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Summary.—Detailed calculations are made of the flow over a series of bodies at Mach numbers of 1-2, 1-4 and 1-6
and Reynolds numbers of 48 to 72 millions. The bodies consist of a basic forebody and parallel portion to which are
added truncated parabolic afterbodies of three different thickness ratios. The calculations are in three main parts:

(i) Calculation of the inviscid flow over the bodies, mainly by the method of characteristics.

(ii) Calculation of the boundary-layer properties by what is essentially an extension to compressible flows of the
method of Squire and Young.

(ifi) Calculation of the pressure distribution on the ‘ modified ’ afterbodies which result from adding the displacement
thicknesses to the original profiles, by Ferri’s method of linearized characteristics. :

The results indicate that the slender body and quasi-cylinder theories predict the flow over afterbodies with only -
very limited accuracy for the thickness ratios and Mach numbers occurring in practice, but that the linearized similarity
law remains a useful means of generalizing the particular results of exact inviscid-flow calculations. The boundary
layers are seen to thicken very rapidly towards the rear of the afterbodies and this causes pressure changes of as much
as 12 per cent of the peak-suction. The skin-friction results agree extremely well with those for the equivalent flat plate.

1. Introduction.—This report is part of an experimental and theoretical investigation of after-
body drag and base drag. These two problems are intimately related, for analysis of the flow
in the vicinity of the base, whether theoretical or experimental, can at most hope to formulate
a law relating the base pressure to the pressure, flow direction, and boundary layer immediately
ahead of the base'. Further, conditions in the neighbourhood of the base affect the pressures
towards the rear of the afterbody by propagating disturbances upstream through the boundary
layer : this effect is most serious at low Reynolds numbers. ‘

In a first approach. to the overall problem it seems reasonable to concentrate on moderate
boat-tail angles and flows at high Reynolds numbers, so that a well-developed turbulent boundary
layer approaches the base ; the effect of the flow behind the base on the afterbody pressures may
then be expected to be small (in particular it is hoped that separation of the boundary layer
ahead of the base will be avoided), and experimental evidence' also shows that for such flows
the relation between the base pressure and the pressure ahead of the base is not particularly
sensitive to changes of Reynolds number. It is also desirable initially to consider low supersonic
Mach numbers in order to keep heat-transfer effects to a minimum. Fortunately it is this problem
of flows with moderate boat-tail angles, at large Reynolds numbers and at low supersonic Mach
numbers, which is also the most pressing from the viewpoint of the aircraft designer.

T RAE. Repért Aero. 2482, received 1st September, 1953.
| - 1

A



.. The present report is an attempt to calculate the pressure-distributions and boundary-layer
properties on a related series of afterbodies subject to these conditions. It seems worthwhile
to take considerable pains in performing such calculations because firstly they should provide
more detailed and accurate information of afterbody drag than exists at the present time, and
secondly they should indicate, when the accompanying experiments are made, whether more
or less conventional methods of calculation can determine accurately the pressure and boundary
layer immediately ahead of a base. : ' '

The calculations consist of three main parts
(i) Calculation of the pressure distributions on the bodies in inviscid flow.

(ii) Calculation of the boundary-layer displacement thickness (and of other boundary-layer
properties, in the process). ~

(iii) Calculation of the changes in the afterbody pressure distributions due to the addition of
the displacement thicknesses to the body profiles.

These are of course only the initial steps of what should ideally be an iterative process ;
however, it is doubtful whether further iterations are worthwhile in view of the approximate

nature of the boundary-layer calculations, and in any case one would expect the results to
converge fairly rapidly. : -

The bodies of revolution for which the calculations were made-are shown in Fig. 1. They
consist of a basic forebody and parallel portion to which are added three afterbodies of parabolic
profile and various thickness ratios # (maximum radius/length of the afterbody continued to a
point). A small cone angle and a long parallel portion were chosen in order to make the flow
outside the boundary layers immediately ahead of the afterbodies virtually isentropic and
uniform, afterbody effects being thus separated from the interference effects of the forebody.
Nine such bodies are to be tested by the ground-launched technique ; they have the same basic
shape as those in Fig. 1, but are truncated to have shorter afterbodies of various lengths. On

the flight models the cone shoulder will also be rounded off to avoid local separation of the
boundary layer. ’

Mach numbers of 1-2, 1-4 and 1-6 were taken in the calcula,tion‘s, and sea-level conditions were
considered : Reynolds numbers, based on body length, were in the range of 48 to 72 millions.
* Zero incidence was assumed throughout. ' ' :

2. The method of Caleulating the Pressure Distributions in Inviscid Flow.—2.1. Calculation
of Pressuves Due to the Conical Head.—The velocity on the cone surface was taken from Ref. 2,
and the pressure computed therefrom. Because of the small cone angle*the inviscid flow is

effectively isentropic throughout the field, the total pressure ratio across the cone shock being
1-00000 in all cases.

. The pressures along the parallel portion were calculated by a modified form of the slender-
body theory which is compared with exact theory in Fig. 2. The ordinary slender-body theory®
gives the following expression for the pressure on a parallel portion behind a conical head (this
pressure coefficient is also the ‘ interference pressure coefficient * of Ref. 4) :

N gttt 2y (Hle : -
CP<R>_21og — — 35 V(5%) O A W

where / is the length of the cone, R is its maximum radius, %, is (¥ — I5)/ls, 8 is /(M o2 — 1),

1 Tables of the pressure distribution on cone-cylinders® calculated by the method of characteristics have recently
been published ; however, the use of these tables in the present case would have required not only a double interpolation
and extrapolation (for cone angle and Mach number), but also an awkward numerical differentiation of the results,

which would be available only at unequal intervals, in order to obtain the velocity gradients which are required for the
boundary-layer problem. S

The modified slender-body theory gives good agreement with the results of Ref. 26 (Fig. 2) and it Was felt that the

analytic formulae used would lead to greater overall consistency. The comparison of slender-body and exact theory
magde in Ref. 26 itself is wrong. '
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and U is a function tabulated in Refs. 4 and 5. The disadvantage of this formula is its logarithmic
singularity at the cone shoulder (¥, =0), but this can easily be overcome by the following modi-
fication. Since the effect represented by the logarithmic term is by far the smaller one in (2.1.1)
we replace it by a quadratic function in an initial interval of %, (0 < %, < 0-4 was taken here)
and choose the constants of this function to give C, its exact value at the shoulder (x; = 0),
and to fair it into the curve of (2.1.1), with continuity of slope, at the end of the interval (¥ =0- 4).
The exact value of C, at the shoulder can of course be calculated from Ref. 2 and Prandtl-Meyer
expansion tables. The resulting expression is

2 .
Cp(’%) :bo‘l‘bﬂl—i‘blez_z—ég U %é‘)’ 0<% <04, .- . (212

N\ | 2
#=0+ - <R> _l_ﬁR 1

b, = 16-099 — 5b,,
b, = — 24-588 4 6-2500, .

The other flow parameters required for the boundary-layer calculations (local Mach number,
temperature, etc.) were computed from the pressure coefficient by means of the exact relation-
ships for isentropic flow, which are tabulated in Ref. 6 and elsewhere. In particular, the

relationship '
Y
Yy — 1 Tt ﬁo . ]51
Cﬁ == {(1 + 2~‘~ M2> —_— E} %P0V02 »

~where (), denotes total or stagnation and ( ), denotes free-stream conditions, leads to the following
expression for the velocity gradient : ‘

14V 1 aM 1dC, My (po/p)

WZ"MO = 1 MZ>E»Z: T 2w M®(plp) T
Here dC,/dx, may be calculated from (2.1.1), (2.1.2), (the derivative of the U-function is tabulated
in Refs. 5 and 7), and the other quantities are tabulated functions of the free-stream and local
Mach numbers. ’

» was taken as 1-400 throughout the present calculations, the only inconsistency being that the
values of velocity on the cone surface given in Ref. 2 were used, and these are based on y = 1-405
(this accounts for the discrepancy in the values of C, at x4, = 0 in Fig. 2).

~ where by = C,

2.2. Calcwlation of Pressuves on the ~Afterbodies—In the calculation of the afterbody flow
fields it was assumed throughout that at the end of the parallel portion the disturbance from
the cone had completely decayed, so that the flow immediately ahead of the afterbodies was
aniform and at free-stream Mach number : in actual fact the Mach number varies, in the worst
case, from 1-604 on the surface of the body to 1-600 at infinity.

The method of characteristics was used to calculate the flow fields : one of the characteristics
networks is shown in Fig. 3. The particular form of equations used may be relevant.

