ‘ kink term ’ appears which
is proportional to the local slope of the aerofoil (see equation (33) below). The kink termis caused
by the sudden change in direction’of the source lines, 4.e., by the change of the neighbouring
source lines, The new term is caused by the sudden change in 9z/3y.

The approximation of equation (A-6) is applicable to the second integral in equation (25),
so that the velocity increment can be determined from the relation:

(%,,0)- N-—-1 9 N—1

” (T’; sy — S s — 6 [; ) — > s,‘fi’zlj @

0 u=1 u=1

with s® from equation (17) and |
s*(x, — x,)°
. S[(g,) = — SA(LIV) {(x,, _x'u)z _[f‘sz}g/z . (28)
Again: ,

s =0 .. .. . . . . o . o (29)
- s =0for » 4 p even .. .. Vi .. .. .. (30)
s = s® ,n_y .- . . . . . . .o (31)
v(x=0v=0 Rt nal .
( Voy =0) SW(0) — ; sz, + 0 ; Sz, .. .. (32

The coefficients s® from equation (28) for 4 =4, 2, I, N =8 and 4 =V0-5, N = 16, are
tabulated in Table 2, and calculated velocity distributions are given in Figs. 3 and 4.

4. Untapered Swept Wings of Constant Section Shape—The effect of finite aspect ratio will
depend on the angle of sweep of the wing. To determine this variation we calculate the velocity
increment at the centre-section of swept wings with constant chord and constant section shape

along the span.

Within linear theory, such wings can be represented by a distribution of kinked source lines,
which are of constant strength along the line. It is known from the evaluation of the velocity
distributions at the centre section of swept wings of infinite aspect ratio® that a kinked source
line has a singular behaviour at the centre-section different from that of a straight line. This
explains the occurrence of the < kink term.’

The velocity increment on the infinite aspect ratio wing is (see, e.g., Ref. 2):

v_@(x}/ﬁ@ — cos ¢ . SU(x) — cos . f(#)SO(x) O £
0
N1 ’
with S‘Z)(x)_—_ZZZ—;:Zsﬁzﬂ. .. . . .. . . . .. (34)
u=1 .

" Since the kink term, cos ¢ . f(¢)S®(x), is caused by the sudden change in the direction of the
_ source lines in the immediate neighbourhood of the pivotal point, it will be the same for wings
of both infinite and finite aspect ratio. To avoid reconsidering the complications arising from
this singularity, the velocity increment on the wing of finite aspect ratio is calculated as the
difference between the velocity distribution on the infinite wing and the contribution of the
semi-infinite source lines outside the tips of the wing, which of course do not exist in the case of

the finite wing.
‘ 9



Two semi-infinite source lines s < |y’| << o, swept by an angle ¢, which when extended would
pass through the point %',y = 0 produce at the point x,y = 0 the velocity increment :

o [Pqlx) dx dy’ x—x —y'tang _
dv, = ZL 4z {(x — 2" — y" tan @)® - y"*P*
_glx) ax’ {cos’p . (x — x")* —sin2¢ . (¥ — x)s + S}/ — 5
=0 x—a "7 {cose . (¥ — #")* — sin 2¢ . (¥ — x")s - $*}/° (35)
Hence for the finite wing:
M = cos g . SV(x) — cos @ . f(p)S®(x)
]
1t dz {cos’p . (x —x)* —sin 2p . (x — &')s 4 $*}'* — s dx’
—cose 'EJoEZ? {cos’@ . (x — x')* —sin 2¢ . (x — x")s 4 $P* 2 — &' (36)
’Ux(x,,,()) [9) ' (2) S (6)
—y, =cos¢. SW(x,) — cos ¢ . flp)SP(x,) — cos ¢ Zl 58z, .. . .. (37)
=
where
f s[2cos’ ¢ . (¥, — x,)® — 1-5sin 2 . (¥, — x,)s - 7]}
Sip = S il — {coste . (v, — x,)* —sin 2¢ . (x, — x,)5 + ST/ oo - (38)
s = .. . . .. . o . . .. .. (39
s = 0 foru + » even .. . .. . .. .. oo (40)
but Sf,,) # s.g\(;)—/z, N—v
since %, — %, = — [%y_, — Xy_,] -

Equation (39) is equivalent with the fact that the integrand in the integral of equation (36)
vanishes for #” = x. This follows from the fact that for a pivotal point (x,y = 0) near the kink
of a source line (x',y = 0) both the finite and the infinitely long source line give the same
contribution to the velocity increment, which implies that the kink term does not vary with the
aspect ratio. However the velocity distributions on the straight and the swept finite aspect
ratio wing do not differ only by the ‘ kink term’ since the contributions of the cut off source lines
and therefore the coefficients s& depend on the angle of sweep. Some numerical results are plotted
in Figs. 5, 6 and 7 and are discussed in section 6.

. The values s from equation (17) given in Table 1, are for the special case ¢ = 0. Values for
¢ = 45 deg and ¢ = 60 deg are tabulated in Tables 3 and 4.

The above formulae give only the velocity increments at the centre-section. For any spanWise
station the formulae naturally become more complicated, as may be seen from the relation for
the velocity at any spanwise station of a swept wing of inifinite aspect ratio. It is:

, 0
v”(#/—’—) = cos ¢ . SV (%)
0
ysin @ f az
o T odx’
{(x — x")2cos® ¢ + (v — x')y sin 2p -} y*}'/* — y ax’
[(x — %) + 2y tan ¢]{(x — x)* cos® ¢ + (¥ — ¥)y sin 2¢ Ry !
where x is measured from the leading edge of the section considered. An approximation to the
integral can again be obtained by a sum according to equation (A-6). For the interesting stations

near the centre-section a check should be made as to whether it is sufficient to take N = 8.
The coefficients in this case have not been calculated.
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In the following analysis it will be shown that wings with tapered thickness or tapered plan-
form lead to such complicated expressions that the coefficients for an arbitrary section shape
have not been calculated.

To determine the veloc1ty at the centre-section of a swept wing whose thickness/chord ratiois
varying linearly along the span, one must not calculate the value at the chord of the centre-

section but take the limit as z— 0 of v, (#,0,2) or h_r>n v, (x,9,0), so as to obtain the correct centre
term. This gives

v%,0,0) _ 1 ' dz (1 — 0y (x, — %’ — vy’ tan ¢)
0 _g%n odxd J{x__x_y tan ¢)? +y/z_|_zz}3/2y

— cos ¢ . SV(x,) — cos ¢ . f(p)S(x,)

— COS 2 s®z, — 8 cos® ¢ . gz(xy)

T
=
4 6cos§o EJAﬁ cos’ g . (%, — x')? — ssin 29 . (x, — x7) dx’
"wlodx’ {cost g . (x, — ¥)® — ssin 29 . (x, — &) + sTPPx, —

-+ & sin ¢ cos ¢ IJIEZZ.

’

% In [{COS ¢ (%, —x')* —ssin2p (v, — %) + s*}* 4 s

M ’
s p — sin ¢(x, — % )] ax

. 1t dz
— 8 2
Sin ¢ cos ¢ — fodx'
The approximation of equation (A-6) can be used to deal with the first and second integrals but
not the third integral. A numerical calculation does not seem advisable in view of the complicated
expressions contained in equation (42). This is not a special feature of the present method
however, but is due to the type of source distribution.

B2 sing . (x, — )] dx . .. (42)

The same type of integrals occur in the expression for the velocity distribution at the centre-
section of a tapered wing of constant thickness/chord ratio, since

U(%,,0,0) i (1 — oy, — 2" — y'(tan g1z — 6x")] v’
Ve zlfén odx f {lx, — x" — y'(tan g, — 6x")]* + y"* + 2*P* 2o

(43)

One can therefore draw the conclusion that the determination of the velocity increments at any
spanwise station of a swept tapered wing of a given thickness distribution is not a problem that
is best solved by the usual numerical methods. It seems more suitable to be treated by an electric
analogue computor.

3. Discussion and Improvement of Linear Theory~—Within linear theory three assumptions
are made:

(i) The velocity increment v, is small compared with V,

i1) The velocity component »,(x,v,z) which is produced at the surface (by a source-sink
y p %, p y
distribution in the chordal plane) can be approximated by the velocity .v.(x,y,0)
produced at the chordal plane

(iii) The total velocity at the surface V(x,y,2) can be approximated by the streamwise
velocity V, + v,(x,,0) at the chordal plane, neglecting the components v, and v,.
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There are three main cases where these assumptions are not satisfied -and where it is to be
expected that linear theory may not give satisfactory results:

(@) The region of the leading edge for conventional round-nosed sections on all aerofoils,
whether the span is infinite or not

(6) The tip regions of wings of any finite aspect ratio
(¢) The whole wing if-the aspect ratio is small.

It will be shown that a correction to linearised theory can be found to obtain a solution in
case (¢). In case (b) an empirical correction has been determined (see Refs. 2 and 10). A special
case of (c) is the group of wings of very small aspect ratio, which can be dealt with by slender-body
theory. We will discuss the relation between linear theory and slender-body theory in section 8.
In section 9 the case of ellipsoids will be used to show how accurately the velocity on small aspect
ratio wings may be calculated by linear theory by comparison with the exact results.

