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The Calculation of the Pressure Distribution on 
Thick Wings  of Small Aspect Ratio at Zero Lift 

in Subsonic Flow 
By 

J. wi~Bm% Dr.rer.nat. 
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MINISTRY OF SUPPLY 

Reports and Memoranda No. 2993 

Septemher, 1954 

Summary.--The method of expressing the velocity increment over aerofoils directly in terms of the section ordinates 
(Refs. 1 and 2) is extended to cover also straight and swept wings of finite aspect ratio. The wings considered are 
untapered in plan-form but may be tapered in thickness. The section can be of any given shape so that ill this sense 
the analysis is more general than that of Refs. 3 to 6 which deal with wings of biconvex section. 

The coefficients required in the calculation are tabulated for the centre-section of straight and swept-ba~k wings 
(9 = 0 deg, ~o ---- 45 deg and ~o = 60 deg) of aspect ratios 0.5 ; 1 ; 2 ; and 4, the wing of infinite aspect ratio having been 
treated in Ref. 1. The remaining calculations can be made very quickly. 

Since wings of very small aspect ratio can be treated also by the method of slender-body theory, the relations between 
linear theory, slender-body theory, and linearised slender-body theory are discussed. For the special case of ellipsoids, 
the results obtained from the various methods are compared with the exact solutiqon. 

1. In troduct ion . - -Up to now the pressure distribution at zero lift on wings of any given 
symmetrical section shape has been calculated only for straight and sheared wings of infinite 
aspect ratio and for the centre-section of swept wings of infinite aspect ratio (see, e.g.,. Refs. 1 
and 2). : " 

On wings of finite aspect ratio the pressure distril~ution~raay differ from the..distribution on the 
corresponding two-dimensional wing for several reasons. This can-clearly be seen if the wing is 
replaced by equivalent source-sink distributions. Wi:t.il a ~ving of finite aspect ratio, the source 
lines are cut off at the wing tips. This affects the velocity component normal to the chordal 
plane as well as the velocity increment in the direction of the main stream. 

Further three-dimensional effects are produced by a tapered plan-form and by a spanwise 
variation of the section shape. A tapered plan-form results in a pat tern of source-sink lines of 
varying sweep while changes in section shape (e.g., varying thickness/chord ratio) alter the local 
strength of the source-sink distribution and hence the induced velocity. 

So far, no a t tempt  has been made to take all these effects fully into account. Approximate 
solutions can  be obtained, if the simplifying assumptions of linearised theory or of slender-body 
theory or of both together are made. This report deals with these three methods. 

In the linear theory, it  is assumed that  the wing thickness is small compared with the chord 
and the span. The effect of finite aspect ratio on the normal velocity component is ignored and 
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the streamwise velocity component v~ is calculated in the chordal plane instead of on the wing 
surface. With these simplifications, the work reduces to finding v,(x,yiO) from the known source 
distribution q(x,y) by evaluating a double integral over the whole wing area. 

This integral can be determined explicitly for wings with biconvex or other related sections in 
some simple cases, or otherwise numerically. Neumark and Collingbourne 3,* (1949 and 1951) 
have given solutions for wings of finite aspect ratio, that  are tapered in plan-form but not in 
thickness/chord ratio; and Newby 5 (1955) has considered in detail the practically important  case 
of thickness taper;  a simple case has also been treated in Ref. 7 (1950). Although Newby has 
succeeded in establishing the general trends produced by the various parameters, the actual 
results which he has obtained for the biconvex section cannot be applied with certainty to 
conventional aerofoil sections. Anyway, pressure distributions can never be worked out in 
advance since there are too many parameters involved, not only concerning the section shape 
but  also the plan-form of the wing. Newby has dealt with this dilemma by approximating 
results obtained for the biconvex section, say, by factors applied to the standard distributions 
for the infinite sheared wing or centre distributions, the factors depending on thickness taper, 
plan-form taper, and sweep ; it is then assumed that  the same factors can be retained for wings 
with any given section shape where the two standard distributions can easily be obtained. 

Here, another approach to the problem is attempted, applicable ab i~itio for sections of any 
shape, whereby the main body of the numerical calculation is done in advance once and for all, 
leaving a routine method which can easily be performed. This is possible for those plan-forms 
and spanwise variations of the thickness distribution in which the spanwise integration of the 
double integrals mentioned above can be performed explicitly, by using for the chordwise 
integration the method of mechanical quadrature by Gauss. This method has been applied in 
Ref. 1 to two-dimensional aerofoils, and it will be shown below that  a similar treatment is possible 
for wings of finite aspect ratio. In this method the velocity increment is expressed as the sum of 
products of the section ordinates at fixed chordwise positions and certain coefficients, which are 
determined by the geometry of the wing but  are independent of the section shape. I t  is thus 
possible to deal with wings of any section shape quite easily. These coefficients can be worked 
out in advance. A routine calculation method is thus developed, which is very quick; and the 
actual computing work is of the same order for the finite aspect ratio wing as for the two- 
dimensional wing. 

The coefficients can be worked out ior wings of any given aspect ratio with linear plan-form and 
thickness taper. However, the numerical calculation of the coefficients is rather lengthy. There- 
fore, numerical values of the coefficients have been given only for three simple cases: 

(i) The centre-section of rectangular wings of constant section shape 
(if) the centre-section of rectangular wings for which the thickness-chord ratio is varying 

linearly along the span 
(iii) the centre-section of untapered swept wings, ~ = 45 deg and 60 deg, of constant section 

shape . . . .  

The coefficients are given for wings of aspect ratio 0" 5 and greater, since for smaller values of 
the aspect ratio the simpler method of linearised slender-body theory may be applied. The 
determination of the coefficients is described in sections 2, 3 and 4. 

The assumptions made in linear theory and their effects on the velocity distribution are 
discussed in section 5. Here a simple way to obtain a better  approximation near the .leading 
edge is suggested. 

For the three cases, in which the coefficients have been calculated numerically, the effect of 
section shape is shown in section 6 by comparing the calculated velocity distributions on wings 
with a conventional section shape (RAE 101) and with biconvex section. Th i s  comparison is 
made to illustrate how far the results for wings with biconvex section give the general trends 
due to the various parameters and how much the actual values for a conventional section shape 
may differ from those for a biconvex section. 
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The application of the results obtained by  linear theory to sub-critical compressible flow is 
briefly discussed in section 7. Supersonic flow is not treated at all. 

For wings of very small aspect ratio, it is possible to justify the assumptions of slender-body 
theory, namely, tha t  wing thickness and span are small compared with the wing chord. The 
application of slender-body theory for the determination of the thickness effect on small aspect 
ratio wings, as given, e.g., by Adams and Sears 8 (1953), is discussed in section 8. The work is 
reduced to the determination, for each transverse plane, of a two-dimensional velocity potential 
which has a given derivative normal to the boundary of the cross-section. A method is given for 
determining this potential, if the cross-section is bounded by a simply connected curve, i.e., if 
the trailing edge is straight or swept forward-. The determination of the required conformal 
transformation of the cross-section into a circle is not discussed here. Finally the combination 
of linear theory and slender-body theory, as suggested by  Keune ° (1952), is discussed. 

In the  last section the velocities on ellipsoids with three different axes are calculated by the 
various approximate methods and compared with the exact solution. 

2. Rectangular Wings  of Constant Section S h a p e . - - I n  this section the simplest case, namely 
rectangular wings with the same section along the whole span, is treated. 

A rectangular co-ordinate system x, y, z with the x-axis along the main stream and y in the 
spanwise direction is  used. The origin, x = 0, y = 0, z = 0 is at the leading edge of the centre- 
section. All dimensions are referred to the wing chord c, which is taken as unity. The semi-span 
of the wing is s. 

A straight wing of constant chord and the same symmetrical Section shape z(x) along the 
whole span in a uniform flow of velocity V0 at zero lift can be represented by a distribution of 
source and sink lines, -- s ~< y ,< s, in the chordal plane; the strength q(x) of the source lines 
according to linear theory is 

d~(x) 
q(x) = 2Vo dx . . . . . . . . . . . . . . . . . . .  (1) 

This source distribution produces at a point (x, y, z = 0) in the chordal plane a velocity 
component v, in the direction of the main stream: 

1 + s  X t d ~ X t 
v.(x,y,o) C ax'( q( ) v x -  

= J0 J - ,  4~ {(x - -  x') ~ + (y  - -y , )2}an . . . . . . . . .  (2) 

The integration with respect to y can be done first, i.e., the velocity dr,, induced by  a single 
source line is determined first. 

q(x') 
d v , ( x , y ) -  4~ 

and therefore 
q(x') 

lim dv, (x,y) - -  2~ 
I z - z ' l - + - o  

ax' [{ s - y  s + y  ] 
- -  x - x'  (x - x') 2 + (s - y)2}1/~ + {(x - x') ~ + (s + y)~}-~ (3) 

~ X t 

x -- x'  -- lim dvx (x,y) . . . . . . . . . . . . .  (4) 
s - - ~ c o  

This means that  for pivotal points close to the source line the effect of the finite source line is 
the same as tha t  of an infinitely long source line, as can be seen directly from Fig. 1. 

Tile total  velocity increment is by  equations (1), (2) and (3): 

V0 - - ~ J 0 2 ~  { ( x - - x ' ) 2 + ( s - - y ) ~ } l / 2 + { ( x - - x ' ) 2 + ( s + y ) 2 } l n  x - - x "  (5) 

3 
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Since, when the  aspect ratio is not  too small, the difference between the velocity distr ibutions 
on the finite wing and the  infinite aspect ratio wing is small, we write the  velocity on the  finite 
aspect ratio wing as the sum of a two-dimensional  solution and a correction term. In  the  two- 
dimensional  case, the  limit as s - +  oo, the integral  of equat ion (5) can for fixed positions x~ be 
de termined as the sum .of products  of t h e  known section ordinates and certain coefficients, which 
are independent  of the section shape (see . the  Appendix  and Ref. 1) : 

Vo ~.Jodx'  x,, ~ x'  - -  S(~)(x') = ~ ~(')~' . . . . . . . . . . .  - -  . , - .  (6) 
tt = I 

By equations (5) and (6) the velocity on the  finite wing becomes : 

~.(x,y) L C L &  [{(x - x ')  ~ + (~ - y) ,}-~ - (~ - y)  
Vo - S(1)(x) - ~ J o 2  dx '  {(x  - -  x ' )  ~ + (s - - y ) ~ } ~ "  

{(~ - *')~ + F 7 ~ 7 }  ~ J ~ - ~ '  

The integrals in equations (5) and (7) are of the type :  

!? pDs(-,-') a.x' 
J = ~ o d x  x - -  x '  " 

. . . . .  (7) 

(s) 

This is similar to tha t  for the  veloci ty increment  of the  two-dimensional  wing, equat ion (6), when 
the  source s t rength  q(x')  = 2Vo(dz /dx ' )  is replaced by  2 V o ( d z / d x ' ) f ( x , x ' ) .  The corresponding 
section shape is however  varying wi th  the pivotal  point  x. I t  is therefore not  advisable to 
apply equat ion (6) directly, since it would involve the  working out of a series of new section 
shapes. But,  as shown in the  Appendix,  integrals of the type  of equat ion (8) can for fixed points 
x = x, also be approximated  by  sums of products of the  section ordinates G ---- z (G)  and new 
fixed coefficients which are independent  of z(x) : 

N--I I " 
R(I)  f(xv,3clt ) @ (x v - -  :g ~(df(-x" 'x )'~ ~ zp (9) 

- -  ,,=1 ~"~ "J\ d x '  / ,~,A . . . . . .  

1 (~ d z / ( x , x ' )  dx '  
Jo d x  x,,  - -  

The necessary conditions are tha t  the function f ( x , x ' )  and its derivat ive d f ( x , x ' ) / d x '  must  be 
finite and continuous in the whole interval  0 ~< x' ~< 1. 

The velocity increment  at a point  (x = x . y )  on a rectangular  wing of constant  section z(x) can 
therefore be calculated from the  formula:  

where 

N--1 
v~(~"'Y) s ( ' ) ( x D -  Z ~,6~ (lO) 

V O  - -  ~/zv'~/2 . . . . . . . . . . . . . .  # = I  

S(6)~ R(D 

1 { ( ~ -  ~.)~ + (~ + y ) ~ } l . _  (s + y)  1 ( ~ -  x~)~(~ + y ) ~ - ~ - 1  
+ ~ {(x~ - x.) ~ + (s + y)~}~/~ - ~ {(x~ - x.) ~ + (s + y)  

_ .d~l I1 (s --y)[2(x~ : -  x,) ~ + (s --y)2] 
- ~.~ - 2{(x~ - x.)  ~ + (s - y ) ~ } ~ / ~  

- < 
(11) - x~) ~ + (s + y)!}~/' _1 . . . . . . . . . .  

s(~) ---- 0 . . . . . . . . . . . . . . . . . . . .  (12) 
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Equation (12) is a consequenceof the fact tha t  the integr.and in equation (7) vanishes for x'  = x, 
as can be seen by  writing equa~i0n (7) in the form" 

UX(X'Y) ~j~(l)(~) __ l f* 1 dz { x - - x '  
v0 - g 0~ ~ {(x ~ x')  ~ + (s - y ) ~ } ' = E { ( x -  x') ~ + (~ =y)~}~/~ + s - y ~  

• . X _ _ X ,  

+ { ( x  x~) ~ + ( s +  ~ n  x . " - y ) }  [{( ~')~+(~+y)W~+~+y] Ida' ( 1 3 )  

This agrees with equation (4) which states tha t  in the neighbourhood Of the source lines the finite 
source lines give the same contribution to the vel0city increment as the infinitely long lines of 
the two-dimensional wing. 

Equation (13)shows that  the integrand vanishes for x ' =  x even w h e n t h e  pivotal point x 
coincides with the leading edge, since 

dz 
lira x w- = 0 

x - ~ 0  ~ :  

This means that  equations (10) and (11) hold for , = N,  i.e., x,, = 0, with S°)(0) fro m equation 
(6216) ` in Ref. 1 and 

s(,) ( - -  1)" - -  1 2 s in  v% 
"~ -- N (1 + cos v%) ~" 

Since 
s~J) = 0 for v + ~ even 

( 1 4 )  

F r o m  

and 

s(6) = 0 for v + ~ even /*9 . . . . .  

s2~ = s.I N --~u, N - -  v 

(x~ - x . )  ~ = F(1 - x ~ _ ~ )  - (1 - x ~ _ ~ ) l  ~ = ( ~ _ ~  - x ~ _ ~ )  ~ 

it follows that  

( 1 5 )  

( 1 6 )  

S a  6) ~ S (6) 
v N - - / x ,  N - -  v" 

To determine the velocity increment on a finite wing by  equations (10) and (11) is still tedious, 
but the coefficients s~ 6) can be calculated in advance. 

