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Sumsmary.—Expressions are derived for the sideslip derivatives on the assumptions of the linearised theory of flow
for a delta wing with small dihedral flying at supersonic speeds. A discussion is included in the Appendix on the relation
between two methods that have been evolved for the treatment of aerodynamic force problems of the delta wing lying
within its apex Mach cone.

When the leading edges are within the Mach cone from the apex, the pressure distribution and the rolling moment
are independent of Mach number but dependent on aspect ratio.

When the leading edges are outside the apex Mach cone, the non-dimensional rolling derivative is, in contrast to
the other case, dependent on Mach number and independent of aspect ratio : the other derivatives and the pressure,
however, are dependent on both variables.

1. Introduction.—The present paper, in which the aerodynamic derivatives with respect
to sideslip are calculated, is one of a series dealing with the force coefficients acting on a delta
wing at supersonic speeds. The investigation will be confined to the case of small deviations
from the neutral position of a wing at zero incidence, so that in particular it may be assumed
that if the wing is initially wholly within the Mach cone emanating from its apex it will remain
so in the disturbed condition, and vice versa.

The problem divides into the two cases in which the wing protrudes through its apex Mach
cone and in which it is entirely enclosed within it. In the former the task simplifies to integrating
a uniform distribution of supersonic sources, since the motion ahead of the trailing edge above
the wing is independent of that below the wing. In the latter case recourse is made to a method
based on that introduced by Stewart® in his solution of the basic lift problem, except that the
expression relating the pressure distribution to the boundary conditions is derived in a different

manner.

* College of Aeronautics Report No. 12, received 29th April, 1948.
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Robinson® solved the lift problem by other means, and a comparison of the two techniques

employed is made in the Appendix to this paper.

2. Notation.

Free stream velocity

Sideslip velocity

Air density

Mach number

V(M* — 1)

ptany

Rolling moment

Yawing moment (referred to vertex)

Side force

Dihedral angle

Semi-vertex angle

Maximum chord

= c®tany ; the wing area

= ctany ; the semi span

= L[p3V Ss ; the non-dimensional rolling derivative
= N/p?V Ss ; the non-dimensional yawing derivative
= Y/p9V'S ; the non-dimensional sideslip derivative.

§meoﬁm<2h~m§b&ﬂ

pS

3. Results —A thin flat delta wing of small dihedral is travelling at supersonic speed ¥V with

sideslip 7 with vertex into wind (see Fig. 3a).

The forces due to sideslip at zero incidence are :—

- Inside Mach Cone (2 < 1) B Outside Mach Cone (1 >,,,1,)

L + g piVéc® tan®y. * + 3279 piVacy?.

:\? — ipﬁ?ézca tan?y. - 3787; piVéc® tan®y \—%}%
Y — % pVé%c* tan® y — %pﬁV&zcz tan? A ﬁg—%

The non-dimensional aerodynamic derivatives with respect to sideslip are :—

Tnside Mach Cone (4 < 1) _k Outside Mach Cone (1 > 1) B
Z‘ gétany. } —I—g% B
M 5% VG

» N _% 5% tan y. ———i aztany_\/———(iic—_lll)\

It will be noted that the above quantities are continuous on transition from one case to the

other.

2



In Fig. 1 the quantities gl,/8, #,/6* and By,[6* for zero incidence are plotted against the
parameter 4.

In Fig. 2 the quantities /,/6 #,/6% and y,/6® for zero incidence are plotted against Mach number
for different aspect ratios. It will be seen that the values of /,/é obtained for the higher
aspect ratios, when the leading edges are within the Mach cone, are comparable with those
obtained in incompressible flow.

