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" Swummary.—This report is an extension of previous theoretical investigations of the elastic buckling in shear of flat
plates reinforced by transverse stiffeners. The plates are treated as infinifely long and simply-supported along the long
sides. Stiffeners are spaced at regular intervals, dividing the plate into a number of panels of uniform size. The effect
of bending and torsional stiffnesses of the stiffeners upon the buckling shear stress is calculated for the complete range
of stiffnesses, for panels with ratios of width to stiffener spacing of 1, 2 and 5. The results are presented in tabular and

graphical forms.

1. Introduction.—Accurate knowledge of the buckling shear stresses of flat plates is necessary
for the design of web beams and of panels in fuselage skins and wing surfaces. In this report
buckling stresses are obtained for infinitely-long flat plates, simply-supported along the edges
and reinforced by equally spaced transverse stiffeners that have both bending and torsional
stiffness. But these buckling stresses can be used with little error in calculating the buckling
shear stress of finite sheet-stringer combinations if the buckling pattern is repeated several

times along the length.

Buckling shear stresses of infinitely-long plates with transverse stiffeners were calculated by
Schmieden?, Seydel® and Wang® for plates with weak stiffeners, and by Budiansky, Conner and
Stein® for plates divided into square panels by stiffeners of infinite bending rigidity. Timoshenko*
found the minimum bending stiffness at which the stiffeners remained undeflected at the buckling
stress. More recently Stein and Fralich® obtained buckling shear stresses for the complete range
of bending stiffness of the stiffeners which were spaced at 1, 1 and % the width of the plate.

Tn all the above investigations no account was taken of the torsional rigidity of the stiffeners.
The aim of this report is to calculate the buckling shear stresses of infinitely-long plates for all
combinations of the bending and torsional stiffnesses of the stiffeners. The calculations are.
carried out for different values of a third parameter, the ratio of the width of the panel to the
stiffener spacing. The stiffeners are taken as being identical and equally spaced along the length

of the plate.

9 Presentation and Discussion of Results—The method adopted for the solution of this
problem is an extension of that used by Stein and Fralich. It is an energy method using the
Lagrangian Multiplier for the imposition of the stiffener restraints. An assumption is made
that the stiffeners act along transverse lines in the central plane of the plate. This assumption
incurs little error when the ratio of stiffener flange width to stiffener spacing is small. The effect
of offsetting the flexural and torsional axes of the stiffeners from the central plane of the plate

is not considered.

e R.A.E. Report Structures 140, received 27th April, 1953.
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In Appendix I a solution for plates with weak stiffeners is obtained by assuming that the plates
are orthotropic. A double Fourier series is used for the deflection function, from which the
internal bending energy and external work done are obtained by substitution in energy integrals.
These integrals are minimised to yield the buckling parameter

In Appendix IT a solution is obtained for plates reinforced by more rigid stiffeners. By the
use of Fourier series for the stiffener deflection and twisting functions, expressions are obtained
for the internal bending energy of the plate, for the energy of deformation of the stiffeners, and
for the external work done. Taking into account the relations existing between plate and

stiffener deformations when minimising these expressions the buckling parameter is again
obtained.

The buckling parameters are

[ b%
C T mD
and
Td % ar
= ap =

These are calculated for various combinations of the bending parameter £7/Dd and the torsional
parameter //Dd for the ratios of b/d equal to 1, 2 and 5. The curves are plotted in Figs. 2, 3 and 4
for the complete range of values of EJ [Dd from 0 to infinity.

The results show firstly that for constant torsional stiffness (d.e., //Dd constant), the buckling
shear stress parameter increases rapidly as the bending stiffness £7 /Dd increases from zero to
some intermediate value depending on the aspect ratio (b/@) of the panels. This part of the curve
corresponds to a buckling pattern which extends across a number of stiffeners. As the bending
rigidity of the stiffeners increases the buckling pattern becomes more dependent on stiffener
spacing and rigidity and suddenly changes to a pattern in which the stiffeners have only relatively
small deformations. To this change of pattern there corresponds a point of discontinuity on
the curve of k, against EI/Dd. From this point the buckling shear stress increases less rapidl
with stiffener bending stiffness, until finally a further point of discontinuity is reached, after
which the buckling shear stress is almost independent of EI/Dd. This final state corresponds to
a buckling pattern which is almost entirely confined to the region between the stiffeners.

