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Summary.--Detailed calculations are made of the flow over a series of bodies at Mach numbers of 1.2, 1.4 and 1.6 
and Reynolds numbers of 48 to 72 millions. The bodies consist of a basic forebody and parallel portion to which are 
added truncated parabolic afterbodies of three different thickness ratios. The calculations are in three main parts  : 

(i) Calculation of the inviscid flow over the bodies, mainly by  the method of characteristics. 
(ii) Calculation of the boundary-layer properties by  what is essentially an extension to compressible flows of the 

method of Squire and Young. 
(iii) Calculation of the pressure distribution on the ' modified '  afterbodies which result from adding the displacement 

thicknesses to the original profiles, by Ferri 's method of linearized characteristics. 

The results indicate that  the slender body' and quasi-cylinder theories predict the flow over afterbodies with only 
very limited accuracy for the thickness ratios and Mach numbers occurring in practice, but that  the linearized similarity 
law remains a useful means of generalizing the particular results of exact inviscid-flow calculations. The boundary 
layers are seen to thicken very rapidly towards the rear of the afterbodies and this causes pressure changes of as much 
as 12 percent  of the peaksuction.  The skin-friction results agree extremely well with those for the equivalent flat plate. 

1. InEroduction.--This report is part of an experimental and theoretical investigation of after- 
body drag and base drag. These two problems are int imately related, for analysis of the flow 
in the vicinity of the base, whether theoretical or experimental, can at  most hope to formulate 
a law relating the base pressure to the pressure, flow direction, and boundary layer immediately 
ahead of tile base 1. Further, conditions i n  the neighbourhood of the bise affect the pressures 
towards the rear of the afterbody by propagating disturbances upstream through the boundary 
layer : this effect is most serious at low Reynolds numbers. 

In a first approach to the overall problem it seems reasonable to concentrate on moderate 
boat-tail  angles and flows at high Reynolds numbers, so that  a well-developed turbulent boundary 
layer approaches the base ; the effect of the flow behind the base on the afterbody pressures may 
then be expected to be small (in particular it is hoped that  separation of the boundary layer 
ahead of the base will be avoided), and experimental evidence 1 also shows that  for such flows 
the relation between the base pressure and the pressure ahead of tile base is not particularly 
sensitive to Changes of Reynolds number. I t  is also desirable initially to consider low supersonic 
Mach numbers in order to keep heat-transfer effects to a minimum. Fortunately it is this problem 
of flows with moderate boat-tail  angles, at large Reynolds numbers and at low supersonic Mach 
numbers, which is also the most pressing from the viewpoint  of the aircraft designer. 

t R.A.E. Report  Aero. 2482, received 1st September, 1953. 
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The present report is an at tempt to calculate the pressure-distributions and boundary-layei- 
properties on a related series of afterbodies subject to these conditions. I t  seems worthwhile 
to take considerable pains in performing such calculations because firstly they  should provide 
more detailed and accurate information of afterbody drag than exists at the present t i m e ,  and 
second!y they should indicate, when the accompanying experiments are made, whether more 
or less conventional methods of calculation can determine accurately the pressur e and boundary 
layer immediately ahead of a base. 

The calculations consist of three main parts : 
(i) Calculation of the pressure distributions on the bodies in inviscid flow. 

(ii) Calculation of the boundary-layer displacement thickness (and of. other boundary-layer 
properties, in the process)'. 

(iii) Calculation of the changes in the afterbody pressure distributions due to the addition of 
the displacement thicknesses to the body profiles. 

These are of course only the initial steps of what should ideally be an iterative process; 
however, it is doubtful whether further iterations are worthwhile in view of the approximate 
nature of the boundary-layer calculations , and in any case one would expect the results to 
converge fairly rapidly. 

The bodies of revolution for which the calculations were ms, de ,are shown in Fig. 1. They 
consist of a basic forebody and parallel portion to which are added three afterbodies of parabolic 
profile and various thickness ratios t (maximum radius/length of the afterbody continued to a 
point). A small cone angle and a long parallel portion were chosen in order to make the flow 
outside the boundary layers immediately ahead of the afterbodies virtually isentropic and 
uniform, afterbody effects being thus separated from the interference effects of the forebody. 
Nine such bodies are to be tested by the ground-launched technique ; they have the same basic 
shape as those in Fig. 1, but are truncated to have  shorter afterbodies of various lengths. On 
the flight models the cone shoulder will also be rounded off to avoid local separation of the 
boundary layer. 

Mach numbers of 1.2, 1.4 and 1.6 were taken in the calculations, and sea-level conditions were 
considered : Reynolds nmnbers, based on body length, were in the range of 48 to 72 millions. 
Zero incidence was assumed throughout. 

2. The method of Calculating the Pressure Distributions in Inviscid Flow.--2.1. Calculatio~ 
of Pressures Due to the Conical Head.--The velocity on the cone surface was taken from Ref. 2, 
and the pressure computed therefrom. Because of the small cone ang le  the inviscid flow is 
effectively isentropic throughout the field, the total pressure ratio across the cone shock being 
1. 00000 in all cases. 

The pressures along the parallel portion were calculated by a modified form of the slender- 
b o d y  theory which is compared with exact theory in Fig. 2 t. The ordinary slender-body theory 3 
gives the following expression for the pressure on a parallel portion behind a conical head (this 
pressure coefficient is also the ' interference pressure coefficient ' of Ref. 4) : 

@ = 2 log `% + 1 21~ (/x~l~'~ 
~ CR u . . . . . . . . . .  (2.1.1) 

where l~ is the length of the cone, R is its maximum radius, x~ is (x -- l~)/l~, ~ is v'(Mo ~ -- 1), 

-~ Tables of the pressure distribution on cone-cylinders ~G calculated by the method of characteristics have recently 
been published ; however, the use of these tables in the present case would have required not  only a double interpolation 
and extrapolation (for cone angle and Mach number), but also an awkward numerical differentiation of the results, 
which would be available only at unequal intervals, in order to obtain the velocity gradients which are required for the 
boundary-layer problem. 

The modified slender-body theory gives good agreement with the results of Ref. 26 (Fig. 2) and it was felt that  the 
analytic formulae used would Iead to greater overall consistency. The comparison of slender-body and exact theory 
made in Ref. 26 iLself is wrong. 



and U is a function tabulated in  Refs. 4 and 5. The disadvantage of this formula is its logarithmic 
singularity at the cone shoulder (x~ = 0), but  this can easily be overcome by the following modi- 
fication. Since the effect represented by the logarithmic term is by  far the smaller one in (2.1.1) 
we replace it by  a quadratic function in an initial interval of x~ (0 < x~ ~< 0 . 4 w a s  taken here) 
and choose the con.atants of this function to give @ its exact value at the shoulder (xl = 0), 
and to fair it into the curve of (2.1.1), with continuity of slope, at the end of the interval (x~ = 0.4). 
The exact value of @ at the shoulder can of course be calculated from Ref. 2 and Prandtl-Meyer 
expansion tables. The resulting expression is 

bo = + 

bl = 16" 0 9 9  - -  5bo, 

where 

o < x ~ < 0 - 4 ,  .. . .  (2.1.2) 

b~ = -- 24.588 + 6.250bo . 