The equations of the characteristic curves are of course

a :
for C, %ztan(ﬁ—}—a), L 22
and for C, % =tan (6 —a), .. . . .. .. .- oo (222)

where C, and C, denote characteristics of the first and second families, respectively, 0 is the
inclination of the velocity vector, and o is the Mach angle. The survey of Ref. 8 shows that for

3



wholly numerical calculations of high accuracy by far the most convenient form of the com-

patibility equations for axially symmetric, isentropic flow is that due to Guderley. This may
be written '

for C, =T s Wherel=4( —8), .. o (2.23)

and for C, — = -——~—“J«} , where m = L(v + 6), .. .. .. .. (224)

» being the Prandtl-Meyer angle. [, m, », 0 are all in degrees, and / and m are of course curvilinear

co-ordinates of the epicycloids in the hodograph plane of two-dimensional flows. The relationship
between » and « is carefully tabulated in Ref. 9. L

The equations in this form are not only simpler than those in terms of the velocity V, but
they also permit a sound ‘ initial guess’ to be used in the step-by-step solution at points where
the flow is nearly two-dimensional, for at such points one may write initially dl'== 0, dm == 0.

In the present problem the equation of the afterbodies is most simply written ,
ys = H1 — x,7), .. .. .. .. .. - e (2.29)
S S | | o
where by L,
so that the boundary condition becomes
0 = tan™" (— 2¢x,)

b

on the body.

Some details of the numerical solution of these equations are given in Appendix It.

3. The Method of Calculating the Boundary-Layer Properties—3.1. An Approximate Theory for
Turbulent Boundary Layers in Axially Symmetric, Compressible Flow.—The theory outlined below
is essentially a simple extension to compressible flows of the method of’ Squire and Young™> ! ;
it should be noted, however, that in referring several parameters to conditions at the wall it
differs from the extension tentatively suggested by Young himself in Ref. 12.

For the steady, axially symmetric flow of a compressible fluid the boundary-layer momentum
equation may be written (see, for example, Ref. 12)

ad ldy =~ 1dp, H-+ 24V, Ty
& Sl Al o — 3.1.1
i T [y ic T de TV AL (8.1.1)
. 5 : ‘ ’ ‘
where ¥ == momentum thickness = 4 ( 1 — K)( 1+ 7o 0) d ,
0 P}V1 V, v
| " N/ :
6% = displacement thickness = [ ( . >< 1 4 1592 >d77 ,
Jo PV v
H = 4%, ' |
(&, 1) are co-ordinates along and normal to the body profile,
y(£) is the body radius, -

1 The numerical solution of these equations was done by the Computing Section of the Mathematics Division, National
Physical Laboratory, under the supervision of Dr. L. Fox. One of the nine flow fields was also calculated at Royal
Aircraft Establishment under the author’s supervision ; the ‘ deferred approach to the limit ’ (Appendix 1) was not
used, but the resulting values of & agreed with the N.P.L. results within } per cent of the range in the field,
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(&) is the inclination of the profile,
7, is the shear stress at the wall,

and ()1 denotes local conditions outside the boundary layer.

Now the equation of motion along a streamline gives
dps _ av,
d é_ = —p 1V1 d E )
av, Mp?dV,

1d—§~__V1 dgy

C Ldp,  1dpy dpy 11
that =~ —2r_2MfP_ - o
SO a pl dE pl dpl d& Pl alzpl

and the energy equation gives

14V, 1 aM,

V, dg _ d
L A& Ml<1+y21M12> &

v

so that (3.1.1) becomes

o [ldy  H+2-M? dM, -
i i & = .
2T T i P

d _
y aé 'M1<1+7}21M12>

In order to be able to solve this differential equation we must obtain expressions for H and
, in terms of known quantities and #, and so we make the usual basic assumptions :

(3.1.2)

(A1) That the static pressure across the boundary layer is constant normal to the surface
(this is already implicit in the momentum equation), and : '

(A2) That the effects of pressure gradient and of the axially symmetric nature of the flow
on the boundary-layer profile chavacteristics can be neglected ; s.c.; that at any point on the
body H and the relation between # and 7, are the same as for a flat plate with the same local
conditions outside the boundary layer. Neglecting the effect of the axially symmetric nature
of the flow on the profile characteristics is equivalent to treating as unity the factor (1 + # cos 6/y)
in the definitions of displacement and momentum thickness.

To solve the flat-plate problem we follow the approach of Cope'® and Monaghan* and make
the initial assumptions : '

(A8) That the profile in the compressible turbulent boundary layer on a flat plate, with or
without heat transfer, is given by

;fzh%ﬂ@, R R S I |

0 k ar,
where V,w= \/ (T—’”> ,
P

(), denotes conditions at the wall, the constants £ and a have the same values as-in incompressible
flow (k= 0-400, a = 0- 111), and the logarithm is natural. Monaghan has provided some
. experimental justification for this assumption. ‘
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(A4) That Reynolds’ analogy between momentum and heat exchange is valid, so that the
temperature distribution in the boundary layer is given by

T V V:
EZI——CIT/T_—%T/?’ 7 S . . . .. « . .. (314)
_q1_1n _ L My
where Cl—_l—Tw" andcz—Tw . Mitop =)
These assumptions lead to the approximate relations (see Appendix II) :
| Wy Vy - o
" _Cexp<DVm>, .. . - .. .. .. .. (3.1.5)
where C=alk and D =k,
' H Ty  y—1_., . ‘
and Hi_—Tl_l— 5 Ml, .. .. .. .. .. e (3.1.6)

where H; is the value given by the equivalent incompressible theory with the values ¥V, p,.
The error in both these equations is given by a factor [1 4 O(V,,/V)].

We now modify equations (3.1.5) and (3.1.6) in the light of experimental results.

(i) Because of the terms neglected in the derivation of (3.1.5) we evaluate C and D not from the
known constants @ and % but to give best agreement with the formula

. T —2-58 ) )
ch=0-455(1ongw—Ti> R < X %)

which is the extension of Prandtl’s well-known formula in incompressible flow and for which
Monaghan has also given experimental justification. Now it may be shown (Appendix II) that
the same constants € and D which give the best agreement between

s ¢ exp ( D %) and  Cp = 0-455 (logy, R~

v

in the incompressible case, also give the best agréement between (3.1.5) and (3.1.7) in the com-
pressible case, and so we may take Squire and Young’s values C = 0-2454 and D = 0-3914.

(ii) Reynolds’ analogy gives for zero heat transfer at the wall 7, = T, 1.e.,

Loy r—=14,

T, = 1+ 5 M2. | |
Better agreement with experiment for this case is given by Squire’s formula

' zw — y— 1 1307 2 ‘ . | ;

‘Tl_l—}— 5 © M2, .. . .. .. . .. .. (3.1.8
where ¢ 1s the Prandtl number. This suggests rewriting (3.1.6) as -

H_ Ty v =1 e - |

H,-—T1+ 5 ¢ M2, .. .. . .. .. .. .. (3.1.9)

which also gives better agreement with experiment than (3.1.6).
We now make our final assumption :

(A5) That there is zero heat transfer at the wall.
- 6



We may then use (3.1.8) throughout, and we have for substitution into (3.1.2)

I ,
E:l—[—(y——l)ol”Mf,i .. .. .. .. . .. (3.1.10)
V.2 T, ’ Dt .
and _ Vlzszf: TN .. .. e e .. .. (8.1.11)
: " . (Vs ,
_ 1Og'<va>

Thus (3.1.2) becomes

a9 1dy  H + 2+ [Hiy — 1o — 1102 dM, |
g ) yae t v —1. i (7
(147 w)
T, D . ,
— .. .. .. .. . .. (8.1.12)

. A
w 2 1
log < va>
where T,/T, is given by (3.1.8). If the external flow field is known this differential equation can

be integrated numerically, step by stept.

3.2. Application of the Approximate Theory to the Present PrOblem.—B.Z.l; Values 'of the
constants.—The following constants were used in the approximate theory above.

H, = 1-400
y = 1-400

s = 0-715 g2 — 0-8456 - o¥/® = 08942
C = 0-2454 D = 0-3914.

+ After this work had been completed Professor A. D. Young pointed out that in problems of axially symmetric flow
it is important to work with the displacement and momentum areas, »

Age = 2my6* and Ay = 2myd.

Thus equation (3.1.12) may be written
dds  H, + 2+ [Hfy —1)o*f — 1102 dMlA

d _ 7
d M, (1 +V-—1M12>

2

— Oy =% *__L_
= 2my Ty, ( AV, >

log? | ——

2myCy,

and, unlike &, A4 remains bounded as y — 0.

Further, it is not the displacement thickness ¢* which should be added to the body profiles, but the ‘ effective dis-
placement thickness * §,*, which corresponds exactly to the displacement area and is therefore defined by
" Age = msec B [(y + 6, cos0)2 — y?]

or : &% =secO[—y + V(O* + 296% cos 0)] .

o* and §;* are equal to first order in (6*/y), so that one might expect that the error of adding 6* instead of §,* to the
profiles would not have too great an effect in the present work. Estimates have in fact indicated that this effect is of
the same order of magnitude as the error introduced by the use of linearized characteristics but of opposite sign.
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-Viscosity was evaluated from Sutherland’s formula, which, using the values given in Ref. 15,
may be written -

‘T:s/z
T+ 117

where the temperature 7 is in degrees Kelvin.