The effect of increase in the torsional stiffness of the stiffeners is an increase in the buckling
shear stress. This increase is small for low values of EJ [Dd. Increase of J/Dd also decreases the
values of EI/Dd at which the buckling pattern changes. Thus as EJ /Dd increases, an increase
in //Dd leads to larger increases in the buckling shear stress. For the region in which the buckling
parameter is almost independent of EI/Dd, the effect of increase of JIDd is an increase in the
edge constraint of the panel and hence an increase in the buckling shear stress. In the extreme
case of infinite bending and infinite torsional stiffnesses of the stiffeners, the buckling shear stress

becomes equal to that of a panel that is simply supported along two sides and clamped along the
other two sides. ‘

In most cases the calculations for J/Dd = 0 agree with the results obtained by Stein and
Fralich®. The small differences obtained in a few cases can be attributed to the smaller number

of terms in the series for the deflection mode in this report, and usually occurred at large values
of EI/Dd.

" For the limiting case of EI/Dd and //Dd both infinite, the use of insufficient terms in the

terms in the deflection function would necessitate an excessive amount of computation, more

accurate values of the buckling shear stress are taken from the Royal Aeronautical Society
Data Sheets’, '
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In practice the range of bending stiffnesses encountered is from EI/Dd = 10-to 1000. As the
ratio of EI[] for a circular section stiffener is 1 4 » the practical range of torsional stiffnesses
varies from O to 700. For normal top-hat section stringers the practical range of EI/J varies
from 1-5 to 10. For this type of stiffener the results show an appreciable increase in the buckling
shear stress over the value obtained by neglecting entirely the torsional stiffness of the section.

For open-section stringers the effect of torsional stiffness is much less marked and can be
neglected. This assumption is justified because the usual method of attaching the stiffener to
the plate, .¢., by one line of riveting, does not ensure integral action between plate and stiffener
under a twisting action. It is expected that the use of a good bonded joint between plate and
stringer will give slightly higher values for the buckling shear stress of the combination than
the use of a riveted joint.

There has been no experimental check of these results but the results of experiments carried
out by Stein and Fralich® give reasonable agreement with the values calculated for J = 0 although
some of the experimental values are a little higher than the calculated ones. This difference
could be explained by the small effect of torsional stiffness of the stiffeners in their experiments.

3. Example on the Use of the Resulfs.—Consider a sheet-stringer combination which is sub-
jected to shearing stresses. The sheet is taken to be simply-supported along the edges normal
to the stringer direction and continuous over a number of panels. The stringers are of top-hat
section and divide the sheet into panels of uniform size. The dimensions of the combination
are taken as

sheet thickness ¢ = 0-040 in.
stiffener spacing 4 = 8-0 in.
width of sheet b = 40 in.
thickness of stringer material = 0-040 in.
depth of stringer = 11in.
width of stringer = 2 in.
width of stringer flanges = £ in.
Poisson’s ratio » = 0-30

The stringers are attached to one side of the sheet only and are of the same material as the
sheet. It is assumed that the stringers act in the central plane of the sheet.

The moment of inertia of stringer and 14 in. of sheet is 0-0326 in*.

Thus
E7
Da= 696.
The torsional rigidity
2
J = 447G = 0-0132E.
ds
¢
Thus
J _o
-~ =9 1
Dd 8



Thus from Fig. 4

k,=9-2
The value obtained by neglecting the torsional stiffness of the stringer would be
k,=5'6

This therefore constitutes an increase of 64 per cent in the buckling shear stress.

4. Conclusions.—The buckling shear stresses of simply-supported, infinitely-long plates with
transverse stiffeners have been calculated for various values of the bending and torsional stiff-
nesses of the stiffeners. It has been shown that the torsional stiffness of closed section stringers -
is sufficient to cause a considerable increase in the buckling shear stress. For open-section
stringers the effect of the torsional stiffness on the buckling shear stress is much less marked and

can be neglected.

b~y

v

X,y

w
(ws)i
(6:);

A

«

all) H
amn’ b}ll?l

Ay, 4

niy n

N~
|

LIST OF SYMBOLS

Buckling shear stress
0% A I
atD R

Buckling parameter =
Plate thickness
Width of plate

Spacing of stiffeners ’

12(1 — »%) .