The other flow parameters required for the boundary-layer calculations (local Mach number, 
temperature, etc.) were computed from the pressure coefficient by  means of the exact relation- 
ships for isentropic flow, which are tabulated in Ref. 6 and elsewhere. In particular~ the 
relationship 

Y 

M 2 Po P ,  
~poVo 

where ( )~ denotes total  or stagnation and )o denotes free-stream conditions, leads to the following 
expression for the velocity gradient • 

1 dV 1 d M  1_ dC, Mo ~ (PoiP,) 

Here d@/dxl may be calculated from (2.1.1), (2.1.2), (the derivative of the U-function is tabulated 
in Refs. 5 and 7), and the other quantities are tabulated functions of the free-stream and local 
Mach numbers. 

~, was taken as 1.400 throughout the present calculations, the only inconsistency being tha t  the 
values of velocity on the cone surface given in Ref. 2 were used, and these are based on ~, = 1. 405 
(this accounts for the discrepancy in the values of @ at xl = 0 in Fig. 2). 

2.2. Calculatio~ of Pressures o~ the Afterbodies.--In the calculation of the afterbody flow 
fields it was assumed throughout tha t  at the end of the parallel portion the distm-bance from 
the cone had completely decayed, so tha t  the flow immediately ahead of the afterbodies was 
uniform and at free-stream Mach number • in actual fact the Mach number varies, in the worst 
case, from 1.604 on the surface of the body to 1. 600 at infinity. 

The method of characteristics was used to calculate the flow fields • one of the characteristics 
networks is shown i n Fig. 3. The particular form of equations used may be relevant. 

The equations of the characteristic curves are of course 

for CI dy _ tan (0 + e) . . . . . . . . . . . . . . . .  (2.2.1) 
dx 

and for Ca dy _ tan (0 -- ~) . . . . . . . . . . . . . . . .  (2.2.2) 
dx 

where CI and Ca denote characteristics of the first and second families, respectively, 0 is the 
inclination of the ~/elocity vector, and c~ is the Mach angle. The survey of Ref. 8 shows that  for 
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wholly numerical  calculations of high accuracy by far the most  convenient  form of  the com- 
patibi l i ty equations for axially symmetric,  isentropic flow is tha t  due to Guderley. This m a y  
be wri t ten 

dl 90 sin 0 sin a 1 
- -  , where l = ½ff -- 0) . . . . . . . . .  (2.2.3) for C~ dy ~ sin (0 + ~)y 

dm 90 sin 0 Sill ~ 1 
and for C2 dy --  ~ sin (0 -- c~)y' where m = ½(v + 0) . . . . . . . . .  (2.2.4) 

being the Prandtl-Meyer angle, l, m, v, 0 are all i n  degrees, and 1 and m are of course curvil inear 
co-ordinates of the epicycloids in the hodograph plane of two-dimensional  flows. The re la t ionship  
between v and ~ is carefully t abu la ted  in Ref. 9. 

The equations in this form are not  only simpler than  those in terms of the veIocity V, but  
they  also permit  a sound ' initial guess ' to be used in the step-by-step solution at points where 
the  flow is nearly two-dimensional,  for at such points one may  write initially d l - ' -  O, dm -"- O. 

In  the present problem the equat ion of the afterbodies is most  s imply wri t ten 

y~---- t(1 --  x~ ~) . . . . . . . . . . . . . . . . .  (2.2.5) 

where x2 _ Y2 _ 1 
x -- l~ --  lp y 1A' 

SO tha t  the bot indary condit ion becomes 

0 = tan  -~ (-- 2tx~) , 
on the body. 

Some details of the numerical  solution of these equations are given in Appendix  I t. 

3. The Method of  Calculating the Boundary-Layer Properties.--3.1. A n  Approximate Theory for 
Turbulent Boundary Layers in Axial ly  Symmetric, Compressible F low . - -The  theory outl ined below 
is essentially a simple extension to compressible flows of the me thod  o f  Squire and Young ~°, ~ ; 
it  should be noted, however, t ha t  in referring several parameters  to conditions at the wall it  
differs from the  extension ten ta t ive ly  suggested by Young himself in Ref. 12. 

For the steady, axially symmetr ic  flow of a compressible fluid the boundary- layer  m o m e n t u m  
equat ion ma y  be wri t ten  (see, for example,  Ref. 12) 

d# [_ dy 1 H +  2 
+ L y  + - -  - 

p~ d~ V~ d~ J p~V~ ~' " . . . . .  

 co o; 
- -  d ~ 7  , where ~ ----- m o m e n t u m  thickness = ~ 1 1 + Y 

H = 

displacement  thickness " 1 p V 1 + ~ cos 0 d~,  
o Y 

*/~,  

are co-ordinates along and normal  to the body  profile, 

is the body  radius, 

-~ The numerical solution of these equations was done by the Computing Section of the Mathematics Division, National 
Physical Laboratory, under the supervision of Dr. L. Fox. One of the nine flow fields was also calculated at Royal 
Aircraft Establishment under the author's supervision ; the ' deferred approach to the limit ' (Appendix I) was not 
used~ but the resulting values of ¢Z agreed with the N.P.L. results within ~- per cent of the range in the field. 
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and 

o ( e )  

Tw 

is the inclination of the profile, 

is the shear stress at the wall, 

denotes local conditions outside the boundary layer. 

Now the equation of 

@i 
d~ 

motion along a streamline gives 

dV1 
plVi d~ ' 

1 dpl 1 d,o 1 # i  
so that  - - - -  = - - -  -- 

;1 d~ ;1 dpl d~ 

and the energy equation gives 

1 dV1 1 

1 1 plV1 
Pi ai 2 

dMi 

dV1 M1 ~ dV1 

d~ Vi d~ 

so tha t  (3.1.1) becomes 

H + 2 -- M1 ~ dM~ 
+ 

M I ( 1  + ) ' - - 1 M I ~ )  d~ 
' - 2  

e -  . .  (3.1.2) 
ptVl~" . . 