Y= 3-0997. . 107® slugs/ft-sec,

3.2.2. The boundary layer onthe cone and the transition pownt.—To start the boundary-layer
calculations the following assumptions were made :

(i) That the transition point occurred at the cone shoulder.

(if) That the momentum thickness was continuous through the transition point.

- These assumptions were made because of the difficulty of predicting the transition point
accurately, because the initial boundary layer was expected to have only a-small effect on that
over the afterbodies, and for the sake of convenience ; they may, however, be unnecessarily crude.

To calculate the laminar bﬁundary layer on the cone the result’® was used that for a flat plate
and a cone with the same external flow

) :
?(cone) = 3 9 (flat plate).

This relation again treats as unity the factor (1 + 5 cos 6/y) in the definition of the momentum

thickness on a body of revolution. For calculation of the laminar boundary layer on the equiva-

lent flat plate the analysis of Ref. 17 was used.

3.2.3. The practical form of the differential equation for 9.—The differential equation (3.1.12)
forms the basis of calculation of the turbulent boundary layer on the parallel portion and after-

bodies, but its solution is more convenient if the variables %, and x, are introduced in place of &.
We have for the parallel portion :

a _dx
dx,  dx,
and for the afterbodies
C—;lf; _ ;—; — V(14 4P,
ldy 2 aw
y dé 1 — %2 dg
Hence (3.1.12) may be written
@ glX)

ﬁ-logz [5(%) (X)) MX)9(X) , . . . .. . oo (3.2.0)
where for the parallel portion
» X = x
o) = I 7 DF
J(w) = ViCl»,
h) = H;, + 24 [Hfy — 1)o¥® — 1]M,*dM, _3-4000 — 0-4992M.* dM,

- q M1+ 0-20  d,
M1<1 TR 1.M12> B 0200 dx
8
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and for the afterbodies
X =z,

T, .,
glw) = Li/(1 + 48 %) 7 D

J(o0) = ViClr _
2%, n 3:4000 — 0-4992M 2 dM,
1 — %2 M, (1 4+ 0-2M3  dx,

The functions g, 7, and % of course depend only on the external flow and on the equation for the
“wall temperature (3.1.8). Details of the numerical integration are given in Appendix [.

hx,) = —

3.2.4. Skin fm'ctzb%.—Equatlon (3.1. 11) glves the local skin-friction coefficient as

Tw 1
Cf —

%Pl Vlz < >

For the parallel portion this may be written

T log® [#(%:) 7(.)]”
and for the afterbodies
4 Lan/ (1 + 48°2,7) log [ (%2) 7(%2)]

Thus C; follows immediately from integration of the differential equation.

The total skin-friction coefficient for the parallel portion is given by

1 [ 2w pVe | |
C, = — , s 2aR dx, e .. ‘e .. 2.
’ AaL log"Ta () ()] eVt - ¥ 822

and that for the parallel portion and an afterbody together by

2:0
Cpm o {J 2800) _mVi o b

A+ Ao | | 1og¥[#(x) j(x)] poVo®
0-648 2g<x ) .V 9
2 PiVy :
. 2aR(1 — x,%) d . .. 2.
*JO TogTT0 (w2 s po¥et 0 ) %} 929
where 4, and A, are the wetted areas of the parallel portlon and afterbody, respectlvely, so that
A, = 32=R?,
0-648
and A, = J 2aR(1 — x,%) /(1 + 48°%,%) 1, dx,
.. :

A T 1 X 1
— 2 2 2, 2 Z &inh-1
= 2at 1, [(1 + 16t2><2 /\/(1 + 4%,%) + 4dfsmh : 2tx2>

~ 16y, o 1+ 4% )WJ ’

X, =0-648

9



4. The Method of Calculating Pressure Distributions on the M odified Afterbodies.—4.1. The
Geometry of the Modified Afterbodies.—Integration of the differential equation (3.2.1) left us with
values of # and d#/dx, at the integration stations. The modified afterbodies were then defined by

y=R(l — ) +o%/(1 4+ 482, .. .. .. .. .. (411
where 0% = H[1 + (y — De'2M )9,

and their slope was given by

gy 1 . T 2, 2 fi_ajé
| ar {— 2R% + A gy O T VAR S
where o o ' .
ds*  do | aM : '
woo _ %Y 41 . 1300 2 y Ay 1/3 il .. 1.
e = H1+4+ (y — )o'?M,*) + 20H,(y — 1)o'?M, i - (4.1.2)

For the work of the following section the co-ordinates of the modified afterbodies were multi-
plied by ¢/[R + 6%, _,], in order that their boundaries should start at the same points as
those of the original bodies in the characteristics diagrams (Fig. 3). Thus variables x,, y; were
introduced, comparable to x,, ¥,, such that 4 A

Xy Vs 1 ‘ _ ) 1
x—lp— I, o y L1+ (0% 0 [R)] - La(1 4 &)

and the equations of the modified bodies in the charactel‘istics- diagrams became

. {t[l — X2 (1 4 &)%) -+ /{1 + 42%,%(1 + €)% (Z} . .. (4.1.3)

For the presentation of results, however, the modified bodies were scaled up again by the
factor (1 4 ¢), and account ‘was taken of the fact that the pressure had been assumed constant
in the boundary layer along lines normal to the body surface, and not along lines x, = constant.

4.2. The Method of Linearized Characteristics.—To calculate the change in the pressure distri-
butions on the afterbodies due to the presence of the boundary layers Ferri’s method of linearized
characteristics®® was used. The essential basis of this method is as follows.

Consider perturbations superposed upon a known flow field such that the original velocities
(24, vy, 0) are changed to (ue + %4, vy + vi, wy), Where (u,, v;, w,) are small. By writing down the
exact differential equation of supersonic flow first in terms of (e, + 44, v, -~ v;, w;) and then in
terms of (u,, v,, 0), subtracting the two equations, and neglecting terms of higher order than
the first in (#,, vy, w,), Ferri obtained a differential equation for (u,, v, w,) whose characteristic
curves are those of the original flow field, that is i

'%:tan(ooiao): o . .. .. (42.1)
(It is important that the characteristic curves of the differential equation for the complete new
flow (#y -+ %y, v, + v, w,) are not those of the original field.) Ferri went on to develop the com-.
patibility equations of the perturbation field ; however, he worked with variables which were
‘not considered to be the most convenient for the present problem. His compatibility equations
for isentropic axially symmetric flow have therefore been transformed into the following form
(Appendix III) : - '
' doy a0,

. dag

— (DF, + E,)0, — <G1 iy + El> o =0, .. (422)
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and for C, 6% — DZ% + (DuFs + Exbs — <c;2 %" + E2> o = 0, (423

where A
. _ 2sinfoyFy — 1
D, =D, = 2 cos? &,

E, — (%)  2sin (8, — @) ) E, — <ci_ocu 2 sin (64 -+ &)
@

ay sin 2, sin (0 + o, ay o sin 2, sin (0, — o)
_sin (8, — &) 1 7 — sin (6, + o) 1
Y sin (0, + o) 27 sin (0 — o) ¥
2y + 1)

G]_ - Gg - ta]fl OCOZ Sinz

o+ (y — 1)

(doto[dy)qy and (doco/dy)(z) are total derivatives along the first and second family characteristics,
respectively. Because the coefficients are all known no iteration is required in the solution of
these equations. A convenient form of procedure for solving the equations is given in

Appendix III.

Calculations by the method of linearized characteristics were made in the present work only for
the four cases ¢ = 0-1, M, =12, 1-6 and { = 0-2, M, =12, 1-6. For the other five cases
the results in the form 4C,/|C,ma| were interpolated linearly with respect to M, and ¢, for x, > 0.
The systematic variation both of the changes in the boundary condition and of the results for
AC,[|Cpum| (see Fig. 5) suggested that very little accuracy was lost by this interpolation. 'The
two-dimensional pressure jumps at x, = 0, which are discussed in section 5.2, were calculated
exactly for all nine cases.

5. Results.—5.1. General.—The principal results of the calculations are presented in Tables
1 to 4. The results for inviscid flow, with the exception of the parameter dV,/V, dx for the
afterbodies, are considered to be accurate in general to the number of places shown, but they
are of course subject to the assumptions of the theory used. In the results depending on the
boundary-layer calculations, and in the values of dV,/V, dx for the afterbodies, the last figure
has probably little or no absolute significance, even within the assumptions of the theory ; it
has been included because in certain cases it is believed to be significant in indicating the change -
in a parameter between adjacent points (e.g., in the values of 6* over the initial part of the
afterbodies).

Where they illustrate points of interest, the results have also been presented as graphs : these
figures are mainly self-explanatory, but certain features of them are discussed below.

5.9. Pressure Distributions and Wave Drag Coefficients—The complete pressure distributions
on the bodies in inviscid flow are shown in Fig. 4. The changes in afterbody pressure due to the
presence of boundary layers are shown in Fig. 5, and the afterbody pressure distributions, with
and without this effect, are shown in Fig. 6. It is apparent that the boundary layers can cause
pressure changes of the order of 12 per cent of the peak suction. The changes in pressure at the
beginning of the afterbodies are two-dimensional pressure jumps, resulting from the slope of
the modified afterbodies at %, = 0 - ; in practice these discontinuities would of course be rounded
off, but some remnant of the pressure change might still appear, distributed over a finite interval.