For the special case of the centre-section, y = 0, 

- { (x~  - x~)" + s~}3/"J • 
(17) 

The velocity increment can within linear theory be calculated from equation (10) to any 
desired degree of accuracy by taking in equation (9) a large number (N) of points along the chord. 
I t  has been shown in Ref. 1 that  it is usually sufficient to take N = 16 when determining the 

N - - 1  

basic term Sin(x). The required value of N for the term ~ sI~za can be found by  evaluating 
/ ~ = 1  

the term for various N or more easily for wings with biconvex section by comparing the result 
from equation (10) with the exact result obtained from equations (5) or (7) by  explicit integration. 
Such a comparison is made in section 6; it shows that  for spanwise stations that  are more than 
half the wing chord away from the tips, or for the centre-section of wings with an aspect ratio 
greater than one, it is sufficient to take N = 81 i.e., to approximate the section shape by  an 



interpolation function which has the correct values at the leading edge and trailing edge and 
7 points along the chord. This is advisable only for the correction term whilst the basic two- 
dimensional term S(1)(x) should be calculated with N = 16. This is the reason for expressing the 
velocity increment by  two sums since thus a smaller number of coefficients s~(62 need to be worked 
out. The numerical values of the coefficients s(,~, from equation (17), for the centre section of 
wings of aspect ratio 4, 2, 1 and 0.5 are given in Table 1. Some calculated pressure distributions 
are plotted in Figs. 3 and 4 and are discussed in section 6. The calculations have been restricted 
to wings of aspect ratios greater than 0.5, since for wings with very small aspect ratio the method 
of linearised slender-body theory may be applied. The velocity on wings of small aspect ratio 
is of interest, when investigating the velocity on wings in subsonic compressible flow by means 
of the Prandtl-Glauert analogy. At sub-critical speeds wings with an aspect ratio of less than 
0.5 kre seldom of interest. A wing with aspect ratio 0.5 is analogous to a wing of aspect ratio 
1"6 for a free-stream Mach number M0 = 0 . 9 5 ;  or to a wing of aspect ratio 2.5 at M0 = 0.98. 
Moreover local supersonic regions must be expected below those Mach numbers in many  practical 
cases, and this will invalidate the assumptions made in the theory, anyway. 

3. Rectangular Wings with Linearly Varying Thickness/Chord Ratio.--This section deals with 
straight wings of constant chord with the same section shape along the span but  with a thickness/ 
chord ratio that  is decreasing linearly from the centre-section to the tip. In linear theory, a wing 
given by  

z(x,y) = z(~,0)(1 - ~ lyI )  

is replaced by the source distribution: 

q(x,y) = q(x,y = 0)(1 -- +[Yl) 

dz(x,y = O) 
= 2Vo dx (1 - -  6[Yl)'- . . . . . . . . . . . .  (18) 

Denoting by tc and tr the maximum thickness of the centre and tip sections, 

tc - -  tT  
b - -  (19) 

To evaluate the streamwise velocity increment produced by this source distribution, we again 
determine the contribution of one source line first, i.e., we perform the integration along y. The 
source line at x', -- s ~< y '  ~< s, z = 0 produces at the point x,y,z = 0 the velocity component 

a~,(x,y) = I ° q (~"~  d_x' ~y' (1 + ~y') x -- ~' 
J - ,  4~ {(x --  x') ~ + (y --y')2)3/~ 

f,q(x',O) dx' dy' (1 - -  ~y') x --  x '  
4-  ~0 :~7~ { (x  - -  x')  ~ + ( y  - - y , )~ }3 /~  

q(x',o) ax' { s - y s + ~ 
- 4 ~  x - x'  {(~ - x ' )  2 + (s - y)~)l/~ + { (x  - x ' )  ~ + + y)~)~/2 

[- (x - x ' )  ~ - y ( s  - y )  (x - x ' )  ~ + y ( s  + y )  
+ ~ L{(~ - - - - ~ T  (~ - -  ~ )~ -~  + {(~ - x') ~ + (~ + y )~)~  

- - 2 { ( x  - x')~ + y~)1/21 }. 
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F o r y  > 0: 

d v . ( . , y )  q( . ' ,O)  _ _  

- -  4 z ~  

[ s÷y ] 
- -  . -  x' (1 - ay) {(x - ~')= + (~ - y~=}*/~ + { ( . -  .')= + (s + y)~) - '  

( x -  x') ~ ( . -  *')~ 
+ a {( .  _ ~,),  + (~ _ y)~},/= + {( .  _ . , )~ + (~ + y)~)~,= 

s + y  ]1 . . . . . .  + 2y {(x - . ' /~  + (~ + y)~}"~ - 2~(~ - x ')  ~ + y~}~/~ [ 

q(x',O) dx' 
and lim dv,(x,y) -- (1 -- ~y) x' 

, ' - . l + 0  2~ X - -  

(20) 

X ! q ( , y )  dx' (21) 
2~ X - -  X' . . . . . . . . . . . . . . .  

which means that  for a pivotal point near the source line the velocity increment is like that  of 
an infinitely long source line of a strength that  is const-ant along the span and equal to that  at 
the local, station considered. 

Using equations (5), (10) and (20), the total velocity increment is" 

v,(x,y) ( 1 -  by)[S(°(x~)-  ~ .v(6'z ] 

- - 6  { l  f l dz y~}l/2 dx' 1 i 1 dz y(s -k Y) dx' 
{(x, - x ')  ~ + x, - x '  - ~ 0 d ~  {(x~ - x')  ~ + (s + y)~}l/~ x, - x '  

, l f l l  d2 I_ { (Xv - -  X") 2 . . (Xv - -  X/) 2 ] dx"  t 
- -  ~ J o 2 ~  ( x . - -  x ' )2q  - ( s - - y ) ~ }  i/~ -~- { ( x . - -  x ' ) = +  (s _~ y)2}1/2 Xv _ _ 7  i • (22) 

The integrals are again of the type of equation (8), but  the derivative df(x,x')/dx' of the term 
f(x,x') = { (x -- x') ~ + y~}i/~ in the first integral is discontinuous for y = 0 at the point x' = x, 
jumping from -- 1 to + 1. This means that  the approximation (9) must not be used for the 
integral 

lira I c l d ~  y2}1/2 d x t  
: + o  ,~Oodx' {(x ,  - -  x ' )  ~ + x ,  - -  x ' "  

Furthermore, for small values of y the derivative is changing fairly rapidly in the neighbourhood 

of x' = x, which implies tha t  an interpolation formula for z(x') df(x,x') dx' which takes into account 

only a few values along the chord (such as N = 8) need not give a good approximation. 
This is not a special feature of the present method, but  will arise in all methods for numerical 
evaluation of the double integral, e.g:, in the method by F. H i elte 6 (1952) which consists in '  dividing 

- the wing area into a number of small subregions, performing the integration approximately in 
each of them, and adding the results.' 
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For y # 0,' b y  equations (9) and (22)" 

Woo - (1 - ~y )  s ( ' ( x ~ )  - s ~ %  - ,~ .~(d~,, 
# = i  = 

where 

s#>= s 22 ~{(x~- x . )~+ y~}ln _ x . ) j } l n  
(~ 

{ ( x ~ -  x~) ~ + 

y ( s  + y)  y ( s  + y)(x~ - x,,) ~ 
{(~ - ~,)~ + (s + y)~}-~ - { ( . . -  .~)~ + (~ + y)~}~- 

- -  2{(x~ - -  x . )  = + (s - -  y ) 2 } 1 / 2  - -  2 { ( x ,  - -  x~) ~ @ (s @ y)=}l/~ 

+ (x. - -  x , , ) 2 [ ( x ~  - -  x , )  2 + 2(s - -  y ) ~ ]  (x~ - x,,)~E(x~ - x ~  +2(s ! YP_]] 
2{(x~ --  x,,) ~ + (s - -  y)=}~/= + 2{(x. - -  x.) ~ q- (s + y)'}~/= _l 

E y 2  _ _  
= s#) {(x, x~)~ + y~}l/~ y(s  + y ) E 2 ( x , -  x~) 2 + (s + y) 8] 

- { ( x , -  x~) ~ + (~ + y ) ~ ? -  

( ~ -  ~.)~(s - y ) ~  (x. -_ x.)~(~ ± Y ) ~  1 
q- 2 { ( x , -  x.) ~ + (s --y)~}~/2 + 2 { ( x , -  x.) ~ + (s + y)~}~n_l " 

S(7) ~ 0 v ~  

which follows from equation (21). 

• ° 

Again the  coefficients sC,7~ can be  worked out in advance.  

(2a) 

(24) 

In the numerical  examples given in this  report,  only the most  interest ing station, the  centre- 
section y = 0, has been considered, the  coefficients for other  sections have  not  ye t  been calculated. 

At  the centre-section, y = 0, by  equat ion (22) • 
N - - I  

v.(x~,0) s~'(xv) ~ °(°~z. 
g o - -  - -  ~ / z  v 1~ 

F1(1 g~ 
- a C=O0dx' { ( x ~ -  x')~}" ~ -  x,  - x '  - ~ 2 o d x '  {(x. - x')  ~ + s~} '~x .  - x . . . .  (25) 

As s ta ted  above, the  approximat ion  of equation (A-6) cannot  be applied to the  integral  

5 1 dz dx'  
0 ~ { ( x . -  ~,)~}.~ _ , X v - -  X 

d r ( . , . ' )  
since ,:Ix' is discontinuous at  x'  = x,. But  it  can be determined explicitly. 

The result is 

(1 dz {(x~ --  x')~} in " (*~ dz (1 dz 2 ~z(x,y) 
)odx '  x~ -- x '  dx '  --= )o dx '  dx '  - -  ),vdx~ dx'  = 2z(x.0) = -- a ~ lyl ' "  (26) 

since z(x,y) = z(x,O)(1 --  a ly t ) .  

On the whole, the  existence of a term A V 2 ~z(x,yl 2_d z(x,O) which is proportional to 
v 0 - ~  alyl - 

the  shape z(x) itself, is an impor tan t  feature in t roduced by  the thickness taper. Wi thou t  thickness 
taper,  only two kinds of terms occurred in the expressions for the veloci ty increment"  one being 
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I 

• similar to .that for two-dimensional aerofoils ; and on swept wings a ' kink t e r m '  appears which 
is proportional to the local slope of the aerofoil (see equation (331 below). The kink term is caused 
by the sudden change in direction' of the source lines, i.e., by the change of the neighbouring 
source lines, The new te rm is caused by the sudden change in Oz/Oy. 

The approximation of equation (A-6) is applicable to the second integral in equation (25), 
so t h a t  the Velocity increment can be determined from the relation" 

V a ; ( x v ' O ) - - -  S ( 1 } ( X V )  ~ ~/2v'-/2 . . . . .  - " Vo -- vl6'z -- ~ z(x , , ) -  ~ s;~)z/2 . . . . .  (27) 
/2=1 /2=1 

with .¢~1 from equation (17) and 

s/21~l = _ s o l  s ~ ( x ~  = x/2)~ ~ {(*; ~ S  :~7 > } ~  . . . . . . . . . . .  

Again" 
S(s) = 0 • v ' . . . . .  ° " 

(28) 

(29) 

s / 2 ( 8 )  = 0 for  v + ** even .v 

S/2(s) _ _  S(s) 
v N--k*, N - -  v . . . . . . . .  

Ux(X"  = O ,  ..q] = O )  N - - I  N - - I  

V o  - -  S / t 1 ( 0 )  - ~ o/,~ - o/2N z/2 + ~ ~ o.N°lsl z/2 . 
/2=1 /2=1 

. .  (30) 

. .  (al)  

. .  (a2) 

The coefficients .;(a) from equation (28) for A = 4, 2, 1, N = 8 and A = 0.5, N = 16, are ~/2~ 
tabulated in Table 2, and calculated velocity distributions are given in Figs. 3 and 4. 

4. Untapered Swept Wings of Constant Section Shape.--The effect of finite aspect ratio will 
depend on th e angle of sweep of the wing. To determine this variation we calculate the velocity 
increment at the centre-section of swept wings With constant chord and constant section shape 
along the span. 

Within linear theory, such wings can be represented by a distribution of kinked source lines, 
which are of constant strength along the line. I t  is known from the evaluation of the velocity 
distributions at the centre section of swept wings of infinite aspect ratio 2 that  a kinked source 
line has a singular behaviour at the centre-section different from that  of a straight line. This 
explains the occurrence of the ' kink term.' 

The velocity increment on the infinite aspect ratio wing is (see, e.g., Ref. 2)" 

v .~ , (x ,y  = O) 
= C O S  q g .  S ( 1 ) ( X )  - -  C O S  9) .f(9)S(21(x) . . . .  