The pressure distributions are :—

(a) leading edges within the Mach cone,
ytany
4/ (x*tan?y — y?)
(b) leading edges outside the Mach cone
(i) at a point outside the Mach cone,

g p'1776
T

tany
Vo =)

(ii) at a point inside the Mach cone,

2 - tan y i At =1
- piV'é VO =) tan {ycoty\/<x2———__ ﬂ2y2>}'
4. Delta Wing Enclosed within the Apex Mach Cone.—4.1. Relating the Pressure Distribution
to the Boundary Conditions.—In the linearised supersonic theory excess pressure is proportional
to the induced velocity in the free stream direction. Since the angle of dihedral is small, the

* boundary conditions can be expressed by equating the velocity normal to the yawing plane
to the component of the sideslip velocity along the normal to the aerofoil itself.

piVé

Using the cartesian axes indicated in Fig. 3(a), we will establish for the class of problems to
which our present one belongs that the induced velocity components #, v and w in the #, y and
z-directions can be expressed as the real parts of functions U, ¥ and W of a complex variable
7, and that there exist relations of the form

aUl aw av aw
=0 G end G =)

The problem therefore reduces to determining a suitable transformation from the %, ,
z-space to the z-plane, and a suitable function dWW/dz, so that w = R(W) takes up the known
values at the boundaries. This is essentially the method of Stewart® but our derivation of the
relations between U, V and W will be somewhat different.

The flow at any point ahead of the trailing edge is uninfluenced by the trailing edge, so that
if we replace the aerofoil by one of the same shape but of different size the flow at such a point
will be unaltered. Hence the flow at any point along a ray through the vertex is the same.
The induced velocity is therefore of degree zero in %, y, z; this type of flow is called conical,
a term introduced by Busemann.

In the linearised supersonic theory the equation of continuity is the Prandtl-Glauert equation
®w oV 0w

200 | 0V 0w
_5ax+6y+az—0 . .. . . . .. (1)

For irrotational flow curl (#, v, w) = 0, and there exists a velocity potential @,
It will therefore be seen that #, v, w and @ satisfy the equation :—

2Y L0 0

— 8 axg—l—véy_g_}-a?z' .. .. . e ©



Under the transformation (x', ', 2') = (x, 18y, i8z) every solution of Laplace’s equation in
%', ', 2, is also a solution of equation (2) in x, ¥, z and vice versa.

It was established by Donkin in 1857 that the most general solution of Laplace’s equation of
zero degree in three dimensions is of the form :—

F1<y9;,—:_ijl)+F2 yx":r) e (3)

where 7® = x% + y? 4 22

Hence any analytic function of o is a solution of equation (2) of degree zero, where
_ — gyt ®
w = 7] + ZC i ﬁ % + 7 ’
and where r? = x® — By% — 2%,
Therefore we take #, v, w to be the real parts of U(w), V(w), W(w), satisfying both equation

(2) and Laplace’s equation in #, {. It will be noted that the velocity potential is not of degree
zero and cannot therefore be put in this form.

It will be seen that for conical flow the induced velocity potential is of the form & = ry(y, ¢),
so that

_ Lt Lt .
”_”an+cac"1—n‘—-czw’
oy 9y 2pn - (4)
—_ s __ ¥ Y 4 ..
ve=—3p (141 C)a77 ﬂ"CaC_‘-l——n"——C’w’ .
- o ot 2 Y 26¢

The equation of continuity (1) becomes

2 (9? 02
{1_,72_52}{5;7—”;4_&%}—-8@0:0 N )

Now since # is the real part of U = U(w), the Cauchy-Riemann equations give
U _ou_ ou
do oy o’
and similarly for ¥ and W. Therefore

ﬂ]_ ?_i‘ﬁ . azzp ——-’LC@
dw —778”2~—Zwanac ac?
| Cwtet oy Ly, n—iL

N 21—772——52{817 Yacf A= oY .. (6)
dV—' 9%y 1, 2 0%y . 0%
o—i:o——_“%‘ﬁ(l—|—172__Cz)5;7”‘2+>2~’513(1—]—w)anaé‘+wn§f§

% op .oy 1+ (g — dg)
“‘“ﬂ{1~n2—¢2 “’}{an ”ac}”ﬁ(l——n*—w (7)
2 2%
ort
. oy Ly o, 1 — (g — i)
+ ﬂ {1 _— ,qa — C2+ zw}{aﬂ ¢ ac Ziﬁ (1 —_ ,'72 — cz)a ¥ (8)
4 .