Results obtained by exact characteristics theory are compared with those of the linearized
characteristics method in Fig. 6¢ for the case { = 0-2, M, = 1-6, which was expected to be the
worst case from this viewpointi.

+ The exact characteristics calculations were done by Mathematical Services Department, R.A.E., under the super-
vision of P. Birchall. The technique was that outlined in section 2.2 and Appendix I. ‘
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In Fig. 7 the pressure and drag coefficients predicted by the slender-body®*® and quasi-cylinder®?
solutions of the linearized equation are compared with the results of the present calculations
for inviscid flow. The two cases shown are the best and worst from the viewpoint of linearized
theory : it is apparent that for a given value of ¢ the slender body theory is rather less accurate
for afterbodies than it is for forebodies and that the quasi-cylinder theory fails to predict recom-
pression towards the rear of the bodies. The apparent discrepancy in Fig. 7a, where the quasi-
‘cylinder theory underestimates the magnitude of the pressure coefficient but overestimates the
drag coefficient over the initial part of the afterbody, is due to the approximate expression which
this theory uses for the derivative of the cross-sectional area. The slender body formulae are? :

‘ o 2% 11
_ 2 2 2 2
C, =4t [(3962 — 1) log ﬁ—‘t(l o —5 sz ,
9 10 11
27 2 2 2 4 ~ 72
and | Cp = 441, [2(1 —,Zz)logﬁt(1 i —3 Lt - 5 Ly —IJ,

where I 1s the ratio of the truncated body length to pointed body length.

In the quasi-cylinder theory the choice of mean radius is always arbitrary : for the pressure
distributions of Fig. 7 arithmetic means of ‘the radii at », = 0 and x, = 0-648 were used, but
for the drag coefficients arithmetic means of the radii at %y, = 0 and x, = I, were used. The
resulting formulae are® : ‘

: 2x.
_ 2 2 et S — 0.
Co=—20(2—19 U, [ 5 l,;)J . 1= 0-648,
o B 21,
42 ~ 7 2\4 - &
and Cr=18. 52— 1) T[Mz zzz)J’

where U, and T are functions tabulated in Ref. 4.

While the accuracy of these theories leaves something to be desired where practical applications
are concerned, -the supersonic similarity law, which is also based on the linearized equation,
provides a useful means of generalizing results for quite large values of g¢ and for all %, and Ly.
This law states that for geometrically similar bodies C,/## and C,/# are functions of x, (or Z,)
and g onlyt ; it is particularly useful because for moderately slender bodies at high Mach numbers
it goes over into the hypersonic similarity law'® %, :

The extent to which the law holds is illustrated by Figs. 8 and 9 ; the results shown are of
course those for inviscid flow. It may be noted that although the results for different bodies
do not ‘ collapse ’ completely into a single curve, the error of the law is systematic and nearly
always in the same direction ; that is, if the curve for some particular thickness ratio (or some
particular Mach number) is assumed to be unique, it will always overestimate the drag for larger
thickness ratios (or lower Mach numbers), and underestimate the drag for smaller thickness
ratios (or higher Mach numbers). This trend also appears in other applications of the similarity
law®. Thus if it should be required to use the law to obtain results of really high accuracy,
this could be done by plotting known results for ¢ = constant (or M, = constant) according
to the law, and by then applying a small correction when this data is applied to unknown flows.
This correction would be of the form

2 CD> ‘ ) (Cb)
= =5 At or - —
ot < A ;flﬁ = constant a]‘/‘[o tz’

, = constant
and the value of the partial derivatives could be estimated from such results as those of F ig. 9.

AM,
fit = constant

I, ='constant

1 Clearly an alternative form is that Cpl2/¢* is a function of /, and ft/l, only : this is the form that has been used
in Fig. 9. ) :
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The present results for the pressures and drags on parabolic afterbodies have been generalized
by means of the similarity law and presented in a form suitable for design use in Ref. 22.

5.3. The Boundary Layers—Fig. 10 shows the growth of the boundary-layer momentum and
displacement thicknesses along the bodies ; the effect of Mach number is illustrated in Fig. 11.

Over the rear half of the parallel portion, where the pressure gradient is negligible, a good
approximation to the boundary-layer growth is given by

4 =K R, x-

where x is measured from the effective starting point of the turbulent boundary layer (obtained-
by extrapolation to ¢ = 0) and R,, is based on free-stream Mach number. Values of K obtained
from the present results are compared with those predicted by the 1/7 power law for the velocity
profile on a flat plate™™ in the following table.

K (from K

M, present - (flat plate) '
results) :

12 0-0375 0-0328

1-4 0-0354 0-0318

1-6 0-0335 0-0307

The increased values of K here are of course due to the initial adverse pressure gradient.

The rapid thickening of the boundary layer towards the rear of the afterbodies is due princi-
pally to the axially symmetric nature of the flow : since mass is conserved between adjacent
stream surfaces, these surfaces must diverge appreciably when the radius of the body becomes
sufficiently small. In the boundary-layer momentum equation this effect is realized by the term
dyly d&, which becomes the dominant one. '

The marked growth of the boundary-layer displacement thickness is of course responsible for
- the appreciable pressure changes encountered above.

Total skin-friction coefficients are presented in Table 4 : the corresponding values of flat-plate
skin friction, as predicted by Cope’s log law'?, are also given for the sake of comparison. The effect
of pressure gradients is seen to be negligible, but it must be remembered that the boundary
layers on the bodies were assumed to have flat-plate profiles of the type used in Cope’s theory.

6. Conclustons.—The emphasis in this work has been on the presentation of quantitative
data in a systematic form, suitable for comparison-with experiment ; consequently there is little
of a new or startling nature in the conclusions below. They are, however, felt to be fairly generally
valid for the afterbody problem.

(i) The slender body and quasi-cylinder solutions of the linearized equation do not predict
the inviscid flow over afterbodies as accurately as they do the flow over forebodies and
parallel portions ; the slender body theory gives good accuracy only for extremely small
values of the parameter g¢ (for ¢ > 0-07 the error is more than 10 per cent), and the
quasi-cylinder theory fails to predict recompression towards the rear of the bodies.

(if) The supersonic similarity law, which is also based on the linearized equation, is a useful
tool for generalizing particular inviscid flow results ; if the pressure and drag coefficients
on bodies with maximum slopes up to 0-4 are plotted according to the law, the maximum
deviation from a mean curve is about 5 per cent, and this error is nearly always a systematic
one for which allowance could be made. :
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(iii) As at subsonic speeds the boundary layer towards the rear of an afterbody thickens
extremely rapidly. On the modified afterbody which results from adding the displacement
thickness to the body profile, suctions were reduced by as much as 12 per cent of the
maximum in the present calculations, and ‘towards the rear of the body this effect is
increasing rapidly.

(iv) The effect of pressure gradients and of axially symmetric flow on the total skin-friction
drag of a turbulent boundary layer appears to be negligible.

LIST OF SYMBOLS

(Symbols which appear only once in the text and are defined there are not included in this list.)

Constant in the equatlon of the turbulent boundary-layer profile (3.1.3)
and (I1.1)

Constant used by Squire and Young, equation (3.1.5)
Characteristic curve of the first family

Characteristic curve of the second family

Wave drag coefficient based on maximum cross-section area
Total skin-friction coefficient, based on 4p,V,*

Local skin-friction coefficient, =,/3p,V,*

Pressure coefficient (p — Po) /2p[,V0

1 —T,/T,

T MPT[M?® + 2/(y — 1)]

Constant used by Squire and Young, equation (3.1.5)

Coefficients in the compatibility equations of the linearized characteristics,
equations (4.2.2), (4.2.3) or (II1.8), (II1.9)

Function appearing in the boundary-layer momentum equation (3.2.1)
5% _ '

Function appearing in the boundary-layer momentum equation (3.2.1)
Function appearing in the boundary-layer momentum equation (3.2.1)

Constant in the equation of the turbulent boundary-layer profile (3.1.3)
and (IL.1)

Length of truncated afterbody/length of afterbody continued to a point
Length of afterbody continued to a point

Length of forebody

Length of parallel portion

Mach number

Static pressure
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LIST OF SYMBOLS—continued

Maximum radius of body

Reynolds' number based on body or plate length

Cross-section area

Thickness ratio R/,

Veioci’ty (inside the boundary layer in section 3.2 and Appendixl 1)
V (Talps)

Axial co-ordinate (inches) measured from the nose
(x — In)ls |

(x —lp — L) /14

See equation (4.1.3)

Radial co-ordinate (inches)

Y4

See equation (4.1. 3)

Mach angle

v (Me* — 1)