In order to be able to solve this differential equation we must obtain expressions for H and 
~ in terms of known quantities a n d  4, and so we make the usual basic assumptions : 

(A1) That  the static pressure across the boundary layer is constant normal to the surface 
(this is already implicit in the momentum equation), and 

(A2) That  the 'effects of pressure gradient and of the axially symmetric nature of the flow 
on the boundary-layer profile characteristics can be neglected ; i.e., that  at any point on the 
body H and the relation between 4 and ,~ are the same as for a flat plate with the same local 
conditions outside the boundary layer. Neglecting the effect of the axially symmetric nature 
of the flow on the profile characteristics is equivalent to treating as uni ty  the factor (1 + ~ cos 0/y) 
in the definitions of displacement and momentum thickness. 

To solve the flat-plate problem we follow the approach of Cope 13 and Monaghan 1~ and make 
the initial assumptions : 

(A3) That  the profile in the compressible turbulent boundary layer on a flat plate, with or 
without heat transfer, is given by 

V 1 log ~.V~ (3.1.3) 
- -  ~ • • ° o . . . .  ° . . ° • • , . 

V ~  k av~ 

where 

( )~ denotes conditions at the wall, the constants k and a have the same values as in incompressible 
flow (k = 0.400, a -  0.111), and the logarithm is natural. Monaghan has provided some 
experimental justification for this assumption. 
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(A4) That  Reynolds '  analogy between m o m e n t u m  and heat  exchange is valid, so tha t  the  
tempera ture  distr ibution in the  boundary  layer is given by  

T V V ~ 
T~ - -  1 - -  c~ ~ V ~ -  c~ • (3.1.4) V1 

2 '  " "  . . . . . . . . . 

where cl = 1 T~I and c~ --  T~ 1' M12 
T~ ' T~o M~ ~ -k 2/(~, --  1) " 

These assumptions lead to the  approximate  relations (see Appendix  II) • 

~ W  g ' " " " "  " "  " " " " (3.1.5) 

where C=a/k  and D : k ,  

H Tw ~, --  1 M12 . . . . . .  (3.1.6) 
and Hi -~ T1 [- ~ . . . . . . . . .  

where He is the value given by  the  equivalent  incompressible theory  with the  values V1, pl. 
The error in both  these equations is given by  a factor [1 -k O(V¢~/V~)]. 

We now modify equations (3.1.5) and (3.1.6) in the light of exper imental  results. 

(i) Because of the terms neglected in the derivat ion of (3.1.5) we evaluate C and D not  from the  
known constants  a and k but  to give best agreement  with the  formula 

Cpw = 0.455 log~0R, w . . . . . . . . . . . . .  (3.1.7) 

which is the  extension of Prandt l ' s  well-known formula in incompressible flow and for which 
Monaghan has also given exper imental  justification. Now it may  be shown (Appendix II) tha t  
t he  same constants  C and D which give the best  agreement  between 

O V~ -- C exp ( D V~I ) and C~=0.455( log~0R~)  -'58 

in the incompressible case, also give the  best  agreement  be tween (3.1.5) and (3.1.7) in the  com- 
pressible case, and so we ma y  take  Squire and Young's  values C = 0.2454 and D = 0.3914. 

(if) Reynolds '  analogy gives for zero heat  transfer at the wall T~ = T~I, i.e., 

T~ ) , - - 1  
T ~ -  1 + ~ 2 - -  M~ 2 . 

Bet ter  agreement  with exper iment  for this case is given by Squire's formula 

T~ >, --  1 
.T~ - -  1 + - - ~ - -  a ~ ' M ? ,  . . . . . . . . . . . . . .  (3.1.8) 

where ~ is the  Prandt l  number.  This suggests rewrit ing (3"1"6) as - 

H T~ ~ -- 1 
H ~ -  T~ + - - 2 - - ~ / ~ M ?  . . . . . . . . . . . . . . . . .  (3.1.9) 

which also gives be t te r  agreement  with exper iment  than  (3.1.6). 

We now make  our final assumption • 

(A5) That  there is zero heat  transfer at the  wall. 
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W e  m a y  t h e n  usd (3.i.8) t h r o u g h o u t ,  a n d  we h a v e  for s u b s t i t u t i o n  in to  (3.1.2) 

H 

H~ 
- 1 + ( ~ , -  1) ~ / ~ M d ,  .. (3.1.1o) 

a n d  
TTz w 2 Z w 

VI 2 p.V1 ~ 

T h u s  (3.1.2) b e c o m e s  

D2 

4 VI"~ 

I ldy 
+. 

5L + 2 + [H& -- -- 
( 7 - -  1 MI~"~ 

M1 t l  + ) 2 \ 

11M12 dM1 
d~ 

(3.1.11) 

T~ D 2 

Tw log2 ~ , ~ /  

• Q . .  (3.1..12). 

w h e r e  TriTe, is g iven  b y  (3.1.8). If  t h e  e x t e r n a l  flow field is k n o w n  this  d i f ferent ia l  e q u a t i o n  . can  
be  i n t e g r a t e d  numer i ca l l y ,  s tep  b y  s t e p t .  

3.2. Application of the Approximate Theory to the Present Problem.--3.2.1. Values of the 
constants.--The fol lowing c o n s t a n t s  were  used  in t he  a p p r o x i m a t e  t h e o r y  above.  

Hi = 1.400 

7 = 1"400 

= 0 .715  ¢~/~ = 0 .8456  ¢~/3 = 0 .8942  

C = 0"2454 D = 0 " 3 9 1 4 .  

-~ After this work had been completed Professor A. D. Young pointed out that  in problems of axially symmetric flow 
it is important  to work with the displacement and momentum areas, 

Ao, =2z~)d* and A~ = 2~y~ .  

Thus equation (3.1.12) may be written 

dAo H~ + 2 + [H~(), -- 1)a 1/~ - -  llM12 dM1 

iI 

__  T ~  D 2 , 

( Aov1 
2z~y T~ log 2 \2~ryC~,o/ 

and, unlike .~, As remains bounded as y --+ 0. 

Further, it is not the displacement thickness b* which should be added to the body profiles, but the ' effective dis- 
placement thickness ' dl*, which corresponds exac@ to the displacement area and is therefore defined by 

A~, = ~sec 0 [(y + (3~* cos 0) ~ -- y2] 

or ~1" = sec 0 [ - - y  + 5/@ 2 + 2y~*cos0)]. 

6" and dl* are equal to first order in (d*/y), so that one might expect that the error of adding d* instead of dl* to the 
profiles would not have too great an effect in the present work. Estimates have in fact indicated that this effect is of 
the same order of magnitude as the error introduced by the use of tinearized characteristics but of opposite sign. 
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Viscosity was evaluated from Sutherland's formula, which, using the values given in Ref. 15, 
may be writ ten 

T3/2 
/~ -= 3. 0997. T + 117 " 10-8 slugs/ft-sec, 

where the temperature T is in degrees Kelvin. 