We will discuss first some effects of the simplifications made in linear theory. Imagine a
source distribution of strength ¢(x,y) in the plane z = 0. At points away from the edges, the
velocity component normal to the plane is equal to + 3¢(x,y), since the source material is flowing
out normal to the plane. Half of it emerges from the upper surface and the other half from the
lower surface. For points at a small distance above or below the wing v, is approximately equal
tog/2. At the edges of the source distribution, 7.e., at the leading and trailing edge and the tips, the
source material can escape in all directions, e.g., it can escape sideways near the tips. v, is then
smaller than + ¢(x)/2 on the wing surface.

A distribution of finite source lines of constant spanwise strength thus produces near the ends
of the source lines a smaller v, velocity than infinitely long lines and a non-zero wv, velocity.
* This means that the wing represented by such source lines is thinner at the tips than at the centre
but wider than the source lines. The source distribution used to represent a finite wing must be
changed with the aspect ratio and must vary along the span; strictly it cannot be taken as
that for a two-dimensional wing as is done in linear theory. Source distributions to represent
square-cut wings* need to be stronger near the tips but are cut shortt. It is likely that these
two modifications have a small combined effect at sections away from the tips since the separate
effects are of opposite sign. For wings of small aspect ratio, the fact that in linear theory the
sources are spread over too wide a spanwise area will generally reduce the calculated streamwise
velocity increment. :

* Strictly square-cut wings cannot be represented by source distributions in the chordal plane alone. But one
can obtain tip shapes which are a better approximation to square-cut tips than those resulting from constant spanwise
source distributions. '

+ A similar difference between the exact source distribution and the one from linear theory exists near the leading
edge of round-nosed two-dimensional wings. This difference may be illustrated on wings with elliptical section :
2x) = 3H{ 1 — (1 — 2¢)212,

The exact source distribution obtained by the method of conformal transformation is:
gle) ¢ 1—2%
2V, — 1 — {1 — ()2 — (1 — 2x)%2

BT, LISt = L1l iy

fo

From linear theory :
g(x) t(1 — 2%)
o7, = [T = (1 = 2x)pe for 0 < x < 1.

The correct source distribution is stronger but has a shorter chordwise extent than the one from linear theory. The
comparison must not be carried too far, since there is one important difference between the tips and the leading edge
where assumption (i) does not hold.
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There is, however, the further simplification implied in assumption (iii). Replacing the velocity
increment v,(x,y,2) at the surface by v,(x,,0) in the chordal plane has at least over part of the
wing an effect of the opposite sign. . For the maximum thickness position, .y,

Iv:\' xmax’yjo | = [vx xmnx:y)z) l

as can be seen from the relation

(44)

q ¥—X ’ ’
,yZ [J‘ % _xr)z + (y __y/)g _|_Zg}3,2dx dy .

For a rectangular Wlng, the integration along v can be done explicitly. We obtain instead of
equation (5) for y = 0:
1tdz s Cx— "
v,(%,0,2) = Jodx TS AR %) +z .. .. (45)
As an example the velocities at the maximum thickness position, #..., of a 10 per cent thick

rectangular wing with RAE 101 section have been calculated in the chordal plane and at the
surface using in both cases the source distribution from linear theory:

U, U,
A v, (Hrarr ¥ = 0,2 = 0) 7, (Kmas ¥ = 0, 2 = 1/2)
0-1 0-048 0-029
1-0 0-131 » 0-104
0 0-145 : . 0-118

The difference in the v,-values is appreciable. Since it is known that v,(z = 0) is a good approxi-
mation for the two-dimensional wing (see Ref. 1), the results show in particular that one does
not obtain a satisfactory approximation for the velocity on the two-dimensional wing by
- calculating the v,-velocity which the source distribution of the linear theory produces at the
surface of the wing. This will mean that in general one does not improve the results of linear
theory by calculating only the streamwise velocity increment at the surface. If a better approxi- -
mation is needed, the v,- and v,-velocities must also be determined at the surface, which implies
that a source distribution different from that of linear theory has to be taken.

That the effects of the various simplifications of linear theory cancel each other to a great
extent for points away from the leading edge has been shown for two-dimensional wings in
Ref. 1 and is shown for wings of small aspect ratio on a special example in section 9. We must
however apply a correction to the results from linear theory near the leading edge:

It has been shown (see, e.g., Ref. 1) that one obtains a very good approximation to the velocity
along the whole surface of two-dimensional wings by multiplying the result from linear theory by

1 ;
the factor aF GO
V.(x,0)
V%A = 5 Gy
Vy + 0.x,0) L e

TSP

For aerofoils of elliptical cross-section equation (48) gives the exact velocity distribution ; in this

case

_ Vixk=0-52=12 v .
(U4 (dzjanyp - {1+ (dzfdx)? G
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The same relation is true for ellipsoids, both for axially symmetrical ones and for those having
three different axes (see equation (102) in section 9):

o _V{x=0-5,y=0,¢2)
T/<x,y =02 = {1 T (dZ/dX)z}llz

As shown in section 9, the values of v,(x,0,0) calculated by slender-body theory and linearised
slender-body theory are constant along the chord of an ellipsoid, as is v,(x,2 = 0) for the two-
dimensional elliptic wing. The values v,(0-5, 0, 0) from linear theory and linearised slender-body
theory do, however, differ from the exact v,(0-5, 0, #/2) by a term of the order (¢/c)?, whilst they
are equal for the two-dimensional wing.

(48)

In view of these relations and the fact that close to the leading edge, except near the wing
tips, the flow on a finite wing can be expected to be similar to that on a two-dimensional wing,
we propose to apply the same factor to the results of linear theory, i.e., to use equation (46) with
the velocity increments v,(x,v,0) of the previous sections.

The effect of this correction is illustrated by Fig. 8, in which the velocities resulting from
linear theory and those corrected by applying equation (46) are plotted together. It is shown,
¢.g., that in some cases linear theory may give wrong values of the maximum velocity.

The following may be noted as a matter of interest. Wings with the conventional rounded
tips but otherwise constant spanwise thickness may be represented—at least for calculating the
velocity distribution at stations away from the tips—Dby a distribution of source lines of constant
spanwise strength and two lines of three-dimensional sources at the beginning of the tips. The
strength of the sources is according to the linear theory of bodies of revolution :

Q(x):%d”ifx)vﬂ. O T

By this method the two limiting cases of wings of infinite aspect ratio and the body of revolution
are properly represented. The source distribution of equation (49) produces a velocity increment

Av(%,9.2) _ 1 jlz dz x—x —tang. (s —¥)
Va *

0 ') dn' {[x —x" —tang . (s — y)F + (s — 9)* + 2(x) " a'. .. (50)

For a straight wing of aspect ratio 0-5 with elliptic section of 10 per cent thickness/chord
ratio, the velocity increment at the mid-point (x = 0-5,y = 0, z = 0) due to the three-dimensional
sources 18 Av,/V, = 0-0054. Equations (10) and (17) give the velocity increment

2,(0-5, 0, 0)/V, = 0-1 — 0-0354 = 0-0648,

where 0-1 is the velocity increment of the two-dimensional wing. So that for the wing with
rounded tips v,(0-5, 0, 0)/V, = 0-070. The same numerical value is obtained by equations (10)
and (17) for a rectangular wing of aspect ratio 0-58, i.¢., for a wing which has the same plan view
area as the wing with rounded tips. This means that when calculating the pressure distribution
due to thickness it is advisable to take a mean span and not the span at the trailing edge as is
done when calculating the lift distribution.

6. Numerical Results—In this section some numerical results are discussed. First, _the
accuracy obtained by approximating the integrals by finite sums is shown. For the biconvex
section shape, the velocity increments on the straight untapered wing of finite aspect ratio
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A = 2s/c, resulting from linear theory, i.e., from equation (5), can be determined explicitly.
The result is given in Ref. 3. These values are compared in the table below with the approximate
results from equation (10) for the mid-chord point of the centre section, x = 0-5, y = 0.

A 7)4‘7/170 vx/VO
‘ (vx/Vﬂ)A=oo (vx/VO)A=oo
exact equation (16) with

o 1-000 - 1-000
4 0-990 8 0-990

2 0-962 8 0-963

1 0-881 8 0-885

. ) S 8 0-819
0-5 0-721 116 0-724

This comparison shows that for 4 > 1 sufficiently accurate results are obtained with V = 8.

To illustrate the effect of the section shape, velocity distributions at the centre-section have
been calculated for various wings with 10 per cent thick RAE 101 and biconvex sections.
- Equation (46) has been applied to the results from linear theory, as explained in the preceding

section. o

Figs. 3 and 4 give the velocity distribution at the lines of symmetry on unswept wings of
constant chord, (a) with constant section shape along the span (6 = 0) and (b) with a thickness/
chord ratio decreasing linearly from 0-1 at the centre to zero at the tip (6 .= 2/4). The velocities
on the finite wing are in general smaller than on the two-dimensional wing. The reduction of the
maximum velocity is plotted in Fig. 9, it is nearly the same for the two section shapes. We
can conclude from these numerical results that one obtains a fair approximation to the maximum
velocity increment on a conventional section shape by reducing the two-dimensional value by a
reduction factor obtained from the wing with biconvex section (see Ref. §).