Ratio of the specific heats of air

Boundary-layer thickness

Boundary-layer dispiacement thickness

VVl/er

Co-ordinate normal to the body surface

Angle between the velocity vector and the x-axis
Boundary-layer momentum thickness

Kinematic viscosity

Co-ordinate along the body surface

Density

Prandtl number

Shear stress

Conditions in the free stream o7, in the linearized characteristics method
conditions in the original flow field

Conditions outside the boundary layer o7, in the linearized characteristics
method, perturbations in the flow field

Conditions in an equivalent incompressible problem
Total or stagnation conditions

Conditions referred to the density, viscosity, or temperature at the wall
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APPENDIX 1

Some Details of Various Numerical Problems

1.1. Application of the Exact Method of Characteristics—The differential equations (2.2.1)
to (2.2.4) were replaced by difference equations, of the form :

for C, % = tan (f + a)

Al 90 sinfsinag 1
where (=) denotes the arithmetic mean for the characteristic increment in question, and these
equations were solved by iterating until no significant change appeared in the values at a new
point. ‘
Calculations were made for two different mesh sizes, 4x, along the initial characteristic (Fig. 3)

being taken as 0-1 and 0-05, and the results were extrapolated to zero mesh size by means of
the ‘ deferred approach to the limit,” given by

f0) = £(0-05) + 3[f(0-05) — f(0-10)] .
The correction f(0) — f(0-05) had of course to be interpolated at those points which had only
been calculated with the smaller mesh.

1.2 Integration of the Boundary Layer Equation.—The stations used for integrating the dif-
ferential equation (3.2.1) were :

%, = 0, 0-05, 0:10, 0-15, 0-20 ; 0-40, 0-60, 0-80; 1-20, 1-60, 2-00.
%, = 0, 0-054, 0-108, 0-162, 0-216 ; 0-324, 0-432, 0-540, 0-648.

The values of %, were of course chosen to suit the pressure gradient over the parallel poftion.
The reason for choosing the values of x, was as follows.

The characteristics calculations gave values of « (and therefore of M, C,, etc.) at unequal
intervals along the body profiles, the intervals of #, being of the order of 0-1 : the equally-spaced
points x, = 0, 0-108, .. .., 0-648, were chosen because they seemed the best means, towards
the rear of the bodies, of the x,-values at which the data was given. ‘
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Values of M at these points were obtained by means of Newton’s interpolation formula for
unequal intervals. Further values at x, = 0-054 and 0-162 were then obtained so that the
effect of the strong initial pressure gradient could be carefully observed.

The derivative dM,/dx, was obtained by means of the four-strip formulae of Ref. 23. The
equation (3.2.1) was integrated by using first the forward integration formulae and then the

four-strip and three-strip formulae of Ref. 24, and iterations were made until no significant
changes in ¢ and d#/dx, or d9[dx, appeared.

The total skin-friction integrals in equations (3.2.2) and (3.2.3) were also evaluated by the
four-strip and three-strip formulae of Ref. 24. '

1.3. Evaluation of Afterbody Wave Drag Coefficients.—The afterbody wave drag coefficient is

defined by
2 ,
o ZJ ¢, 205 g,
Q

?75(0)

Iy
= — J' CP 4%2(1 - 9022) dxz -

0

This coefficient, and the corresponding increment AC, due to the displacement effect of the

boundary layer were both calculated by means of the four-, five- and six-strip formulae of Ref. 24,
the integration stations being x, = 0, 0-108, . . .. , 0-648.

L.4. The Numerical Procedure in Applying the Method of Lincarized Characteristics.—In the
linearized characteristics calculations, 4x, along the initial characteristic was taken as 0-05.
In order to reduce the amount of labour by exploiting to the full the work of the original calcula-
tions, the original results for dx, = 0-05 were used, and not those depending on the deferred

approach to the limit : the resulting error was certainly less than the error of O(«,*) due to the
linearized method.

A great deal of interpolation of values at unequal intervals was required in these calculations,
because the new boundary condition had to be applied at points off the original body (Fig. 3),
so that (0, + 6,) had first to be extrapolated slightly onto the original body, and at the end of
the calculations («, + o) had to be interpolated back onto the modified body. These interpola-
tions were performed by means of the Newton formula for unequal intervals along characteristics
of the second family, as many strips, up to four, being used as were available : this procedure
was consistent because initially, where only one or two strips were available, 0, 6,, and the
distance over which we were interpolating, were all extremely small.

Interpolation of the boundary condition along the modified body was also required. For this
Bessel's formula for equal intervals was used, the coefficients being tabulated in Ref. 25.

APPENDIX II

Derivation of Log Law Formulae for the Turbulent Boundary Layer

The assumptions of section 3.1 regarding the compressible, turbulent boundary layer on a flat
plate define the relations :

|4 1 Yl V—r ®

= - log

V.. k vy . .. . - .. .. .. . (II.I)
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and Tw = 1 Cy Vl Co T/? ’
where c =1 — 2’1 Co = 2” M
v T,’ PTTTSME 2y — 1)
LoV 1
Now P = P <1 — —> dn ,
JVO P1V1 Vl K
and writing V/V, = z we obtain '
p_nh_ T, 1
pr T T,1—cz—c®’
n = exp (kz%) TC?Z .
Hence :

1
T eV, [T 1= 2) v,
?= T. V..t JO | — o —c? P < b 7 ) 4

T, ahV, exp (AV4/V..)

- ir Vzwz ) (le/er)z(l — ¢ — 02> [1 + O(VTW/Vl)]

av .,

TRV,
which is equation (3.1.5).

§
6*:J (1—— pV>d17
. PV
1
e V.
:mﬁkﬂ R == CU G AL
o , - ' Tw .

[1 + O( I71'10,/171)]

exp (RVyV.) [+ 0(V./V)], ..

Similarly

v RV (1 cy) exp (BV1[V.y)
Vet (I — e — )RV V)"

_av, 1+ ¢
RV — 6 — o,

eXp (kI/I/V‘rw)[l _|_ O(er,/Vl)] .

14+ ¢

6%{6

[1+ O(Veu/ V)] -
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In the incompressible case ¢; = ¢, = 0 and H ,==1-0, so that we may write

H 1+4c
- 1—c—o (1 + O(V../ V)]

1_01—62

T —1 :
S M| 14 0V, V), N | § 8 )
T, 2
which is equation (3.1.6). ' |

It remains to be shown that the constants C and D used by Squire and Young in the incom-
pressible case can be taken over to compressible flow.

In the incompressible problem we have

§ = — CePt, S 0 £ )

where == ==

@ 1 C ' ) -
PPl il .. .. .. .. .. .. .. (I1.9)
Hence ,
1" 28
CF:;JCfde?. .. e .. .. .. (IL.10)
0

Following Squire and Young, we assume that (I1.8) is exact, and use (I1.9) and (I1.10) to trans-
form it into a relation between C and R, (the Reynolds number based on plate length), lower
order terms in ¢ being included. In (II.8) we have

9 o 4L
dx V1 CDe ax’
so that (I1.9) becomes
ac 1
i epee 2
VFD Pl .. .. . . .. .. .. (IL.11)
Vid _ o conf e 2 2N _2C
and hence = R, = Ce (C — DC —+ i) D (I1.12)

where the constant of integration has been chosen to give x = 0 at { = 0.

Again in (I1.8)
V.8
log ( C >

1 VixCe\ _ 1 R,Cy
Dlog( 2vC> lo < > .. e .. (11.13)

wy
!

ol=

by (I1.10)



Hence (I11.12) becomes

. RC[[1. /RCNT 2., (RCN 2] 2
R, = 9 {[D10g<2c >} _D210g<2C>+D2}—D2' .o (I1.14)

The constants € and D were chosen by Squire and Young to make the relationship (1I.14)
between R, and C; as similar- to Prandtl’s as possible.

In the compressible case we have

ﬁ:%@@a O ¢ § 8 )
1 .

@ _lp G
and a2 .. .. .. e .. .. .. (I1.16)
| [ 29 _—
Hence CF:’;J Crdx = - .. .. .. . . . .. (I1.17)
. 0

In place of (II.11) we have

Ve de 1 p, _ .
lecperfiogte L (L)
/X ) i 2 2 2 '
and hence T’le gil” = R, % = (e <Cz -5 ¢+ ) FC; . .. .. .. (IL.19)

In place of (I1.13) we have
1 VN
lqg (va>

L (Ve L (Reilre Ty o
_jf%<2%c>_jﬂ%< G ) e e e (120)

Thus R, ,T./T,and Cp,in equations (II.19) and (II.20) have exactly replaced R, and Crin equations
(I1.12) and (I1.13) ; and the problem of finding the best C and D for agreement with the extension
of Prandtl’s formula (in which R, and Cr have also been replaced by R,,1,/T,and Cg,) is the same
as in the incompressible case.
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APPENDIX III

The Compatibility Equations of the Linearized Characteristics
Method in Isentropic, Axially Symmetric Flow

For isentropic, axially symmetric flow Ferri’s compatibility equations are® :
for C,
1 4V, a0

—VD Te tan «, d_xl
e £, e
+ !:T/I'O - tan® o, (l + 2))?1—1&—1;)
ek S (R L0 T

and for C,

0y

14V d
175 —}—tanocod

[tal n (0, + ) 1 1 <dv> _2Zcos (0 + a) )] "

(0o — )y Vo dw ) S 20 €OS (04 — o
o 1dv,, y —1
- [Vu dx 1an‘ a°< ™ 25111 ocﬂ)
av,\ cos (0, + Mo) RS y—1 v,
( >1) cos %) COS? ot <1 ™ 2 sin? 0(0>J Ve 0, - (111.2)

where V,, 0, and «, are, respectively, the magnitude and inclination of the velocity vector and the

Mach angle in the 011g1nal flow field, and (V, 4- V) and (0, 4 0,) are the magnitdde and direction
of the velocity vector in the new flow.