Modulus of elasticity of material in stringer and plate (assumed equal
but not necessary for the purposes of this report)

The bending rigidity of the plate =

Moment of inertia of stiffener about an axis parallel to the longer side
of the plate

Torsional rigidity of stiffener

E1|Dd a bending stiffness parameter

J/Dd a torsional stiffness parameter

Poisson’s ratio for sheet and stiffener material

Co-ordinate system whose axes are in the longitudinal and transverse
directions respectively :

Deflection of the plate normal to its surface
Deflection of the sth stiffener normal to the plate surface
Rotation of the sth stiffener = slope of plate in x-direction at stiffener
Half wave-length of buckles in Appendix I
Coefficients of deflection function—Appendix I
Coefficients of deflection function—Appendix 1I
Coefficients of stiffener deflection function—Appendix IT
4



LIST OF SYMBOLS—continued

Vm'/7 Vn,
and Coefficients of stiffener rotation function——Appendix II
[7;11'.- Vn ’
Vs On Lagrangian multipliers
V Internal bending strain energy of plate
Vs Internal bending and torsional strain energy of the stiffeners
T External work done by applied shear stresses
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APPENDIX I

The Buckling Shear Stress for Low Stiffness Values of
the Stiffeners from an Orthotropic Plate Solution

When the transverse stiffeners are weak and unable to prevent buckling taking place across
a number of stiffeners, the sheet-stringer combination may be treated as an orthotropic plate,
i.e., in this case, a plate which has greater torsional and bending stifiness in the transverse
direction than it has in the longitudinal direction. As the stiffeners are increased in rigidity,
the buckling pattern becomes more restricted and more dependent on stiffener spacing, until
eventually it is confined to areas of the plate between the stiffeners. At certain values of the
bending and torsional rigidities, a lower buckling stress is obtained by considering the stiffeners
as discrete elements. This part of the solution is given in Appendix II. At the moment, however,
the stiffeners are considered as being uniformly distributed along the length of the plate.
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The solution is obtained by a strain-energy method.

The internal bending energy of the plate is*

D w | o\’ 0w 0%w % \?

integration being carried out over one Complete buckling pattern.

The internal bending energy of the stiffeners is

_EIf (2N, T ([
V= 2d4”‘(8x2> d;»ciy—{—ZdJJ‘ 8x8y> dx dy , .. .. (2)

the first term being the internal energy due to bending, and the second, the internal energy due
to twisting.

The external work of the shear stresses is

ow ow |
T:—rtf[a-éydxdy. . . .. . . . (3)

It is now assumed that the buckling pattern of the plate can be represented by the following
expression for w

. wE @ . nm ny . nm
w=sn—— X a,sin ey +.cos— X b, sin 27 .. .. .. (4)
A n=24 b A n=1,3 b

where 1 is the half-wavelength of the pattern in the longitudinal (x)-direction and 5 and d the
dimensions of the plate as shown in Fig. 1. This expression satisfies the simply-supported
boundary condition at the edges y = 0 and y = b, term by term.

On substituting the expression for @ in the energy integrals and integrating over the limits
0 to b and 0 to A, we obtain,

Dix' [ BN s 2
V= Sbf [1;3’4 (l,ﬁ (/Tg + 7’1’2> —I_ 1L=§,3 bnz ;1—2 + %2>]

__Eln‘% < 2,4 - 2,4 J=t - 2,2 - 2,.2
Vs —- Sbsd [1»:%,4 an " + n:‘?{,a bn, " _,— 82,bd 1L=E2,4 ﬂn 7 _,— 1L=El,3 b” n
o ® nyg
I = 2uin ,,:E \ (]:22 \ ab, = — &

By combining these expressions we obtain the following relation in terms of the potential
energy (V + V,— T)

863 2 . é?‘ . 2 4[1_[ . b2 ]
(V_}" Vs— T)Dlﬂll_—":%,llan [ Az‘!"']’b) —{—7'2, Dd_'_1 2‘2 ‘D_d
w bz 2 EI bz ]
2 - 2 g 24 s U J
ML Klz + %> T Da T g Dd}
1666 2 = ng
— i ”31:’3 q=22:,4 dqb,, (%2 __‘*“gz)' N . . . (5)

where %, = ¢tb*/Da*, the shear buckling parameter.
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Minimising the potential energy with respect to @, and b, we obtain the following set of linear
equations,