3.2.2. The boundary layer on the cone and the transition point.--To start  the boundary-layer 
calculations the fo!lowing assumptions were made" 

(i) That  the transition point occurred at the cone shoulder. 

(ii) That  the momentum thickness was continuous through the transition point. 

These assumptions were made because of the difficulty O f predicting the transition point 
accurately, because the initial boundary layer was expected to have only a small effect on that  
over the afferbodies, and for the sake of convenience ; they may, however, be unnecessarily crude. 

To calculate the laminar boundary layer on the cone the result 16 was used that  for a flat plate 
and a cone with the same external flow 

1 
~(cone) : ~/-~ 0, (flat plate). 

This relation agai n treats as uni ty  the factor (1 + ~ cos O/y) in the definition of the momentum 
thickness on a body of revolution. For calculation of the laminar boundary layer on the equiva- 
lent flat plate the analysis of Ref. 17 was used. 

3.2.3. The practical form of the differential equation for &--The  differential equation (3.1.12) 
forms the basis of calculation of the turbulent boundary layer on the parallel portion and after- 
bodies, but its solution is more convenient if the variables x~ and x2 are introduced in place of ~. 
We have for the parallel portion 

d~ dx 
dxl dx~ 

and for the afterbodies 
d~ d# dx 
dx2 dx dx~ -- ~/(1 + 4t~x~)IA, 

1 dy 2x~ dx~ 
y d ~  1 - -  x2 ~ d ~  " 

Hence (3.1.12) may be written 

. .  g ( x )  

d x  - -  l o ?  

where for the parallel portion 

X =  9~ 1 

T1 D2 g( l) : 

- 

H, + 2 + EH~(y ~ 1)~ 1/3 -- lJM~ ~ dMz 

7 -- 1 ~M12 ) M~(1 + 
dx~ 

. . . . . . . .  (3.2.1 

3' 4000 -- 0" 4992M12 dM1 
M (1 + o.  2M12) dxl ' 



and for the afterbodies 

X = Xs 

T1 DS g(xs) = IA~/(1 + 4t s x, s) 

2x~ 3" 4000 -- 0" 4992M1 ~ dM1 
h(xs) = - -  1 - -  xs ~ ~ MI(1 + 0 - 2 M I  ~) dxs " 

The functions g, j, and h of course depend only on the external flow and on the equation for the 
w a l l  temperature (3.1.8). Details of the numerical integration are given in Appendix I. 

3.2.4. Skin frict ion.--Equation (3.1.11) gives the local skin-friction coefficient as 

T1 D s Tw 
C I -  ½plV2 -- 2 T~ 

i°gS \ -~v~/  

For the parallel portion this may be written 

2 g(xl) 
CI --'ZF IogS [~9(Xl) j(XI) ] ' 

and for the afterbodies 

2 g(xs) 
Cz = laV(1 + 4tsXs ~) log s [#(Xs) j(xs)] " 

Thus C I follows immediately from integration of the differential equation. 

The total skin-friction coefficient for the parallel portion is given by 

ill° 2g(xd PlVI~2~Rdxl . (3.2.2) 
C~ -- A1 log~[O(xl) j(xl)] poVo 2 . . . . . . . .  

and that  for the parallel portion and an afferbody together by 

1 { f l  '° 2g(xl) plV122~Rdx~ 
CF = )11 + As logSE#(Xl) j(xl)] poVo ~ 

2g(x,~) PlVI= 2=R(1 x~ s) dxs (3.2.3) 
-F log~E#(x~) j(x~)] p0V0 ~ . . . .  

where A~ and As are the wetted areas of the parallel portion and afterbody, respectively, so that  

A1 = 32~R ~ , 

and A2 = 2~R (1 -- x~ s) y/(1 + 4tSxs ~) IA dx~ 

I (  1 ) ( 2 J  1 ) = 2~t lA ~ 1 + ~ s  (1 + 4tSx2 ~) + 4t sinh-! 2tx~ 
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4. The Method of Calculating Pressure Distributions on the Modified Afterbodies.=-4.1. The 
Geometry of the Modified Afterbodies.--Integration of the differential equation (3.2.1) left us with 
values of ~ and d~,/dx~ a t t h e  integration stations. The modified afterbodies were then defined by 

y = R(1 -- x?) + ~~V'(1 + 4t% ~) . . . . . . . . . . .  (4.111 

where a * =  H,[1 + (r -- 1)al/3M121 t~ , 

and their slope was given by 

dy 1 " 4t~x~ a *  4t2x~ ~) 
dx  - -  ZA - -  + . / ( 1  + + ' 

where 

dO-* dO Hi[! @ (7 1)al/aMzZ 1 + 2,aH~(~ 1)al/aM~ dM~ 
dx2 dx~ dx2 

. . . .  ( 4 .1 , . 2 )  

For the work of the following section the co-ordinates of the modified afterbodies were multi- 
plied by t/[R + 6*]x,=01, in order that  their boundaries should start at t he  same points as 
those of the original bodies in the characteristics diagrams (Fig. 3). Thus variables xa, Y3 were 
in~croduced, comparable to x~, y~, such that  

x3 y3 1 1 

and the equations of the modified bodies in the characteristics diagrams became 

(4.1.3) Y ~ - - I + e l  t[1--x~(1-[- s)~l -[- ~/(1 -/4t~x~(1 -[- s)~} 12 " 

For the presentation of results, however, the modified bodies were scaled up again b y  the 
factor (1 -}- e), and account.was taken of the fact that  the pressure had been assumed constant 
in the boundary layer along lines normal to the body surface, and not along lines x, = constant. 

4.2. The Method of Linearized ChamcterisZics.--To calculate the change in the pressure distri- 
butions on the afterbodies due to the presence of the boundary layers Ferri's method of linearized 
characteristics 18 was used. The essential basis of this method is as follows. 