With three-dimensional wings of biconvex section the velocity distributions have nearly the
same shape as on the two-dimensional wing. With a conventional section shape this is still
nearly true for finite wings of constant thickness/chord ratio, but it is less true for wings with
decreasing thickness. This implies that for the biconvex section a good approximation to the
velocity at any chordwise position can be obtained by reducing the two-dimensional velocity by a
constant reduction factor, e.g., the one determined at the maximum thickness position. For the
conventional section shape, this procedure still gives a reasonable value for the effect of finite
aspect ratio, but it cannot be used to account for the effect of taper in thickness on the velocities

over the front part of the wing.

The figures show that the same rate of decrease of the maximum thickness 8z(x,y) /3y = —z(x,0),
brings a greater reduction in the velocity increment on the larger aspect ratio wing. Crudely,
the same reduction is obtained if the product 6.4 is the same.

Velocity distributions at the centre-section of swept wings of constant chord and constant
spanwise thickness distribution have been calculated for aspect ratios 0-5, 1-0 and 2-0. The
velocity distributions for wings of aspect ratios 1 and 2 lie very close to those for the infinite
wings and are therefore not plotted, the maximum velocities are given in Fig. 9. We thus obtain
the result that for wings of aspect ratio greater than one the effect of the finite aspect ratio is
small. This fact was also found by experiments on 53-deg swept wings (see Refs. 2 and 11),
where within the accuracy of the tests, the same pressure distribution was measured at the
centre-sections of two wings of aspect ratio 1-05 and 2-0.
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The velocity distributions on wings of aspect ratio 0-5 are plotted in Figs. 5 and 6 together
with the distributions on infinite wings. In these calculations, equation (46) has again been
applied to the results from linear theory, equation (37). Fig. 5 shows that for the RAE 101
section the maximum velocity is about the same for the finite aspect ratio wing and the infinite
wing.

To illustrate how the aspect ratio effect changes with the angle of sweep, the difference between
the velocities on the infinite wings and the finite aspect ratio wings—as resulting from linear
theory—is plotted in Fig. 7 for various angles of sweep. Whilst on the straight wing, the velocity
decreases with decreasing aspect ratio for all points along the chord, there is on swept wings a
considerable portion of the front part of the wing over which the Veloc1ty increases. This implies
that the shape of the velocity distribution alters with aspect ratio, in particular the position of
the maximum velocity is generally farther forward on the wing with small aspect ratio than on
the infinite wing. We do not, therefore, obtain a good approximation to the velocity distribution
on the finite swept wing by applying the procedure suggested for the straight wing, ¢.e., by
reducing the velocity on the infinite wing by a constant factor, as was suggested in Ref. 2. Tt
will be preferable in many practical cases to make use of the refinement offered by the present
method rather than to employ the less accurate method of Ref. 2. In those cases where the
numerical values of the coefficients have been worked out, the velocity distribution can be
calculated in about an hour, if the section co-ordinates at the fixed points x, are known.

7. Application to Subcritical Compressible Flow.—The method of the present report can be
extended to be applicable to subcritical compressible flow by means of the usual flow analogy.
In order to be consistent with the assumptions of linearised theory, the Prandtl-Glauert analogy
in the form proposed by Gothert' (1941) should be applied. This states that the velocity
increment v, in compressible flow is 1/4? times the velocity increment v,, in incompressible flow
on an analogous wing, obtained by reducing the lateral dimensions of the original wing in the

ratio 8 : 1. Here
g = (1 — M2)* R .. .. .. (8])

and M, is the free-stream Mach number. From this, we obtain the well-known result that the
velocity on a wing of finite aspect ratio rises less steeply with Mach number than on the corre-
sponding two-dimensional aerofoil. This was first shown by Ludwieg® (1946). For unswept
wings this is a consequence of the fact that, as the Mach number increases, the aspect ratio of
the analogous wing decreases and with it the velocity increment. The effect of the aspect ratio
is less on swept wings, as is demonstrated by the examples shown in Fig. 9, but the angle of
sweep of the analogous wing increases with increasing Mach number, which results generally in a
decreased velocity. The differences in the velocity distributions on finite swept wings of different
section shape as shown in Figs. 5 and 6, imply that one cannot always draw generally valid
conclusions about the effect of compressibility by using the results obtained for wings with
biconvex section.

A further example of the velocity variation with Mach number can easily be obtained for the
special case of rectangular wings with elliptic aerofoil sections of constant thickness/chord ratio
along the span. By the Prandtl-Glauert analogy, the velocity increment in compressible flow is

( yz)_ Bs ' X — X% e dx" AV

VD —47Uﬁ2V j[ ﬁSQa(x){( . /)2_[_ ﬁz(y_ylz—l_ﬂz 2}3/2 % y - . (52)
where g, == 2V, . dz/dx is the source d1str1but10n representing the analogous wmg For a wing
of elliptic section shape

A =1 —(1—20%" .. .. .. . (59

no__ 1 — 24
) = 2Pt ot e (54
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We calculate only the maximum velocity increment at x = 0-5 on the centre line, y = 0, of the |
wing in the chordal plane, as in linear theory. Hence,

v,0-5,0,0) 4, 1 1 oy
Ve _;ts Jo{l — (1 — 2772 {(1 — 2x')* 4 4p°s*}/2 *
or, with the transformation 1 — 2x’ = cos 9,
v, 4 4 J"‘/2 av
Vo o Jo {cosd 4 4p%THR
4 Is f’/z ' av
_;{1+45232}1/2 0 [1_ 1 ] 2ﬁ]l/e
| ,_ T a7 o7
which leads to the complete elliptic integral of the first kind :
v 4 ts
=" = K(&*
Vo a{l 4 4p°%}7* ()
2 tA . i
= gy R = e 9

This relation is plotted in Figs. 10 and 11. The velocity decrease with aspect ratio down to
A = 0-5 is about the same for the elliptic, biconvex and RAE 101 section, but the relative
reduction is greatest for the elliptic section. Therefore, wings with elliptic section show the
smallest velocity rise with Mach number compared with the two-dimensional aerofoil.

Assuming that either the aspect ratio of the wing is small (A < 1) or that the free-stream
Mach number is near unity (8 < 1), so that the analogous wing is of small aspect ratio, we obtain
from equation (55)

v, 2 4 _ , :
70_7_51,‘Alnﬁ_A—|—.._.. .. .. .. .. .. .. .. .. (56)

using the well-known expansion of K for 1 — %A* < 1, where the next term is of the order
BEA%In (1/pA4).

Equation (56) corresponds to the relation derived from slender-body theory (see the next
section) :

0(x) _ (v,(x) 1 o 1 o
!~ _V.O_)MO=O~2_7E5(;¢)1HE N 1

where S”(x) is the second derivative of the cross-sectional area of the wing or body.

Relation (56) is compared in Fig. 10 with equation (55) for wings of 10 per cent thickness.
The agreement up to aspect ratios of about 2 means that for rectangular wings of aspect ratio
smaller than 2 the velocity increases with Mach number according to the logarithmic law given
in equations (56) and (57).

8. Relation to Slender-body Theory—A comparison between the results from linearised theory
and from exact calculations has been made in Ref. 1 for wings of infinite aspect ratio. It is of
interest to make a similar comparison for wings of very small aspect ratio, in which case the

_results from slender-body theory for subsonic flow can be taken instead of exact calculations.
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We discuss first some points of the slender-body theory. This discussion is based on the work
by Adams and Sears® (1953). The results are expressed in a more explicit way, which makes it
easy to show the relation to the linearised slender-body theory as given by Keune and
Oswatitsch®* (1953) and to the ordinary linear theory. »

In slender-body theory it is assumed that the shape of the body and as a consequence the
v,-velocity component vary only slowly in the x-direction. Therefore, the potential equation

0% 0% 0% . '
8—952+8_3/2+8—,22—0 .. .. .. .. .. .. (38)
at or near the body surface can be written approximately as:
% 0% '
@_24—52—0. . . .. .. .. .. (99)

To solve this equation is a two-dimensional problem. The potential function has to be determined
so that the boundary condition of zero normal velocity at the body surface is satisfied. For
slender bodies the boundary condition can be written in the form :

2 (%,y,2)
on

_ Ly o An . __dn (v,2;%)

= 0,(V,25%) = v (v2:2)(Vo +v,) = ik Va
_ oz 1 -
T ax {1 (3zfoy)r 0

where 9¢/on is the derivative of ¢ taken normal to the boundary of the cross-section z(y ;)

in a plane x = constant and where d» is the local normal distance between the two cross-sections
at ¥ -+ dx and x projected into the same transversal plane.