V0 
d z  N--1 

with SI21(x) dx ~ .~c~lz _ _  - -  v / 2 v ~ / 2  • , . . . . . . .  , . . . 
/2=1 

. .  (aa) 

. .  (a4) 

Since the kink term, cos ~0. f(9)SI2)(x), is caused by the sudden change in the direction of the 
source lines in the immediate neighbourhood of the pivotal point, it will be the same for wings 
of both infinite and finite aspect ratio. To avoid reconsidering the complications arising from 
this singularity, the velocity increment on the wing of finite aspect ratio is calculated as the 
difference between the velocity distribdtion on the infinite wing and the contribution of the 
semi-infinite source lines outside the tips of the wing, which of course do not exist in the case of 
the finite wing. 
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Two semi-infini te  source lines s ~< ]y'[ < oo, swept  b y  an  angle 9, which  when  e x t e n d e d  would  
pass t h r o u g h  the  po in t  x ' , y  = 0 p roduce  at  t he  po in t  x , y  = 0 the  veloci ty  inc rement"  

dv, = 2 : ff q(x') dx '  dy, 
4~ 

q(x') dx'  
- -  2 ~  :g __ X r COS 

Hence  for t he  finite wing:  

v,(x,O) 
' V o  

~(~,0) 
v 0  

where  

(6) 
v~ 

sf:,~ 
b u t  s¢.67 

x --  x'  - - y '  t a n  9 
{(x -- x'  --  y '  t an  9) ~ 4- y,~}~12 

{cos 2 m • ( x  - -  x') ~ --  sin 29 • (x - -  x ' )s  + s~} 1/~ - -  s 
{cos~  9 .  ( x  - x ' )  ~ - s i n  2 9 .  (x - x ')s  + s~} ~" 

= c o s  ~ .  s ( ' ) ( x )  - c o s  ~ . i ( ~ ) s ( ~ > ( x )  

1_ [1 dz { c o s  ~ ~ .  ( x  - -  x ' )  ~ - -  s i n  29.  (x - -  x')s + $2} 1/g - -  8 d X  t 

- c o s  9 "~Jodx '  { c o s  ~ 9 • ( x  - x ' )  ~ - s i n  2~o. (x - x ')s  + s~} ~" 
N--I 

- c o s  9 . S { ' ) ( * D  - c o s  ~ . f ( 9 )s (~ ) (x  D - c o s  9 E v,.*(6)z,, . 
t~= 1 

. .  (35) 

x - -  x '  (36) 

. .  (37) 

( (x, G) 2 1"5 sin 2q) ( x ~ -  x , )s  + s~lt .q(l) / 1  8 [ 2  C O S  2 ~G . - -  - -  . ( 3 8 )  
~12v  - -  . 8 ~ ' } 3 / 2  f . . . .  {cos 2 ~ . (x~ --  x,) ~ --  sin 2~ (x~ - -  x/,)s -I- s 

= 0 . . . . . . . . . . . . . . . . . . . .  ( 3 9 )  

= 0 for ff + ~ even . . . . . . . . . . . . . . . .  (40) 

va sld, G,N_~ 

since x~ --  x,  = --  [xN_, --  xN_~] • 

E q u a t i o n  (39) is equ iva len t  w i th  the  fact  t h a t  the  i n t eg rand  in the  in tegra l  of equa t ion  (36) 
vanishes  for x '  = x. This  follows f rom the  fact  t h a t  for a p ivo ta l  po in t  (x ,y  --  0) near  the  k ink  
of a source line ( x ' , y  = 0) b o t h  the  finite and  the  inf ini te ly long source line give the  same  
con t r ibu t ion  to the  ve loc i ty  inc rement ,  which  implies t h a t  the  k ink  t e r m  does no t  v a r y  wi th  the  
aspect  ratio.  How eve r  t he  ve loc i ty  d is t r ibut ions  on the  s t ra igh t  and  the  swept  finite aspect  
rat io  wing do n o t  differ only  by  the  ' k ink  t e r m  since t he  con t r ibu t ions  of t he  cut  off source lines 
and  therefore  the  coefficients .~(6) d e p e n d  on the  angle of sweep. Some numer i ca l  resul ts  are p l o t t e d  vftlp 

in Figs.  5, 6 and  7 and  are discussed in sect ion 6. 

The  values  .d 6) f rom equa t ion  (17) given in Table  1, are for t he  special  case 9 = 0. Values  for 
9 = 45 deg and  ~0 = 60 deg are t a b u l a t e d  in Tables  3 and  4. 

The  above  fo rmulae  give on ly  the  ve loc i ty  inc remen t s  at  t he  centre-sect ion.  Fo r  any  spanwise  
s ta t ion  the  fo rmulae  na tu r a l l y  become more  compl ica ted ,  as m a y  be seen f rom the  re la t ion  for 
the  ve loc i ty  at  any  spanwise  s ta t ion  of a swept  wing  of infini te aspect  ratio.  I t  is:  

v,(x ,y ,O) 
= c o s  ~ .  SOl(x) 

V0 
y s i n 9  (l dz 

J0 dx '  

{ ( x  - -  x ' )  '~ cos 2 co + (x - -  x ' ) y  sin 29) + 9 }  1/~ - y dx '  
[(x - -  x') -4- 2y t an  9]{(x --  x') ~ cos ~ 9 + (x - -  x ' ) y  sin 2~0 q2 y,}l/~ x - -  x '  (41) 

where  x is m e a s u r e d  f rom the  leading edge of the  sect ion considered.  An  a p p r o x i m a t i o n  to the  
in tegra l  can again  be ob t a ined  b y  a s u m  according  to equa t ion  (A-6). Fo r  the  in te res t ing  s ta t ions  
near  the  centre-sect ion a check should  be m a d e  as to w h e t h e r  i t  is sufficient to  t ake  N = 8. 
The  coefficients in this  case have  no t  been  calculated.  
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In  the  following analysis it will be shown tha t  wings with tapered thickness or tapered plan- 
form lead to such complicated expressions tha t  the  coefficients for an arbi t rary section shape 
have not  been calculated. 

To determine the  velocity at the  centre-section of a swept wing whose thickness/chord ratio is 
varying l inearly along the  span, one must  not  calculate the  value at the chord of the  centre- 
section but  take the limit as z - +  0 of v. (x,O,z) or lim v~ (x,y,O), so as to obtain the  correct centre 

y--~O 
term. This gives 

v.(x.,O,O) _ l im 1 (~ dz I ' (1 -- O y ' ) ( x . -  x '  - -  y '  t an  9) j 7 : : - ,dx ' j  . . . .  , - - ~  . . . . . . . . . . .  dy'  
Vo ~÷o~ odx 0{(x~--x - - y  t a n g )  ~ + y'~ + z2} ~/2 

= c o s  9 .  s(')(x,)- c o s  9 .  f(9)s(~)(x~) 
N--1 2 

-*(°'~ - -  ~ cos  ~ 9 ~ ( ~ )  COS 9 ~m t* 
#=-1 ~r~ 

• 1_(~ dz cos2 9 .  (x. --  x') ~ -- s sin 2 9 .  (x~ --  x')g}i/2 dx'  
+ ~ c o s  9 • j 0 ~ ,  { c o s ~  : (~: _ ~ , ) ,  _ ~ s i n  ~ .  ~-x: - ~ ' )  + ~ - ~' 

-}- ~ sin 9 cos 9 - × Jodx' 
in ~- {c°s~ 9 (x, --  x') 2 --  s sin 29 (x~ - -  x') + s~} 1/2 4- s 

X 
k cos  9 

- s i n  9(x~ - x')] dx' 

l l ' y  - -  a sin 9 cos 9 - in [{(x, --  x')" + ~,]-2~1/~ --  sin 9 . (x, - x')] d x ' .  .. (42) 3o dx' 
The approximation of equat ion (A-6) can be used to deal wi th  the first and second integrals but  
not  the  th i rd  integral. A numerical  calculation does not  seem advisable in view of the comphcated  
expressions contained in equat ion (42). This is not  a special feature of the present me thod  
however, but  is due to the  type of source distribution. 

The same type of integrals occur in the  expression for the velocity distr ibution at the  centre- 
section of a tapered wing of constant  thickness/chord ratio, since 

V,(X~,O,O) liml ~l dz dx, f: !1-- dy')IX~--X'-- y'(tan9LE-- $X')I 
Vo ,+o ~ Jodx' {[x - -  x '  - -  y ' ( t a n  9L~ - -  dx')] 2 + Y'2 + z~} 3/~ dy'  . 

(43) 

One can therefore draw the  conclusion tha t  the  determinat ion  of the velocity increments  at any  
spanwise stat ion of a swept tapered wing of a given thickness distr ibution is not  a problem tha t  
is best  solved by  the usual numerical  methods.  I t  seems more  suitable to be t rea ted  by an electric 
analogue computor.  

5. Discussion and Improvement  of Linear T h e o r y . - - W i t h i n  l inear theory  three assumptions 
are made  : 

(i) The velocity increment  v, is small compared with V0 

(ii) The velocity component  v,(x,y,z) which is produced at the  surface (by a source-sink 
distr ibution in tile chordal  plane) can be approximated  by the ve loc i t y . v / x , y ,O)  
produced at the  chordal  plane 

(iii) The total  velocity at tile surface V(x,y,z)  can be approximated  by  the  streamwise 
velocity Vo + v~(x,y,O at the chordal plane, neglecting tile components  vy and v,. 
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There are three main cases where these assumptions are not  satisfied-and where it is to be 
expected tha t  l inear theory ma y  not  give satisfactory results:  

(a) The region of the leading edge for conventional  round-nosed sections on all aerofoils, 
whether  the  span is infinite or not  

(b) The tip regions of wings of any finite aspect ratio 

(c) The whole wing if the  aspect ratio is small. 
i 

I t  will be shown tha t  a correction to linearised theory  can be found to obtain a solution in 
case (a). In  case (b) an empirical correction has been de te rmined  (see Refs. 2 and 10). A special 
case of (c) is the  group Of wings of very small aspect ratio, which can be dealt  w i t h b y  s lender-body 
theory. We will discuss the  relation between linear theory  and slender-body theory  in section 8. 
In  section 9 the  case of ellipsoids will be used to show how accurately the  velocity on small aspect 
ratio wings ma y  be calculated by  linear theory by  comparison with the  exact results. 

We will discuss first some effects of the  simplifications made  in linear theory. Imagine a 
source distr ibution of s t rength  q(x,y) in the  plane z = 0. At points away from the  edges, the  

1 X velocity component  normal  to the  plane is equal to -¢- ~ q ( , y ) ,  since the source mater ial  is flowing 
out normal  to the  plane. Half of it emerges from the  upper  surface and the  other  half from the 
lower surface. For  points at  a small distance above or be low the  wing v, is approximate ly  equal  
to q/2. At the  edges of the  source distribution, i.e., at the  leading and trailing edge and the  tips, the  
source material  can escape in all directions, e.g., it can escape sideways near the  tips. v, is then  
smaller than  ~: q(x) /2  on the  wing surface. 

A distr ibution of finite source lines of constant  spanwise s t rength  thus produces near  the ends 
of the source lines a smaller v, velocity than  infinitely long lines and a non-zero vy velocity. 
This means tha t  the wing represented by such source lines is th inner  at the  tips than  at the  centre 
but  wider than  the  source lines. The source distr ibution used to represent a finite wing must  be 
changed wi th  the  aspect ratio and must  vary  along the  span ; strictly it cannot  be taken  as 
tha t  for a two-dimensional  wing as is done in linear theory. Source distr ibutions to represent  
square-cut wings* need to be stronger near the  tips but  are cut shortt .  I t  is likely tha t  these 
two modifications have a small combined effect at sections away from the  tips since the  separate 
effects are of opposite sign. For wings of small aspect  ratio, the  fact tha t  in l inear theory  the  
sources are spread over too wide a spanwise area will generally reduce the  calculated streamwise 
velocity increment.  

* Strictly square-cut wings cannot be represented by source distributions in the chordal plane alone. But one 
can obtain tip shapes which are a better approximation to square-cut tips than those resulting from constant spanwise 
source distributions. 

A similar difference between the exact source distribution and the one from linear theory exists near the leading 
edge of round-nosed two-dimensional wings. This difference may be illustrated on wings with elliptical section : 

z(x) = ½t  { 1 --. (1 - -  2x)2} 1/2 . 

The exact source distribution obtained by the method of conformal transformation is : 

q(x) t 1 -- 2x 
2V 0 -  1--  t {1-- (t) e -  (1--2x)2} v2 

for 1 -- {1 -- (t)2} 1/2 < x < 1 + {1 -- (t)~} 1/2 
2 2 

From linear theory : 
~(~) t ( 1  - 2x)  
2Vo - -  {1 - -  (1 ~ 2x)e} 1/'2 ior  0 < x < 1. 

The  correct  source d i s t r i b u t i o n  is s t ronger  b u t  has  a shor te r  chordwise e x t e n t  t h a n  the  one f rom l inear  theory .  The  
compar i son  m u s t  n o t  be carr ied  too far, s ince the re  is one i m p o r t a n t  difference be tween  the  t ips  a n d  the  l ead ing  edge 
where  a s s u m p t i o n  (i) does n o t  hold.  
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There is, however, the further simplification implied in assumption (iii). Replacing the velocity 
increment v,(x,y ,z)  at the surface by v,(x,y,O) in the chordal plane has at least over part  of the 
wing an effect of the opposite s ign•  For the maximum thickness position, x . . . .  

Iv /x  ..... y,O) l ~  [V~(x ...... y,z) l 

as can be seen from the relation 

I f  x' ' x' 
v~(x,y,z) = q( , y )  x -  

• 4 ~  w ~ n ~ - - { ( X -  X') ~ + ( y -  y')2 + Z2} 3/2dx' d y ' .  . . . .  (44) 
area 

For a rectangular wing, the integration along y can be done explicitly. We obtain instead of 
equation (5) for y = 0: 

v~(~,o,~) 1 ¢  dz  ~ ~ - x ~ 
--= Jodx,  {(x __ x,)2 + s~ @ z~}l/2 (x __ x,)2 @ z~dX'  . . . . .  (45) 

As an example the velocities at the maximum thickness position, x ..... of a 10 per cent thick 
rectangular wing with RAE 101 section have been calculated in the chordal plane and at the 
surface using in both cases the source distribution from linear theory" 

Vx g00Vx (Xmax' A Vo (Xmax, Y =  O, ~ = O ) y  

O. 1 O. 048 O. 029 
2.0 0.132 0.204 
oo O" 245 O" 218  

= O, z = t/2) 

The difference in the v,-values is appreciable• Since it is known that  v,~(z = 0) is a good approxi- 
mation for the two-dimensional wing (see Ref. 2), the results show in particular that  one does 
not obtain a satisfactory approximation for the velocity on the two-dimensional wing by  
calculating the v,-velocity which the source distribution of the linear theory produces at the 
surface of the wing. This will mean tha t  in general one does not improve the results of linear 
theory by  calculating only the streamwise velocity increment at the surface. If a better approxi-.  
mation is needed, the vy- and v,-velocities must also be determined at the surface, which implies 
tha t  a source distribution different from that  of linear theory has to be taken. 

That  the effects of the various simplifications of linear theory cancel each other to a great 
extent for points away from the leading edge has been shown for two-dimensional wings in 
Ref. 1 and is shown for wings of small aspect ratio on a special example in section 9. We must  
however apply a correction to the results from linear theory near the leading edge 

I t  has been shown (see, e.g., Ref. 1) tha t  one obtains a very good approximation to the velocity 
along the whole surface of two-dimensional wings by  multiplying the result from linear theory by 

the factor 1 
{1 + (dz/dx)~} 1/2: 

V(x,z) = v~(x,o) 
{2 + (d~/d~)2)l/~ 

_ Vo + v,(x,O) (46) 
- { l  + [ s ~ ( x ) ] ' }  I/~ . . . . . . . . . . . . .  