O e LBl w7 8b, g mg
““[ 2T ) T gt T pa| T Al =
mn=24,....... ) (6)
LA Y S B U S S
b"’K/V‘ + ”) T T e 0d) Tl A =0
n=138,....... ). .. .. .. .. .. .. .. (7)
Substituting for a, from equation (6) in equation (7), there results
[ Cu Cis Cisovenenn. T [0,
Cat Cas Cosoovvve e bs
Cs Css Cosovvvnenn | =0 . e (8)
o RPN VR Y - S
in which C,,,L—[AZ—F%)—f—%Dd—f—P i
o (Ska/)Z % %zgz
. =B 2 _b_z 2 : 4 E__I 2 b ]
(n* — q)[</12+9> Tyt FEZJ

2

co_¢ :_('Sk;b)z 8 g
" A =nE (2 2 é? 2 : [ 4El qabz ]
oo = | (G ot) o g+ ]

2 Dd
forn £ 7.

A solution exists if a value of %, can be found which makes the determinant of the matrix €
vanish.

By considering only the term C,, we can obtain a first approximation to the solution. This is
seen to be equivalent to assuming a buckling pattern which is represented by the &, and all the
a, terms. A second approximation which is equivalent to assuming a buckling pattern represented
by the b,, b; and the a, terms is obtained by equating

C11C33 - C132 = 0.

This equation gives %," as a function of 8/4, £I/Dd and J/Dd. On minimising &, with respect
to b/4, the buckling parameter is obtained as a function of EI/Dd and J/Dd.

Further approximations can be obtained from the matrix C but the small increase in accuracy
gained is insufficient to justify the increase in computation required.
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APPENDIX II

The Buckling Shear Stress for Higher Values of the Bending
and Torsional Stiffnesses of the Transverse Stiffeners

As the stiffnesses of the stiffeners increase, the buckling pattern of the plate becomes much
more dependent on stiffener spacing than it is for the low stiffnesses in Appendix 1. For this
reason the buckling configuration is now assumed to be periodic over an integral number of
panels and that it is one of two types, symmetric or antisymmetric about the midpoint of each
bay. The stiffeners are to be considered as discrete elements and not uniformly distributed over
the whole plate. It is necessary to ensure that their deflections and angles of twist are identical
with the plate deflections and angles of twist along the lines of attachment. This is done by
use of the Lagrangian Multiplier. '

Although the following five buckling configurations were investigated, 7.e.,
(i) symmetric buckling periodic over each panel
(i) antisymmetric buckling periodic over each panel
(i) symmetric buckling periodic over two panels
(iv) antisymmetric buckling periodic over two panels
)

(v) symmetric buckling one panel, antisymmetric buckling next panel, periodic over four
panels,

only the last two are governing cases for the ratios of width of plate to stiffener spacing considered.

The following series are assumed for the buckling patterns (iv) and (V).

Antisymmetric buckling, periodic over two panels,

L& . mEx . nwmy L 8  mmx . nwy
= X 2 —= = P> — sin —<
W= 2, %, %Sl sin 2 w2, B, COS g Sm=e (1)

Symmetric buckling one panel, antisymmetric buckling next panel, periodic over four panels,

e 4 . mamx M %%y
— — o Y(m—1) .
w m:zl,s n:zll,s Fn [sm 27 (=1 oS 5" J sin ==
s 3 L max o max]| . umy A
+ 7»:21,3 11——22,4 b”m [Sln Qd - (— 1)2'(1” 2 Ccos id_} S111 —b— . . (2)

The co-ordinate system used in these deflection functions is shown in Fig. 1. Consideration
of these expressions shows that the simply-supported boundary conditions at the edges y = 0

and y = b are satisfied, together with the conditions for plate continuity at the stiffeners x = 0,
d, 2d, etc.

1. Antrsymmetric Buckling, Periodic over Two Panels.—The deflection of the plate is given by
equation (1) of this Appendix. It is assumed that the deflection function of the sth stiffener is

> .y
(@) = 2 4,sin—=

(3)

and that the angular rotation of the sth stiffener is

el

0)i=,% visin=r (4)




As the buckling pattern is periodic over two panels, there are two stiffeners included in this
interval, s.e., 7 == 1 and 2. To satisfy the boundary conditions, stiffener deflection equals plate
deﬁectlon and stiffener rotation equals plate slope along the line of attachment, we must have,

w(id, y) — (w); = 0 l
and dw(id, y) 0), = 0 J (1=1,2)

ox

which give upon substitution from (1), (3) and (4),

: )

