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Summary.—For one-dimensional flow of a perfect gas, conditions at a station of a duct are defined by any four
independent properties. Standard methods exist for the calculation of any other desired property from the given
four independent properties.

The object of this paper is to illustrate the errors likely to arise when the simple one-dimensional flow methods are
applied to a circular section duct in which a boundary layer exists. Graphical results are presented, for the case of
a one-seventh power law boundary-layer velocity profile, showing the ratio of the true mean values calculated with
allowance for the boundary-layer, to quantities derived from the simple one-dimensional calculation. Various boundary-
layer thicknesses and a range of Mach numbers are dealt with.

Specifically three examples are Worked out in detail, with different selections of the four independent variables, the
selections being chosen to cover problems of common interest. The results of the first two examples might be applied,
for instance, to the problem of the performance or design of a duct discharging adiathermally to atmosphere, from a
reservoir with known stagnation conditions. The errors are usually small. Thus calculations by simple one-dimensional
theory differ by less than about 2} per cent up to a < one-dimensional * Mach number M =1, and 5 per cent up to
M =2, from the values obtained by assuming a boundary-layer thickness at exit of 10 per cent of the duct radius.
For other boundary-layer thicknesses the errors are roughly in.proportion. The results of the third example indicate
the errors likely to arise in the analysis of other quantities at a station, from measurements of mass flow, area, total
temperature and static pressure. Here the accuracy of the one-dimensional method is within 2 per cent up to a free-
stream Mach number M’ = 2 for any boundary-layer thickness. Total pressure is an exception, the error in this case
_ approaching 10 per cent at M’ =

General equations are presented for use in cases not covered by these examples. They are analogous to the one-
dimensional equations, and give ratios of mean flow quantities to their sonic values, as functions of Mach number and
correction factors, graphically presented, which depend on the velocity distribution.. As a further illustration of possible
application of the theory, the correction factors may be used for the calculation of momentum flux or kinetic energy
flux from the mean velocity and mean density.

Introduction.—The analysis of many flow problems assuming the flow to be one-dimensional,
is a useful approximation. At first sight this is surprising, since the flow model which forms the
basis of the one-dimensional method differs profoundly from the actual physical situation. For
instance the one-dimensional method ignores the existence of a non-uniform and possibly changing
velocity profile, and it assumes happenings at the walls of the duct, e.g., friction, to be felt
instantaneously over the whole cross-section. However the one-dimensional method is so to be
preferred for its simplicity, that it is 1mportant as indeed in all approximate theories, to have

some knowledge of its accuracy.

One aspect of the general problem of the assessment of the accuracy of the one-dimensional
method is considered here. The cue is taken from the statement that ¢ suitable mean values ’ of .
the parameters of flow should be used in the one-dimensional equations. To investigate the
significance of this, the one-dimensional uniform distributions of flow parameters have been
replaced by non-uniform distributions, and equations developed which are analogous to the
one-dimensional equations, but which are in terms of ‘ suitable mean values ’. Results calculated
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using this refinement, have been compared with results obtained using one-dimensional formulae.
In this way, some idea of the percentage inaccuracy resulting from the use of one-dimensional
tormulae for flow calculations should have been obtained.

The discussion has been restricted to problems which may be solved without reference to the
one-dimensional friction factor. For simplicity the fluid has been assumed to be a perfect gas
with constant specific heats.

LIST OF SYMBOLS

A Cross-sectional area of duct

¢, Specific heat at constant pressure

F Impulse '

h Specific enthalpy
7 0,1,2 8
7 0,1,2,3...

m Mass flow rate

M Mach number

n Expansion index in equation (A.26)

b Pressure '

T Temperature
q Velocity

Q Heat received by fluid across walls of duct per unit mass of flow
7 Radial distance from centre-line of duct

R Gas constant '

R, Radius of duct
S Specific entropy

44 Work delivered by fluid across walls of duct per unit mass of flow
% Co-ordinate measured along duct

X Force in direction of flow

Y Defined by equation (A.29)

Z Defined by equation (A.35)