(60)

The chordwise ordinate x enters equations (59) and (60) only in the form of a parameter, which
means that the potential function can be determined from equations (59) and (60) except for
an additive function of x. We write, therefore, the potential function in the form

B(%,5,2) = b1(v,25%) + ¢4(x) .. .. .. .. .. (81)

where ¢,(v,2;%) is a velocity potential for two-dimensional flow in the y,z-plane which satisfies
the condition (60) at the boundary of the cross-section z(y ;x).

We determine first the potential ¢,(y,2;x); the determination of $,(x) will be discussed later.
For this purpose, we transform the { = y + 4z plane into a {;-plane so that the body cross-
section in the Z-plane is transformed into a circle of radius ». Our task is to determine a distribu-
tion of singularities inside or on the circumference of the circle which produces a normal velocity
component v,,({;) which is related to v,(¢) by the mapping ratio |d¢/d¢,]:

gc_
at,

9,2(82) = ,(0) U 1

We make use of the fact that a source distribution on the circle {; = 7 e of strength ¢(#), with
the total strength equal to zero, produces a normal velocity equal to ¢(#)/2 at each point on the
circle. This is a consequence of the fact that for an isolated source and sink of equal strength
all circles through the positions of the source and sink are streamlines. The total strength of
the source distribution on the circle being zero, we can always combine a source with a sink of

equal strength. Thus at any point on the circle only the local source contributes to the normal
velocity. ,
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Since a single source of strength Q at the centre of the circle produces at the circle the normal
velocity
o £

Qmy
the required normal velocities v, , on the circle {;, = 7 ¢’” are produced by a single source at the
centre of the circle of strength:

Q(x)szfﬂvnl(ﬂ’)dﬂ'zzm,,l N %),

0

"and a source distribution on the circle of strength:
q(®) = 2v,, — 9,.1) - .. .. .. .. .. .. (64)

- The potential of the single source and the source distribution on the circle and also therefore
at the body surface is: :

$1(3) = $u(0) = 2% Iny L 2%[0 g In {2 — 27| d9" . L. (65)

By equations (62) to (64) :
27
¢ =77, Inv + :”[JO (041 — 9,.) In {51 - Clll ad’

= 777“,[1117 — ;1[0 In ¢ — &/ dﬁ’]

r (¥ '
o[ onmln—ede . . . . .. .. (66)
On the circle
¢y = 7(cosd 4 ¢ sin 9)
" = r(cos &' + ¢ sin &)
f:nln 6= &/| @' =2xlny + 2102+ 4| In (1 — cos (3 — 0')] do’

= %rlnr. .. . e
From equations (63), (66) and (67):

27 :
b =2 o)l |2 — &' — §Ins)do’ .
We consider only thickness effects here, which implies that the cross-sections are symmetrical.
- about the y-axis and v,,(¢’) = v,,(— #'). Therefore,

o= %L"’m(ﬁ')ﬂn 16— &' |+ I |& — & | — Ins] do’

=2 0a@) B (6 — 86 — B — E)E — &) —Tn A do’

3

7 (" 7/ . , )
= ;Jovm(ﬁ Jn 27|y, — ' | — Inv] do

Y (" , , , .
Z;fovnl(ﬁ)lnzlyl—ylldﬁ. P (<15

bl

If the conformal transformations of the body cross-sections into a circle and the required normal
velocities are known, equations (62) and (68) determine the potential ¢,(y,z;x), with x entering
as a parameter. )
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To demonstrate more clearly the relation to linear theory, we transform the ¢,-plane into the
¢,-plane so that the circle is transformed into a slit:

2

” .
CZ:C1+E. « s . ) .. .. .4.' » e P . (69)
With ‘ :
! I3 1 7)'”' (?9,)
U, a(ya) = 0,,(8) ar, :2|Si1nz?"
i A
Ay = 27 cos ¢ = Zy,’ . ‘ M
and Coadyy = — Zrsind’ dv’
we obtain: '
b 1J+sz<x) N g
P1 = _sz(x)vnz(fyz ) n b’z — Vs l Vo o
Since
’ ! di‘- ! dU,
vn2(y2 ) = vn(y ) ZZE; == ‘Un(y ) ('—Z_I)?
, 02Nt MRy’
= 0,(y") {l -+ @)yzy,} dyy
oz, ady’
=5z W) gy Vo

where o is the length of arc along the circumference of the body cross-section, we obtain finally
for the potential ¢,: ’

Vo [T 02(y" 1%) N

b:(y,7;%) = —;Z—Oj_s(x)— 37 [ ya(y) — (Y Yay' ... . . .. (70)
The determination of 'cﬁl(y,z ;%) by equations (68) or (70) is in most cases rather laborious.

Keune® has therefore derived an approximate method by introducing into the slender-body

theory the simplifications of linear theory. He replaces equation (70) by the following :

V i _@Z x’y’) ' 2 s
;Oj_s(x) (ax In{(y —y' 2 +2P0dy .. .. .. .. (70)

and puts z equal to zero everywhere as long as no singular behaviour occurs. This means that
the same source distribution as in ordinary linear theory is taken and placed in the chordal plane.
In both methods the potential and hence the velocity are also calculated in the chordal plane.
These simplifications are justifiable for bodies where the thickness of the cross-sections is small
compared with their spanwise extension, and away from rounded tips.

$aly,2%) =

To determine the function ¢,(x) in equation (61) one has to return to the complete potential
equation (58) and satisfy the additional boundary condition ¢(x,y,2) = 8¢(x,y,2)[0x = 0 at
infinity. This calculation was carried out, e.g., by Adams and Sears®. They derived the following
equation for the function ¢4(x): ‘

balx) = l_/;;_’[S’(x) I —35(0) Inx — 35'(1) In (1 — =)
— 3] ") I (r — ) d gf S(x') In (% — ) dx’] (72

where S(x) is the cross sectional area of the body at the position ¥ and S'(x) and S”(x) the deriva-
tives with respect to . ' '
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This result can be explained by the following considerations. The body can be represented
by a source distribution ¢(x,y,z), whose strength, for slender bodies, is equal in each transverse
plane, to that of the two-dimensional sources—extending from infinity downstream to infinity
upstream—determined above, so as to give the required flow in the planes x = constant. The
function ¢,(x) does not depend on y and z, i.e., it is not affected by the actual shape of the cross-
sections. It depends only on the fotal source strength at each position x and not on the way in
which the sources are distributed in each transverse plane. The function ¢, can therefore be
determined as that for a body of revolution which has the same cross-sectional area S(x) at each

position % as the given wing or body.

For slender bodies of revolution the total velocity potential is given by the relation:

_ S'(x") dx’
$(x7) = 4_@[0{(%_ g e (73)
This formula is derived by replacing the body by a distribution of three-dimensional sources along
the axis and using the Prandtl-Glauert analogy between compressible and incompressible flow.
We determine ¢,(x) as the difference between ¢(x,7) and ¢,(x,#). Since the cross-sections in
transverse planes are circles, the potential ¢,(y,z;%) is:

b:(V,2;%) = QZ(%) In 7(x)

=2K;s'(x)1nr(x). O 7
Thus, ' -

Ve S Vs err
o) == 2wy g m s O

Vel t ax’ 1S (x") — S'(%) . )
= A lS (x) fo {(x f,x/)z T ﬁz;,z}uz -+ Jo {(x — X 5272}1/2 ax' + ZS (x) Inz }

. The integrand of the second integral vanishes for x = " and for % # x’ the term f%” can be
ignored. '

. B ‘VO ’ . Al — ,) , 1—x d( r_ )
Therefore ba() == i [S (x) JO e _(99:,)2 _f_c G + S'(x) JO o — ;)2 _!_xﬂz,,z}l/z

-+ j: S'(x) — S'(%) dx' + Jl S______’(xg;), : i"(x) dx' + 25'(x) In7

x— %
and finally we obtain equation (7'2) for ¢,.

Keune has arrived at equation (72) by making the approximations of slender-body theory in
the expression for the velocity potential corresponding to the source distribution from linear

. theory.

The streamwise velocity component is calculated by differentiating ¢(,y,2) with respect to «.

Sincedqsl(y,z i) does not vary with Mach number, from equations (61) and (72) we obtain the
logarithmic law of equation (57) for the variation of the velocity with Mach number.