— 1 3 bnm _I_ Anl - 0 |
r n=13...)
)”:21’3 bmn - Anz - O J
and
»1:21 3 %73 amn + anl - w
s }(77,:2,4...).
0 m ,
mzl 3 —;i“ Ay — Vn2 = O J
From these equations it is seen that 4,, = — 4,, and V,,’ = — 4,,’. Lettingd, =4, = — 4,
and 0V, =V, = — V,,/ = (=/d)V, the boundary conditions simplify to
Wb+ 4, =0 (n=135...) l
- (3)
and

E My + V, =0 (n=2,4,6...) J

m=1,3

The energy expressions V, V, and T for the plate and stiffener internal energy and the external
work done are,

b 24
D { 0w * 0% 0%
V== —~+~~ — 2(1 — ») [——w ( }}dﬂudy
ZJOJO ox® 2y° ox oy
ET [ [o*(w)]® T [ 0(0.).]°
2 s/t 2__
b Z{ia A V
. T:—n‘f J ‘i@.ﬁwdxdy
R J

Substitution of the functions for w, w, and ¢, gives the following expressions

Ddr*| = 2 co ’ B 2 ]
V= 453 I:m=21,3 ;z=22 4 Tyn (W/L 72 + n® + e 1 3 p 1 3 bm”2 (7’17,2 22 + 71,2> J {

- Elz* 2 J= ‘0 . L
VS - 25 u:zl 2 a + 2bd? »= 2 4 17”2712 ] . (7)
T = 4Tt75 § § § amn bllh] _—% .
m=1,3 u=2,4 g=1,3 (q . 713) ) J
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As a first approximation to this set of equ~ations, the b,,’s and the a,,’s are considered. Thus
A,b,y + $mSa,, = 28B4, ‘
2mSbyy + Ay, — ST, . |
On solving for b,,; and 4,, and substituting in equations (5), we obtain

[ = 4 1 © QS [
m2
} X, TaB Tahs3 X, 4y . "
3 2 m*S $ m? A, 1 N 1y
—853x. &5 x. ter V.

where

Xm - AmlAmZ — %mzsz g
For a non-trivial solution of this equation, the determinant of the matrix must be set equal to
zero. The resulting equation then permits solution for the buckling parameter Z,’. _

As a second approximation the equations in the b,,, @,, b, terms are considered. Carrying out
the same procedure as above, we arrive at the determinantal equation

Apd,s — 28 m2S? 1 £ m*SA £ m2S*
2 : m2 m3X ,25 m __I_ 2__B , — E 3 mX ) w3 , — E 5;}1 >
2m*SA,, m2A, A 1 £ mPSA ,
E 3 m3 , E ml4tm3 _l‘ — E 5 mnl _ O .. (12)
Xm’ Xml 8—PI Xm’ :
E . % m252 2 % mzsAml E'AmlAnﬂ - % mZSZ 1
X,/ ’ X,/ ’ X,/ T 162B
in which

o 36 22 4 22
Xm — AmlAmZAm:S — oEM S Aml — g S Am3 .

This equation permits of a more accurate evaluation of £,’. Comparison of these values with
those obtained from a third approximation, ¢.e., by considering all the b,,, @,,, ,s, and a,, terms,
shows that the second approximation gives results which are sufficiently accurate for the purposes

of this report.

2. Symmetric Buckling One Panel, Antisymmetric Next Pawel, Periodic over Four Panels.—
The series for w giving this type of buckling is given by equation (2) of this Appendix, and is

W= ;11;21.,3 n=21_3 R [Sin M;Zx _I— (— 1)%("‘_1) COSs %I_ZM;—x] sin %Zy
3 St . mnx max| . num
+ .2, n=§23’4 B [sm o = (— 1)¥"=1 cos ﬁ] sin Ty .. . (2)
As before we assume‘ the series for the deflection of the 7th stiffener
()= 3, A,sin ”’%y (13)
and for the angular rotation of the sth stiffener
- , . hay = 7 . nxy
(6,); = "22“ v, sin = = ”222’4 V., 57 S 3 - .. .. .. (14)
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This buckling pattern is periodic over four bays. It is therefore necessary to consider four

stiffeners, 7.e., » = 1 to 4 in our analysis. The conditions

w(id, y) — (w); =0

and
ow(id, v)
o — (6y); =0
give upon substituting (2) (13) and (14), the relations
» An: - Anv = An :An = An
' B * n=13...
Vn: anz [7n2: - Vn3: - [7114
An: - An = An == An = An
' * ? _4 n=24...
Vn - an - VHZ - I7113 - — [/114
which this give the boundary conditions
w2 G (— DD o d, =0n=1,35...)
m—1,3 bmn (_ l)&(m—l) + An - 0 (% - 2, 4, 6 e )

mé 37/}1@’”” + V” =0 (M’ = 1: 3, S... )