Y Ratio of specific heats
4 Boundary-layer thickness

E,n Parameters defined by equations (A.5) and (A.6)

I Coefficient of dynamic viscosity

D Dissipation function

P Density

A Availability

Suffix , refers to atmospheric conditions
Suffix , refers to stagnation conditions
Suffix  refers to sonic conditions

Prime indicates free-stream conditions
Bars indicate mean values



Equations and Assumptions of One-dimensional Theory—Consider the steady continuous
one-dimensional flow of the fluid which initially occupies the portion ABCD of the duct of Fig. 1,
between any two sections 1 and 2, drawn at right-angles to the straight centre-line. Let the
fluid receive heat @ and deliver work W across the walls AB and CD of the duct per unit mass of

Direckion
2
of flow.

flow, and let a force X in the direction of flow be exerted on the fluid by the walls of the duct
and by any objects within ABCD. Then in the absence of gravity or any other body force,
application of the law of conservation of matter, Newton’s second law, and the first law of

thermodynamics yields:

Continuwity Equation:

p1d1qs = padage . . . . .. . . . (1)

Momentum Equation: |
X =F,— F; . . . . . . o . (2)

Energy Equation: '

0 — W =¢,Te—¢Ta O =)
where m = pAg = mass flux .. . .. .. . - . (4)
g—z $ + pg* = impulsefunit area .. . .. .. . (5)
To=T+ qu; = total temperature .. .. .. . .. (6)

The assumptions inherent in these equations are that at sections 1 and 2:

(a) axial heat conduction is negligible _

(b) only normal stresses are exerted on the fluid under consideration by surrounding fluid or
moving surfaces

(¢) velocity components at right-angles to the centre-line are negligible
2

4 2
(d) the normal stress g u a—x% is negligible
(¢) the difference in kinetic energy of turbulent motion between sections 1 and 2 is negligible
(f) all parameters of flow are uniformly distributed across the duct.
3
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It is desirable to stress the fact that these assumptions apply only to conditions at the places
where fluid enters or leaves the region ABCD, 7.e., at sections 1 and 2. Tt is to be noted that
any violation of the assumptions within ABCD may be tolerated. Thus viscous dissipation
within ABCD, for example, represents a purely internal effect and does not constitute a flow of
energy, momentum or mass to or from the fluid under consideration. Also, in crossing the
boundaries DA and BC, the fluid may experience shear stresses at stationary surfaces, such as
would be found at the walls or in a porous boundary, because the fluid actually in contact is
then at rest relative to them, and hence no work is done.

It is conceivable that the conditions of assumptions (), (¢), (d) and (¢) will be fulfilled in most
cases of flow in ducts, except in the vicinity of shock waves, or for ducts of rapidly changing area.
However, the presence of a boundary layer at the walls of the duct will always cause the flow
to depart from the conditions of assumptions (b) and ( f).  The former is tantamount to assuming
the dissipation function @ to be negligible over sections 1 and 2.

Equations of Flow in Terms of Mean Values.~—1It is proposed to examine the particular assump-
tion of one-dimensional theory, that all parameters of flow are uniformly distributed across the
duct at the entry and exit sections of the portion of the duct under consideration. To do this,
equations have been developed which take account of the non-uniform distributions due to the
presence of the boundary layer. Their derivation is given in Appendix I. Assumptions (a) to
(e) of the one-dimensional theory have been retained, but the last assumption has been replaced
by the more realistic assumption that only static pressure and total temperature are uniform
across the sections 1 and 2 of the duct®. In particular the velocity is allowed to be non-uniformly -
distributed, and this entails non-uniform distributions of density, temperature, total pressure, etc.

The equations are:

Continuity Equation:

P11, = paA G .. .. .. . .. .. .. .. (7)
Momentum Equation.: ‘
X=F,—F, .. . .. . . .. . (8)
Energy Equation:
Q—W =c¢,Ty, — ¢, Ty 9
where m=pAq .. . . . . .- . . .. (10)
F B
A~ P 4 €459 (11)
- &
Ty=ni + _23691, (12)

In these equations mean density 5 and mean velocity § are such that
#4g is the mass flux per unit area,
52'5972 is the momentum flux per unit area,

and £354° 1s the kinetic energy flux per unit area.