aw _ % _ 4 . 2% o151 — e 2




au . aw 3
— w?) =2 _ wdd
Hence B(l — w?) e 2w 7o
| o% 0% 86y
— — 2 -r T . o/ B
— = C){Bn*_l_a(:z} e T A |
av W > .. 9)
— w2 g 2y WV
and (1 w)dw+z(1+w)dw
0%y | 0% 1+ 7?4 ¢°
= — 1 — {n? 2\ 2 Y ©Y
so that by equation (5)
W1 2w
do 1 —0® do’ 10
W _ Lt AW
and T z.l_w2 o
2 2
On the Mach cone 7* = x* — g2 (y* + z%) = 0, so that |o|? = g* %’) -l-—'—sz—) =1. At the aero-
foil z=0,s0{ = 0, and at a leading edge y = + xtany,son = + ftany + &

I+ I—Ftan’y) 1+ &
where 2 = 1 — £’ =1 — g%tan?y.

The Mach cone and its interior are, therefore, represented in the w-plane by the unit circle
and its interior, while the aerofoil becomes the real axis between + £'/(1 + k). (Fig. 3(b) refers).

Consider the transformation cn (r, ) = 2w /(1 — »?) where cn (v, %) is the Jacobian elliptic
function of modulus % in Glaisher’s notation.

The interior of the unit circle in the w-plane is traced on the 7-plane in the rectangle, vertices
+ 2K'(k), K(k) & 2K'(k). In Fig. 3(c) the imaginary axis AA’ between v = -4 2/K’ represents
the Mach cone, while the aerofoil becomes the parallel line BB’ between v = K -4+ 2K’, such
that CQ is the lower surface, z = — 0, y < 0, OB the upper surface z = + 0, y < 0, CQ’ the
lower surface, z = — 0, y > 0 and Q’B’ the upper surface z = - 0, y > 0. The leading edges
become the points Q, Q’." The point C corresponds to the wing axis on the lower surface and the
points B, B’ both to the axis on the upper surface. The line OC represents the portion of the
zx-plane, y = 0, z < 0, between the Mach cone and the aerofoil, while AB, A’ B’ both correspond
to the similar section above the aerofoil : the line PQ corresponds to that part of the xy-plane,
¥ < 0, z = 0 between the Mach cone and the leading edge, and the line P’ Q' to the similar
part,y > 0, z = 0.

' au 1 4w
In the r-plane;l?zgcnr?r— .. .. . . .. .. e (ll)
ond av._ . .

ir Ly

4.2. Calewlation of Derivatives with vespect to Sideslip.—As already indicated we assume that
the kinematic boundary conditions are fulfilled at the normal projection of the aerofoil on the
xy-plane rather than at the aerofoil itself. The boundary condition for a sideslip velocity 3
and dihedral  reduces to w = @ for y > 0 and w = — 6 for y <O.
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From the asymmetry of the configuration it follows that w = 0 at the zx-plane. In addition
w = 0 at the Mach cone.

From physical considerations dU/dx, dV[dv and dW/[dv must be finite at the Mach cone.
Furthermore the aerodynamic forces must be finite, so that any infinity of # at the aerofoil must be
such that the integral of » with respect to area is finite.

We have to choose dW/dx so that dU/[dv, dV[dx, u, w fulfil these conditions and so that #,
v, w are single valued.

In order that dW/dr may be finite on the Mach cone and w zero on the Mach cone and the
zx-plane, dW |dx must be regular and real on AA’ and be imaginary on OC, AB and A’B’ with
no singularities other than poles ; the residues of such poles must be zero or real except at C,
B and B’ where there are discontinuities in w. Since dU/dz(= 1/ cnv dW <) and dVdz(= — isn=
dW [dz) are to be also finite on the Mach cone, dW/dv must have at least a simple zero at the
points P and P’ (r = 4+ ¢K’). Since w is to be constant over the two halves of the aerofoil,
4W |dv must be real on BB’ and have no singularities which contribute to w except, as before,
at C, B and B’. In integrating dW/dx along OCB, w must jump in value by an amount + 6
at C and — %4 in integrating along OCB’. Clearly, therefore dW/dv must have a simple pole at C
of residue of imaginary part 238/x. Similarly dW/dr must have simple poles of residue of imaginary
part — 296/ at B and B’, so that w may return to zero on AB and A’B’. In order that #, v, w
may be single valued dU/[dx, dV [dv dW |dz must be regular within the rectangle.