The linearised slender-body theory of Keune and Oswatitsch is not identical with the linear
theory as used in the previous sections. The same source distribution is used in both methods
but the streamwise velocity increment is calculated differently. Both methods intend to calculate
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the velocity which the source distribution produces in the chordal plane. This is done correctly
in the ordinary linear theory, whilst in Keune’s method the assumptions of slender-body theory
are made. The differences of course become smaller the more these assumptions are justified,
2.e., with decreasing aspect ratio. Keune has shown that for the centre-section of rectangular
wings with biconvex section the results from linearised slender-body theory agree with those of
the straightforward linear theory up to aspect ratio 0-4. In the next section we will compare
the results of the various methods with the exact solution for ellipsoids which have three different
axes. ,

9. The Velocity Distribution on Ellipsoids Determined by Various Methods.—To show the effect
of the simplifications of linear theory and slender-body theory on the velocity distribution we
calculate the velocities on ellipsoids by slender-body theory, linearised slender-body theory and
ordinary linear theory. Though neither the assumptions of slender-body theory nor those of
linear theory hold near the nose of ellipsoids, we choose the ellipsoids since these are one of the
few cases where an exact solution exists, see Refs. 15 and 16. The comparison of the approximate
results with the exact results will give a range of values of the span through which the
application of slender-body theory is permissible. '

Let the thickness of the ellipsoid be ¢, and the largest spanwise extent 2s. All lengths are made
dimensionless with the length of the ellipsoid. The ellipsoid may be represented by the equation

z(x,y)=g{1_(1_2x)2_(y/s)2}”2. L 75)

The elliptic cross-sections are transformed into circles of radius 7 by the transformation

2 ’
czcl+§ O )
1
with
1/2 : '
7=232Lz{1_(1_2x)2}/ e )
R:@E;f)_”f“_u_zx)ﬂ”z. N | )
By equations (60), 75 and (76) the normal velocity v,(Z) is:
yeq y
_ 1 — 2% 1
A =B g e 1 @ o o) ! 79)
where {; = re” is the circle in the ¢;-plane. For points on the circle, the mapping ratio is:
dC . . RZ e { . RZ R4}1/2
d_él_} 7e __.1 2_?003219—[—.;4_
4 . 1/2
:%—_H{szsmzﬁ —{—(t/Z)zcoszﬁ} . . .. .. (80
By equations (79) and (80) we obtain the normal velocity v,, at the circle:
Y y
Al =2 __y ey

T o T (1 — 2ape

1.e., a constant value along the circumference of the circle. The boundary condition (81) can be
satisfied by placing a single source of strength Q(x) at the centre :

Q%) = 2nr(x)v, (%)
= 2nts(1 — 22)V, . .. .. .. .. .. .. .. (82)
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The potential ¢,(y,2;%) is therefore:
¢1(V,2 ;%) = Q) 1 7(x) ,
2n :
. 1/2
— Vgs(1 — 2) In [QSZF ¢ [1 1 — 2x)2} /J

— Vis(1 — Zx){ln 25: P 3n da(l — x)} .

Since Sx) == 2 s[l — (1 — 2%)*]
we obtain by equation (72):
po(x) = Vits(l — Zx){l — +In4x(1 — x)}.
The total potential is then:

Bly,2) = Vets(l — 2x){1 + 2 E t}

and the streamwise velocity increment is
v, = ¢, (xy,%5) =V Zts{ In_ 2 _

s+ 42 =1

(83)

(86)

The velocity increment from slender-body theory is thus constant along the whole surface, as
was the velocity from linear theory for the two-dimensional wing with elliptic cross-section.

By linearised slender-body theory, i.e., by equation (71), we obtain for the potential ¢, at

the plane of symmetry:

2 st {1 — 2x)
95,(96,0,0) R VU Jo {1 - (1 . 276)2 _ (y//s)2}1/2 1ny

 2st(1 — 2x) In y’ ' y
=, o T}”zd s
{ s{1 — Do) YH*

dr Inz
(1 _, 1/2 + j 1/2 dr}

ds(l — 2x){Ins{1 — (1 — 2%)%/* — In 2} -

_ 2st(1 — 2x) v, [h’l {1 — (1 - 256)2}1/2 J‘l

T ¢

= Vits(1l — 2%) {111_; + 3 In4x(1 — x)} .

the term

(87)v

Thus the potentials ¢, from slender-body theory and linearised slender-body theory differ by

Vsl — 2) 1n( t)

This difference is the same for all spanwise stations, as follows from the relations:
y =s{l — (1 — 2x)*}*/* cos & ‘

’ 1

"1+ #2s

PP

T 342

i 1
=T s

= 27 cos
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The potential ¢, from general slender-body theory is by equations (70) and (88):

Vo ¥ oz(v’; , I3 ,
hilym) =0 [0 P |y — (14 D) ay

TS )

Jin |y — | dy’

Lo ly
- 7T —s(x) ox

Va EN [ 0z(y %) 5
+;1n<1+2_8)f_3(x)_5;_dy. P 9

The first integral in equation (89) is the value for ¢, from linearised theory and the second term
is independent of y and equal to -

Vits(l — 24) In (1 + Q%) .

The function ¢,, being the same for linearised and general slender-body theory, is again given
by equation (84). Therefore for the streamwise velocity component we obtain the equation :

0,(%,7,0) = VOZtS[ln%— 1} ')\
The difference from the value given by general slender-body theory is

Vo2is In <1 -+ 213)

which, for small values of #/2s, is equal to ¥ Otzr*.

Next, we calculate the velocity on the ellipsoid by ordinary linear théory, equations (1) and (2).
For points on the section of symmetry :

v(%,0,0) £, o 1 — 2« X —x )

V. Ejodx fo {1 — (1 — 20" — (y'[s) P2 {(x — «")* + 232 GO - O
The integration over y leads to a complete elliptic integral of the second kind E(%).

v,(%,0,0)  ts (1 — 2%’ E(kj ,

Ty, ;J x— " {(x — 22+ 1 — (1 — 2u")3)r8 @ o - - 92)
- sl — (1 — 2x/)%] '
with R = (96 - x/)z _i_ 32[1 — (1 _ 296/>2:l . P . .. .. N . (93)

For the mid-chord point, x = 0-5, we get

v,(0-5,0,0) 2 * ' E(?) ) .
‘“T:?Ju{sz—}-(—,}; T eI (o4

. \ (1 — (1 — 2x")%] . :
W].th k = SZ + (% - 32)(1 _ Zx/)z . .. .. . .« . ‘ .. .. s . (95)

* For all values of ¢/2s one obtains the correction term —#V,, to be included in equation (90), by application of the
second approximation derived by Keune in Ref. 17. Keune takes into account the differences between the velocities
which a source distribution in the chordal plane induces, either at the wing surface or at the chordal plane, by expanding
the velocity components in Taylor series with respect to z, and ignoring the higher-order terms.

24



Finally, we calculate the exact velocity on ellipsoids. It has been shown, see e.g., Lamb®, and
Maruhn'® (1941) that the velocity at the surface of ellipsoids is given by the equation:

(2% — 1)2 ji2

Vixy2(%Y))
AR o)1 — 7| (96)
Ve . cos? sin
l @ — 1 [1 — (20 — 195 + 257
where C is the velocity at any point at the mid-chord section of the ellipsoid :
o V10:52205y)] 2
- Ve T2 —
. 0 dl
and oy = QiSJO {(] T l)g(tz + Z)<4SZ + 2)}1/2- (97)

» is the angle of intersection of the x,y-plane and the plane through the line of symmetry
y = z = 0 and the point x,v,7 on the ellipsoid.

By the transformation
1
=112
o, can be written as an elliptic tintegral of the second kind :

-

2ts fl wu du
o 1 — 2 1/2 1/2
S K {<”—T£?X%—1j%9}

which can be expressed by Legendre’s standard ihtegrals of the first and second kind F(g,%) and
E(p,k) (see Ref. 18, p. 76).

u du a(ad — bc)
f{% (0 — ag) (6 — )12 cy Flp.k)

(ad — bc)* [k cos {1 — R* sin® p}'/? 1 }
T 0= +ksng) T 1= @A

Vo — /(o — )
where k= \/061 Vo — )

a = kla + + V(o — _0‘2)}]
b= o — y{ma: — o) }

(98)

(99)

c==%
d=1
Yy = \/{“1(“1_ “2)}[\/‘11 — \/{“1_ “2}]
asing - b
Tcsineg +4°
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The relation between the velocity at any point on the ellipsoid and the velocity at mid-chord,
equation (96), can be expressed by means of the local slope in a plane » = const. Let » be the
distance of the point x,y,2 on the ellipsoid from the point %,y = 0, 2 = 0 on the axis, and v the
angle between the y-axis and the radius vector. Then

7 = y*¥(1 + tan® y) .
With 2 = 3 tan® :%i [1— (1 — 2%)* — (v/s)"]

we obtain
1/2

1+ tan®y
1N? | tan® y

. <§) T 124

{1 — (1 — 20

cos® p  sin® fzpr/z

r = {1 — (1 — 2x)%}/

452 2
dr 1 — 2 1
d—x = {1 — (1 — 2x)2}1/2 COSE " sin? ’(/111/2 . (100)
45? *+: 2

By equations (96) and (100) :

Vinwany)] = (X =0922085)] g

G

In particular for the centre section, y = 0:

Viw0(w0)] = VE=0502050] - - 0y

i dz\2|1/2

@)
Velocity increments at the mid-chord point of the centre-section calculated by the various
- methods are plotted in Figs. 12 and 13 as function of the aspect ratio A = 8s/x. The parameter
¢/2s, used in the figures, characterises the spanwise slenderness of a cross-section, which decides
if the simplifications of linear theory are permissible. The figures show that for very small
aspect ratio the results from slender-body theory agree with the exact results and that linearised
slender-body theory and linear theory give the same answer, as is to be expected. With the
same aspect ratio, slender-body theory gives a better result for thin bodies, 7.e., small values of
t/2s. Whereas for the axially symmetrical ellipsoid with 2s/c = 0-4 slender-body theory is in
error by 40 per cent. For the flatter ellipsoid with #/2s = 0-2, 2s/c = 0-4 it is wrong by only
15 per cent. We may, however, conclude that for wings with #/2s > 0-2 the range of validity
of the slender-body theory for determining thickness effects may be restricted to smaller aspect
ratios than the corresponding theory of R. T. Jones™ (1946) for lift effects. The spanwise fineness
ratio is more favourable on tapered wings than on untapered wings of the same aspect ratio.