Consider perturbations superposed upon a known flow field such that  the original velocities 
(u0, vo, 0) are changed to (Uo -~- ul, v0 -[- vl, wl), where (u~, v~, w~)are small, By writing down the 
exact differential equation of supersonic flow first in terms of (u0 -I- u~, v0 + vl, wl) and then in 
terms of (u0, v0, 0), subtracting the two equations, and neglecting terms of higher order than 
the first in (u~, vi, wl), Ferri obtained a differential equation for (u, vl, wl) whose characteristic 
curves are those of the original flow field, that  is 

" , " 

dx -- tan (0o -[- c~0). . . . . . . . . . . . . . .  (4.2.1) 

(It is important  that  the characteristic curves of the differential equation for the complete new 
flow (Uo + u~, vo + vz, w~) are not those of the original field.) Ferri went on to develop the com- 
patibili ty equations of the perturbation field; however; he worked with variables which were 

n o t  considered to be the most convenient for the present problem. His compatibility equations 
for isentropic axially symmetric flow have therefore been transformed into the following form 
(Appendix I I I ) :  

for C~ ~ + D ~ -  DIFI -[- E~)O~- G~ + E1 ~ = O, .. (4.2.2) 
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do:~ _ d O W d y  ~ ( do:o__ ) 
f o r  + + - -  + = O, . .  (4.2.3) 

where 
2sin ~ s 0 + ? -  1 

D1 = D~ -~ 2 COS ~ c~0 

= 

\ @/<~I 

2 sin (0o -- s0) 
sin 2So sin (00 + c~0) 

= 

2 sin (0o + so) 
sin 2czo sin (0o -- So) 

sin (0o -- So) 1 
F~ = sin (0o -}- s0) :y 

sin (0; + c¢0) 1 
F ~ =  sin (00 -- s0) y 

2(y + 1) 
G ~ = G ~ = t a n S 0 2 s i n  ~ s 0 +  (~- -  1)" 

(dso/dy)c~} and (dso/dy)121 are total  derivatives along the first and second family characteristics, 
respectively. Because the coefficients are all known no iteration is required in the solution of 
these equations. A convenient form of procedure for solving the equations is given in 
Appendix III .  

Calculations by  the method of linearized characteristics were made in the present work only for 
t h e f o u r  cases t = 0 - 1 ,  M 0 =  1.2, 1-6 a n d t = 0 . 2 ,  M o =  1.2, 1.6. For the other five cases 
the results in the form A Cp/] C~ mini were interpolated linearly with respect to M0 and t, for x~ > 0. 
The systematic variation both of the changes in the boundary condition and of the results for 
~Cp/ICp~[ (see Fig. 5) suggested that  very little accuracy was lost by  this interpolation. T h e  
two-dimensional pressure jmnps at" x~ = 0, which are discussed in section 5.2, were calculated 
exactly for all nine cases. 

5. Results.--5.1. General.--The principal results of the calculations are presented in Tables 
1 to 4. The results for inviscid flow, with the exception of the parameter dV1/V1 dx for the 
afterbodies, are considered to be accurate in general to the number of places shown, but they 
are of course subject to the assumptions of the theory used. In the results depending on the 
boundary-layer calculations, and in the values of dVI/V~ dx for the afterbodies, the last figure 
has probably little or no absolute significance, even with}n the assumptions of the theory;  it 
has been included because in certain cases it is believed to be significant in indicating the change 
in a parameter between adjacent points (e.g., in the values of d* over the initial part of the 
afterbodies). 

Where they illustrate points of interest, the results have also been presented as graphs : these 
figures a r ema in ly  self-explanatory, but  certain features of them are discussed below. 

5.2. Pressure Dis~ribuEions and Wave Drag Coefficients.~The complete pressure distributions 
on the bodies in inviscid flow are shown in Fig. 4. The changes in afterbody pressure due to the 
presence of boundary layers are shown in Fig. 5, and the afterbody pressure distributions, with 
and without this effect, are shown in Fig. 6. I t  is apparent that  the boundary layers can cause 
pressure changes of the order of 12 per cent of the peak suction. The changes in pressure at the 
beginning of the afterbodies are two-dimensional pressure jumps, resulting from the slope of 
the modified afterbodies at x~ = 0 + ; in practice these discontinuities would of course be rounded 
off, but  some remnant  of the pressure change might still appear, distributed over a finite interval. 

Results obtained by exact characteristics theory are compared with those of the linearized 
characteristics method in Fig. 6c for the case t = 0.2, M0 = 1-6, which was expected to be the 
worst case from this viewpoint?. 

t The exact characteristics calculations were done by Mathematical Services Department, R.A.E., under the super- 
vision of P. Birchalt. The technique was that outlined in section 2.2 and Appendix I. 
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I n  Fig. 7 the pressure and drag coefficients predicted by the slender-body 3, ~ and quasi-cylindeP, 
solutions of the linearized equation are compared with the results of the present calculations 
for inviscid flow. The two cases shown are the best and worst from the viewpoint of linearized 
theory • it is apparent that  for a given value of ~t the slender body theory is rather less accurate 
for afterbodies than it is for forebodies and that  the quasi-cylinder theory fails to predict recom- 
pression towards the rear of the bodies. The apparent discrepancy in Fig. 7a, where the quasi- 

~cylinder theory underestimates the magnitude of the pressure coefficient but overestimates the 
drag coefficient over the initial part of the afterbody, is due to the approximate expression which 
this theory uses for the derivative of the cross-sectional area. The slender body formulae are 4 : 

I 2x~ 11 1 Cp = 4P (3x2 2 1)10g fit(1 --  x2 z) 2 x~ ' 

I 212 1 0 11 1 
and CD = 4t2l~ 2 2(1 --122) log f i t (1 - -  122) 3 12a -~  -2-- 122 - -  1 , 

where 12 is the ratio of the truncated body length to pointed body length. 

In the quasi-cylinder theory the choice of mean radius is always arbi t rary :  for the pressure 
distributions of Fig. 7 arithmetic means of the radii at x~ =-- 0 and x2 = 0.648 were used, but 
for the drag coefficients arithmetic means Of the radii at x2 = 0 and x2 = 12 were used. The 
resulting formulae are4: 

Cp 2P  (2 - -  Z?) U1 LZt( 2 _ !?)  ' z~ - -  o .  648, 

. ~ -  (2 -- I~2) 4 T /3t(2 122) ' 

where U1 and T are functions tabulated in Ref. 4. 

While the accuracy of these theories leaves something to be desired where practical applications 
are concerned, t h e  supersonic similarity law, which is also based on the linearized equation, 
provides a useful means of generalizing results for quite large values of/3t and for all x2 and l~. 
This law states tha t  for geometrically similar bodies Cf l t "  and C~,/t ~ are functions of x~ (or l~) 
and fit on!yt ; it is particularly useful because for moderately slender bodies at high Mach numbers 
it  goes over into the hypersonic similarity law 19, 20.21 

The extent to which the law holds is illustrated by Figs. 8 and 9 ; the results shown are of 
course those for inviscid flow. It  may be noted that  although the results for different bodies 
do not ' collapse ' completely into a single curve, the error of the law is systematic and nearly 
always in the same direction i tha t  is, if the curve for some particular thickness ratio (or some 
particular Mach number) is assumed to be unique, it will always overestimate the drag for larger 
thickness ratios (or lower Mach numbers), and underestimate the drag for smaller thickness 
ratios (or higher Mach numbers). This trend also appears in other applications of the similarity 
law% Thus if it should be required to use the law to obtain results of really high accuracy, 
this could be done by plotting known results for t = constant (or M0 = constant) according 
to the law, and by  then applying a small correction when this data is applied to unknown flows. 
This correction would be of the form 

8 A t  o r  A M ,  
~ {  = c o n s t a n t  fit  = c o n s t a n t  

c o n s t a n t  = '  c o n s t a n t  

and the value of the partial  derivatives could be estimated from such results as those of Fig. 9. 