For aerofoils of elliptical cross-section equation (46) gives the exact velocity distribution; in this 
case 

V ( x , z )  = V ( x  = 0 - 5 ,  z = t /2)  _ Vma x (47) 
{1 + ( d ~ / d ~ ) W  ~ - {1 + (a~/d~)~} ~/~ . . . . . . .  
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The same relation is true for ellipsoids, both for axially symmetrical ones and for those having 
three different axes (see equation (102) in section 9): 

v(x ,y  = o,~) = v(,~ = o . 5 ,  y = o, t/2) 
{1 + (dz/d~)'~) ~/' (48) 

As shown in section 9, the values of v,(x,O,O) calculated by slender-body theory and linearised 
slender-body theory are constant along the chord of an ellipsoid, as is v,(x,z = 0) for the two- 
dimensional elliptic wing. The values v,(0.5, 0, 0) from linear theory and linearised slender-body 
theory do, however, differ from the exact v,(0.5, 0, t/2) by a term of the order (t/c) ~, whilst they 
are equal for the two-dimensional wing. 

In view of these relations and the fact that  close to the leading edge, except near the wing 
tips, the flow on a finite wing can be .expected to be similar to that  on a two-dimensional wing, 
we propose to apply the same factor to the results of linear theory, i.e., to use equation (46) with 
the velocity increments v~(x,y,O) of the previous sections. 

The effect of this correction is illustrated by  Fig. 8, in which the velocities resulting from 
linear theory and those corrected by applying equation (46) are plotted together. I t  is shown, 
e.g., tha t  in some cases linear theory may give wrong values of the maximum velocity. 

The following may be noted as a matter  of interest. Wings with the conventional rounded 
tips but otherwise constant spanwise thickness may be represented--at  least for calculating the 
velocity distribution at stations away from the t ips - -by  a distribution of source lines of constant 
spanwlse strength and two lines of three-dimensional sources at the beginning of the tips. The 
strength of the sources is according to the linear theory of bodies of revolution : 

Q(x) = ½ ~'~z'(x) d ~  Vo . . . . . . . . . . . . . . .  (49) 

By this method the two limiting cases of wings of infinite aspect ratio and the body of revolution 
are properly represented. The source distribution of equation (49) produces a velocity increment 

- -  Z ~ X al~ d y '  v0 dx, {Ex x '  - ~ n  ~ ~(~ - T y ~  ~ ~- i s - - ) ) ~  + ( ) )  " " (50) 

For a straight wing of aspect ratio 0.5 with elliptic section of 10 per cent thickness/chord 
ratio, the velocity increment at the mid-point (x = 0.5, y ---- 0, z = 0) due to the three-dimensional 
sources is Av~/Vo = 0.0054. Equations (10) and (17) give the velocity increment 

v~(0-5, O, O)/Vo = O. 1 -- 0.0354 = 0.0646, 

where 0.1 is the velocity increment of the two-dimensional wing. So that  for the wing with 
rounded tips v~(0.5, 0, O)/Vo = 0. 070. The same numerical value is obtained by equations (10) 
and (17) for a rectangular wing of aspect ratio 0.58, i.e., for a wing which has the same plan view 
area as the wing with rounded tips. This means that  when calculating the pressure distribution 
due to thickness it is advisable to take a mean span and not the span at the trailing edge as is 
done when calculating the lift distribution. 

6. Numerical Results .--In this section some numerical results are discussed. First, the 
accuracy obtained by approximating the integrals by finite sums is shown. For the biconvex 
section shape, the velocity increments on the straight untapered wing of finite aspect ratio 
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A = 2s/c, r.esulting from linear theory, i.e., from equation (5), can be determined explicitly. 
The result is given in Ref. 3. These values are compared in the table below with the approximate 
results from equation (10) for the mid-chord point of the centre section, x = 0.5, y = 0. 

A vdVo  .lVo 
(v,lVo)A:  

exact equation (16) with 

N = 

o~ 1.000 1- 000 
4 O- 990 8 O. 990 
2 O. 962 8 O. 963 
1 0.881 8 0.885 

0.5 0.721 f 8 0.819 
3,16 0.724 

This comparison shows that  for A />. 1 sufficiently accurate results are obtained with N = 8. 

To illustrate the effect of the section shape, velocity distributions at the centre-section have 
been calculated for various wings with 10 per cent thick RAE 101 and biconvex sections. 
Equation (46) has been applied to the results from linear theory, as explained in the preceding 
section. 

Figs. 3 and 4 give the velocity distribution at the lines of symmetry  on unswept wings of 
constant chord, (a) with constant section shape along the span (d = 0) and (b) with a thickness/ 
chord ratio decreasing linearly from 0.1 at the centre to zero at the tip (~ = 2/A) .  The velocities 
on the finite wing are in general smaller than on the two-dimensional wing. The reduction of the 
maximum velocity is plotted in Fig. 9, i t  is nearly the same for the two section shapes. We 
can conclude from these numerical results that  one obtains a fair approximation to the maximum 
velocity increment on a conventional section shape by  reducing the two-dimensional value by a 
reduction factor obtained from the wing with biconvex section (see Ref. 5). 

With  three-dimensional wings of biconvex section the velocity distributions have nearly the 
same shape as on the two-dimensional wing. With a conventional section shape this is still 
nearly true for finite wings of constant thickness/chord ratio, but  it is less true for wings with 
decreasing thickness. This implies that  for the biconvex section a good approximation to the 
velocity at any chordwise position can be obtained by  reducing the two-dimensional velocity by  a 
constant reduction factor, e.g., the one determined at the maximum thickness position. For the 
conventional section shape, this procedure still gives a reasonable value for the effect of finite 
aspect ratio, but  it cannot be used to account for the effect of taper in thickness on the velocities 
over the front part  of the wing. 

The figures show that  the same rate of decrease of the maximum thickness ~z(x,y) /~y -= - -  &(x,O), 
brings a greater reduction in the velocity increment on the larger aspect ra t io  wing. Cruddy, 
the same reduction is obtained if the product $.A is the same. 

Velocity distributions at the centre-section of swept wings of constant chord and constant 
spanwise thickness distribution have been calculated for aspect ratios 0.5, 1.0 and 2.0. The 
velocity distributions for wings of aspect ratios 1 and 2 lie very close to those for the infinite 
wings and are therefore not~ plotted, the maximum velocities are given in Fig. 9. We thus obtain 
the result that  for wings of aspect ratio greater than one the effect of the finite aspect ratio is 
small. This fact was also found by  experiments on 53-deg swept wings (see Refs. 2 and 11), 
where within the accuracy of the tests, the same pressure distribution was measured at the 
centre-sections of two wings of aspect ratio 1.05 and 2.0. 
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The velocity distributions on wings of aspect ratio 0.5 are plotted in Figs. 5 and 6 together 
with the distributions on infinite wings. In these calculations, equation (46) has again been 
applied to the results from linear theory, equation (37). Fig. 5 shows that  for the RAE 101 
section the maximum velocity is about the same for the finite aspect ratio wing and the infinite 
wing. 

To illustrate how the aspect ratio effect changes with the angle of sweep, the difference between 
the velocities on the infinite wings and the finite aspect ratio wings--as resulting from linear 
theory--is  plotted in Fig. 7 for various angles of sweep. Whilst on the straight wing, the velocity 
decreases with decreasing aspect ratio for all points along the chord; there is on swept wings a 
considerable portion of the front part of the wing over which the velocity increases. This implies 
t:hat the shape of the velocity distribution alters with aspect ratio, in particular the position of 
the maximum velocity is generally farther forward on the wing with small aspect ratio than on 
the infinite wing. We do not, therefore, obtain a good approximation to  the velocity distribution 
on the finite swept wing by applying the procedure suggested for the straight wing, i.e., by 
reducing the velocity on the infinite wing by a constant factor, as was suggested in Ref. 2. I t  
will be preferable in many practical cases to make use of the refinement offered by the present 
method rather than to employ the less accurate method of Ref. 2. In those cases where the 
numerical values of the coefficients have been worked out, the velocity distribution can be 
calculated in about an hour, if the section co-ordinates at the fixed points x, are known. 

7. Appl icat ion  to Subcritical Compressible F l o w . - - T h e  method of the present report can be 
extended to be applicable to subcritical compressible flow by means of the usual flow analogy. 
In order to be consistent with the assumptions of linearised theory, the Prandtl-Glauert analogy 
in the form proposed by G6thert 12 (1941) should be applied. This states that  the velocity 
increment v, in compressible flow is 1//32 times the velocity increment v,~ in incompressible flow 
on an analogous wing, obtained by reducing the lateral dimensions of the original wing in the 
ratio 8 : 1 .  Here 

= ( 1  - 1 /2  . . . . . . . . . .  ( 5 1 )  

and M0 is the free-stream Mach number. From this, we obtain the well-known result that  the 
velocity on a wing of finite aspect ratio rises less steeply with Mach number than on the corre- 
sponding two-dimensional aerofoil. This was first shown by Ludwieg la (1946). For unswept 
wings this is a consequence of the fact that,  as the Mach number increases, the aspect ratio of 
the analogous wing decreases and with it  the velocity increment. The effect of the aspect ratio 
is less on swept wings, as is demonstrated by the examples sho~vn in Fig. 9, but the angle of 
sweep of the analogous wing increases with increasing Mach number, which results generally in a 
decreased velocity. The differences in the velocity distributions on finite swept wings of different 
section shape as shown in Figs. 5 and 6, imply that  one cannot always draw generally valid 
conclusions about the effect of compressibility by using the results obtained for wings with 
biconvex section. 

A further example of the velocity variation with Mach number can easily be obtained for the 
special case of rectangular wings with elliptic aerofoil sections of constant thickness/chord ratio 
along the span. By the Prandtl-Glauert analogy, the velocity increment in compressible flow is 

V0 - -  4 ~ 2 V 0  J o . - ~ s  q~(x') {(x - -  x ' )  2 + ~ 2 (y  _ y , ) 2  + ~2z2}3/2 dx'  dy '  . .  . .  (52) 

where q, -- 2V0/~ . dz/dx is the source distribution representing the analogous wing. For a wing 
of elliptic section shape 

z(x) = ½t(1 -- (1 -- 2x)2} */~ . . . . . . . . . . . . . . . . .  (53) 

1 - -  2x' 
q.(x') = 2VoM {1 -- (1 -- 2x')2} 1/~ . . . . . . . . . . . . .  " "  (54) 
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We calculate oniy the m a x i m u m  velocity increment  at x = 0 .5  on the  centre line, y = 0, of the  
wing in the  chordal  plane, as in linear theory. Hence, 

v~(0 • 5,0,0) 4 "~ 1 1 ! ts dx'  I 

Jo {1 --  (1 2x')2} w~ {(1 2x') 2 + 4/3~s*} ~/~ Vo --  ~ --  --  

or, with the t ransformat ion 1 --  2x' = cos 0., 

v. 4 f~/" dO' 
ts 

I V0 ~z ~0 "{cos ~ v~ -+ 4/3~s'} */~ 

1 sin'- 1i/2 {1 + 4-fi25~}~/~ Jo 1 - -  1 + 4~2s ~ #f  

which leads to the  complete elliptic integral  of the  first k ind : 

v. 4 ts K(k2 ) 
V o - - a  {1 -@ 4~2S~} 1/2 

2 tA 
= ~ {~ + ~A2}1/~ K(k 2) w i th  k ~ - -  

b 

1 
1 + /3~A ~ " 

. . . . . . . .  (55) 

This relation is p lot ted in Figs. 10 and 11. The velocity decrease with aspect ratio down to 
A = 0 .5  is about  the same for the elliptic, biconvex and R A E  101 section, but  the  relat ive 
reduct ion is greatest  for the elliptic section. Therefore, wings wi th  elliptic section show the  
smallest velocity rise with Mach number  compared with the two-dimensional  aerofoil. 

Assuming tha t  ei ther the  aspect ratio of the  wing is small (A ~ 1) or tha t  the free-stream 
Math  number  is near un i ty  (8 < 1), so tha t  the  analogous wing is of small aspect ratio, we obtain 
Ir0m equat ion (55) 

v~ 2 tA In 4 
E =  KA + . . . . .  

using the well-known expansion of K for 1 --  k °" < 1, where the next! 
~ A  ~ In (U~A). 

. . . . . .  (56) 

t e rm is of the order 

Equa t ion  (56) corresponds to the relation derived from slender-body theory  (see the next  
section)" 

v,(x) (v.(_x)~ 1 1 (57) 
E - ', Vo/,~,o=o 2-~ s " ( x ) i n  ~ . . . . . . . . . . . .  

where S"(x) is the  second derivat ive of the cross-sectional area of the  wing or body. 

Relat ion (56) is compared in Fig. 10 with equat ion (55) for wings of 10 per cent thickness. 
The agreement  up to aspect ratios of about  2 means tha t  for rectangular  wings of aspect ratio 
smaller than  2 the velocity increases with Mach number  according to the logari thmic law given 
ill equations (56) and (57). 

8. Relation to Slender-body Theory . - -A  comparison between the  results from linearised theory  
and from exact calculations has been made  in. Ref. 1 for wings of infinite aspect ratio. It  is of 
interest  to make  a s imilar  comparison for wings of very small aspect ratio, in which case the  
results from slender-body theory for subsonic flow can be taken  instead of exact calculations. 
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We discuss first some points of the  slender-body theory. This discussion is based on the work 
by  Adams and Sears ~ (1953). The results are expressed in a more explicit way, which makes it 
easy to show the  relation to the  linearised slender-body theory  as given by  Keune  and 
Oswati tsch 9,1~ (1953) and to the  ordinary linear theory. 

In  s lender-body theory  it is assumed tha t  the  shape of the  body  and as a consequence'  the  
w-velocity component  vary  only slowly in the x-direction. Therefore, the potent ia l  equat ion 

~ ¢ + ~ ¢  a ~ ¢ - o  - . . . . . .  (58) 
ax ~ ~ + a P . . . . . .  

a t  ol- near  the  body  surface can be wri t ten  approximately  as : 

~2¢ + ~26 _ 0 . . . . . .  ( 5 9 )  
~y2 ~ z 2 . . . . . . .  

To solve this equat ion is a two-dimensional  problem. The potent ia l  function has to be de termined 
so tha t  the  boundary  condit ion of zero normal  velocity at the body  surface is satisfied. For  
slender bodies the  boundary  condit ion can be wri t ten  in the form : 

~¢(x,y,z) _ v,~(y,z;x) dn dn (y,z;x) go 
~n = ~x (y,z ;x)(Vo + v~) ~ dx 

0z 1 
~ x { 1  + (~ /~y )~} ' /2  Vo . . . . . . . . . . . .  (6o) 

where O¢/On is the  derivat ive of ¢ taken normal  to the  boundary  of the cross-section z(y ;x) 
in a plane x = constant  and where dn is the  local normal  distance between the two cross-sections 
at  x -~- dx and x projected into the same transversal  plane. 