* It may be shown from. the equations of motion that the static pressure across a turbulent boundary layer is
approximately uniform, and Young? states that the few available experimental data confirm that the powerful
mechanism of energy interchange of eddying motion tends to produce a nearly uniform distribution of energy across
the boundary layer when the surface is insulated *. Within the laminar sublayer, however, total temperature will
only be strictly uniform for flow with the Prandtl number unity and the surface insulated.
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Mean temperature 7 has been defined in such a way that

%:RT 5 0 £
and then T is the mean mixing temperature
and 7§ is the volume flux per unit area.

The quantities &,, & and 5, of which general definitions are given in Appendix I, may be seen
to be correction factors, which take account of the fact that differently weighted means must
be taken when determining mass flux, momentum flux, etc. &,, & and » become unity if the
flow is uniformly distributed, and in general their values depend on the velocity distribution.
- Explicit formulae for &,, &; and 5 for the particular case of flow in a circular pipe with the velocity
distribution :

!

I

1) oeves

(14
Z

I

1 d<y<R

are derived in Appendix I and plotted against §/R, for various values of free-stream Mach number
M’ in Fig. 2. For moderate Reynolds numbers this velocity distribution approximates to that of
flow in a pipe of radius R;, with a turbulent boundary layer of thickness 8, ¢’ being the free-
stream velocity and y the distance from the wall.

In developing the theory it has been found convenient to define a quantity
_ X '
M? = = .
. yRyl
IT is referred to as ¢ mean Mach number ’; it might be interpreted physically by regarding it,

in the light of elementary kinetic theory, as proportional to the square root of the ratio of directed
to random kinetic energy of the molecules.

(15)

Mean total pressure $, has been defined as the total pressure of the corresponding uniform
stream which possesses the same value of the availability flux as the non-uniform stream. This
- definition associates changes of total pressure with losses, since the availability of a system is
defined as the maximum value of the useful work that can be obtained from the system-
atmosphere combination for all possible changes of state of the system®.

With this definition it is shown in Appendix II that

1 B
logfo=>| pglogpudA. .. .. .. .. .. .. .. (1§

General Formulae for Mean Flow Quantities—It is possible to express all mean quantities in
terms of mass flow rate, area, total temperature and static pressure, which have unequivocal
values at any section. It proves more convenient however, to express all quantities, including
static pressure, in terms of mass flow rate, area, total temperature and mean Mach number,
which serves as a parameter. The derivations are given in Appendix I, and the equations, with
the exception of that for mean total pressure, are compared with the corresponding one-dimensional
equations below. It may be observed that if the flow is uniformly distributed, the mean value
equations become identical with the one-dimensional equations.

5
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Mean Value Equations

?Zﬂfgsijo v I

(i )

(1475 )

One-dimensional Equations

b= (@)m\/TO_ 1——
\/y A e 721

(=5 )

1+?_2—_1_M2

1 m N/F+y;1M4
b= VR AyT, T

1= VOR) VTO&/[——LI .

1+ 25

T=1T,

1 4y

R

F:~/<7>WVT°J{

(19)

(20)

(21)

(24)

(25)

(26)

Flow in Entry Length.—Most instances of compressible flow in ducts fall into the category of
entry length problems, since, particularly in supersonic flow, ducts will rarely be long enough
for pipe flow to be established. Indeed for flow in parallel pipes, the choking length may be-
shorter than the entry length. The discussion that follows has therefore been restricted to entry
length flows, the assumption being made that the flow consists of two parts, namely the boundary
layer in which all viscous action is confined, and a free stream in which, in the absence of shock
waves, the flow is homentropic. Flow with heat exchange has not been considered, because the

assumption of uniform total temperature then ceases to be valid.
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Under these conditions any flow is particularized by constant values of mass flow rate m,
total temperature 7, and free-stream total pressure p,". It is shown in Appendix I that the
stream area A is related to these quantities by the expression

lfanz
4= JE)ymLLe L [+ 2 &Y (27)
=JG D, Yl\/ i T e
& Y,
. N . ‘
with Y"_p’<g’>§“ 1=1,2. .. .. .. .. .. .. (28

It is convenient, as in one-dimensional theory' to refer all flow quantities to the1r value at
the sonic condition, defined as that at which M =1 and & = & = = 1, the flow 1is
uniformly distributed. The sonic values, designated by suffix |, serve merely as reference values.
It is irrelevant whether or not the flow ever attains the sonic condition.