]- Clearly all al ternative form is tha t  C~122/t2 is a function of 12 and tSt/12 only : this is the form that  has been used 
in Fig. 9. 
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The present results for the pressures and drags on parabolic afterbodies have been generalized 
by means of the similarity law and  presented in a form suitable for design use in Ref. 22. 

5.3. The Boundary Layers.--Fig. 10 shows the growth of the boundary-layer momentum and 
displacement thicknesses along the bodies ; the effect of Mach number is illustrated in Fig. 11. 

Over the rea r  half of the parallel portion, where the pressure gradient is negligible, a good 
approximation to the boundary-layer growth is giv.en by 

= K .  R ~  - 1 / 5  . x " 

where x is measured from the effective starting point of the turbulent boundary layer (obtained 
by extrapolation to v~ = 0) and R,, is based on free-stream Mach number. Values of K obtained 
from the present results are compared with those predicted by the 1/7 power law for the velocity 
profile on a flat plate 13,1~ in the following table. 

K (from K 
Mo present (flat plate) 

results) 

1.2 0.0375 O. 0328 

1.4 0-0354 0.0318 

1.6 O. 0335 O. 0307 

The increased values of K here are of course due to the initial adverse pressure gradient. 

The rapid thickening of the boundary layer towards the rear of the afterbodies is due princi- 
pally to the axially symmetric nature of the flow: since mass is conserved between adjacent 
stream surfaces, these surfaces must diverge appreciably when the radius of the body becomes 
sufficiently small. In the boundary-layer momentum equation this effect is realized by the term 
dy/y d~, which becomes the dominant one. 

The marked growth of the boundary-layer displacement thickness is of course responsible for 
the appreciable pressure changes encountered above. 

Total skin-friction coefficients are presented in Table 4 : the corresponding values of flat-plate 
skin friction, as predicted b y  Cope's log law 13, are also given for the sake of comparison. The effect 
of pressure gradients is seen to be negligible, but it must be remembered that  the boundary 
layers on the bodies were assumed to have flat-plate profiles of the type used in Cope's theory. 

6. Comlusiom.--The emphasis in this work has .been on the presentation of quanti tat ive 
data in a systematic form, suitable for comparison-with experiment ; consequently there is little 
of a new or startling nature in the conclusions below. They are, however, felt to be fairly generally 
valid for the afterbody problem. 

(i) The slender body and quasi-cylinder solutions of the linearized equation do not predict 
the inviscid flow over afterbodies as accurately as they do the flow over forebodies and 
parallel portions; the slender body theory gives good accuracy only for extremely small 
values of the parameter ¢~t (for/3t > 0.07 the error is more than 10 per cent), and the 
quasi-cylinder theory fails to predict recompression towards the rear of the bodies. 

(if) The supersonic similarity law, which is also based on the linearized equation, is a useful 
tool for generalizing particular inviscid flow results ; if the pressure and drag coefficients 
on bodies with maximum slopes up to 0.4 are plotted according to the law, the maximum 
deviation from a mean curve is about 5 per cent, and this error is nearly always a systematic 
one for which allowance could be made. 
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(iii) As at subsonic speeds the boundary layer towards the rear of an afterbody thickens 
extremely rapidly. On the modified afterbody which results from adding the displacement 
thickness to the body profile, suctions were reduced by as much as 12 per cent of the 
maximum in the present calculations, and towards the rear of the body this effect is 
increasing rapidly. 

(iv) The effect of pressure gradients and of axially symmetric flow on the total skin-friction 
drag of a turbulent boundary layer appears to be negligible. 

(Symbols which 
g 

C 
CI 

C,, 

C~ 

CF 

Cp 

C1 

G2 

D 

E~, E~ ~ 
F~, F~ 
G~, G~ 

g 
H 

h 

J 
k 

& 

M 

P 

LIST OF SYMBOLS 

appear only once in the text and are defined there are not included in this list.) 

Constant in the equation of the turbulent boundary-layer profile (3.1.3) 
and (II.1) 

Constant used by Squire and Young, equation (3.1.5) 

Characteristic curve of the first family 

Characteristic curve of the second family 

Wave drag coefficient based on maximum cross-section area 

Total skin-friction coefficient, based on ½p0V0 ~ 

Local skin-friction coefficient, z~/½plV1 ~ 
Pressure coefficient (p -- po)/½poVo 2 

1 - T, IT  
+ 2/(r  - -  1)] 

Constant used by Squire and Young, equation (3.1.5) 

Coefficients in the compatibility equations of the linearized characteristics, 
equations (4.2.2), (4.2.3) or (III.8), (III.9) 

Function appearing in the boundary-layer momentum equation (3.2.1) 

d*/0. 

Function appearing in the boundary-layer momentum equation (3.2.1) 

Function appearing in the boundary-layer momentum equation (3.2.1) 

Constant in the equation of the turbulent boundary-layer profile (3.1.3) 
and (II.1) 

Length of truncated afterbody/length of afterbody continued to a point 

Length of afterbody continued to a point 

Length of forebody 

Length of parallel portion 

Mach number 

Static pressure 
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R 

R~ 

S 

t 

V 

g~ W 

X 

Xa 

Y 

Y~ 

= 

y 
. 