Functions satisfying these conditions and equation (11) are :—

AW sk’ .

== sctnd?r
o

%Z%ik T (12)
Fo

%g:z-:);k snt nd?®z

Now dU|/dx is regular except for a double pole at r = K + ¢ K’, so

L _ 20k
-

sz'sn-c nd?v dx
0
2 .
=;vé tanyR (— ¢cd7)
2iw

, _ _ 1By
On the aerofoilcn v = 11—t~ V/(x — By

and so cdr = — \/(xzta:f;y =59 on the xy-plane forz = + 0
and is of opposite sign for z= — 0.

Therefore for 2 = 4 0 we have

~2; y
uﬁnwtan‘y'\/(x”tan"y——y’) .. . .. . .. (13)
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In the linearised theory the pressure p = const. — puV, so that the rolling moment due to
sideslip is :—

L = ” 20Vuy dy dzx,

where the integration is over the whole wing

4 y: dy dx
= - p’l)V(S tany jj ‘/(xa tanay N yz):
_ 8 p sy ([ 0 T = @
= —piVétan 7fofoq V(L —#) 5 dg,
. : — 2
where x =gqlt y=qtan?\_/£lg_‘t“)

L = + 2p5Véc® tan? y.
Hence the derivative

] = __L
* " piVSs ,
The sideforce due to the pressure distribution over the aerofoil resulting from a sideslip is :—

Y = — U 20V |u|dy dx

= £ ¢ tany.

_‘_1 S1782 ly|dy dx
5 POVS" tan 7’” v/(x*tan®y — y?)’

I
|
1 G0
-
<<
<
(=73
-]
B
[}
[
<<
——
@ !
—
-
o)
&
S

—_— —_— 4 2 2
and Yy = VS = T 6% tan® y,

The corresponding yawing moment is similarly :—
N=-— H2p77|u|6. x dy dx

= — :%z p7V 6% tan? y

8 2
and n, = 3 82,

5. Delta Wing with Leading Edges Outside Mach Cone.—The boundary condition at the aerofoil
is w = ¥ on one half and — 99 on the other. When considering the upper surface, ¥ > 0, where
w = v3 we may take w = — 9§ on the corresponding lower surface, since the Alow above the
aerofoil is independent of the flow below it in the case under consideration. In this artificial
condition there is a jump of — 276 in the value of 0®/on at the surface, so that the surface can
be replaced by a uniform supersonic source distribution of density — 78/ ; the other half of the

ae/rofoil, Yy < 0, where w = — 3, can be likewise replaced by a source distribution of density
6 [z,
’ 76 o dx, dy
Hence @ (x, v, 0) = — — ||[- 20
w30 = = | = po =3
where ¢ = 4 1, wheny > 0,and 0 = — 1, wheny < 0.
55 J
S0 = _v; Uo dp dy, where x, = x — fp coshy, and yy = y — psinhy.
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In Fig. 3(d) P is the pomt (x y) OL, and OL, are the leading edges, and PL, and PL, are the
boundaries where (¥ — x,)* — g%y — yo) = 0.
The values of p, y vary as follows :—

when (x,, ¥,) ison (i) PL,, Yy = — o
(ii) PL,, p =+ o
(i) OP,  p = tan h—l%y- —
(iv) OX,p =p, = y cosech ¢
___xtany — y
(v) OLyp = py= Acoshy — sinhp
¥tany 4y

(vi) OLs, p = po= A coshp + sinh
When P is inside the Mach cone from the apex, we have

95-*—{] p1dy +f podw——f -—Po)dw}

_ %1 Ops
so that % = {J'_w Bxd — L P dzp},
; aﬁ‘)_ 0 —p. =— o—
since S = and p, =p, =p,, when y = &,
b f tan y dy _ ""J tan y dy
~ @wJ/_wAcoshy —sinhy  « J, 2coshy + sinh y
_gﬁ_éf' tan y di¢ ___g@r tan y dt
AL+ 7)) — 2 S A(1 4 £2) - 2
where ¢t = tanh }y, v = tanh !
276 tan y Ar — 1 Av + 1
= ————< tan™! ———— } tan~! — L~ _ }
zy/(A* — 1) V/(4* —1) V(A — 1)

- ot ()}

When P is outside the apex Mach cone

vé [°

76 . . ‘
so that v tany j by putting e = < in the above. When y < 0, » changes sign.