The chordwise ordinate x enters equations (59) and (60) only in the  form of a parameter ,  which 
means  tha t  the  potent ia l  function can be de termined from equations (59) and (60) except  for 
an addi t ive function of x. We write, therefore, the  potent ia l  function in the form 

¢(x,y,z) = Cdy,z;x) + 42(x)  . . . . . . . . . . . . . .  (61) 

where ¢l(y,z;x) is a velocity potent ia l  for two-dimensional  flow in the y,z-plane which satisfies 
the  condit ion (60) at the  boundary  Of the cross-section z(y ;x). 

We determine first the potent ia l  ¢l(y,z ;x); the determinat ion  of ¢~(x) will be discussed later. 
For  this purpose, we transform the ~ = y 4- iz plane into a ¢l-plane so tha t  the  body  cross- 
section in the  g-plane is t ransformed into a circle of radius r. Our task is to determine a distribu- 
t ion of singularities inside or on the circumference of the  circle which produces a normal  velocity 
component  v,~1(¢1) which is related to v,,(g) by  the mapping  ratio I d¢/dgl [: 

v,~1(¢1) = v,~(~) d~ ] (62) 
~ 1  " ° " " ° . . . . . . . . .  " ° ° 

We make  use of the fact tha t  a source distr ibution on the circle ¢1 = r e ie of s t rength q(~), wi th  
the total  s t rength  equal to zero, produces a normal  velocity equal to q(O.)/2 at each point  on the  
circle. This is a consequence of the fact tha t  for an isolated source and sink of equal s t rength  
all circles through the positions of the  source and sink are streamlines. The total  s t rength  of 
the source distr ibution on the  circle being zero, we can always combine a source with a sink of 
equal strength.  Thus at any point  on the  circle only the local source contr ibutes to the  normal  
velocity. 

18 



R.A.E. Form 14 c ~ . ~ ; { ! : : ~ !  ' 

.M ~ " "~ F 

~r ,;#.- 

fit 

,% 

AVIATION 

ESTABLISHMENT 

JOB No ................................................ 

SHEET No. , . . . . . . . . . . .  D A T E  ......... ~i ........ ~. . . . . . . . . . . . . .  

SKETCH FILE No ........... . ............ , . . . . . . . . . . . . . . . . .  , ~ .  . . . . . . . . . . . . . . . . .  

# 

3 

(F ' , "  

t 

L 
p~ 

' ~ ~' 
\ 

. t" ~ i - 

i ' 

t : 

:i 

, y  

:1 

, [,-- .-\ 

/ -  

~ J 

/._ J / 

f . 



.. ": /P " ,,I~ 

, ----. l,l~!fl~","t-~>~1' ! 

I <d I 
_ , ~  c,,,., c,6.~ . -?- 

r .--1 
t,-. 

.,-/( L-L___ ...... ~" -L ~.~!i . _ _  7 ~ >  " ' 

, \ { - % 
. . f _! ..... --~~-c~{.t©~ - 

' ~ Y - Y  " 1 
P 

t 



~14 " - ~  

L ~ ~~ 
,,... ~ ~ ., ,I ~,~ ~ 

/ 

JOB No ................................................ 

SHEET No .............................. DATE.. ................................. 

SKETCH FILE No.. ........ , ................. ,-., . . . . . .  

~,~-~ 

\ 

[ -t d ] . ' ~ " t  -r< , - ~  
/ "  

- 

. ~ ~ ,~.~-J 

"Z - -~  31) " 

.C ,  - ¢ :  

"t.~ ~{t..~ - 

I 

14 l-~ 

-, 5"~,,J,* ~- 
~,d/~ I c.~. u. ~-,.~" 1 ' 

il y~+~.~... ] ~ ~ 



0 

{0 

?o 

~o 

~o. 

15t, 

r~o 
~fo. 

® 

I~,J 

J 





R.A.E. Form 14 c.8.H.35258 ~ : ~ -  i J O B  - - ~  ............. 

I ROYAL~AIRCRAFT*'~ - ESTABLISHMENT '~ " - S K E T C H  FILE No..~,;:.-.::::;::..~..-.-.=-:.;,:.~.=~-- 

' ~  ~ / .wi it! -.... 

1 " ~ ~ ~ ,,,~; " / . ,  I . /  /. ~. | ~ - ,  

• ~ . . ,  ~ i c ~ ,  / ,  . ~  ,- / / C~ / 

". . . . . . . .  . . . . . . . . . . . . .  : ............. !- . t i , " !  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

!0 - 

: 70 

7o 
% 

! 

i 

i .  

i 
I 

i - .  
i 

1 

i " . - . - - - -  / , 

J 

! . . . . . .  : . . . . . . . .  

t 



R.A.E. Form 14 C,B.H,35258 

MINISTRY OF AVIATION 

R O Y A L  A I R C R A F T  E S T A B L I S H M E N T  

/ 

j /  

J O B  No , :  ........................................... 

SHEET N o  ................. i ........ D A T E  ................................. 

S K E T C H  FILE N o , .  ........ ,....T ........ ~ .................................... 

• ! 
f 

4..'. 

t 

~ o  

/ 



R.A.E. Form 14 

-.  o 

,P 

C.B.H. 34038 
\ 

• MINISTRY OF SUPPLY 
ROYAL AIRCRAFT, ~TABLISHMENT 

I .I I 
I 

C )  
,&,¢.,, 

JOB No ................................................ 

SHEET No.. ............................ D A T E  .......................... ; ........ 

SKETCH FILE No. ....... ,,...,,. ........................................... 
~.o~' 

~ l  "~ "  

~,~ d ,r = r ' ~ - J J  

,...: -rZ..... , - ~  ~ <_<..x<.x_,.. 

. . . . . . . . .  G~ 

-ii" 

/ 

T 

,:r 1, -k.- 

I ~-' (~'1.% .~. I~, 
/ 

~U9 

I 

I 1"0 =.j" - -  - P  X 

~)1 ' - '~ l ~ 
L ~ - , )  

+ 

'1 _ . ~ ,  t , ~  / ~.} 

2 i1,,~. 

~ / .  ---('7) 



R.A.E. Form 1 4  r C.B.H, 34038 

MINISTRY OF SUPPLY 

ROYAL AIRCRAFT ESTABLISHMENT 

. l l ~  N .  ................................................ 

SHEET No ................. DATE . . . . . . . . . . . . .  

SKETCH FILE No.,...,...,...,i .............................................. 

1 :  

"CO " "  
cJ 

"~-~,~:~'=-'- ~ ~ " : ~  "7 
S~e, 

......b~ oc-J~. 

i t -~  ~ ,.. ) 

f 

# 

"2- 

!t  - 
"-: ) I  

71" - 

o 

L 

2o~ <D~ 

4 , ,  ~" I -  _ I --t-- _ -  

J O  

1 :'+ 
I .  

:_.>, 
I 

t 



Since a single source of s t rength  Q at the  centre of the circle produces at the circle the normal  
veloci ty  

Q 

t h e  required normal  velocities v,~ ~ on the circle $1 = r e i~ are produced by  a single source at the  
centre of the circle of s t rength"  

(63) Q ( X )  : " V n l ( O  1) d o  t : 29~'V,~ 1 . . . . . . . . . . . .  
o 

a n d  a source dis t r ibut ion on the circle of s t rength"  

q(e) = 2 (v , ,1 -  5,,1) . . . . . . . . . . . . . . .  (64) 

The potent ia l  of the  single source and the source distr ibut ion on the circle and also therefore 
at  the  body  surface is" 

¢1(~;) = ¢1(~) = l n ,  i-+- ~ J 0  ~(29t)h'[ I ~ 1 -  ~1' I d~t . . . . .  (65) 

B y  equations (62) to (64)" 
~2~ 

l[d~' 

On the  circle 

+ ~Jo v,, in [ ~ 1 -  ~ l ' l d o '  . . . . . . . . . . . .  (66) 

~ = r ( c o s  ~ + i sin O) 

~.' = r ( c o s  ~'  -}- i sin ~') 

o n I¢1 - -  1 dv ~ ' = 2 ~ l n r + ~ l n 2 + ½  o l n [ ! - - c o s ( 0 - - 0 ' ) ] d 0 '  

= 2~ In r . . . . . . . . . . . . . . . . . . . . .  (67) 

From equations (63), (66) and (67)" 

¢1 = ~ J0 v~l(O')Eln [~1 - ¢1'1 - ½ In r] do'  

We consider only thickness effects here, which implies t ha t  the  cross-sections are symmetr ica l .  
about  t h e y - a x i s  and v,~l(0') = v,1(-- #'). Therefore, 

¢~ = ~JoV,,l(O')[ In [~1 - -  ~ l t ]  @ I n  I~  1 - -  ~ 1 ' [ - -  i n , : ]  dO' 

, ~-~z t 1 
- -  ~JoV.l(va )[~ ]n (~1 - -  ~'1")(~1 ~1')(~'1 - -  ~11)(~1 - -  ~'l,t) - -  In r ]  dO' 

21y - y 'l . . . . . . . . . .  

If the  conformal t ransformat ions  of the  body  cross-sections into a circle and the required normal  
velocities are known, equations (62) and (68) determine the potent ia l  ¢~(y,z ;x), wi th  x entering 
as a parameter .  
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To demonstrate more clearly the relation to linear theory, we transform the ¢,-plane into the 
¢~-plane so tha t  the circle is transformed into a slit : 

f~ 
~ = ¢, + ~ . . . . . . . . . . . . . . . . .  (69) 

With 

21 l 
,,,(y~) = 21,,1(~') d¢, - -  2ls inO'  I 

y (  = 2r cos ~' = 2 y l  t 

and dy(  ----- -- 2r s in  ,9' d~'  

we obtain" 

Since 

~,1, - -~ j_so(~> v . ~ ( y ( )  In lY~- Y ( I  d Y (  • 

v , ,~(y( )  = l ~ d~' 
2 1 j y , )  d~- = v~(y') gy, 

= ,,(Y ) + \ ~ , = , , j  dye' 
OZ d y '  

- o.~ (Y ' )d-~-?  Vo 

where ~ is the length of arc along the circumference of the body cross-section, we obtain finally 
for the potential ¢i" 

V o r  +s~ ~z(y' ;x) , . 
¢ , ( y , z  ;x) = -~-!--s(,l Ox In IY2(Y) - -  32(Y' )l dy '  . . . . . . . .  (70) 

The determination of ¢ l ( y , z  ;x) by  equations (68) or (70) is in most cases rather laborious. 
Keune 9 has therefore derived an approximate method by introducing into the slender-body 
theory the simplifications of linear theory. He replaces equation (70) by the  following : 

=~-v_s( , )  ~x l n { ( y - - y ' ) ~ +  d y ' .  . . . . . . .  (71) 

and puts z equal to zero everywhere as long as no singular behaviour occurs. This means tha t  
the same source distribution as in ordinary linear theory is taken and placed in the chordal plane. 
In  both methods the potential and hence t h e  velocity are also calculated in the chordal plane. 
These simplifications are justifiable for bodies where the thickness of the cross-sections is small 
compared with their spanwise extension, and away from rounded tips. 

To determine the function 42(x) in equation (61) one has to return to the complete potential 
equation (58) and satisfy the additional boundary condition ¢(x,y ,z)  = a$(x ,y ,z) /Ox = 0 at 
infinity. This calculation was carried out, e.g., by Adams and SearsL They derived the following 
equation for the function ¢2(x) : 

¢~(x) = - -V° [  S ' (x )2 :~  in 2 fi- --  ½S' (O) lnx  -- ½S'(1) in (1 --  x) 

-- ½f] S"(x')in (x --x')dx'  + ½-f[ S"(x')in (x' -- x) dx'] . .  (72) 

where S(x)  is the cross sectional area of the body at the position x and S ' (x )  and S"(x)  the deriva- 
tives with respect to x. 
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This resuit can be explained by the following considerations. The body can be represented 
by a source distribution q(x,y,z), whose strength, for slender bodies, is equal in each transverse 
plane, to tha t  of the two-dimensional sources--extending from infinity downstream to infinity 
upstream--determined above, so as to give the required flow in the planes x = constant. The 
function ¢~(x) does not depend on y and z, i.e., it is not affected by the actual shape of the cross- 
sections. I t  depends only on' the total  source strength at each position x and not on the way in 
which the sources are distributed in each transverse plane. The function ¢~ can therefore be 
determined as that  for a body of revolution which has the same cross-sectional area S(x) at each 
position x as the given wing' or body. 

For slender bodies of revolution the total  velocity potential is given by the relation" 

_ Vo (~ S'(x') dx' ¢(x,r) (73) 

This formula is derived by replacing the body by a distribution of three-dimensional sources along 
the  axis and using the Prandtl-Glauert analogy between compressible and incompressible flow. 
We determine ¢~(x) as the difference between ¢(x,r) and ¢~(x,r). Since the cross-sections in 
transverse planes are circles, the potential ¢~(y,z;x) is: 

¢,(y,~ ;x) - Q(~) in ~,(x) 
2:~ 

Thus, 

= ~ s'(x) In r(x). . . . . . . .  . . . . .  ( 7 4 )  

S'(x) l n r  
G j 0 { ( x - x ' ) ~ +  ~r~}l/~ z~ 

! 1 dx' ~ S ' ( x ' ) -  s'(~) 1 
_ V o  tS'(x) fo x') ~ p~r~} 'j~ + ~o x') ~ p~r~}~/~ dx' + 2S'(x) In r 1. 

4 ~  { (x  - + { (x  - + 

The integrand of the second integral vanishes for x = x' and for x # x' the term /~2r~ can be 
ignored. 

Therefore ¢~(x) 4~ ~) ~o { ( ~ -  x') ~ + { ( x ' -  ~)~ + ~2r~}'~ 

+ fx s'(x ')  - s'(~,) ax' + r' s,(x,) - s,(~) d~, + 2s,(x) In ~1 
o X - -  X '  J~. X '  - -  X 

and finally we obtain equation (72) for ¢~. 

Keune has arrived at equation (72) by making the approximations of slender-body theory in 
the expression for the velocity potential corresponding to the source distribution from linear 

• theory. 

The streamwise velocity component is calculated by differentiating ¢ (x,y,z) with respect to x. 

Since ¢l(y,z ;x) does not vary with Mach number, from equations (61) and (72) we obtain the 
logarithmic law of equation (57) for the variation of tile velocity with Mach number. 