Now writing V/a, = V, where a, is the velocity of sound at stagnation conditions, we have
from the energy equatwn

R -+ sin® - .. .. . .. .. .. (II1.3a)
1 y — 1 :
(70 T 171)2 =5 -+ sin® (e, +- ocl) .. .. .. .. .. (IIL.3b)
hence —~V~13 = — oy SiN %y COS o + O(e,?). .. .. .. .. . .. (II1.4)
1]
. y — 1 .
Writing 5 + sin® oy = o

22



—172
J

we have Vo=
dvo _ %W—S/Z Sj.n 2“0 dao,
Vl _— %‘ 0611/1_3/2 Sin 2@0,
AV, = — Ly=%*sin 20, dot; — Sou[— Sy~ sin? 2a, + v =¥ 2 cos 200]dexq
;—1 = % = — Lloyp~* sin 2y, .. .. .. .. .. .. (IIL.5)
0 0
d;“:——lz—w“lsin%codoco, .. .. .. .. ce .. (I1L.8)
0
dVl -1 1 3,,—2 o112 —1 ’
o= Ly=tsin 20 dot; — Fo[— 3y % sin® 200 + 97" 2 cos 2og)de,. .. (I1L.7)
1]

Upon substitution of (II1.5), (IIL.6), (II1.7) and the relations
d
;Z% — tan (6, - ) ,

and after considerable reduction, the compatibility equations (III.1), (III.2), become those in
the main text, namely

for C, d“l + D, f;y (D.F, + E)6, — < day | E) o =0, .. (IIL8)
d a9 d
for C, diyl_ . d1+ (DyF, + Ey)6, — (GZ ;;yi—l—E> o =0, .. (IIL.9)
- _ 2sinfay+y — 1
where D, =D, = 5 cos” oy ,

cloco 2sin (0, — o) 5 daty 2sin (0, + o)

@ S0 200 sin (0, + &)’ P\ dy o Sin 20810 (6, — o)’
__sin ( %) 1 ro_ sin (8 + o) 1

' sin (6 —|—-oc[,)y T sin (0, — o) ¥

3

2(y + 1)
OCO—I—')/_]".

@, and 6, can obviously be in degrees, but o, must be in radians.

G, = G, —tanocOZSln

In applying the method, the coefficients D,, E,, etc., and also the coefficients p,, ¢,, etc., below,
may be evaluated in terms of 4,, a,, and ¥ the a11thmet1<: means for each strip ; the deuvatlves
in £, and E, can be evaluated by averaging the values of 4a/4y on the strips on either side of,
and of opposite family to, the strip in question. This last step is consistent with the order of
accuracy of the calculations only if the difference in length of adjacent characteristic strips of
the same family is O(4%?) : this condition was satisfied in the present case.

It is worth noting that in a field of finite extent considerably less labour is required to evaluate
the coefficients immediately in terms of mean values 0,, &, and #, than is required to evaluate
the coefficients at all the intersection points in the field, and then to calculate mean values of
these coefficients on the strips: the accuracy, as predicted by mathematical order arguments,
is the same for the two methods.
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To proceed from a point A, where (o1, 8,) are known, to a point C where (o, 6,) are unknown,
by means of a characteristic strip of the first famil

y, we replace the differential equation (I11.8)
by the following difference equation : :

(ot — %14) + D1(91c — 0;4) — (DFy + E). %(610 + 01A> . (yc — Ya)

- [(O('OC _ O(DA)GI + El(yc »— yA):I B %‘(alc + “1,1) —_ O. .. « . (III.lO)
This may be written

Ric = Pr0ty 4 G014 — 710;¢,

. (ITI.11)
where my = (e - % 4)G1 + Ei(ve — va4)],
Ny = %(DIFI'\;"'_ El)(yc - yA):
14+ m,
Pr= 1 —m’
_ Dt
ql - 1 . ml »
- Dy—m
71 e 1 . ml b
Similarly, for a strip BC of a second family characteristic we obtain
Oic = Pallyp — @015 4+ 7.0,¢, (III'IZ>
where My = 3[(%oc — ttop)Gs + Ea(ye — ¥35)] '
Wy = %(Dze + Ez)(yc - yB) »
1+ m,
pz 1 . mz ]
Dz ~+ %,
BET oy
y D, — #n,
PO — o,

When 6, is given by the boundary condition (I11.11) or (II1.12) are used, but for a point within
the field the two are solved simultaneously, so that

1

o = = Bma + @lis — b + @) . L. (IILI3)

An analysis of the above procedure of the type given in Refs. 8 and 18 shows that the error
is the larger of

Ofo*) and O(oy 493,

the former being inherent in the theory of linearized characteristics. In principle the error

represented by the second O-term cannot be reduced by iteration or by a more complicated
procedure, but only by tightening the mesh.

More particular details of the numerical procedure used in the present case are given in
Appendix I. '
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TABLE 1

Flows Along the Parallel Portion

. 1 dv, 9 - 5% @ a0
M, —C T g dxy dxy o
’ Vidx (in.) (in.) (i) (in))

(@) My —=1-2
0 {4116 | 0-2484 | 0-9071 | 0-0020 | 0-0048 | 0-0384 | 0-087L | 0-00344
0-05 1.3440 | 0-1748 | 0-5530 | 0-00388 | 0-0088 | 0-0348 | 0-0750 | 0-00299
0-10° | 1-3049 | 0-1208 | 0-3489 | 0-0055 | 0-012¢ | 0-0323 | 0-0685 | 0-00278
0-15 1.2801 | 0.1001 | 0-2275 | 0-0071 | 0-0157 | 0-0308 | 0-0638 | 0-00264
0-20 1.2463 | 0-0809 | 0-1589 | 0-0085 | 0-0189 | 0-0286 | 0-0803 | 0-00255
0-40 2336 | 0-0428 | 0-0699 | 0-0139 | 0-0302 | 0-0256 | 0-0584 | 0-00232
0-60 1.2187 | 0-0240 | 0-0303 | 0-0188 | 0-0403 | 0-0233 | 0-0489 | 0-00220
0-80 2118 | 0-0152 | 0-0154 | 0-0233 | 0-0498 | 0-0219 | 0-0463 | 0-00212
1-20 2060 | 0-0077 | 0-0055 | 0-0317 | 0-0676 | 0-0208 | 0.0429 | 0-00202
1-60 1.2036 | 0-0048 | 0-0026 | 0-0897 | 0-0843 | 0-0193 | 0-0409 | 0-00193
2-00 2024" | 0-0031 | 0-0014 | 0-0472 | 0-1003 | 0-0187 | 0-0395 | 0-00187

() My — 1-4
0 1.5822 | 01686 | 0-4382 | 0-0018 | 0-0049 | 0-0342 | 0-0878 | 0-00328
0-05 1.5394 | 0-1323 | 0-3098 | 0-0034 | 0-0089 | 0-0804 | 0-0748 | 0-00284
0-10 1.5009 | 0-1081 | 0-2242 | 0.0049 | 0-0125 | 0-0286 | 0-0691 | 0-00264
0-15 1.4890 | 0-0869 | 0-1659 | 0-0063 | 0-0158 | 0-0272 | 0-0640 | 0-00251
0-20 14736 | 0.0725 | 0-125¢ | 0-0076 | 0-0190 | 0-0261 | 0-0620 | 0:00241
0-40 1-4397 | 0-0809 | 0-055¢ | 0-0126 | 0-0306 | 0-0234 | 0-0549 | 000220
0-60 14238 | 0-0241 | 0-0278 | 0-0171 | 0-0412 | 00217 | 0-0510 | 0-00207
0-80 4155 | 0-0157 | 0-0153 | 0-0213 | 0-0511 | 0-0205 | 0-048% | 0-00193
1.20 1.4079 | 0-0081 | 0-0058 | 0-0291 | 0-0697 | 0-0190 | 0-0450 | 0-00188
1-60 1-4048 | 0-0049 | 0-0028 | 0-0366 | 0-0874 | 0-0181 | 0-0431 - | 0-001SI
2.00 4032 | 0-0033 | 0-0015 | 0-0437 | 0-1043 | 0-0175 | 0-0416 | 0-00175