Equation (27) together with equations (17) to (21) now give:

General Value

—1 & e 11
a= )Ll A\/ S e an J (29)
EY‘.’.
p=2 Yoy o L. (30)
(1 + Xl + i:j Y2> |
T—T, 1_ (31)

_—

a \/ <1 }’—15277¥> @)
q:\/(yR)yg\/{“erle}.. N ),
£ e
F = ) myr, L )] e (3



Ratio
y+1
y—1

£ 2
2y
Yoy 4 1V
2 _ / ] 2) ]
2 / (1 y—1M2)( 7—15277]\7[2%‘
NIV T A
T y§1
Ts—n<1+L;__1]v[z>

v 2 gy

p__
P oyl
<1 V—IMJEV—I
A

Sonic Value

LN O

p = —22
(V ;L 1N
7 o= Lo _
(V —?}‘ 1>
— 2y 1
vORn (y -+ 1>T
2

(35)

(36)
(37)
(38)

(39)

(41)

(42)

(43)

(44)



Sonic Value—continued

AS=M RN T
- JrE

Fs:N/<§>\/TULI.— O )

One-dimensional Formula

il
2 .

I y + 1 i
P 2
2 (48)
i
y + 1
T 2
Iz (49)
s 1_|__2—M2
y+1
P 2 (50)
Ps 7’—1 2 ‘
e
[
_q_s.: T .. .. .. .. .. .. (81)
1+ = M
i y + 1
F 2 1+ yM?
F. \ y— 1 1+ .
[ (1 + = )

Applicatron to Typical Flow Caleulations.—The above equations enable such calculations to be:
carried out as are normally made with one-dimensional formulae, but with regard to the existence
of non-uniform velocity profiles at sections 1 and 2 of the duct under consideration, and hence
enable the accuracy of the one-dimensional results to be assessed.

For simplicity all flows discussed will be supposed to originate from a region where conditions.
are uniform, which will be taken as section 1. This could be either a stagnation region of infinite
area, or a region where the boundary-layer thickness is zero.
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For illustration, three commonly arising tvpes of problem will be discussed :

1) Analysis of the performance of a duct of given design: the stagnation conditions are
Ly p 8! 8 g x
given at 1, the geometry (area) of the duct is known, and one other boundary condition

(e.g., pressure) is given at section 2. It is required to calculate all other flow quantities
at section 2

(13) Design of duct for given performance: the stagnation conditions are given at 1, the duct
area is to be determined from data given at 2 (e.g., rate of mass flow and pressure)

ii1) Analysis of flow at a section : values of mass flow rate, total temperature, area and static
y p
pressure are known at a section from (easily performed) measurement, all the other
quantities are to be deduced at that section.

The numerical examples which follow are for flow in a duct of circular section of radius R,
boundary-layer thickness 4, with the velocity distribution given by equation (14).

Example 1.—Consider a problem of type (i) above, where the static pressure is given at 2,
e.g., a duct of given exit area discharges fluid from a large reservoir to atmosphere, under
homentropic free-stream conditions. It is required to calculate the rate of mass flow, and the
stream properties at the exit, section 2.

The one-dimensional procedure in this instance is as follows :—values of p,’, 7, ;_blz and A, are
given. Appropriate use is made of equatrons (41) to (52). p, is first calculated from ,’. Hence

pz/p — M, — AsfA,— A, — m knowing p," and T,. Also M,—> T,/T, pofp. etc., — T, p, etc.,
since the sonic values are known from T, and Do’

The generalized procedure is the same, except that equations (35)—(46) are used, together

with the values of Y, &, and 5 appropriate to the Mach number and boundary-layer thickness
at 2.