The linearised slender-body theory of Keune and Oswatitsch is not identical with the linear 
theory as used in the previous sections. The same source distribution is used in both methods 
but  the streamwise velocity increment is calculated differently. Both methods intend to calculate 
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the  velocity which the  source distr ibution produces in the  chordal plane. This is done correctly 
in the  ordinary  linear theory, whilst  in Keune 's  me thod  the  assumptions of s lender-body theory  
are made. The differences of course become smaller the  more these assumptions are justified, 
~.e., with decreasing aspect ratio. Keune has shown tha t  for the  centre-section of rectangular  
wings with biconvex section the  results from linearised slender-body theory agree with those  of 
the  straightforward linear theory  up to aspect ratio 0.4. In the  next  section we will compare 
the results of tile various methods  wi th  the exact solution for ellipsoids which have  three different 
axes. 

9. The Velocity Distribution on Ell ipsoids Determined by Various M e t h o d s . - - T o  show the effect 
of the  simplifications of l inear theory  and slender-body theory  on the velocity distr ibution we 
calculate the velocities on ellipsoids by slender-body theory, linearised slender-body theory and 
ordinary linear theory. Though nei ther  the  assumptions of slender-body theory  nor those of 
l inear theory hold near  the  nose of ellipsoids, we choose the  ellipsoids since these are one of the  
few cases where an exact solution exists, see Refs. 15 and 16. The comparison of the approximate  
results with the  exact results will give a range of values of the  span through which the  
application of s lender-body theory  is permissible. 

Let  the thickness of the ellipsoid be t, and the  largest spanwise extent  2s. All lengths are made  
dimensionless wi th  the length  of the  ellipsoid. The ellipsoid may  be represented by the equat ion 

t 1 - (1 - 2x)  2 - (yls)2} z(x,y)  = ~ . . . . . . . . . . .  (75) 

The elliptic cross-sections are t ransformed into circles of radius r by  the  t ransformat ion 

R~ 
= ~1 + - -  . . . . . . . . . . . . . . . .  ( 7 6 )  

with 

2s + t { 1  __ (1 --  2x)~}. ~/~ (77) 
r - -  T * ° " * . . . .  " " 

R --  (48~ -- t2)~/" {1 -- (1 -- 2x)"} I/~ (78) 
. . . , . . ° . . ° . 

By equations (60), 75 and (76) the  normal  velocity v,,(~) is: 

1 - - 2 x  1 V0 ( 7 9 )  
v,~(~) = ts {1 -- (1 -- 2x)~} 1/~ {s ~ sin 2 O + (t/2) ~ cos ~ O} ~/~ . . . .  

where ¢~ = re i° is the  circle in the  ~-plane. For points on the circle, the  mapping  ratio is" 

de = 1 --  e - ~  1 --  2 cos 2v~ -¢- 

4 {  
= 2s + t s~ sin~ e + (t/2)~ c°s2 0 . . . . . . . . .  (80) 

By equations (79) and (80) we obtain the  normal  velocity v,~ at the circle" 

4ts 1 - -  2x 
v,,~ = 28 + i{1 --  (1 --  2x)2} "~ V0, . . . . . . . . . .  (81) 

i.e., a constant  value along the  circumference of the  circle. The boundary  condit ion (81) can be 
satisfied by  placing a single source of s t rength  Q(x) at the  centre " 

= 2 r( )v.dx) 

= 2uts(1 --  2x)Vo . . . . . . . . . . . . . . .  (82) 
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The potential ¢ l ( y , z  ;x) is therefore" 

¢ l ( y , z  ;x) -- Q(x) In r(x) 
2~c 

= F +  {,-  1 
= Vots(1 - -  2x){in 2s + t 4 + ½ In 4x(1 -- x)} . . . . . . .  (83) 

t s [ 1  - (1 - 2x) ~] Since S(x )  = ~ 

we obtain by equation (72)" 

¢,(x) = Vots(1 - -  2 x ) { 1  - ½ I n  4 x ( 1  - x)}  . . . . . . . . .  (84)  

The total potential is then" 

¢(x , y , z )  = Vots(1 - -  2x){1 + 2s + t] 111 --~ f . . . . . . . .  (85) 

and the streamwise velocity increment is 

v~ = ¢~(x,y,z)  = V o 2 t s I l n  2 } s + t/2 1 . . . . . . . . .  (86)  

The velocity increment from slender-body theory is thus constant along the whole surface, as 
was the velocity from linear theory for the two-dimensional wing with elliptic cross-section. 

By linearised slender-body theory, i .e. ,  by equation (71), we obtain for the potential ¢1 at 
the plane of symmetry" 

¢ , ( x , 0 , 0 )  = ?~ _~ {1 - (1 - 2~)  ~ -  (y'/s)~} 1/~ In y '  dy' 

- -  y P  . 

__ 1 in y'  } 1/2d Is{1 ( 1 -  2x)2}l/~J 
- - -  7c y ,  2 _ _  2st(1 2x) Vo f ° 1 -- Is(1 -- (1 -- 2x)~} 1/21 

_2st(l~--2X) Vo lns{1--  (1--2x)~} */~ 0(1 ~-r~) 1/~ + o (1- -  ~)l/~ dr 

- -  Vots(1 2x){ln s{1 -- (1 o ~ , ~  - -  - - ~ ; j . ,  --In2} 

= V J s ( 1  - -  2x){ln 2 + ½1n 4x(l -- x)] . . . . . . . . . . .  (87) 

Thus the potentials ¢~ from slender-body theory and linearised slender-body theory differ by 
the term 

Vots(1 - -  2x)In (1 -[- 2s)" 

This difference is the same for all spanwise stations, as follows from the relations" 

y = s{1 - (1 - 2x)~} 1/~ c o s  

1 : 2r cos 0 . 
1 + t /2s  

1 
---- 2 y l .  1 + t /2s  

1 
= Y ~ I  + t/2s . . . . . . . . . . . . . . . . . . .  (88)  
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The potential i~ from general slender-body theory is by  equations (70) and (88)" 

CJy,z  ;x) = Vo [,(~/ ~z(y' ;x)  In (y -- y') 1 -t- ~ dy'  
--s(~) ~X 

= Vo [~"~' az(y' ; x ) i n  l y  - y ' l  dr' 

+ V0~ in (1 + 2s/J-,(,) ~x ( s9)  

The first integral in equation (89) is the value for ~, from linearised theory and the second term 
is independent of y and equal to 

V o t s ( 1 -  2x)In.( l  + ~ ) .  

The function ~b~, being the same for linearised and general slender-body theory, is again given 
by equation (84). Therefore for the streamwise velocity component we obtain the equation" 

= ,1  . . . . . . . . . . . . . . . . . .  

The difference from the value given by general slender-body theory is 

Vo2ts ln (1-+- ~ )  

which, for small values of t/2s, is equal to VoP *. 

Next, we calculate the velocity on the ellipsoid by ordinary linear theory, equations (l) and (2). 
For points on the section of symmetry" 

v~(x,O,O) t r ~ r s(~'~ 1 - -  2x' x --  x'  
Vo -- ~Jodx'Jo {1 - (1 - Ix') ~ -  (y'/s)=}~/={(x - x') = -}- y,=}a/=dy' . . . .  (91 )  

The integration over y leads to a complete elliptic integral of the second ldnd E(k). 

V o  - -  .~ ~ o  x - -  x '  { ( x  - -  x ' )  ~ + s ~ [ 1  - -  (1  - -  2 x ' ) ~ ] }  ~/~ dx' . . . . . .  ( 9 2 )  

with /# = 
s~I1 - (1 - 2x ' )~ l  

(x - x ' )  ~ + s~[1 - (1 - 2x ' )~]  " 

For the mid-chord point, x =- 0.5, we get 

~,~(o .5 ,o ,o)  2~s (1 E(k)  

Vo - ~ J o { ~  ~ ( ~ - -  s~)(1 - 2 ~ ' ) ~ } u  ~ d x '  

with k2 = s2[1 -- (1 -- 2x') 2] 
s ~ + (~ - s~)(~ - 2 x , ) ~  • . .  

. .  (93) 

. .  (94) 

. .  (9S)  

* For all values of t/2s one obtains the correction term --t2Ko, to be included in equation (90), by application of the 
second approximation derived by Keune in Ref. 17. Keune takes info account the differences between the velocities 
which a source distribution in the chordM plane induces, either at the wing surface or at the chordal plane, by expanding 
the velocity components in Taylor series with respect to z, and ignoring the higher-order terms. 
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Finally, we calculate the exact velocity on ellipsoids. I t  has been shown, see e.g., Lamb ~5, and 
Marutm ~" (1941) tha t  the vetocity at the  surface of ellipsoids is given by  the  equat ion : 

V(x, y,z(x, y)) _ C [1 - -  
No l 

(2x --  1) 2 ] 1/2 

- -  -- --  1 ~ ~-c°s~ W sin~ w~ I 
(2x 1 )~+  F1 (2x ) ]L~  -I-----t~--] / 

(96) 

where C is the  velocity at any point  at  the  mid-chord section of the  ellipsoid" 

c = r i o .  5,y,z(0.5,y)~ 2 
Vo --  2 -- C~o 

f® d,~ (97) and e0 = 2ts o {(1 -4- 2)~(t ~ + 2)(4s ~ + ,~)}1/~ . . . . . . . . . . . . .  

is the angle of intersection of the &y-plane and the  plane through the  line of symmet ry  
y = z = 0 and the point  x,y ,z  on the ellipsoid. 

By  the  t ransformat ion 

1 
U - - l +  ~ 

~.0 can be wri t ten  as an elliptic in tegral  of the second k ind  • 

2ts f l  
~ o = { ( l _ _ t , ) ( l _ _ 4 s , ) }  w' o] /" 

u du 

1 1 "~t 1/ '  
(gs) 

which can be expressed by Legendre 's  s tandard  integrals of the first and second kind F@,k) and 
E(%k) (see Ref. 18, p. 76). 

C u du a(ad -- bc) 
F(9,k) 

J{~(~ - ~1)(~ - ~)}'= - or 

cy (1- -k~)(1  + k s i n ~ 0 )  * 1 - - k  ~ E ( % k )  (99) 

where k = ~ / ~ 1 -  ~ / ( ~ 1 -  ~) 
V %  + V ( ~ I -  ~,) 

b ---- ~ 1 - - 9 { ~ 1 ( 0 ( 1  - -  0~2)} 

c = k  

d = l  

a sin ~ q- b 
c sin ~o + d " 
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The relation between the velocity at any point on the ellipsoid and the velocity at mid-chord, 
equation (96), can be expressed by means of the local slope in a plane W = const. Let r be the 
distance of the point x,y ,z  on the ellipsoid from the point x ,y  = 0, z = 0 on the axis, and w the 
angle between the y-axis and the radius vector. Then 

With 

we obtain 

r 2 =y"(1  + tan 2 ~o) . 

t 2 z" = y2 tan2 ~p ---4 [_1 -- (1 -- 2x)" -- (y/s)21 

[ l _ + _ _ t a n 2 ~  /"  2 
= {1 - -  (1 - -  2~ ) ' )"  '~ 1 ( 1 5 2 +  t a n  "~ ~ /  

,L\ ;  j ~ l 
_ { 1  - -  ( 1  - -  2 x ) ~ }  t / ~  

21cos2~ sin 2~I "2 
L 4s 2 +-~r-j 

dr 1 - -  2x 1 
? 7 =  {1 - (1 - 2x)"}lJ '~ l cos2  ~ s i n  2 ~ /~ /2" 

By equations (96) and (100) • 

(lOO) 

V[x,y,z(x,y)] = V[x = O. 5,y,z(0.5,y)] 

1 \ ~ 2  ] 

.. (101) 

In particular for the centre section, y = 0" 

vEx,o,z(x,o)~ = V E x -  0.5,0,~(0.5,0)] 
[ (dZN~2ll/2 
I 1 + \ d x /  ) 

. .  ( lO2)  

Velocity increments at the mid-chord point of the centre-section calculated by the various 
methods are plotted in Figs. 12 and 13 as function of the aspect ratio A = 8s/zc. The parameter 
t/2s, used in the figures, characterises the spanwise slenderness of a cross-section, which decides 
if the simplifications of linear theory are permissible. The figures show that  for very small 
aspect ratio the results from slender-body theory agree with the exact results and that  linearised 
slender-body theory and linear theory give the same answer, as is to be expected. With the 
same aspect ratio, slender-body theory gives a better result for thin bodies, i.e., small values of 
t/2s. Whereas for the axially symmetrical ellipsoid with 2s/c = O. 4 slender-body theory is in 
error by 40 per cent. For the flatter ellipsoid with t/2s = O. 2, 2sic = 0.4 it is wrong by only 
15 per cent. We may, however, conclude that for wings with t/2s > 0.2 the range of validity 
of the slender-body theory for determining thickness effects may be restricted to smaller aspect 
ratios than the corresponding theory of R. T. Jones 1~ (1946) for lift effects. The spanwise fineness 
ratio is more favourable on tapered wings than on untapered wings of the same aspect ratio. 
We can therefore expect that  slender-body theory is applicable to tapered wings of higher aspect 
ratio than untapered wings. 

The discrepancies between linear and exact theory increase of course with the parameter t/2s. 
The figure shows that  for t/2s = 0.2 linear theory gives a result which is about 10 per cent too 
large for the whole aspect ratio range up to 1 - 0 .  Since t/2s = 0.2 is a fairly large value for 
most practical wings, this resuK gives much confidence in the velocities calculated by linear 
theory at the centre-section of a wing. 
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10. Conclusions.---From theoretical, considerations of thick wings at zero lift, the following 
conclusions may be drawn, regarding the effect of tile aspect ratio on the pressure distribution: 

(a) The principal effect of finite aspect ratio on the velocity distribution at the centre-section 
of rectangular wings is to reduce the velocity increments. The velocity distributions 
of wings of any section shape can be calculated in a short time by equations (10) and 
(46), using the coefficients given in Table 1. 

(b) The effect of thickness taper on the velocity distribution at the centre-section of rectangular 
wings is again to reduce the velocity increments. With a thickness distribution 
decreasing linearly along the span, the velocity at the centre is decreased by an amount 
of the order ~ A v ( A  - -  oo), where ~z/~ ]Y I =  --  ~ z ( x , y - -  0). The velocity distribution 
can be calculated by equations (27) and (46), using the coefficients given in Tables 1 
and 2. 

(c) At the centre-section of swept wings, the velocity level is again reduced but  less than on 
unswept wings; there may even be an increase of the velocity in some cases of highly 
swept-back wings. The position of the maximum velocity is generally farther forward 
on the wing with small aspect ratio than on the infinite wing. The effect of finite 
aspect ratio on the velocity distribution at the centre-section of untapered swept 
wings of any given section shape can be calculated by equations (37) and (46), using 
the coefficients given in Tables 3 and 4. 