() My —1-6
0 7720 | 0-1272 | 02787 | 0-0017 | 0-0050 | 0-0817 | 0-0918 | 0-00312
0-05 7381 | 0-1044 | 02107 | 0.0032 | 0-0002 | 0-0277 | 0-0775 | 0-00269
0-10 7126 | 0085 | 0-1613 | 0-0045 | 0-0120 | 0-0261 | 0-0715 | 0-00249
0-15 6934 | 0.0727 | 0-1251 | 0.0058 | 0-0164 | 0-0248 | 0-0671 | 0-00237
0-20 6788 | 0-0619 | 0-0984 | 0-0070 | 0-0197 | 0-0239 | 0-0642 | 0-00228
0-40 6449 | 0-0361 | 0-0431 | 0-0115 | 0-0317 | 0-0215 | 0-0571 | 0-00207
0-60 6285 | 0-0231 | 00241 | 0-0157 | 0-0427 | 0-0201 | 0-0583 | 0-00195
0-80 | 1.6198 | 0-0157 | 0-0148 | 0-0196 | 0-0582 | 0-0191 | 0-0508 | 0-00187
120 6101 | 0-0083 | 0-0058 | 0-0270 | 0-0728 | 0-0178 | 0-0475 | 0-00177
1460 6062 | 0-0051 | 0-0020 | 0-0339 | 0-0913 | 0-0170 | 0-0454 | 0-00170
0-20 6041 | 0-0034 | 0-0016 | 0-0406 | 0-1092 | 0-0164 | 0-0439 | 0-00164
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TABLE 2
Flows Along the Afterbodies

1 dv, ad do*
Xy M, — G, V, di, 04 o* s, dix, C; AC,t
2 (in.) (in.) (in.) (in.)
(@t=01M,=12
0 1-2000 | 0 0-2850 | 0-0472 | 0-1002 |—0-0130 |—0-0025 | 0-00187 |—0-0003
0-054 1-2204 | 0-0262 | 0-2007 | 0-0470 | 0-1008 |4-0-0031 |40-0248 | 0-00186
0-108 12350 | 0-0446 | 0-1437 | 0-0475 | 0-1029 | 0-0153 | 0-0467 | 0-00185 |4-0-0034
0-162 1-2458 | 0-0581 | 0-1042 | 0-0486 | 0-1058 | 0-0256 | 0-0661 | 0-00184
0-216 1-2537 | 00679 | 0-0758 | 0-0503 | 0-1099 | 0-0354 | 0-0853 | 0-00183 | 0-0042
0-324 1-2634 | 0-0798 |4-0-0320 | 0-0552 | 0-1214 | 0-0576 | 0-1326 | 0-00179 | 0-0044
0432 1-2653 | 0-0821 |—0-0112 | 0-0631 | 0-1389 | 0-0905 | 0-1978 | 0-00175 | 0-0046
0-540 1-2591 | 0-0745 |—0-0601 | 0-0756 | 0-1658 | 0-1483 | 0-3157 | 0-00170 | 0-0059
0-648 1-2427 | 0-0542 [—0-1293 | 0-0974 | 0-2117 | 0-2711 | 0-5636 | 0-00163 | 0-0101
(B) t =0-1, My =1-4
0 1-4000 | 0 0-2105 | 0-0437 | 0-1041 |—0:0006 | 0-0238 | 0-00175 | 0-0020
0-054 1-4189 | 0-0196 | 0-1534 | 0-0440 | 0-1059 |40-0102 | 0-0436 | 0-00175
0-108 1-4335 | 0-0337 | 0-1188 | 0-0448 | 0-1087 | 0-0186 | 0-0607 | 0-00173 | 0-0035
0-162 1-4452 | 0-0452 | 0-0960 | 0-0460 | 0-1124 | 0-0262 | 0-0772 | 0-00172
0-216 1-4545 | 0-0543 | 0-0732 | 00476 | 0-1171 | 0-0346 | 0-0955 | 0-00171 | 0-0038
0-324 1-4671 | 0-0663 | 0-0379 | 0-0523 | 0-1297 | 0-0540 | 0-1400 | 0-00167 | 0-0040
0-432 1-4719 | 0-0709 [+40-0034 | 0-0596 | 0-1482 | 0-0831 | 0-2073 | 0-00164 | 00043
0-540 1-4682 | 0-0673 |—0-0363 | 0-0710 | 0-1761 | 0-1340 | 0-3243 | 0-00159 | 0-0053
0-648 1-4547 | 0-0545 |—0-0852 | 0-0905 | 0-2225 | 0-2393 | 0-5652 | 0-00153 | 0-0087
()t =01, M, — 16
0 1-6000 | © 0-1592 | 0-0406 | 0-1089 | 0-0067 | 0-0429 | 0-00165 | 0-0028
0-054 1-6189 | 0-0154 | 0-1283 | 0-0411 | 0-1116 | 0-0137 | 0-0582 | 0-00163
0-108 1-6344 | 0-0279 | 0-1036 | 0-0421 | 0-1152 | 0-0203 | 0-0734 | 0-00162 | 0-0036
0-162 1-6472 | 0-0378 | 0-0850 | 0-0433 | 0-1196 | 0-0268 | 0-0895 | 0-00161
0-216 1-6579 | 0-0461 | 0-0691 | 0-0450 | 0-1249 | 0-0339 | 0-1073 | 0-00160 | 0-0036
0-324 1-6783 | 0-0577 | 0-0410 | 0-0495 | 0-1388 | 0-0512 | 0-1528 | 0-00157 | 0-003
0-432 1-6808 | 0-0634 |+0-0117 | 0-0564 | 0-1587 | 0-0775 | 0-2211 | 0-00153 | 0-0041
0-540 1-6794 | 0-0624 |—0-0238 | 0-0669 | 0-1882 | 0-1237 | 0-3407 | 0-00148 | 0-0050
0-648 1-6666 | 0-0527 |—0-0676 | 0-0850 | 0-2367 | 0-2189 | 0-5858 | 0-00143 | 0-0078
(@) t = 0-1414, My = 1-2
0 1-2000 | 0 04226 | 0:0472 | 0-1002 1—0-0372 |—0-0418 | 0-00187 |—0-0071
0-054 1-2305 | 0-0389 | 0-3026 | 0-0459 | 0-0990 |—0-0154 |—0-0058 | 0-00186
0-108 1-2537 | 0-0679 | 0-2320 | 0-0454 | 0-0994 |—0-0138 [40-0188 | 0-00186 |+0-0030
0-162 1-2722 | 0-0905 | 0-1839 | 0-0457 | 0-1009 |4+0-0096 | 0-0393 | 0-00185
0-214 | 1-2869 | 0-1082 | 0-1404 | 0-0465 | 0-1036 | 0-0204 | 0-0598 | 0-00184 | 0-0055
0-324 1-3071 | 0-1321 | 0-0747 | 0-0498 | 0-1123 | 0-0424 | 0-1043 | 0-00181 | 0-0067
0-432 1-3153 | 01417 |40-0115 | 0-0559 | 0-1268 | 0-0733 | 0-1677 | 0-00177 | 0-0076
0-540 1-3104 | 0-1360 [—0-0662 | 0-0664 | 0-1501 | 0-1277 | 0-2783 | 0-00172 | 0-0099
0-648 1-2881 | 0-1096 |—0-1789 | 0-0858 | 0-1913 | 0-2457 | 0-5141 | 0-00165 | 0-0172

T 4C, is the increment in pressure coefficient due to the boundary-layer displacement effect.
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TABLE 2—continued
Flows Along the Afterbodies

1 av,- 9 S a9 as*
p M —C T e dx dx C AC
’ ' ’ 2 @ (in.) (in.) (in.) (in) ! ’
() t =0-1414, M, = 1-4

0 1-4000 | 0 0-2809 | 0-0437 | 0-1041 |—0-0144 |—0-0007 | 0-00175 |—0-0001
0-054 1-4275 | 0-0278 | 0-2337 | 0-0432 | 0-1046 |—0-0041 |+0-0191 | 0-00175

0-108 1-4506 | 0-0505 | 0-1897 | 0-0432 | 0-1081 |40-0054 | 0-0380 | 0-00174 |+0-0038
0-162 1-4700 | 0-0691 | 0-1545 | 0-0438 | 0-1086 | 0-0140 | 0-0357 | 0-00173

0-216 1-4863 | 0-0843 | 0-1279 | 0-0447 | 0-1121 | 0-0221 | 0-0738 | 0-00171 | 0-0052
0-324 1-5105 | 0-1066 | 0-0790 | 0-0481 | 0-1228 | 0-0410 | 0-1170 | 0-00168 | 0-0060
0-432 1-5236 | 0-1183 |+0-0296 | 0-0539 | 0-1381 | 0-0682 | 0-1801 | 0-00165 | 0-0069
0-540 1-5238 | 0-1185 |—0-0312 | 0-0635 | 0-1627 | 0-1154 | 0-2890 | 0-00160 | 0-0088
0-648 1-5067 | 0-1031 |—0-1175 | 0-0807 | 0-2047 | 0-2154 | 0-5152 | 0-00154 | 0-0145