Fig. 3 shows the results of such a calculation. The ratios of the one-dimensional results to the
results accounting for the non-uniform velocity distribution, are plotted against ¢/ R, for different
exit pressures. These pressures are designated by the one-dimensional values of the exit Mach
numbers M. The M == 0 curves are for the limiting casc of mcompre551b1e ﬂow (any exit pressure),
obtained separately by simple calculation.

Table 1 gives actual figures for use if the curves of Fig. 3 are not sufficiently accurate.

TABLE 1

M 0 1 2

5/ R, 0-2 06 1-0 0-2 06 1-0 02 0-6 1-0
i 1-050 | 1-144 | 1-224 || 1-063 | 1-188 | 1-295 | 1-098 | 1-304 | 1-496
Dol 1-000 | 1-000 | 1-000 | 1-045 | 1-136 | 1-215 | 1-154 | 1-543 | 1-976
T/nT 1-000 | 1-000 | 1-000 || 0-987 | 0-964 | 0-945 || 0-956 | 0-878 | 0-819
T/T 1-000 | 1-000 | 1-000 || 0-984 | 0-959 | 0-941 | 0-948 | 0-864 | 0-806
g7 1-050 | 1-144 | 1-224 | 1-047 | 1189 | 1-219 | 1-040 | 1.126 | 1-206
9/ 1-050 | 1-144 | 1:224 || 1-050 | 1-144 | 1-224 | 1-050 | 1-144 | 1-225
g/ 1-040 | 1-093 | 1-200 | 1-038 | 1-118 | 1-195 | 1-033 | 1-108 | 1-185
9V - 1-036 | 1-115 | 1-190 || 1-035 | 1-111 | 1-186 | 1-030 | 1-101 | 1-176
p/p 1-000 | 1-000 | 1-000 | 1-016 | 1-048 | 1-063 | 1-055 | 1-158 | 1-240
F/F 1-000 | 1-000 | 1-000 | 1-058 | 1-168 | 1-260 | 1-111 | 1-353 | 1-586

All values are unity at ¢/R; == 0.
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Example 2.—Consider a problem of type (ii) above, e.g., calculate the exit area of a nozzle
discharging fluid from a large reservoir, given the mass flow rate and the exit pressure. The
procedure 1s similar to that for example 1, and the results are given in Fig. 4.

Example 3.—Consider a problem of type (iii) above, where it is required to deduce values of
other flow quantities from measurements of m, T, 4 and p. The simplest procedure here is to
calculate M from equation (17) for the appropriate boundary-layer thickness at the section, and
hence the values of T'/T,, etc., from-equations (18) to (21). These values may then be compaled
with the values of 7/7, etc obtained one-dimensionally using equations (22) to (26). The
results are plotted in Fig. 5. Tn this case the ratio of the one-dimensional values to the mean
values are plotted against 6/R, at constant values of free-stream Mach number M’, a procedure
which simplified the computations.

Discussion of Results of Flow Calculations—The curves in Figs. 3, 4 and 5, which present
ratios of the one-dimensional solutions to the mean-value solutions, indicate directly the errors
inherent in the one-dimensional method due to its neglect of the existence of the boundary layer.
In most cases the error tends to increase with Mach number, and also with boundary-layer
thickness.

It may be seen that for examples 1 and 2, which concerned ducts working between known
upstream stagnation conditions and downstream static pressure, the one-dimensional method
gives results accurate to about 2% per cent up to M = 1 and 5 per cent up to M = 2, so long
as the boundary-layer thickness does not exceed 10 per cent of the radius. For thicker boundary
layers the errors increase nearly in proportion.