=@ -1

Hence the rolling moment due to sideslip is

L= UZpVMy dy dx

4piVs tany [ foseco .
= Vi — 1) {f jm__l 7® sin 6 d6 dr

2 fﬁsech v J‘ 5 tan“‘[l/—(l—i—ll sinh w:,q’ sinh y dy dQ} ,

where. % = rcosf, y = r sin 0 in the first integral
8



and x = gf coshy, y = ¢gsinhy in the second integral

4p5V 8c® tan y LV @AE—1) ‘
L = W—l— {fm_lﬁ tan 6 sec?6 46 + f tan 1[———}»*-smh zp]tanh ysech®y d'lp}
23V éc? tan 2p7V 3c® tan y {t + ,:n f A4/(A* — 1)cosh » tanh® y dth}
= 3\/()»2 BT gpe o 4/(A* — 1)sinh? ¢ |- 2
_ 2va603 tan y{ f A\/ it“ -+ 1)#%d¢ .
o3V —1)  pt — )£ + 2%

where { = sinhy

2p5V6¢® tan ,, A” 20/ (A2~ 1, __, 2 Lty /(A — 1)]@
= By AT =) {t [tan t—\/(ﬁ—l)tan E— 0}

__2pVéc tan®
= 3

L
Hence I, = p171783= +§3

The side force due to sideslip is
Y = ——”2/; V|ulé dydx

= 4pvi82”ia?y{fcsecej rdrdf -+ - f J ﬂtan‘l[ 1)smth qdy; dq}

. 207V 8% tany [ 1,2 /A2 —1) . .
=TT @ = 1) 1 {tany ﬁ+ﬂ:/3jo tan [ 3 smhw]sech y)dtp}

_~2pz7176202ta_ny{t _1.2 F _fwz\/(p — 1jcosh y tanh y dy
V(A —1) TR aBl2 T )0 T (P — 1) sinkty + 3¢ ]}

_ 2p7Vé%* tan y 2 o /(A — 1)t _
,__—————————\/(12__1) {t y ﬂ (A —1) £+ 1 ,t=rcoshyp

1_11 o sec™ 1A
A

p— 77 2,2 2, T -

= p7V 8%c? tan y\/(}»z——-l)

. Y —éd“tan sec™ !4
Y= VST Ta YV aE)

The yawing moment due to sideslip is similarly

N=— HZleu[xa dydx

8 s sec™'A
3np‘l)V6 ¢® tan® y V=T 1)
" o= N 8 sec™1
T piVSs 8a ' 4/(A'— 1)
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APPENDIX

The Relation between Two Methods of Treating Aerodynamic Force Problems
of a Delta Wing at Supersonic Speeds
1. Introduction.—Solutions to the problem of the lift at supersonic speeds of a flat delta wing

lying within its apex Mach cone were obtained independently by Stewart* and by Robinson?

by methods which at first sight appear very different. A transformation will be derived that links
the two under conditions of conical flow.

2. Hyperboloido-conal Co-ordinates.—The co-ordinates developed in Ref. 2 were as follows :(—
_

=t )
VA" — &) (0" — R}
= > .. . .. .. . 1
L VA =1 (1=}
BR' J
where kB'?=1— k® = g%*tan?%
0<7r < w
I<p<
Ry <1
The family of surfaces constituting the system are :—
x? — ﬁz(yz + zz) — 2 N
xz ‘Bzyz ﬁzzz
T i =0 2)
ﬁ ﬁ2y2 B2 z* _
p: vz—k2+1—v2—0

o

It will be observed that these co-ordinates are analogous to sphero-conal co-ordinates; in fact
they correspond under the transformation (%', ', 2') = (%, iy, 162).