We can therefore expect that slender-body theory is applicable to tapered wings of higher aspect
ratio than untapered wings. : :

The discrepancies between linear and exact theory increase of course with the parameter #/2s.
The figure shows that for ¢/2s = 0-2 linear theory gives a result which is about 10 per cent too
large for the whole aspect ratio range up to 1-0.. Since #/2s = 0-2 is a fairly large value for
most practical wings, this result gives much confidence in the velocities calculated by linear
theory at the centre-section of a wing.
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10. Conclusions.—From theoretical. considerations of thick wings at zero lift, the following
conclusions may be drawn, regarding the effect of the aspect ratio on the pressure distribution:

(@) The principal effect of finite aspect ratio on the velocity distribution at the centre-section
of rectangular wings is to reduce the velocity increments. The velocity distributions
of wings of any section shape can be calculated in a short time by equations (10) and
(46), using the coefficients given in Table 1.

(b) The effect of thickness taper on the velocity distribution at the centre- sectlon of rectangular
wings is again to reduce the velocity increments. With a thickness distribution
decreasing linearly along the span, the velocity at the centre is decreased by an amount

of the order §64v(4 = ), where 9z/2|y|= — 6z(x,y = 0). The velocity distribution
can be calculated by equations (27) and (46), using the coefficients given in Tables 1
and 2. :

(¢) At the centre-section of swept wings, the velocity level is again reduced but less than on
unswept wings; there may even be an increase of the velocity in some cases of highly
swept-back wings. The position of the maximum velocity is generally farther forward
on the wing with small aspect ratio than on the infinite wing. The effect of finite
aspect ratio on the velocity distribution at the centre-section of untapered swept
wings of any given section shape can be calculated by equations (37) and (46), using
the coefficients given in Tables 3 and 4.

(d) In the special case of ellipsoidal wings with ¢/c = 0-1; the results from linear theory are
a fair approximation to the exact results for all aspect ratios. Slender-body theory
gives sufficiently accurate results only if the aspect ratio is very small, smaller than
(-5, say. Linearised slender-body theory (Keune-Oswatitsch) happens to give
reasonable results up to slightly higher aspect ratios, below 0-8, say.

LIST OF ‘SYMBOLS: -

X,,% Rectangular co-ordinates, x-in the direction of the main stream, Yy spanwise,
z normal to the chordal plane, ¥ = 0 at the leading edge

X0y %, Position of fixed pivotal points (see Table 3 in Ref. 1)
¢ = y + 4z, complex co-ordinate in a plane x = constant
¢y Complexi co-ordinate in the transformed {-plane, where the body cross-section
' is transformed into a circle
¢, = re® equation of the circle in the ¢,-plane
£y = ¥, - 12, complex co-ordinate in the transformed ‘;-plane, where the body
cross-section is transformed into a slit -
¢ Wing chord
¢ Mean wing chord
s Half the wing span
! Maximum thickness ,
X max Position of maximum thickness
2(%) * Section shape
zﬂ = 2(x,), ordinate at x = x,
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LIST OF SYMBOLS—continued

a |3’l < > thickness taper

5 , aspect ratio

Cross sectional area in a plane ¥ = constant.
Angle of sweep

Sweep of leading edge

Total local velocity

Velocity of main stream

Maximum velocity

Velocity increments in direction of the axes

Velocity component normal to the boundary of the body cross-section in a
plane x = constant.

Free-stream Mach number

(1 — MH'*

Three-dimensional velocity potential

Two-dimensional velocity potential

See equations (61) and (72)

Local strength of source distribution

Local strength of three-dimensional source distribution

1. 14 sing
il Pl el i
7z 1 —sing

cos™t (2x — 1)

(4]

N

Suffix indicating the pivotal point
Suffix indicating the inducing point
Number of points taken along chord

z sz, see equation (6)
u=

> v = (dx); iy

pu=1

Coefficients, see Tables 4, 7 and 10 in Ref. 1
Coefficients, see Tables 5, 8 and 11 in Ref.. 1
Coefficients, see Tables 1, 3 and 4 in this report

,..

Coefficients, see Table 2 in this report
28



No.

1.

1

10.

11.

17.

18.

19.

J. Weber ..

Author

D. Kiichemann and J. Weber ..

S. Neumark and J. Collingbourne

S. Neumark and J. Collingbourne

K. W. Newby

O. Holme and F. Hjelte

J. Weber ..

M. C: Adams and W. R. Sears ..

F. Keune ..

J. Weber ..

J. Weber ..

B. Gothert

H. Ludwieg

F. Keune and K. Oswatitsch

H. Lamb ..

K. Maruhn

F. Keune ..

W. Grébner, M. Hofreiter, N.

Hofreiter,
Peschl.

R. T. Jones

J. Laub and E.

REFERENCES _
Title, efc.

The calculation of the pressure distribution over the surface of two-
diménsional and swept wings with symmetrical aerofoil sections. R. & M.
2918. July, 1953.

The subsonic flow past swept wings at zero lift without and with body.
R. & M. 2908. March, 1953.

Velocity distribution on untapered sheared and swept-back wings of small
thickness and finite aspect ratio at zero imcidence. R. & M. 2717.
March, 1949. .

Velocity distribution on thin tapered wings with fore-and-aft symmetry
and spanwise constant thickness ratio at zero incidence. R. & M. 2858.
June, 1951.

The effects of taper on the supervelocities on three-dimensional wings at
zero incidence. R.AE. Report Aero. 2544. June, 1955.

On the calculation of the pressure distribution on three-dimensional wings
at zero incidence in incompressible flow. K.T.H. Aero. Tech. Note 23.
November, 1952.

An analysis of pressure measurements on delta wings in subsonic flow at
zero incidence. R.AE. Tech. Note Aero. 2032. A.R.C. 13,104.
January, 1950.

Slender-body theory. Review and extension. [J. Ae. Sce. Vol. 20, p. 85.
1953.

Low aspect ratio wings with small thickness at zero lift in subsonic and
supersonic flow. K.T.H. Aero. Tech. Note 21. June, 1952.

Low-speed measurements of the pressure distribution near the tips of swept-
back wings at no lift. R.A.E. Report Aero. 2318. A.R.C. 12421.
March, 1949.

Low-speed measurements of the pressure distributions and overall forces
on wings of small aspect ratio and 58-deg sweepback. R.AE. Tech.
Note Aero. 2017. A.R.C. 12,878. September, 1949.

Ebene und raiimliche Strémung bei hohen Unterschallgeschwindigkeiten.
Jahrb. 1941 d. deutschen Luftfahrtforschung, I p. 156.

Improvement on the critical Mach number of aerofoils by sweepback.
M.A.P. Volkenrode, Report and Translation No. 84. A.R.C. 9826. 1946.

Nicht angestellte Korper kleiner Spannweite in Unter-und Uberschall-
strémung. Z.F.W. Vol. 1, p. 187. 1953.

Hydrodynamics. P. 152, ' Sixth edition. Cambridge University Press. 1932

Druckverteilungsrechnungen an elliptischen Rimpfen und in ihrem

Aussenraum. Jahrb. 1941 d. deutschen Luftfahrtforschung, I p. 135.

On the subsonic, transonic and supersonic flow around low aspect ratio
wings with incidence and thickness. K.T.H. Aero. Tech. Note 28.
September, 1953. .

Table of integrals. Luftfahrtforschungsanstalt Braumschweig. 1944. TIB/
MISC/873.

Properties of low-aspect-ratio pointed wings at speeds below and above the
speed of sound. N.A.C.A. Report 835. 1946.

29



APPENDIX

Approximation of Certain Integrals by Finste Sums
The notation of Ref. 1 is used.