(d) In the special case of ellipsoidal wings with t/c -- 0.1, the results from linear theory are 
a f a i r  approximation to the exact results for all aspect ratios. Slender-body theory 
gives sufficiently accurate results only if the aspect ratio is very small, smaller than 
0.5, say. Linearised slender-body theory (Keune-Oswatitsch) happens to give 
reasonable results up to slightly higher aspect ratios, below 0- 8 , say. 

x, y,z 

Xv, X# 

¢ 

¢1 

c 

S 

t 

X m ~  

ztx) 
Z a 

LIST OF ~SYMBOLS' 

Rectangular co-ordinates, x i n  the direction of the main stream, y spanwise, 
z normal to the chordal plane, x ---- 0 at the leading edge 

Position of fixed pivotal points (see Table 3 in Ref. 1) 

y + iz, complex co-ordinate in a plane x = constant 

Complex co-ordinate in the transformed C-plane, where the body cross-section 
is transformed into a circle 

re ~°, equation of the circle in t he  ~l-plane 

y~ + iz~, complex co-ordinate in the transformed :f-plane, where the body 
cross-section is transformed into a slit 

Wing chord 

Mean wing chord 

Half the wing span 

Maximum thickness 
t 

Position of maximum thickness 

• . , ,  . 

Section shape 

= z(x~), ordinate at x = x~, 
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A 

s(x) 

(/)LE 

V 

Vo 

Vmax 

Vx~ '/)y~ 19 z 

'/)n 

Mo  

¢1 

¢2 

O(x) 

f(*) 

# 

N 

SC,.l(x,) 

LIST OF S Y M B O L S - - c o n t i n u e d  

a F(x,y)  c~ . . . .  a lY l  \ z ( x , O ) ]  ' thickness taper 

2s 
-- g , aspect r a t i o  

Cross sectional area in a plane x = constant. 

Angle of sweep 

Sweep of leading edge 

Total local velocity 

Velocity of main stream 

Maximum velocity 

Velocity increments in direction of the axes 

Velocity component normal to the boundary of the body cross-section in a 
plane x -- constant. 

Free-stream Mach number 

= (1 -- M0+) */= 

Three-dimensionM velocity potential 

Two-dimensional velocity potential 

See  equations (61) and (72) 

Local strength of source distribution 

Local strength of three-dimensional source distribution 

1 1 + sin ~0 
- -  In 1 -- sin 9 

= cos - 1 ( 2 x -  1) 

VYC 

- -  N 

Suffix indicating the pivotal point 

Suffix indicating the inducing point 

Number of points taken along chord 
N--1 

- ~ v/2~-dl)z/2, see equation (6) 
/2=1 

/2=1 x=xv 

Coefficients, see Tables 4, 7 and 10 in Ref. 1 

Coefficients, see Tables 5, 8 and 11 in Ref.  1 

Coefficients, see Tables 1, 3 and 4 in this report 

Coefficients, see Table 2 in this report 
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A P P E N D I X  

Approximation of Certain Integrals by Finite Sums 

The notation of Ref. 1 is used. 

It was shown in Ref. I, section 6, that by approximating z(x) by an interpolation function 

2 ~' N-, 
z(4) = F[/2=1 z(x~) ~=1 ~ sin AO,/2 sin ;~0 . . . . . . . . . . . .  (A- l )  

wi th  cos v~ = 2x --  1 . . . . . . . . . . . . . . . .  (A-2) 

the  following relation holds" 

l (l dz(x ') dx' N-, 

,~)o ~ x ~ -  x ' - -  ~ 49z(x.) . . . . . . . . . . . . . . . .  (A-3) 
/2=I 

where s.% ) = ( -  1)~-' --  1 2 sin 0,/2 
N (cos vQ,, --  cos v%)" . . . . . . . . . . .  (A-4) 

Using the same interpolat ion function, an approximat ion for the  integral  

X v - -  X ~ 

can be obtained. By  equations (6-1), (6-4), (6-38), (6-39), (6-41) and 6-11) of Ref. 1" 

1( 1 dx' N - ,  2 N-1 r=sin 2~' s i n 4 '  
do z(x') x , -  x ' - -  ~ z(G)'-dN Z sin zo,,j - - - ~ -  dO,' 

/ ,=1  ; ,=1 o C O S  ~7',, - -  C O S  v 9 ' '  

2\r--1 2 N--I 

= ~: ~(x~) • N ~: sin a<;cos 2<, 
/~=1 2=I  

:v- 1 sin20/2 
= Y~ ~(x/2). 2 14~,~- s¢21 

/2=1 

N - - 1  C O S  ~9/2 - - "  C O S  Va,, .~.(1) 

= ~ ~(x/2) ~, _/2, 

N--1 
= ~1 s ¢ ( x , , -  x,)=(x2 . . . . . . . . . . . . . . .  (A-S) 

/2=1 

Applying the  relations (A-I) and (A-I),  the  following general relation is obta ined:  

i ¢ & ( x ' ) / ( x ' )  ~x' ~¢d(~(x') .f(x')) dx' ~ ¢  df(x') ~x' 
) ~Jo dx x , , - - x  ~ o dx' g z(x') x' , X ,  - -  X o d x  t x , , -  

N--1 N--I ) Q ~ )  

= ~ s,~9 z(x . ) . f (x , ) - -  Z -~(~)(~ --x , )  z(x,, • ~/2V \ ' ' t t  " 

p = l  /2=1 xtt ' 

N-I x , / d / ( x ) ~  ] = 7 1 S ~ ] ~ !  Ef(x/2 ) - -  (X/2 - -  v)L~X--)x/2 J ~(X,,) . . . . . . . . .  (A--6)  

Deriving this relation two different interpolat ion functions (corresponding equat ion (A-l))  have 
been used, the  first for z(x) .f(x), the  second for z(x) . df(x)/dx. Relat ion (A-5) can be used, 
when f (x)  and its derivat ive df(x)/dx are finite continuous functions in the  whole interval  
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0 ~< x ~< 1. When f ( x ) o r  df(x)/dx change rather rapidly somewhere in the interval, it will be 
necessary to take the values of z(x) . f (x)  or z(x) . d f /dx  at a considerable number of points x, 
into account, to obtain a sufficient approximation. 

To approximate integrals of the form 

g(x ) ax' 

ag(x') 
by  finite sums, an interpolation formula for z(x') ~ similar to (A-I) can be used" 

( ag(.')) 2 '<-, (dgf~,' h "-, 
~(x') dx'  ; =-~ ~ ~(~.)\ dx ;.,:.. ~ sin ~. 

# = 1  ,1=1 
sin 2~9. 

The integral becomes • 

, , ,  11 o ~ glx ) dx' = ~- z(x ') ,  g(x') ~=0 -- - 2~ 7 Z -  dx' 

(A-7) 

N--1  
___ ~ _ _  m 

/ t = l  

sin ~9. ,'dg(x')\ 

since 

= f~ /2  for I = 1  
fo sin l~' sin ~' d~' -- t0 for 2 v~ 1 i 

sin ~ '  sin ~'  d~' 

. .  (A-S)  

Another approximation for the integral can be found using equation (A-6). 

1 (~ dz 1 f~ dz dx' 
= Oo dx'  g(x')  dx'  = g o ~ g(x')  (x~ - -  x') x,  - -  x' 

N - - I  

/*=1 

+ (x~ - ~.)g(x~) 1 2(x,) 

/ g ( * ' ) ~  
= ~ s 2 ~ ( x . - x , ) 2  t d - ~ ,  j~,=. ~(x.) 

- Z ( -  1 ) . - , -  ~ -- ~=1 7 ~  sin ~ .  \ d-~-/~,=,~ 

I / g (x ' )~  
s2~ g (x , ) (x . -  x,) : ( ~ , -  x.)~\ dx-~-'/..=., 

~(~.) • . .  . .  (A-9) 

The approximations (A-8) and (A-9) are of the same type. They differ due to the fact tha t  

interpolation formulae for different functions have been used, z(x') dg(x') dx' in equation (A-8); 

z(x) g ( x ' ) ( x , -  x') and z(x') d[g(x')(x~ =- x')] • dx' in equation (A-9). The approximation (A-9) has 

the advantage tha t  for the same N, i.e., :the same degree of accuracy, only half the number of 
terms as compared with equation (A-8) l~ave to be worked out. 
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TABLE 1 

[ Coef f ic ien ts  s(d~ = s(~ 1 -- {(x - -  x . )  ~ + s~}~/~J 

= 0 ,  v - - = O ;  N - ~ 8  

s = 2 . 0  

/z 

1 2 3 4 5 6 7 8 

0-006 0 0"005 0 0"004 0 
0.011 

0 
0.014 

0 
0-008 

0 

0 
0-014 

0 
0.012 

0 
0:004 

0.011 
0 

0.015 
0 

0-009 
0 

0 
0-014 

0 
0-014 

0 
0.005 

0.009 
0 

0.015 
0 

0.011 
0 

0 
0.012 

0 
0.014 

0 
0.006 

0 
0.008 

0 
0.014 

0 
0.012 

0 

0-004 
0 

0.011 
0 

0.014 
0 

0.005 

s = l . O  

1 2 3 4 5 6 7 8 

0 
0'043 

0 
0-040 

0 
0"011 

0 

0-023 
0 

0"055 
0 

O" 031 
0 

0 '006 

0 
0.042 

0 
0"058 

0 
0.024 

0 

0.015 
0 

0.053 
0 

0-053 
0 

0-015 

0 
0-024 

0 
0.058 

0 
0.042 

0 

0"006 
0 

0.031 
0 

O. 055 
0 

O. 023 

0 
0.011 

0 
O' 040 

0 
0.043 

0 

0.003 
0 

0"021 
0 

0.047 
0 

0-024 

s = 0 . 5  

P 

tt 

1 2 3 4 5 6 7 8 

1 
2 
3 
4 
5 
6 
7 

0 
0.159 

0 
0.043 

0 
--0"013 

0 

0.086 
0 

0"183 
0 

0"017 
0 

--0"007 

0 
0-140 

0 
0-182 

0 
0.013 

0 

0"016 
0 

0"168 
0 

0"168 
0 

0"016 

0 
0"013 

0 
0.182 

0 
0.140 

0 

--0.007 
0 

0.017 
0 

0.183 
0 

0-086 

0 
, - -0 .013 

0 
0-043 

0 
0.159 

0 

--0.009 
0 

- - 0 . 0 0 7  
0 

0.104 
0 

0-094 
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T A B L E  1 - - c o n t i n u e d  

[ s { 2 ( x ~ -  x.) 2 + s2}l 
Coefficients s(~)~ -~ s'~ 1 - -  { - ~ - -  x, ,~ Y-i-- ~}~7~_1 

y = o ;  N =  

s = 0 -25  

V 

1 2 3 4 5 6 7 8 9 10 11 12 13 [ 14 15 16 
¢.D 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0 
0.186 

0 
0.188 

0 
0.012 

0 
- -0-048 

0 
- -0 .044 

0 
- -0 .028  

0 
- -0 .013 

0 

0.096 
0 

0.257 
0 

0.135 
0 

- -0 .023 
0 

- -0 .049  
0 

- -0 .037 
0 

- - 0 . 0 2 1  
0 

- -0 .007 

0 
0.177 

0 
0.308 

0 
0.087 

0 
- -0 .038 

0 
- -0 .046 

0 
--0.031 

0 
- -0 .015 

0 

0.052 0 
0 0- 062 

0.242 0 
0 0.289 

0.340 0 
0 0.359 

0.053 0 
0 0.031 

- -0 .043 0 
0 - -0 .043 

--0.041 0 
0 - -0 .035 

--0 .024 0 
0 - -0 .017 

- -0 .008 0 

0.003 
0 

0-053 
0 

0.323 
0 

0.360 
0 

0.021 
0 

- - 0 . 0 3 9  
0 

- -0 .028 
0 

- -0 .009 

0 
- -0 .008 

0 
0.038 

0 
0.340 

0 
0.360 

0 
0.020 

0 
--0.031 

0 
- -0 .019 

0 

- - 0 . 0 0 9  
0 

--0 .021 
0 

0.026 
0 

0- 353 
0 

0- 353 
0 

0.026 
0 

--0.021 
0 

--0.009 

0 
- -0 .019  

0 
--0.031 

0 
0.020 

0 
0.360 

0 
0- 340 

0 
0- 038 

0 
- -0 .008  

0 

--0-009 
0 

--0.028 
0 

--0" 039 
0 

0.021 
0 

O. 360 
0 

O. 323 
0 

0.053 
0 

O. 003 

0 
--0"017 

0 
- -0 .035 

0 
--0" 043 

0 
0.031 

0 
0-359 

0 
0" 289 

0 
0"062 

0 

--0"008 

--0" 024 
0 

--0.041 
0 

--0.043 
0 

0-053 
0 

0" 340 
0 

0 "242 
0 

0" 052 

0 
--0"015 

0 
--0-031 

0 
--0" 046 

0 
- - 0 . 0 3 8  

0 
0" 087 

0 
0" 308 

0 
0" 177 

0 

- -0-007 
0 

--0.021 
0 

--0" 037 
0 

- - 0 . 0 4 9  
0 

--0-023 
0 

0" 135 
0 

0"257 
0 

0" 096 

0 
- -0"013  

0 
- - 0 . 0 2 8  

0 
- -0"044 

0 
- -0 .048  

0 
0-012 

0 
0" 188 

0 
0" 186 

0 

--0- 006 
0 

--0" 020 
0 

--0" 036 
0 

--0" 049 
0 

--0-035 
0 

O- 081 
0 

0.217 
0 

0" 085 



TABLE 2 

- 

Coeff icients  s(~ . . . .  s(~ {(x~--x~,) ~ + 

9 : 0 ,  y = 0 ;  N = 8  

s : 2 . 0  

72 

# 

1 2 3 4 5 6 7 8 

1 
2 
3 
4 
5 
6 
7 

0 
0.044 

0 
0.058 

0 
0.035 

0 

0.024 
0 

0.057 
0 

O" 052 
0 

0"019 

0 
0-044 

0 
0.062 

0 
0-044 

0 

0-022 
0 

0.057 
0 

O. 057 
0 

0.022 

0 
0.040 

0 
0.062 

0 
0.044 

0 

0.019 
0 

0.052 
0 

0-057 
0 

0.024 

0 
0.035 

0 
0.058 

0 
0.044 

0 

0.018 
0 

0.049 
0 

0.056 
0 

0.024 

s : l . O  

3 6 

1 
2 
3 
4 

5 
6 
7 

0 
0"087 

0 
0"094 

0 
0.041 

0 

0"047 
0 

0.111 
0 

0-078 
0 

0.022 

0 
0.086 

0 
0.119 

0 
0.060 

0 

0.036 
0 

0.109 
0 

0-109 
0 

0"036 

0 
0"060 

0 
0.119 

0 
0.086 

0 

0.022 
0 

0.078 
0 

0"111 
0 

0.047 

0 
0-041 

0 
0.094 

0 
0-087 

0 

0.018 
0 

0"064 
0 

0-101 
0 

0"048 

s : O . 5  

V 

# 

1 2 3 4 5 6 7 8 

0 
0.164 

0 
0"099 

0 
0.025 

0 

0.089 
0 

0.199 
0 

0-071 
0 

0-014 

0 
0.152 

0 
0.204 

0 
0"055 

0 

0.038 
0 

0.188 
0 

0-188 
0 

0.038 

0 
0.055 

0 
0.204 

0 
0.152 

0 

0-014 
0 

0-071 
0 

O" 199 
0 

0.089 

0 
0.025 

0 
0.099 

0 
0.164 

0 

0-009 
0 

0"047 
0 

0-142 
0 

0-095 
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T A B L E  2 - - c o n t i n u e d  