¢ = 

o 

p 

()o 

(), 

(), 
(), 

LIST OF SYMBOLS.--co~tiuued 

Maximum radius of b o d y  

Reynolds number based on body or plate length 

Cross-section area 

Thickness ratio R/IA 
Velocity (inside the boundary layer in section 3.2 and Appendix II) 

Axial co-ordinate (inches) measured from the nose 

( x  - lF)/I~ 
( x  - -  ZF - -  Z~)/ZA 

See equation (4.1.3) 

Radial co-ordinate (inches) 

ylIA 
See equation (4.1.3) 

Mach angle 

V(M0 ~ -  1) 

Ratio of the specific heats of air 

Boundary-layer thickness 

Boundary-layer displacement thickness 

Co-ordinate normal to the body surface 

Angle between the velocity vector and the x-axis 

Boundary-layer momentum thickness 

Kinematic viscosity 

Corordinate along the body surface 

Density 

Prandtl number 

Shear stress 

Conditions in the free stream or, in the linearized characteristics method, 
conditions in the original flow field 

Conditions outside the boundary layer or, in the linearized characteristics 
method, perturbations in the flow field 

Conditions in an equivalent incompressible problem 

Total or stagnation conditions 

Conditions referred to the density, viscosity, or temperature at the wall 
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A P P E N D I X  I 

Some Details of various Numerical Problems 

1.1. Apfllicatio~, of the Exact Method of Characteristics.--The differential equat ions (2.2.1) 
to (2.2.4) were replaced by  difference equations,  of the  form 

Ay _ t an  (0 + a) for C~ Ax 

A 1 90 sin 6 sin a 1 

d y -  sin (0 + 
where  (-) denotes the ar i thmet ic  mean  for the character is t ic  increment  in question, and these 
equat ions  were solved by  i tera t ing unt i l  no significant change appeared  in the  values at  a new 
point.  

Calculations were  made  for two different mesh sizes, ~ x2 along the initial  character is t ic  (Fig. 3) 
being t aken  as O. 1 and  0.05, and the results were ex t rapola ted  to zero mesh size by  means of 
the  ' deferred approach to the l imit , '  given by  

f(0) = f(0.05)  + ½If(0.05) --  f (0 .10 ) ] .  

The correction f(0) - - f ( 0 . 0 5 )  had  of course to be in terpola ted  at those points which had  only 
been calcula ted wi th  the  smaller mesh. 

1.2 I~tegration of the Boundary Layer Equatio~.--The stat ions used for in tegra t ing  tt{e dif- 
ferential  equat ion  (3.2.1) were • 

xl = 0 ,  0.05,  0-10, 0.15,  0 . 2 0 ;  0.40, 0.60, 0 . 8 0 ;  1.20, 1.60, 2.00. 

x~ = 0, 0. 054, 0. 108, 0. 162, 0. 216 ; 0. 324, 0. 432, 0.540, 0.648. 

The  values of x~ were of course chosen to suit the  pressure gradient  over the parallel portion.  
The reason for choosing the values of x~ was as follows. 

The characteris t ics  calculations gave values of ~ (and therefore of M, @, etc.) at unequal  
in tervals  along the  body  profiles, the intervals  of x, being of the order  of 0.1 • the  equal ly-spaced 
points  x~ = 0, 0. 1 0 8 , . . . . ,  0.648, were chosen because they  seemed the best means,  towards  
the  rear  of the bodies, of the  x2-values at  which  the da ta  was given. 
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Values of M at these points were obtained by means of Newton's interpolation formula for 
unequal intervals. Vurther values at x~ = 0.054 and 0' 162 were then obtained so that  the 
effect of the strong initial pressure gradient could be carefully observed. 

The derivative dM1/dx~ was obtained by means of the four-strip formulae of Ref. 23. The 
equation (3.2.1) was integrated by using first the forward integration formulae and then tile 
four-strip and three-strip formulae of Ref. 24, and iterations were made until  no significant 
changes in ~ and dO./dxl or dO/dx~ appeared. 

The total  skin-friction integrals in equations (3.2.2) and (3.2.3) were also evaluated by the 
four-strip and three-strip formulae of Ref. 24. 

1.3. Evaluation of Afterbo@ Wave Drag Coefficie~ts.--The afterbody wave drag coefficient is 
defined by 

C. = Cp S(O) dx~ 

---- - -  Cp 4x2(1 - -  x~  2) d x = .  " 

This coefficient, and the corresponding increment dCn due to the displacement effect of the 
boundary layer were both calculated by means of the four-, five- and six-strip formulae of Ref. 24, 
the integration stations being x2 = 0, 0. 108 . . . . .  , 0 .  648. 

1.4. The Numerical Procedure i~¢ Applying the Method of Linearized Characteristics.--In the 
linearized characteristics calculations, Ax~ along the initial characteristic was taken as 0.05. 
In order to reduce the amount of labour by exploiting to the full the work of the original calcula- 
tions, the original results for A x2 -~ 0.05 were used, and not those depending on the deferred 
approach to the limit • the resulting error was certainly less than the error of 0(cq 2) due to the 
linearized method. 

A great deal of interpolation of values at unequal intervals was required in these calculations, 
because the new boundary condition had to be applied at points off the original body (Fig. 3), 
so that  (00 + 01) had first to be extrapolated slightly onto the original body, and at the end of 
the calculations (s0 + al) had to be interpolated back onto the modified body. These interpola- 
tions were performed by means of the Newton formula for unequal intervals along characteristics 
of the second family, as many  strips, up to four, being used as were available: this procedure 
was consistent because initially, where only one or two strips were available, 00, 01, and the 
distance over which we were interpolating, were all extremely small. 

Interpolation of the boundary condition along the modified body was also required. For this 
Bessel s formula for equal intervals was used, the coefficients being tabulated in Ref. 28. 

A P P E N D I X  II  

Derivation of Log Law Formulae for the Turbulent Boundary Layer 

The assumptions of section 3.1 regarding the compressible, turbulent boundary layer on a flat 
plate define the relations • 

V 1 
l o g  ~ V  .... . .  . .  ( 1 1 . 1 )  V~ -- k a ~  . . . . . . . . . . . . .  
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and 
T V V ~ 

- 1 - -  c ~ v ; - -  c~ 
T~ VI~' vl 

where c, = 1 T ,  
Zw ' 

T a  M12 

Co - -  Tw/]~rl 2 _~_ 2 / ( y  - -  1) " 

N o w  ~ = ~ 1 -  g ,  & ,  

and writing V / V ,  = z we obtain 

p T1 T1 1 
p~ T T ~  1 - -  c~z - -  c2z 2' 

(11.2) 

(II.3) 

Hence 

V,  ) a%, 
= e x p  l e z ~ .  V,~." 

T1 ~,=leY, j'* z(1 -- z) e x p ( k  V, ) 
'~ = f ~ , "  V~=, - ~  o l - C*Z - c=z ~ ~ z d z  

. .  ( I I . 4 )  

= T 1 .  a v , f l V ,  exp (leV1/Y.g~v) [1 "-1-- O(~w/V1) ] 
T~, V ,~  ~ " ( l e V , / E ~ ) ~ ( 1  - -  Cl - -  ~ )  

a'V w 

leVi 
- - -  e x p  (ley,/E~,)E1 + o ( E ~ / y d ~ ,  . .  

which is equation (3.1.5). 