@

2 omb,, +V,=0n=24,6...)

m=1,3

-/

On substituting the deflection function (2) in the energy integrals (6), we obtain,

Ddr*| = @ m2b* 2 @ ® mh? 2
V = b3 I:m=21,3 u=21:,3 a»u,?( 4d2 _I_ %2> + )":_21,3 1»:22:,4 bnmz 4d2 _’_ %2>:|

7'64

V,= B ) |7n=§,2 A,f%‘ﬂ 1332 1»31:,2 Vin?

esd ow o«

: T = 8ain % 2 Z amnbmq(_ 1).‘_.()11—1) 'ﬂ%q

m=1,3 n=1,3 ¢=24 (7’1/2 — 92) )

Again using the Lagrangian Mﬁltiplier method we have to minimise the following function,

V _l— Vs e T ©w © . . ©
F = 7'64Dd —I_ =§3 Va ; :Ei 3 OL””"(_ 1)2(,”‘1) + AJL + _}2:4 Va ‘El 2 bnm(_ 1):}(»;—]) + An
b3 f 3 s =2, =1,

oo

+ 3 é{ S M, - 17,} + 3 a,,[ > b, -+ 17,}

m=1,3 m=1,3

in Which the y’s and ¢’s are Lagrangian Multipliers.

(15)

(16)

Minimising with respect to the a,,, b,,, ¥, and .1, terms and substituting for y, and ¢, as in

equations (9) and (10), we obtain the relations, -
12
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%WLS(— 1)}(»1_1)
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where mb? \ 2
Anm - 2 4d2 + n )

and S, B and I are as in (10).

Taking as a first approximation, all the a,, and b,, terms and proceeding as in section 1 of this
Appendix the following determinantal equation is obtained.

w A 1 w WI,A (___ 1).1;(»;-1) o 27%5(_ 1).}(»;4) w0 2 m2S ! .
z me s z m2 E el et S A E o }
L3 Xm _|_ 2B 1.8 Xm 1.3 3 . Xm L3 3 Xm |
2 mA, ., . © mPA,, 1 2 m*S 2 2mPS(— 1)1
bx, TV ATt 47X LR T
—0..(18)
2 2mS(—1)!D = 2mES 2 A, 1 % md
E ket W A E it 2 W el E [ o 1(m—1)
L3 3 Xm 1.3 3 Xm 1.3 Xm. —I— SZB 1.3 Xm ( 1) |
2 2wm’S 2 2mS(— 1)V 2 mAd,, o 2 wmPA,, 1
%3 X, 75 X% wmox, U OATXCTER
in which

N 4 2Q2
Xm — AmlA me — oM S2.

A second approximation is obtained by taking all the 4,,, ,,and a,,; terms. This leads to a sixth-
order determinantal equation, which in most cases gives results which are sufficiently accurate.
In some cases a higher approximation is required, but as it proves to be too involved for com-
putational purposes, the results for B = I' = o are taken from the values given in the Royal
Aeronautical Society Data Sheets”.

For the case of the aspect ratio equal to 5, lower values of %, are obtained for large values of
EI|Dd and J|Dd by using all the a,,, b,5 and a4, terms.

The results of the calculations are given in Table 1 and in Figs. 2, 3 and 4. The figures are
plotted with %, against B(EI/Dd) for various values of I'(J/Dd).
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TABLE 1
Values of the Buckling Shear Stress Pavameter