s2(x  
C o e f f i c i e n t s  s(~ = - -  s(1)~ {(x~ --x~, )2 + 

9 - - 0 ,  y - - - -0 ;  N =  16 

s = 0 .25  

V 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 

¢9/ 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1 2 

0 0-048 
0.094 0 

0 0-~30 
0.119 

0 0.~09 
0"061 

0 0.044 
0.023 0 

0 0-~17 
0.009 

0 0.~04 0.~07 

0.001 0"~03 

0 0"001 

0 
0.090 

0 
0.163 

0 
0.095 

0 
0.034 

0 
0.013 

0 
0.005 

0 
0.002 

0 

0"033 
0 

O- 128 
0 

0"181 
0 

0.084 
0 

0-028 
0 

0.010 
0 

0"004 
0 

0.001 

0 
0.050 

0 
0.154 

0 
0.196 

0 
0.075 

0 
0.024 

0 
0.009 

0 
0-003 

0 

0"013 
0 

0.057 
0 

0-177 
0 

0.201 
0 

0"069 
0 

0.022 
0 

0"008 
0 

0"002 

0 
0-017 

0 
0.060 

0 
0.190 

0 
0.202 

0 
0.065 

0 
0.020 

0 
0.006 

0 

0-005 
0 

0-019 
0 

0.062 
0 

0.198 
0 

0.198 
0 

0.062 
0 

0.019 
0 

0.005 

0 
0.006 

0 
0.020 

0 
0-065 

0 
0.202 

0 
0.190 

0 
0.060 

0 
0.017 

0 

0.002 
0 

0-008 
0 

0.022 
0 

0-069 
0 

0.201 
0 

0.177 
0 

0-057 
0 

0.013 

0 
0.003 

0 
0.009 

0 
0.024 

0 
0.075 

0 
0.196 

0 
0.154 

0 
0-050 

0 

0.001 
0 

0"004 
0 

0.010 
0 

0.028 
0 

0"084 
0 

0.181 
0 

O" 128 
0 

0.033 

0 
0.002 

0 
0.005 

0 
0.013 

0 
O. 034 

0 
0.095 

0 
0.163 

0 
O. 090 

0 

0.001 
0 

0-003 
0 

0.007 
0 

0-017 
0 

0.044 
0 

0.109 
0 

0.130 
0 

0.048 

0 
0-001 

0 
0.004 

0 
0.009 

0 
0.023 

0 
0.061 

0 
0.119 

0 
0.094 

0 

0.001 
0 

0.003 
0 

0.006 
0 

0-014 
0 

0.036 
0 

0.087 
0 

0.117 
0 

0-049 



T A B L E  3 

Coefficients s (~) : s (I) I 1  - -  s{2 c o s  ~ ~o. (x~ - -  x y  - -  1 . 5  s i n  2~o . (x~ - x ,  )s + s~}7 
- "~ "~ {cos  ~ ~o. (x~ - -  x~) 2 - -  s i n  2~o. (x~ - -  x.)s + s~} ~ J 

~ o = 4 5 d e g ; y = 0 ;  N = 8  

s = l . 0  

V 

At 

1 2 3 4 5 6 7 8 

0 
--0"010 

0 
0"003 

0 
0.025 

0 

- -0 .006  
0 

--0.011 
0 

0 .009 
0 

0.014 

0 
- -0-012 

0 
--0"011 

0 
0"007 

0 

- -0 .007  
0 

- -0 .016  
0 

--0"010 
0 

0.001 

0 
- -0"012 

0 
- -0"017 

0 
- -0"008 

0 

- -0"006 
0 

- -0"016 
0 

- -0"016 
0 

- -0"005 

0 
--0-011 

0 
- -0-017 

0 
- -0-012 

0 

- -0"006 
0 

--0"015 
0 

- -0 .016  
0 

--0"006 

s = 0 . 5  

V 

# 

1 2 3 4 5 6 7 8 

0 
- -0 .028  

0 
0.183 

0 
0-143 

0 

- 0 . 0 2 7  
0 

- 0 - 0 2 0  
0 

o.212 
0 

0.078 

0 
- 0 . 0 5 0  

o 
- 0 . 0 0 9  

o 
0.162 

o 

- 0 - 0 2 3  
0 

- 0 - 0 6 5  
o 

- 0 - 0 6 5  
o 

0-068 

0 
- 0 . 0 3 9  

0 
. - 0 . 0 7 0  

o 
- o . o 1 5  

o 

- 0 . 0 1 6  
0 

- 0 . 0 5 1  
o 

- o . 0 6 5  
0 

- o . 0 1 5  

0 
- 0 - 0 3 0  

0 
- 0 - 0 5 9  

0 
- 0 . 0 5 0  

0 

- 0 . 0 1 4  
0 

- 0 . 0 4 4  
o 

- o .  062 
o 

- 0 . 0 2 5  

3 6  



T A B L E  3--continued 

o(~) = .~(,, F1 s{2 c o s  ~ q~. (x .  - -  x~,) ~ - -  1 . 5  s i n  2~o. (x~ - -  x,)_so_+ ?}l 
C oeJficients ° ~  - ."  L - -  ( c o s " ~  (x~ - x . )  ~ - ~n--2-~ : ( x . - - } , , ~  ÷ s-} 3/2 J 

q ~ - - - - 4 5 d e g ,  y = 0 ,  N =  16 

s ---- 0 . 2 5  

1 2 3 4 5 6 7 8 9 I0 11 12 13 14 15 16 

",-1 

1 0 
2 --0.041 
3 0 
4 0"055 
5 0 
6 0.454 
7 0 
8 0.264 
9 0 

10 0.068 
11 0 
12 0.013 
13 0 
14 0"001 
15 0 

- -0 .027 
0 

--0"049 
0 

0.182 
0 

0.460 
0 

0.168 
0 

0-040 
0 

0.007 
0 
0 

0 
- -0 .054 

0 
--0.061 

0 
0.320 

0 
0"390 

0 
0.116 

0 
0"027 

0 
0.004 

0 

--0"027 
0 

- -0 .082 
0 

--0-042- 
0 

0.420 
0 

0"322 
0 

0.088 
0 

0.021 
0 

0.003 

0 
- -0 .049 

0 
- -0-100 

0 
--0"031 

0 
0.467 

0 
0"276 

0 
0.075 

0 
0"018 

0 

--0"020 
0 

- -0 .062 
0 

- -0 .119 
0 

--0" 020 
0 

0.472 
0 

0.249 
0 

0.068 
0 

0.014 

0 
- -0-035 

0 
--0.081 

0 
--0"130 

0 
- -0 .013  

0 
0-444 

0 
0.233 

0 
0.065 

0 

- -0 .014  
0 

- -0 .047  
0 

- -0 .091 
0 

- -0 .139  
0 

--0"013 
0 

0.389 
0 

0.218 
0 

0.052 

0 
- -0 .024  

0 
- -0 .055 

0 
--0"099 

0 
--0.141 

0 
--0"018 

0 
0-304 

0 
0"180 

0 

- -0 .010 
0 

- -0 .033  
0 

--0-062 
0 

- -0 .105 
0 

- -0 .139 
0 

- -0 .027 
0 

0:192 
0 

0.110 

0 
- -0 .018 

0 
--0"040 

0 
--0"069 

0 
- -0 .109 

0 
--0" 132 

0 
- -0 .037 

0 
0"083 

0 

- -0 .007 
0 

--0.024 
0 

--0.047 
0 

--0"076 
0 

--0"112 
0 

- -0 .117 
0 

- -0 .048 
0 

0.016 

0 
- -0 .014 

0 
--0"031 

0 
- -0 .054 

0 
- -0 .083 

0 
- -0 .105 

0 
--0"105 

0 
- -0 .034 

0 

- -0 '007  
0 

--0"021 
0 

- -0 .040 
0 

- -0 .062 
0 

--0.091 
0 

- -0 .106 
0 

--0"078 
0 

--0.021 

0 
--0.013 

0 
--0.028 

0 
--0.048 

0 
--0.075 

0 
--0.096 

0 
--0-088 

0 
- -0 .052 

0 

- - 0 . 0 0 6  
0 

- -0-020 
0 

- -0 .037  
0 

--0" 059 
0 

--0" 084 
0 

- -0 .  100 
0 

- -0 .079  
0 

- -0-024 



T A B L E  4 

s(o, = ~1, [-1 - s{2  cos  2 ~o. (x~ - x . )  2 - 1 . s  s in  2 ~ .  ( x . . -  x . )~  + s~}l Coefficients 
"~ -~  [_ { c 0 s ~  ~o .  (x~ - -  x~)  2 - -  s i n  2 ~ .  (x~ - -  x.)s + s~} ~/~ J 

9 = 6 0 d e g ,  y = 0 ;  N = 8  

s = l . O  

v i 

tt 

1 2 3 4 5 6 7 8 

1 
2 
3 
4 
5 
6 
7 

0 
--0-015 

0 
- -0 .024 

0 
--0-017 

0 

--0"007 
0 

- -0"020  
0 

--0" 022 
0 

--0"009 

0 
--0-013 

0 
I --0.021 

0 
- -0 .017 

0 

- -0 .006 
0 

--0"016 
0 

--0"019 
0 

--0"009 

0 
--0.010 

0 
--0-018 

0 
--0"015 

0 

- -0 .005 
0 

--0-013 
0 

- -0 .017 
0 

--0-008 

0 
--0"009 

0 
--0-015 

0 
--0"013 

0 

--0"004 
0 

--0"012 
O,  

- -0 .015 
0 

- -0 '  007 
I 

s = 0 . 5  

p 

f t 

1 2 3 4 5 6 7 8 

1 
2 
3 
4 
5 
6 
7 

0 
--0"061 

0 
--0"086 

0 
0"088 

0 

--0-027 
0 

--0-084 
0 

--0"059 
0 

0"048 

0 
--0.046 

0 
--0.093 

0 
--0.045 

0 

--0.018 
0 

--0.058 
0 

--0.086 
0 

--0.033 

0 
--0.031 

0 
--0.063 

0 
--0.064 

0 

--0"013 
0 

--0"040 
0 

--0-061 
0 

--0-033 

0 
--0.023 

0 
- -0 .047 

0 
- -0 .049 

0 

--0"011 
0 

--0"035 
0 

--0.051 
0 

--0" 029 

38 



T A B L E  4 continued 

Coefficients s(6) s (1) 
. .~ = ,,~ [. -- { c o s ~  (x~ - -  x~)~ - -  s - ~ - 2 ~  ~ (x~ - -  x, ,)s  + s~} °/~ J 

~ , - - 6 0 d e g ,  y = 0 ,  N =  16 

s ---- 0 .25 

# 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16~ 

1 0 
2 --0"064 
3 0 
4 --0.136 
5 0 
6 --0-074 
7 0 
8 0.464 
9 0 

10 0-290 
11 0 
12 0"100 
13 0 
14 0-030 
15 0 

- -0 .028 
0 

--0"096 
0 

--0.160 
0 

0.098 
0 

0.470 
0 

0.198 
0 

0.066 
0 

0.016 

0 
- -0 .054 

0 
--0-124 

0 
- -0 .164 

0 
0.278 

0 
0.394 

0 
O- 146 

0 
0.044 

0 

~--0.022 
0 

- -0 .076 
0 

--0" 150 
0 

- -0 .146 
0 

0"378 
0 

0-324 
0 

0"116 
0 

0.028 

0 
- -0 .040  

0 
- -0 .094  

0 
- -0 .170  

0 
- -0 .120  

0 
0.394 

0 
0-276 

0 
0.092 

0 

- -0 .016  
0 

- -0 .054  
0 

- -0 .108  
0 

- -0 .182  
0 

- - 0 .098  
0 

0.356 
0 

0-236 
0 

0-060 

0 
- -0 .028  

0 
- -0 .064  

0 
- -0 .118  

0 
- -0 .186  

0 
- -0 .092 

0 
0.272 

0 
0.182 

0 

- -0 .012 
0 

- -0 .036 
0 

- -0 .072 
0 

--0-124 
0 

- -0 .182 
0 

- -0 .098 
0 

O. 154 
0 

0.090 

0 
- -0 .020 

0 
- -0 .044 

0 
--0-078 

--0 .~26 
0 

--0.172 
0 

- -0 .106 
0 

0.038 
0 

!--0.008 
0 

- -0"026 
0 

- -0 .050 
0 

- -0 .082 
0 

- -0 .124 
0 

- -0 .152 
0 

--0.098 
0 

--0.016 

0 
--0-014 

0 
- -0 .032 

0 
- -0 .054 

0 
- -0 .086 

0 
- -0 .120 

0 
- -0 .128 

0 
- -0 .074 

0 

- -0 .006  
0 

- -0 .020 
0 

- -0 .036  
0 

- -0 .060 
0 

- -0 .088 
0 

- -0 .110 
0 

- -0 .098 
0 

- -0-038 

0 
--0.012 

0 
--0.026 

0 
--0.044 

0 
--0.066 

0 
"0.088 

0 
!--0.096 

0 
--0-066 

0 

- -0 .006  
0 

- -0 .018  
0 

- -0-032 
0 

--0"050 
0 

- -0 .070 
0 

- -0-086 
0 
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