(f)t=0-1414, M, = 1-6

0 1-6000 | 0 0-2286 | 0-0406 | 0-1089 [(—0-0053 | 0-0218 | 0-00165 | 0-0020
0-054 1-6275 | 0-0223 | 0-1898 | 0-0405 | 0-1105 |+0-0027 | 0-0387 | 0-00164

0-108 1-6514 | 0-0411 | 0-1617 | 0-0409 | 0-1131 | 0-0097 | 0-0547 | 0-00163 | 0-0045
0-162 1-6723 | 0-0570 | 0-1385 | 0-0416 | 0-1165 | 0-0164 | 0-0712 | 0-00161

0-216 1-6903 | 0-0705 | 0-1169 | 0-0427 | 0-1208 | 0-0235 | 0-0890 | 0-00160 | 0-0051
0-324 1-7188 | 0-0910 | 0-0782 | 0-0461 | 0-1326 | 0-0402 | 0-1327 | 0-00157 | 0-0057
0-432 1-7362 | 0-1031 |--0-0378 | 0-0516 | 0-1502 | 0-0646 | 0-1975 | 0-00153 | 00065
0-540 1-7404 | 0-1060 |—0-0119 | 0-0606 | 0-1768 | 0-1070 | 0-3085 | 0-00149 | 00082
0-648 1-7269 | 0-0966 |—0-0815 | 0-0763 | 0-2209 | 0-1952 | 0-5351 | 0-00144 | 0-0127

(g)t=0-2, M, =1-2

0 1-2000 | 0 0-5855 | 0-0472 | 0-1002 [—0-0626 |—0-0814 | 0-00187 |—0-0195
0-054 1-2442 | 0-0561 | 0-4513 | 0-0446 | 0-0970 |—0-0365 |—0-0387 | 0-00187 ,
0-108 | 1-2802 | 0-1001 | 0-3562 | 0-0431 | 0-0958 |—0-0187 [—0-0080 | 0-00186 |—0-0019
0-162 1-3102 | 0-1358 | 0.2888 | 0-0425 | 0-0961 |—0-0056 |+0-0158 | 0-00186

0-216 1-3356 | 0-1651 | 0.2362 | 0-0425 | 0-0975 |-0-0055 | 0-0370 | 0-00185 |--0-0052
0-324 1-3740 | 0-2080 | 0-1482 | 0-0442 | 0-1038 -| 0-0272 | 0-0810 | 0-00182 | 0-0090 -
0-432 1-3957 | 0-2315 |4-0-0606 | 0-0486 | 0-1155 | 0.0556 | 0-1402 | 0-00178 | 0-0118
0-540 1-3979 | 0-2339 |—0-0457 | 0-0569 | 0-1354 | 0-1040 | 0-2404 | 0-00173 | 0-0160
0-648 1-3736 | 0-2076 |—0-1990 | 0-0731 | 0-1714 | 0-2097 | 04538 | 0-00166 | 0-0281

(B)t=0-2, My =1-4

0 1-4000 | 0 0-4142 | 0-0437 | 0-1041 |—0-0330 |—0-0291 | 0-00175 [—0-0048
0-054 1-4401 | 0-0402 | 0-3364 | 0-0423 | 0-1033 |—0-0183 |—0:0027 | 0-00175

0-108 1-4748 | 0-0736 | 0-2857 | 0-0416 | 0-1037 |—0-0077 |-+0-0181 | 0-00174 |+0-0015
0-162 1-5056 | 0-1021 | 0-2468 | 0-0415 | 0-1052 |40-0013 | 0-0371 | 0-00173

0-216 1-5328 | 0-1264 | 0-2091 | 0-0418 | 0-1077 | 0-0101 | 0:0563 | 0-00172| 0-0056
0-324 1-5767 | 0-1640 | 0-1433 | 0-0438° | 0-1159 | 0-0287 | 0:0993 | 0-00169 | 0-0083
0-432 1-6053 | 0-1875 |--0-0771 | 0-0482 | 0-1297 | 0-0537 | 0-1590 | 0-00165 | 0-0105
0-540 1-6156 | 01956 |—0-0342 | 0-0560 | 0-1517 | 0-0959 | 0-2590 | 0-00160 | 0-0139
0-648 1-6002 | 0-1833 |—0-1211 | 0-0706 | 0-1894 | 0-1857 | 04650 | 0-00154 | 0-0230
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TABLE 2—continued .

Flows Along the Afterbodies

1 av, l a9 ao
x M —cC V. v 0 o dx dx C AC
? ' ’ 1 0% (in.) ’ (in.) (in) (in) ! ’
(6)t=0-2, My =16
0 16000 0 0-3222 0-0406 0-1089 ;—0-0176 0-0036 0-00165 | 0-0005
0-054 1-6397 0-0320 0-2763 0-0399 0-1096 |—0-0082 0-0230 0-00164
0-108 1:6756 0-0595 0-2425 0-0397 0-1114 |—0-0005 0-0409 0-00163 | 0-0039
0-162 1:7083 0-0835 0-2134 0-0399 0-1141 |4+0-0067 0-0587 000161
0-216 17377 0-1042 0-1860 0-0404 0-1177 0-0140 0-0773 (0-00160 | 0-0061
0-324 1-7874 0-1372 0-1359 0-0428 0-1283 0-0302 0-1212 0-00157 | 0-0078
0-432 1-8227 0-1593 0-0823 0-0472 0-1445 | 0-0529 0-1837 0-00153 | 0-0097
0-540 1-8396 0-1696 0-0165 0-0547 0-1694 0-0913 0-2877 0-00149 | 0-0126
0-648 1-8308 0-1643 |—0-0741 0-0683 0-2104 0-1705 0-4966 0-00143 | 0-0196
TABLE 3
Afterbody Wave Drag Coefficients
Cp = Wave drag coefficient in inviscid flow, based on maximum cross-section area.
ACp = Change in the wave drag coefficient due to the presence of the boundary layer.
My,=1-2 M,=14 M,=1-6
l2
Co AC, Co AC, Co AC,
(@) =01
0-108 0-0008 —0-0001 0-0006 —0-0001 0-0003 —0-0001
0-216 0-0047 —0-0003 0-0037 —0-0003 0-0031 —0-0003
0-324 0-0128 —0-0008 0-0103 —0-0007 0-0088 —0-0007
0-432 0-0242 —0-0014 0-0199 —0-0013 0-0173 —0-0013
0-540 0-0369 —0-0022 0-0311 —0-0021 0-0274 —0-0020
0-648 0-0477 —0-0035 0-0413 —0-0032 0-0371 —0-0030
(B) £ = 0-1414
0-108 0-0011 0 0-0008 —0-0001 0-0007 —0-0001
0-216 "0-0074 —0-0003 0-0056 —0-0004 0-0046 —0-0004
0-324 0-0205 —0-0010 0-0161 —0-0010 0-0135 —0-0010
0-432 0-0398 —0-0020 0-0319 —0-:0019 0-0271 —0-0019
0-540 0-0622 —0-0034 0-0510 —0-0031 0-0439 —0-0030
0-648 0-0828 —0-0055 0-0695 —0-0050 0-0609 —0-0047
()t =02
0-108 0-0017 +0-0001 0-0012 0 0-0010 —0-0001
0-216 0-0110 0 0-0083 —0-0003 0-0067 —0-0004
0-324 0-0315 —0-0008 0-0242 —0-0010 0-0200 —0-0012
0-432 0-0624 —0-0023 0-0489 —0-0023 0-0408 —0-0024
0-540 0-0999 —0-0045 0-0797 —0-:0043 0-0673 —0-0042
0-648 0-1368 —0-0079 0-11183 —0:0071 0-0951 —0-0067




TABLE 4

Total Skin-friction Coefficients

(a) Parallel portion

Flat plate Cp

Body
M, Cr For R, based For R, based
on distance on distance
from nose from shoulder
1-2 0-00217 0-00204 0-00217
1-4 0-00202 0-00190 000203
1-6 0-00189 0-00178 0-00190
(b) Parallel portion + afterbody
Flat plate Cp
Body
I3 M, Cp Tor R, based TFor R, based
on distance on distance
from nose from shoulder
0-1 1-2 0-00203 0-00196 0-00206
1-4 0-00189 000183 0-00193
1-6 0-00176 0-00172 0-00179
0-1414 1-2 0-00206 0-00200 . 0-00210
1-4 0-00192 0-00186 0-00196
1-6 0-00178 0-00174 000183
0-2 1-2 0-00209 0-00201 0-00211
1-4 0-00194 0-00185 0-00197
1-6 0-00180 0-00175 0-00184
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co = COEFFICIENT CORRESPONDING TO MINIMUM PRESSURE
Puin T ON AN AFTERBODY IN INVISCID FLOW.
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F1e. 5. Changes in the afterbody pressure coefficients due
to the presence of boundary layers.
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