For example 3, namely the analysis of mean quantities at a section from measurements of
m, T,, A and p, the accuracy of the one-dimensional method is within 2 per cent up to M’ = 2
for any boundary-layer thickness. (Note that the vertical scale in Fig. 5 is ten times that of
Figs. 8 and 4.) Total pressure is an exception, the error in this case approaching 10 per cent
at M’ == 2. This means that a pitot traverse cannot be dispensed with if mean total pressure,
or losses, are accurately required.

Conclusions.—The review of the basic assumptions of the one-dimensional method has stressed
that for many applications one-dimensional conditions need only be met at the places Where
fluid enters or leaves the portion of the duct under consideration.

A generalization of the one-dimensional method has been developed, and used to assess the
influence of the boundary layer on its accuracy. The generalization takes account of the non-
uniform distributions of flow parameters due to the presence of the boundary layer. Equations,
analogous to the one-dimensional equations, have been presented which give the ratios of mean
flow quantities to their sonic values, as functions of Mach number and correction factors which
depend on the velocity distribution.

Calculations were made using these equations, of flow in a duct of circular cross-section, under
the assumption of homentropic free-stream conditions, and a turbulent boundary layer having a
one-seventh power law velocity distribution. Results were compared with results of one-
dimensional calculations, for typical flow problems.

In the case of ducts working between known upstream stagnation conditions and downstream
static pressure, the one-dimensional method gave results accurate to about 2% per cent up to
M =1 and 5 per cent up to M = 2, so long as the boundary layer thickness did not exceed
10 per cent of the radius. For thicker boundary layers the errors increased roughly in proportion.

When used to deduce mean values of flow quantities at a section from measurements of mass
flow rate, area, total temperature and static pressure, the one-dimensional method was accurate
to within 2 per cent up to M’ = 2 for any boundary-layer thickness, for all quantities except
total pressure, for which the errors approached 10 per cent.

11
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APPENDIX I

Derivation of Mean Value Equations

Chap. VI: One
1953.

Chap. X : Boundary

J. App. Phys., Vol. 2,

Reference is made to Fig. 1. With non-uniform distributions of velocity across AD and BC,
and the assumptions given after equation (6) the equations of continuity, momentum and energy,
(1), (2) and (3) may be written for the single streamtube of area 64 normal to the flow, and

summed over the whole cross-section to give
Zpg 64 = m = Xpg A
1 2

X =Z(p + pg’) 04 — 2(p + pg’) 04

m(Q — W)= Zpq(epT + 3q°) 04 — Zpq(cpT + 3¢°) 04

Following Le Fevre* let
Zpg'd A = p7A 1=20,1,2,3

g 6A = ngA
qi — Eiqi
plp = RT .

(A.4) and (A.6) give
Zpg 04 = pIA
Zpq* 04 = pE A
Zpq® 64 = p&g°A .
Hence equation (A:1) may be written

prA1gy = m = prAuGs .

(A1)
(A.2)
(A.3)

(A.8)
(A.9)

. (A.10)

.. (AN



Since p = constant across any section, (A.2) becomes, using (A.9)

or

where

X = (Ap + pA&T): — (AP + FAET):
X=F,—F
F = AP ‘l‘ ﬁAfzgz

= mean impulse

From (A.3) using p/p = RT and equations (A.5) and (A.10) -

miQ — Wy = (% pg+ 17" )s4 — 2(Fpa + 300 )54

Dividing by

Using (A.7)

or

where

— (S pndq + vpdear), — (F 8047 + bdeaT),.

m = /31A1Q1 = ﬁzAz%

r_ (%P . ¢ -
Q—W=\g57~+ 1), — (ﬁ‘% 0+ ),

Q=W =(eaT + 3. — (e T + 36): -
Q — W = C?Toz - CpTol

— Ea0°
To=nT + 5,

T, = total temperature, assumed uniform across any section.

. (A.12)

.. (A1)

. (A14)

. (A.15)
.. (A.16)

. (A.17)

Equations (A.11), (A.'12j and (A.15) are respectively the equations of continuity, momentum
and energy for flow in a duct with non-uniform distributions of flow parameters, in terms of the

mean values of density, ‘velocity and temper
equations (A.4) to (A.7). '

ature, and the parameters &,, & and 5 defined by

Derivation of General Formulae for Mean Flow Quantities—The mean flow quantities may be
expressed in terms of mass flow rate, area and total temperature as follows.