For Various Aspect Ratios and Stiffness Parameters

Buckling over four panels
‘Torsional Orthotropic Aspect | Antisymmetric :
Stiffness plate ratio Buckling over Bts Omsy Gmg TETMNS Doy Amgs O
solution two panels (also e, Tng, Oig) terms
I B R’ bld B Ry B Ry B k'
0 0 5-34 1-0 0 5:53 0 6-08 From
2 10-34 2-91 7-85 7-09 10-0 Stein
5 16-07 7-78 9-82 19-03 10-5. and
20 37-14 22-29 11-78 0 - 10-86 Fralich
50 68-99 o0 13-86 N.A.C.A.
100 112:2 - T.N.1851
200 184-6
20 0 9-65 0 5-54
3-35 12:0 5-48 15-0
14-50 16-0 11-93 20-0
22-99 18-0 2637 23-5
33-11 20-0 36-29 24-5
45-77 22-0 68-92 260
G1-97 24-0 145-4 27-0
82-92 26-0 625 28-0
112-3 28-0 0 28-2
605 35-0
o0 37-05
B 50 0 425 0 13-31 220 140
18:02 70-0 49-19 600 o] 143
9099 90-0 112-8 100 :
176-8 100
444-7 120
704-4 140
0 2-0 4-0 12-27 1 7-78 Addi-
25-0 18-4 10 18-85 tional
60-0 23-65 12-5 20-75 Values
500 34-5 40 24-9 Cal-
<0 28-3 . culated
5-0 138-3 96-3 34-7 496 960 . | 142-8
6313 136-0 75-0 78-54
1877 192-4 130-7 111-1
8883 248-4 860 192-1
0-25 1-0 0 5-58 5-0 10-37
1-0 6-60 10-0 10-80
4-0 "8:60 30-0 11-35
(oo} 11-52
2-0 0 11-31 0 6-40
4-0 12-7 ©1-0 8-96
25-0 18-85 6-0 18-45
60-0 24-4 10-0 22-5
500 35-15 40-0 29-95
co 378 100 33-15




TABLE 1—continued

Buckling over four panels

Torsional Orthotropic Aspect Antisymmetric
stiffness plate ratio Buckling over Ant> Omay Omg TEIMS Duss Fmss Omg
solution two panels (a1S0 Dy, s bua) terms
r B k)’ bld B k' B ks B k'
0-25 2-0 0 34-95
5.0 o0 175-2
1-0 0 650 1-0 0 5-80 50 10-88
10-0 (28-9 1-0 6-84 10-0 11-75
50-0 80-3 4-0 8-78 30-0 12-08
10-0 10-52 0 12-18
20-0 11:75
5.0 70-7 96-2 17:3 49-54 30-3 1986
4384 136-0 56-8 78-54 | 133 222-1
730-8 1571 103 111-1 0 231-4
1453 192-4 299 192-1
4394 248-4 746 248-4
2-5 2-0 0 14-16 0 8:62
4-0 17-0 1-0 11-9
250 - 224 6-0 19-5
60 28-9 10-0 23-8
500 37-25 .| 40-0 35-5
0 39:6
10-0 0 15:3 5-0 68:36 | 136-0 3-50 49-6 12-0 198-6
10-0 40-2 173:9 157-1 23-2 78-54 45-8 2221
30-0 74-4 450-3 192-4 55-1 111-1 0 232-0
500 99-8 1196 248-4 193-2 192-1
100 - | 144-2
25:0 2:0 0 15-15
4-0 18-78
25-0 25-1
G0-0 30-3
500 38-7
<0 40-4
o0 1-0 0 6-44 5.0 11-28
1-0 7-17 10-0 11-94
4-0 895 | 100 12-34
10-0 10-61 o0 12-40
20-0 11-92
100 13:07
2-0 -0 15-3 0 101
4-0 19-1 1-0 12-6
12-5 22-35 6-0 19-7
25-0 25-7 10:0 24-1
60-0 30-9 40-0 36-2
500 39-1
0 40-8
5.0 12-34 | 136-0 0-72 49-6
74-8 192-4 13-2 78-54 11-7 198-6
271-5 2356 36:0 111-1
352-1 248-4 148-5 192-1 44-2 2221
296 2484 0 2320
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Fre. 2. Buckling shear stress for aspect ratio of panel = 1-0.