It was shown in Ref. 1, section 6, that by approximating z(x)-by an interpolation function

2 N1 N—-1
=N z (%,,) ;1 sin A9, sin 9 .. I . .. (A-1)
with cos® = 2x — 1 . .. . .. .. .. .. .. (A-2)

the following relation holds :

1 tdz(x ax’ -t '
dex_x S EE) o e (A)

Iz
(— D —1 2 sin 9,

M — -
where S = N (cos#, — cos#,)*" (A~4)
Using the same interpolation function, an approximation for the integral
| e, o adx’
) 5=
can be obtained. By equations (6-1), (6-4), (6-38), (6-39), (6-41) and (6-11) of Ref. 1:
1 =l 2 = *sin A9 sin 9’ 49’
J x — % ,,ZI (%) TN ,Zl S w"Jo cos &, — cos 9’

N—1 2 N—1

= -5 > sin A9,-cos A9,
2 2(%,) N Z sin A9, cos A9,
R smzﬁ

= z(x,,) ' [ T S.L(g]
pu=1
N—1 5 — D

=S ) cos ¥, - cos o
n=1
N—1

= 2, six, — x)2(x,) . .. .- .. .. .. . .. (A-5)
u=1

Applying the relations (A-3) and (A-5), the following general relation is obtained:

L[l fl) Ll fla) v i) dx
x—x _J dx’ xp—x_n z( ) dx’ %, — %'

N—

Z: st z(x,) 2 six, — x,) . 2(x )(d];(x)l :

“ 1

_Zs“[ (xy—x,,)<-@rj(;ﬁ>x]z(xﬂ). L (ae)

Xy,

Deriving this relation two different interpolation functions (corresponding equation (A-1)) have
been used, the first for z(x) . f(x), the second for z(x) . df(x)/dx. Relation (A-5) can be used,
when f(x) and its derivative df(x)/dx are finite continuous functions in the whole interval
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0 < x < 1. When f(x) or df(x)/dx change rather rapidly somewhere in the interval, it will be
necessary to take the values of z(x) . f(x) or z(x) . df{dx at a considerable number of points x,
into account, to obtain a sufficient approximation.

To approximate integrals of the form

st

dg(x’) . .
by finite sums, an interpolation formula for z(x’) flgcx’ ) similar to (A-1) can be used:

(st B2)) 2 ( ) Zsmwsmﬂn‘} (A

F=%y j=1

The integral becomes :

L oy a = ety )] = L[ sty %D

. | sin 29" sin &’ d9’
0

Nz—l sin 19“ dg(x,)>x =’; Z(xﬂ) .. . .. . . . (A—S)

since
xf2 for A =1

f'sin M0 sin &' do’ =
0 0 for 2=1.

Another approximation for the integral can be found using equation (A-6).

17tdz " 1 Ydr A ax’
o 80 & = 2| g 60, — )

N—-1

=5 o [ate e — 5 + (5 — 5 (B2,

i

__1#———1. (%) - .- .. . .. (A-9)

-3

The approximations (A-8) and (A-9) are of the same type. They differ due to the fact that
o 82’

interpolation formulae for different functions have been used, z(x’) “an in equation (A-8);

2(x) . g(x) (%, — x') and z(x’) G )g;" —*)] in equation (A-9). The approximation (A-9) has

the advantage that for the same N, i.e., the same degree of accuracy, only half the number of
terms as compared with equation (A—8) have to be worked out.
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TABLE 1

Coefficients s = st} [1 — ?{(i(x_” ;)fﬂzl— ;’;}38 ,2} }

p =0, v=0;, N=28

s =20
P
u
1 2 3 4 5 6 7 8
1 0 0-006 0 0-005 0 0-004 0 0-004
2 0-011 0 0-011 0 0-009 0 0-008 0
3 0 0-014 0 0-014 0 0-012 0 0-011
4 0-014 0 0:015 0 0-015 0 0-014 0
5 0 0-012 0 0-014 0 0-014 0 0-014
6 0-008 0 0-009 0 0-011 0 0-012 0
7 0 0-004 0 0-005 0 0-006 0 0-005
§$=1-0
v
IM.
1 2 3 4 5 6 7 8
1 0 0-023 0 0-015 0 0-008 0 0-003
2 0-043 0 0-042 0 0-024 0 0-011 0
3 0 0-055 0 0-053 0 0-031 0 0-021
4 0-040 0 0-058 0 0-058 0 0-040 0
5 0 0-031 0 0-053 0 0-055 0 0-047
G 0-011 0 0-024 0 0-042 0 0-043 0
7 0 0-006 0 0-015 0 0-023 0 0-024
s=10-5
v
I3
1 2 3 4 5 6 7 8
1 0 0-086 0 0-016 0 —0-007 0 —0-009
2 0-159 0 0-140 0 0-013 0 +—0-013 0o
3 0 0-183 0 0-168 0 0-017 0 —0-007
4 0-043 0 0-182 0 0-182 0 0-043 0
5 0 0-017 0 0-168 0 0-183 0 0-104
6 —0-013 0 0-013 0 0-140 0 0-159 0
7 0 —0-007 0 0-016 0 0-086 0 0-094
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TABLE 1—continued

Coefficients s& =

uy

. 2(x, — x,)" -F s%
g

p=0,y=0;, N=16

s=0-25

U

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0-096 0 0-052 0 0-003 0 —0-009 0 —0-009 0 —0-008 0 —0-007 0 —0-006
2 0-186 0 0-177 0 0-062 0 —0-008 0 —0:019 0 —0-017 0 —0-015 0 —0-013 0
3 0 0-257 0 0-242 0 0-053 0 —0-021 -0 —0-028 0 —0-024 0 —0-021 0 —0-020
4 0-188 0 0:308 0 0-289 0 0-038 0 —0-031 0 —0-035 0 —0-031 0 —0-028 0
5 0 0:135 0 0-340 0 0-323 0 0-026 0 —0-039 0 —0-041 0 —0-087 0 —0-036
6 0-012 0 0-087 0 0-359 0 0-340 0 0-020 0 —0-:043 0 —0-:046 0 —0-044 0
7 0 —0-023 0 0-053 0 0360 0 0-353 0 0-021 0 —0-043 0 —0-049 0 —0-049
8 |—0-048 0 —0-038 0 0-031 0 0-360 0 0-360 0 0-031 0 —0-038 0 —0-048 0
9 0 —0-049 0 —0-043 0 0-021 0 0-353 0 0-360 0 0-053 0 —0-023 0 —0-035
10 |—0-044 0 —0-046 0 —0-043 0 0-020 0 0-340 0 0-359 0 0-087 0 0-012 0
11 0 —0-:037 0 —0-041 0 —0-039 0 0-026 0 0-323 0 0-340 0 0-135 0 0-081
12 1—0-028 0 —0-031 0 —0-035 |- 0 —0-031 0 0-038 0 0-289 0 0-308 0 0-188 0
13 0 —0-021 - 0 —0:024 0 —0-028 0 —0-021 0 0-053 0 0-242 0 0-257 0 0-217
14 |—0-013 0 —0-015 0 —0-017 0 -—0-:019 0 —0-008 0 0-062 0 0-177 0 0-186 0
15 0 —0-007 0 —0-008 0 —0-009 0 —0-009 0 0-003 0 0-052 0 0-096 0 0-085




‘Coefﬁcie%ts s& = — s q

TABLE

2

s*(%,— %,)*

x, __x#)z + 82}3/2

9p=0,y=0; N=8

s=2-0
v
I
1 2 3 4 5 6 7 8
1 0 0-024 0 0-022 0 0-019 0 0-018
2 0-044 0 0-044 0 0-040 0 0-035 0
3 0 0-057 0 0-057 0 0-052 0 0-049
4 0-058 0 0-062 0 0-062 0 0-058 0
5 0 0-052 0 0-057 0 0-057 0 0-056
6 0-035 0 0-044 0 0-044 0 0-044 0
7 0 0-019 0 0-022 0 0-024 0 0-024
s=1-0
»
ﬂ i
1 2 3 4 5 6 7 8
1 0 0-047 0 0-036 0 0-022 0 0-018
2 0-087 0 0-086 0 0-060 0 ‘ 0-041 0
3 0 0-111 0 0-109 0 0-078 0 0-064
4 0-094 0 0-119 0 0-119 0 0-094 0
5 0 0-078 0 0-109 0 0-111 0 0-101
6 0-041 0 0-060 0 0-086 0 0-087 0
7 0 0-022 0 0-036 0 0-047 0 0-048
s=20-5
v
I - ¥
1 2 3 4 5 6 | 7 8
1 0 " 0-089 0 0-038 0 0-014 0 0-009
2 0-164 0 0-152 -0 0-055 0 0-025 0
3 0 0-199 0 0-188 0 0-071 0 0-047
4 0-099 0 0-204 0 0-204 0 0-099 0
5 0 0-071 0 0-188 0 0-199 0 0-142
6 0-025 0 0-055 0 0-152 0 0-164 0
7 0 0-014 : 0 0-038 0 0-089 0 0-095
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Coefficients s = — sll)