From equation (A.17), division by nT gives

143

‘With this definition (A.18) becomes

L+

y —1 _

& Ty

X - T’

This suggests defining a mean Mach number by the relation
V72— — 53{172_
yRy T’

. To
2 -
W

T . 0
ST )

T,

13
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Elimination of # T from (A.19) and (A.20) ‘gives Lo

. Ty e , : - -
§=Vl )%3 y_l,_];.a. e L (Ag
‘ L g I
From the equation of state (A.7) and continuity (A.11)
mRT
="d7 . (A22
? Ag ( )

and elimination of § and T from (A.20), (A.21) and (A.22) gives. .

_ J(BmyT, AT TR ) ‘7 ,
=)™ J{M(1+—1M>‘ R (8.25)
Fromm = pAgand (A21) - G0 o sl

ﬁ:\/(iR)AﬁTO Vlé”\/[ Mz _J: o R . (A24)
From (A.14), (A21), (A.23) and (A.24) . } |
| A& ‘.tl_l.-ty(gin)ﬂz;,__
Fo @e)m\/To VEs \g, i
\/ Y K \/{ 1 >' )

(1 +
- These equations glve the mean values of temperature, Ve10c1ty, pressure, density and impulse
in terms of mass ﬂovv rate area, total temperature and mean’ Mach number.

. (A.25)

Expressions for g omd é;,—Formal expressions W111 now be developed for n and £; usmg the
assumed veloc1ty dlstrlbutlon (see equatlon (14)) ' R

b

y 1/n ) : . T

g' —< > 0 < y {6, 1.e.,In the boundary layer o
| .. (A26)

1’ =1 5 \\‘y . Ry, Le, in the free stream I " ‘

In each case the independent varrable upon Wthh the Values of & and n ultlmately depend
will be %, the expansion index in equatlons (A.26), 6/ R,; the proportional boundary-layer thickness
and M’, the free-stream Mach number. :

Frorn the definition of 7, equation (A.5)

- Applying this to a circular duct of radlus R, and with the Veloc:1ty drstrlbutlon given by
‘equations (A.26)

T

ngu Ryt — Ué(l)/ 2(Ry — y) dy + j: 20(R, ») dy]

=22 GGG -+ JR”" 5 94)]
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Integratirig

_9_[_1_
"= 2 F1

From the definition of &, equation (A.6)

& = Z
' S4 qw .
Using (A.4) . .
i Zog 6A. (pA)*
¢ = Zpq 3A) (74)
Z'pgi A AN
= g ody AT
N EACANES
OOE
b i q 6A}1
{Z<p )(3) a
Define

and
(1+7

Therefore
(1+

Therefore

Y

v () .

Since p and T, are constant across any section

LA
p’ T

Fu)r =G4ty

M) T

& i)+,

FOCIR

) =g e (@)

r_
=

y —

1—|—2

(A.32) in (A.29) yields

where

FANO|

— £
= 7.
Il

Y

A L R Y

-G

1+'2~

Y, =7, — <z%> Ziw+ (1 - 1%>

3" 4G)

| Z'-=2i [1
a=i)

1+

y — 1
2

T
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.. (A.28)
.. (A.29)

.. (A.30)

.. (A.31)

L. (A.32)

—

A.33)

.. (A.34)

.. (A.35)



Performing the integration in equation (A.35) after expanding the integrand by the Binomial

Theorem
V—IM,z 2
2( 2 7 .
R, — ; ;.
70 1+Y21M,2 % +it+n .

Z; = 1 . . .. .. (A.36)
| 1—}— M
Now from (A.4) withz=1and: =0 respectwely
_ Zpg oA _ Zp A
1=77%4 » P=74
__Z'pg@A
1="5, 64
zl%qi,aA
:q, P
X — 84
P
From (A.29) %:E L A
¢
and substituting in (A.27)
Yo[ 1 5\ 2 00
Pﬂmﬁ—m(ﬁ“}” . (A3
From (A.28) and (A.29) '
Yo\ (Y,
a=(FHE) - A

with Y, given by equations (A.834) and (A.36).