17



T TI7TTIT 1T T I T
=
™ }‘u
v
ol
n
Cw ]
-~
i
40 10 = = 825 J
i s M=
;¢///""/ D
3 9 S
025
32 8 L~ L1
A
% ol
Z8 7 P 1 S
24 6 AT LA
L LA
20 5
16 4 P .
12 3 o —
=
]
8 2
L1
::é
N ' I b
B=5&= — =20
b vl L1l Dat | & | Ll 1
oLt 2 LB = L & 5 ¢ 567631 5 2203 456783 B 5 1 Llw
X107 X10 %10 %10 X[O? %I0° x10* xiwid
Fic. 3. Buckling shear stress for aspect ratio of panel = 2-0.
I FTTTTTT I FyPrqld ] P
250 Ho0
I‘.’)!’.) o
|8 l 7 10-
200 F8-0 74 _J
“ofts “14\0 |1 M=5a
S L7.0 -25
« = L1
-::‘AISO K —la-cla d L1 8%
= - | | LA L1 // [e}
_S.o 9
100 40 —
l | 1 //
-3-0 / 1
50 L L —] -t
| =
[ [ — -EL
— B =
o e n il NRTTI I Ll 04 I
" 5,0 2 3 W 2 3 4 5 6789l S 2253 & 56783 F) 5 J_2 II%®
x10% xi0™ xI0° ‘ %10 x102 X103 x10* xi0xicf
F1c. 4. Buckling shear stress for aspect ratio of panel = 5-0.
J4344 19/8411 K7 2/56 D&Co. 34/263 - PRINTED (N GREAT BRITAIN

18



R. & M. No. 2971

Publications of the
Aeronautical Research Counc_il

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL
(BOUND VOLUMES) :

1938 Vol. 1. Aerodynamics General, Performance, Airscrews. 5os. (srs. 84.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 303 (315. 84.)

1939 Vol. 1. Aerodynamics General, Performance, Airscrews, Engines. 50s. {51s. 8d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc.
63s. (64s. 84.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icmg, Stability and. Control,
Structures, and a miscellaneous section. 50s. (51s. 84.)

- 1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures
63s. (64s. 84.)

1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 8d)

" Vol II. Noise, Parachutes, Stablhty and Control, Structures, V1brat10n Wind Tunnels. 47s. 6d

(495. 24.) -

1943 Vol. I. Acrodynamics, Aerofoils, A1rscrews 8os. (81s. 8d. )

: Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures.
gos. (g1s. 11d. )

1944 Vol. 1. Aero and Hydrodynamics, Aerofoils, Aircraft, Alrscrews Controls. 84s. (86s. 9d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, - Parachutes, Performance,
Plates and Panels, Stablhty, Structures Test Equipment, Wind Tunnels. 84s. (86s. 9d)

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL—

193334 15, 6d. (15. 83d.) ‘ 1937 " 2s. (25. 234.)
193435 ' 15. 6d. (1s. 84d.) 1938 1s. 6d. (1s. 83d.)
April 1, 1935 to Dec. 31, 1936 45. - (45. 534.) 1939-48 - 3s. (35. 334.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL
REPORTS, AND SEPARATELY— ‘

April, 1950 = - = = =—- R.&M. No. 2600, 25. 6d. (25. 734d.)

AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH
' COUNCIL-—

1909-January, 1954 - - - R.&M.No.2570. 15s. (155 534.)
INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL—
December 1, 1936 — June 30, 1939. R. & M. No. 1850.  1s. 3d. (1s. 43d.)

July 1, 1939 — June 3o, 1945. - R.&M. No. 1950. 15, (18. 14d.)

July 1, 1945 — June 30, 1946. - R. & M. No. 2050.  1s. {15. 134d.)

July 1, 1946 — December 31, 1946. R. & M. No. 2150." 15, 34. (15. 43d.)

January 1, 1947 — June 30, 1947. ~ R. & M. No. 2250.  1s. 3. (15. 43d.)

PUBLISHED REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL——

Between Nos. 2251-2349. ~ = R. & M. No. 2350.  1s. od. (15, 103d.)

Between Nos. 2351~2449. -~ -  R. & M. No. 2450.  2s. (25. 14d.)

Between Nos. 2451-2549. -~ - R, & M. No. 2550.  2s. 6d. (25, 73d.)

Between Nos. 2551-2649. = 7 - R. & M. No. 2650. 2. 6d. (2s. 734.)

Prices in brackets mclude postage

HER MAJESTY’'S STATIONERY OFFICE.

York House, Kingsway, London W.C.2; 423 Oxford Street, London W. 1 (Post Orders: P.0. Box 569, London S.E. 1)
13a Castle Street Edinburgh 2; 39 ng Street, Manchester 2; 2 Edmund Street, Birmingham 3; 109 St, Mary Street,
Cardiff; Towcr Lane Bristol 1; 80 Chich Street, Belfast, or through any booknllcr

5.0. Code No. 23-2971

R. & M. No. 2971