TABLE 2—co_%tmuecl-

p=0,y=0; N=16

s*(x

v

_xu)z

{(xv —%, ) 32}3/2

s =025
v

u

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0-048 0 0-033 0 0-013 0 0-005 0 0-002 0 0-001 0 0-001 0 0-001
2 0:094 0 0-090 0 0-050 0 0-017 0 0-006 0 0-003 0 0-002 0 0-001 0
3 0 0-130 0 0-128 0 0-057 0 0-019 0 0-008 0 0-004 0 0-003 0 0-003
4 0-119 0 0-163 0 0154 0 0-060 0 0:020 0 0-009 0 0-005 0 0-004 0
5 0 0-109 0 0-181 0 0-177 0 0-062 0 | 0-022 0 0-010 0 0-007 0 0-006
8 0-061 0 0-095 0 0-196 0 0-190 0 0-065 0 0-024 0 0-013 0 0-009 0
7 0 0-044 0 0-084 0 0-201 0 0-198 0 0-069 0 0-028 0 0-017 0 0-014
8 0023 0 0-034 0 0-075 0 0-202 0 0-202 0 0-:075 0 0-034 0 0:023 0
9 0 0-017 0 0-028 0 0-069 0 0-198 0 0-201 0 0084 0 0-044 0 0-036
10 0-009 0 0-013 0 0-024 0 0-:065 0 0-190 0 0-196 0 0-095 0 0-061 0
11 0 0-007 0 0:010 0 0-022 0 0-062 0 0-177 0 0-181 0 0-109 0 0-087
12 0-004 0 0-005 0 0-009 0 0-020 0 0-060 0 0-154 0 0-163 0 0:-119 0
13 0 0-003 0 0-004 0 0-008 0 0-019 0 0-057 0 0-128 0 0-130 0 0-117
14 0-001 0 0-002 0 0-003 0 0-006 0 0-017 0 0-050 0 0-090 0 0:094 0
15 0 0-001 0 0-001 0 0-002 0 0-005 0 - 0-013 0 0-033 0 0-048 0 0-049




Coefficients s& = st [1

TABLE 3

_ s{2cos’y . (x, — %,)" — 1-5sin2¢p . (x, —x,)s + Sz}:l
{cos® g . (¥, — x,)* — sin 2¢ . (v, — x,)s + s*P7

=45deg; y=0; N =8

s=10
22
1 2 3 4 5 6 7 8
1 0 —0-006 0 —0-007 0 —0-006 0 —0-006
2 —0-010 0 —0-012 0 —0-012 0 —0-011 0
3 0 —0-011 0 —0-016 0 —0-016 0 —0-015
4 0-003 0 —0-011 0 —0-017 0 —0-017 0
5 0 0-009 0 —0-010 0 —0-016 0 —0-016
6 0-025 0 0-007 0 —0-008 0 —0-012 0
7 0 0-014 0 0-001 0 —0-005 0 —0-006
s=0-5
11
1 2 3 4 5 6 7 8
1 0 —0-027 0 —0-023 0 —0-016 0 —0-014
9 —0-028 0 —0-050 0 —0-039 0 —0-030 0
3 0 | —0-020 0 —0-065 0 —0-051 0 —0-044
4 0-183 0 —0-009 0 -—0-070 0 —0-059 0
5 0 - 0-212 0 —0-065 0 —0-065 0 —0-062
6 0-143 0 0-162 0 —0-015 0 —0-050 0
7 0 0-078 0 0-068 0 —0-015 0 —0-025
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Coefficients s& = s) [1

TABLE 3—continued

_ s{2cos’ p . (x, —

%)% — 1-5sin 2¢ . (x, — x,)s + sz}}
{cos’ ¢ . (x, — #,)* — sin 2¢ . (¥, — x,)s -+ $*}*/*

p =45deg, y=0, N =16

s =0-25
(4

©

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 —0-027 0 —0-027 0 —0-020 0 —0-014 0 —0-010 0 —0-007 0 —0-:007 0 —0-006
2 |—0-041 0 —0-054 0 —0-049 0 —0-035 0 —0-024 | 0 —0-018 0 ~-0:014 0 —0-013 0
3 0 —0-049 0 —0-082 0 —0-062 0 —0-047 0 —0-:033 0 —0-024 0 —0-021 0 —0-020
4 0-055 0 —0-061 0 —0-100 0 —0-081 0 —0-055 0 —0-040 0 —0-031 0 —0-028 0
5 0 0-182 0 —0-042. 0 —0-119 0 —0-:091 0 —0-062 0 —0-047 0 —0-040 0 —0-037
6 0-454 0 0-320 0 —0-031 0 —0-130 0 —0-099 0 —0-069 0 —0-054 0 —0-048 0
7 0 0-460 0 0-420 0 —0-020 0 —0-139 0 —0-105 0 —0-076 0 —0-062 0 —0-059
8 0-264 0 0-390 0 0-467 0 —0-013 0 —0-141 0 —0-109 0 —0-083 0 —0-075 0
9 0 0-168 0 0-322 0 0-472 0 —0-013 0 —0-139 0 —0-112 0 —0-091 0 —0-084
10 0-068 0 0-116 0 0-276 0 0-444 0 —0-018 0 —0-132 0 —0-105 0 " [—0-096 0
11 0 0-040 0 0088 0 0-249 0 0-389 0 —0-027 0 ~0-117 0 —0-106 0 —0-100
12 0-013 0 0-027 0 0-075 0 0-233 0 0-304 0 |—0-037 0 |—0-105 0 [—0-088 0
13 0 0-007 0 0-021 0 0-068 0 0-218 0 0-192 0 —0-048 0 —0-078 0 —0-:079
14 0-001 0 0-004 0 0-018 0 0-065 0 | 0-180 0 0-083 0 —0-034 0 —0-052 0
15 0 0 0 0-003 0 0-014 0 0-052 0 0-110 0 0-016 0 —0-021 0 —0-024




Coefficients 58 — s [1

"TABLE 4

_ s{2cos’¢ . (¥, — x,)* — 1-5sin 2p . (v, — x,)s + %

p =60deg, y=0; N=8

{cos® g . (%, — x,)* — sin 2p . (x, — x,)s - 272

|

s=1-0
v

o

1 2 3 4 5 6 7 8
1 0 —0:007 0 —0-006 0 —0-005 0 —0-004
2 —0-015 ) 0 —0-013 0 —0-010 i 0 —0-009 0
3 0 —0-020 0 —0-016 0 —0-013 0 —0-012
4 —0-024 0 —0-021 0 —0-018 0 —0-015 0
5 0 —0-022 0 —0-019 0 —0-017 0 —0:015
6 —0-017 0 —0-017 0 —0-015 0 —0-013 0
7 0 —0-009 0 —0-009 0 —0-008 0 —0-007

| ‘
s =105
Y

‘lt

1 2 3 4 5 3] 7 8
1 0 —0-027 . 0 —0-018 0 —0-013 0 —0-011
2 —0-061 0 —0-046 0 —0-031 0 —0-023 0
3 0 —0-084 0 —0-058 0 —0-040 0 —0-035
4 —0:086 0 —0-093 0 —0-063 0 —0-047 0
5 0 —0-059 0 —0-086 0 —0-061 0 —0-051
6 0-088 0 —0-045 0 —0-064 0 —0-049 0
7 0 0-048 0 —0-033 0 —0-033 0 —0-029
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Coefficients s§) ==

.t
st [1

TABLE 4—continued

_ s{2cos’p . (%, — x,)" — 1-5sin 29 . (x, — x,)s + 32}}

{cos? @ . (¥, — x,)* — sin 2p . (¥, — x,)s + $*P/°

p =60deg, y=0, N=16

s=0:25

u :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 —0-028 0 —0-022 0 —0-016 0 —0-012 0 —0-008 0 —0-006 0 —0-006 -0 —0-004
2 |—0-064 0 —0-054 0 —0-040 0 —0-028 0 —0-020 0 —0-014 0 —0-012 0 —0-010 0
3 0 —0-096 0 —0-:076 0 —0-054 0 —0-036 0 —0-026 0 —0-:020 0 —0-018 0 —0:016
4 |—0-136 0 —0-124 |+ O —0-094 0 —0-064 0 —0-044 0 —0-:032 0 —0-026 0 —0-024 ' 0
5 0 —0-160 0 —0-150 0 —0-108 0 —0:072 0 —0-050 0 —0-036 0 —0-032 0 —0-030
6 |—0-074 0 —0-164 0 —0-170 0 —0-118 0 —0-078 0 —0-054 0 —0-044 0 —0-038 0
7 0 0-098 0 —0-146 0 —0-182 0 —0-124 0 —0-082 0 —0-060 0 —0-050 0 —0-046
8 0-464 0 0-278 0 —0-120 0 —0-186 0 —0-126 0 —0-0886 0 —0-066 0 —0:056 0
9 0 0-470 0 0-378 0 —0-098 0 —0-182 0 —0-124 0 —0-088 | 0 —0-070 0 —0-065
10 0-290 0 0-394 0 0:3%4 0 —0-092 0 —0-172 0 —0-120 0 —0-088 0 —0-076 0
11 0- 0-198 0 0-324 0 0-356 0 —0-098 0 —0-152 0 —0-110 | 0 —0-086 0 —0-080
12 0- 10 0 0-146 0 0-276 0 0-272 0 —0-106 0 —0-128 0 —0-096 0 —0-082 0
13 0 0-066 0 0-116 | 0 0-236 0 0-154 0 —0-098 0 —0-098 0 —0-078 0 —0-072
14 0-030 0 0-044 0 0-092 0 0-182 0 0-038 0 —0-074 0 —0-066 0 -|—0-056 0
15 0 0:016 0 0-028 0 0-060 0 0-090 0 —0-016 0 —0-038 0 —0-032 0 —0:032




A
ag

/ X:J3'>
dop

- §

v
F1c. 1. Notation on straight wing.

Fic. 2. Notation on swept wing.
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