As p — 1, the cones of the second family of surfaces approximate to the delta wing from both
sides, and as u — o they tend to the Mach cone.
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: 2% 0% 0%
L — —r —Y
The equation i Py + 5yt + e 0 .. .. .. . .. .. (3)

now becomes :—

Vil =)= 0} { VAW — R - 0y 2

-

Y
——

a
N

=B 0=y {vie - -t}

0 0
—W—”“)a‘;(f’ﬂgf =0 )
. (e dt _ dt
Weting 5 = L«/{(t” —me—1y°=), Ve =" 01—
ie. p = ns(, k) } ' 5
\ — (s, 1) e e
2 2 a a
we have %E%+gc—i ——(M”—-vz)é;(r‘a—f/ =0 .. .. .. . .. (6)
9% 2%

Hence for conical ﬂowa—qﬁ + e 0, where ¢ is a velocity.

As p varies from 0 to K(k), 4 varies from o to 1. As & varies from — 2K’ (k) to — K’ (k),
» varies from % to 1 and back to % as & continues through to zero, repeating as & increases to 2%’

Equations (1) and (5) give
¥ =1¢ns (p,k)nd (5,k) )

y = g— ds (5, k) sd (3, ¥') (7)

z =§ cs (7, k) cd (3, )

To each value of 5, & in the specified intervals of variation there corresponds just one triplet
x, ¥, % for constant 7 on the right-hand sheet of the hyperboloid x? — By — B2 = r®. Pre-

e
viously we traced the (#, y, 2)-plane on the w-plane (w =9 +il= ﬂj;'—_l_zf , so that evidently
there is a one to one correspondence between the points inside || = 1 in the w-plane and the

points in the 7-plane (* = 5 + 45) within the specified intervals of variation of 5 and .

Equation (6) shows that a function ¢ which satisfies equation (3) and is of degree zero in ¥,
¥, z satisfies Laplace’s equation in 5, &, but any function which satisfies Laplace’s equation in
the w-plane is of zero degree in ¥, y, z and satisfies equation (3). Hence every potential function
in the w-plane is a potential function in the 7-plane, provided the w-plane is traced on the
latter by means of the transformations given by w = 8 (y + 42)/(» + #) and equations (1) and (5).
Therefore the transformation is conformal.

By a transformation based on Stewart’s method we previously transformed a set of points
in the w-plane into the rectangle, vertices + = - 2%’, K + 2K’, but that set of points corres-
ponds to the points in the (¥, ¥, z)-plane which become, by the transformation of the previous
paragraph, the “ same ” rectangle in the z-plane with the vertices corresponding. It therefore
follows from the general theory of conformal representations that the two transformations
are identical.

We have shown that Stewart’s z-plane is connected to the system of hyperboloido-conal
co-ordinates by the simple relations of equations (5). Furthermore we have given at equations

11



(7) a direct co-ordinate transformation between (x, y, z) and (p, ¢), by which Stewart’s relation
between U, V and W as functions of = could be established in the same manner as the relation
between them as functions of the intermediate variable o was established.

L |-8,,[&

o8 [N

\ AL

o \

\\ -y [ §*

02 - —

o 1 2 3 4 5 6
A=Bran y

Fi1G. 1. Variation of derivative /,, #,, ¥,, at zero incidence with the parameter A.
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Ws . /g s
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\
A:3 . \\ a \
+0-4 -0-4 \ \“:3 -0-8 \
N N ~J
Al \ Q Azly \\
02 —~ 02 " Ry —
o ,
Ot - 3 4 1 2 3 4 | 2 3 4
MACH NUMBER MACH NUMBER MACH NUMBER
Azl
2'5 5,0 \
3ol 8 elad \
2.0 40 \
Azl .
Ast4 \ Azl
Az 2 \ \
-5 \ D, 30
Az3 \ A=2 \
1-0 Ana \ \ N, 20 A=3 \ \
Az§ \ A=4 \\ \
05 \ \ \ 10 A=5 A
A=6 l \ A=§ |
o) I 2 3 P o) I 2 3 4 5

MACH NUMBER MACH NUMBER

Fic. 2. Variation of derivatives l,, #,, ¥, at zero incidence with Mach number and aspect ratio.
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