Using equations (A.38) and (A.39) &, and # may be calculated for any values of free-stream
Mach number M’, relative boundary—layer thickness 6/ R and the parameter #%.

Relation Between Free-stream and Mean Mach Numbers—It is desirable to relate the free-
stream Mach number }M’, in terms of which the expressions for &, and 5 are given, to the mean
Mach number M, in terms of which the formula for mean flow quantities are given

2
and M2 =-1,

MM,ZZ——-é(i)Zﬁ, L (aa0)

as

since $ = constant.
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Now from (A.4) and (A.29) with

i=0), L=y,
Using (A.87) M/z == (Y>
M2
. . S m«‘/T
Expression for /\/ <y> Apy
By continuity
mo__
A=
1 1w,
=y, r19
from (A.37) and (A.41).
. p+1
m 1 P , =)
A=vyr @M )

by standard one-dimensional formula, applicable in the free stream.

(A.42)

'yi]
—1 & M2> V‘IJ
2 53 Yz ’

JE) = vx

{5217 M2<1

APPENDIX IT

Interpretation of Mean Total Pressure

. (A41)

.. (A42)

. (A.43)

Substituting for M’ from

. (A44)

Definition.—The mean total pressure $, of a non-uniform stream having uniform total tempera-
ture is defined as the total pressure of that uniform stream having the same total temperature
and mass flux as the non-uniform stream, and possessing the same value of availability flux.

Consider two thermodynamic systems consisting of the mass m of fluid that flows past a given
section in unit time, of the uniform and non-uniform streams respectively. Then for atmospheric
conditions designated by suffix ,, the availability of the uniform flow system is®

A =mlhy — T,8) — m(h, — T,s,)

whilst that of the non-uniform flow system is

e

1= j ) pqlhy — T.5) dA — m(h, — Ts.)

== iy — j pqTs A4 — mih, — T.s.)

since /,, the stagnation enthalpy is uniform.
17
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v .
: - s (T, (Ty)" .
Equating 4 and 4, and writing s = R log, 5 in (A45) and s = R logeT in (A.46)
gives ' ' 0
m 10g, Po = j _pqlog, podd .. (A47)
- 1 ‘
or log. fo = - | . pqlog. po dA . .. (A48)

For the velocity distribution (A.26), the following expression may be derived for log,(p./p,’)
using methods similar to those of Appendix I:

y—1__., 1
B R 7 M
10ge]5—= 7512'4_14_%6’7' ' =1
0 i=1 4J 1—|—y2 M2
y—1_ . | _2)/ 6 \?
e g M (&)
QP R y — 1

1+7 5" mn | v(a -NEIM'Z)

')/—1 ’ '
— 7 - log(1+75 M) . L L. (Ad9)

where Coay = .. (A.50)
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£3, & and » are correction factors defined by equa- Curves give ratio of one-dimensional values to mean values
tions (A.4) to (A.6) (see also after equation (12)). at exit of a duct of given exit radius R;, working between
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with a 1/7th power law velocity profile, and a numbers M (see example 1). Homentropic free stream ;
uniform free stream of Mach number M. turbulent boundary layer with 1/7th power law velocity

distribution.
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Fi1c. 4. Result of example 2.

Curves give ratio of exit area calculated one-
dimensionally to true exit area, for given mass flow
rate through a duct of exit radius R;, working
between known upstream stagnation conditions and
exit pressure, for various exit boundary-layer thick-
nesses. 8, and Mach number M (see example 1).
Homentropic free stream ; turbulent boundary layer
‘with 1/7th power law velocity distribution.
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Curves give ratio of one-dimensional values to mean values
of flow parameters, deduced from given values of mass flow,
area, total temperature and static pressure at a section.
Duct of radius Ry ; turbulent boundary of thickness ¢ with
1/7th power law velocity profile ; uniform free stream of
Mach number M".
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