Similarly 

- -  V ~  ~ 1 - -  clz -- c~7~J exp le ~ z dz 

(11.5) 

a % k V ,  (1 + c2) exp ( kV1 /V~; )  E1 + O ( V ,  wIV,)] 
- -  Y,o, ~ (1 - -  c~ - -  c~)(leV, l V ~ )  ~ 

a% 1 - / ca  

teV, 1 - -  c , - -  c a 
exp (leV~/VTw)[1 + O ( V ~ / V , ) ]  . ( I I .6 )  

T h u s  H _ 
8" 1 + c ~  

E1 + o (vT~/y l ) l  . 
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In  the incompressible case ct = c2 = 0 and H~ -"- 1.0, so tha t  we may  write 

H _  1+c2 [l + O(V, dVd~ 
H~ 1 - -  c~ - -  c2 

2 

which is equat ion (3.1.6). 

It  remains to be shown tha t  the constants  C and D used by Squire and Young in the incom- 
pressible case can be taken over to compressible flow. 

In  the incompressible problem we have 

= ~ -  Ce ~:, . .  (11.8) 

where ¢2 _ V12 p V12 _ 2 
V, ~ -  ~ Ci '  

and the m o m e n t u m  equat ion for a flat plate is 

dx - -  ¢ = - -  2 . . . . .  
Hence 

1 2 #  
CF = x C I d x  - -  x 

. .  (11.9) 

. .  (II.10) 

Following Squire and Young, we assume tha t  (11.8) is exact, and Use (II.9) and (II. 10) to trans- 
form it into a relation between C~ and R, (the Reynolds number  based o'n plate length), lower 
order terms in ¢ being included. In  (II.8) we have 

de dv~ _ ~ CDe,~_- 
dx V~ dx" 

so tha t  (II.~) becomes 

v 1 
~- C D e ~  --  ¢2 . . . . . . . . . . . . . .  (11.11) 

and hence VlX -- Re= CeD¢ Q~2 2 2 )  2C ~, - -  ~ ¢ -t- ~ D 2 , . . . . . . . .  ( I I .  12) 

where the constant  of integrat ion has been chosen to give x = 0 at ~ = 0. 

Again in (I1.8) 

1 fVlv~"~ 
¢ = ~ log k.-TC-J 

1 log = log . . . . . . . . . . .  (II.I3) by (II.10) - - D  2~C J D k, 2C j 
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Hence (i1.12) becomes 

R , - ~ -  k2C/J -~!°gk2c / + ~  D'" 
(11.14) 

The  constants C and D were chosen by Squke and Young to make the relationship (II.14) 
between R, and CF as similar to Prandtl 's  as possible. 

In the compressible case we have 

~J,v C e DC . .  (11.15) 

V~ ~ owV1 ~ 2 
V,W 2 72 w C f w 

d0, 1 p~ C~ . . . . . .  (II.16) 
and a!x -- ~2 01 -- 2 . . . . . . . . . . . .  

Hence Ce, 1 C/dx -- 2,~ (I1.17) . . . . . . .  • • . • ° • • , 

2 X 

In place of (II.11) we have 

V~ " dx C a 01 
(II.18) 

T1CeV~ ( ) - -  (II.19) and  hence Vlx p,~ _ R ~  C2 2 2 2C 

In place of (II.13) we have 

= 10g \ 7 2 d /  

k 2 ~ C ~ C / = b l ° g k ,  2C " f~ ,  . . . . . . . . .  

Thus R, ~T1/T~ and CF~ in'equations (II. 19) and (II.20) have exactly replaced R~ and CF in equations 
(II.12) and (II.13) ; and the problem of finding the best C and D for agreement with the extension 
of Prandtl 's  formula (in which Re and CF have also been replaced by R, ~T1/Tw and C~) is the same 
as in the incompressible case. 
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A P P E N D I X  I I I  

The Compatibility Equations of the Linearized Characteristics 
Method in Isentropic, Axially Symmetric Flow 

For isentropic, axially symmetr ic  flow Ferri 's  compatibil i ty equations are .8 • 
for C1 

1 dV1 dO1 
V~o dx --  tan so dx 

sin (Oo -- So), 1 ( ~ ! 5 ~  2 cos (0o -- so) ] + tan So 01 
cos (0o + So) y Vo \ dx / (21 sin 2so cos (0o + so) J 

+ 1 dVo ~ _.-- 1 
-gx~ tan~ so 1 -I- 2 sin ~ 

and  for C2 

~ (dVo~ cos(Oo-so)  1 (1  + 
+ g o  k d ~ - / ~ ) c o s  (0o + So) cos ~ So 

1 dV1 dot 
-V~ d--x- + tan so dx 

2 sin 2 ;o ~; = O, . .  (III.1) 

i 
sin (oo + so) 1 1 (~!o'~ 2 cos (Oo + . ~ )  ~ ol 

- -  t a l l  s o  . . . .  
COS (0 0 - -  (7,,0) y go k d.,'~//(1) Sill_ 2 s  0 cos (0 o - -  0(.0) j 

[ * <  ( 
+ V, d x - t a n ~ s °  1 + 2 s i n  4s0/ 

1 ( d l ~ ' ~  cos (0o q- So) 1 1 q- 2 s~nn~--~.j j -[7-o O, (III.2) 
+ Vo \ dx 2(,I cos (0o - -  so) cos ~ So = "" 

where Vo, 0o and So are, respectively, the magni tude and inclination of the velocity vector  and the 
Mach angle in the original flow field, and (Vo + V1) and (0o + 01) are the magni tude and direction 
of the velocity vector in the new flow. 

Now writing V/a, = 17, where a~ is the veloci ty of sound at s tagnat ion conditions, we have 
from the energy equation 

1 ~, - -  1 
17o = -  2 + s i n  =so, . .  ( I I I . 3 a )  

1 y - - 1  
( g o + ? , ) ~ -  2 + s i n  ~ ( s ° + < ) ,  . .  ( I I I . 3 b )  

hence 
71 

Vo 3 sl sin So cos ~o -I- 0(sl 2) . . . . . . . . . . . . .  (III.4) 

Writ ing ) , - - 1  
2 + s in2  ~0 = 
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we have Vo 
dFo 

dF1 

~o-~/~, \ 

= --  ½~-~/~ sin 2~0 do%, 

= - -  ½ ~0  -~/~ sin 2O~o, 

= --  ½~-~/~ sin 2~o d ~  --  ½~lE-- ~-~/~ sin~ 2~o + ~-~/~ 2 cos 2~o]d~o, 

V1 V~ 
_ _ ~  _ _  ] - 1  

~o Vo ~ sin 2c~o, (III.5) 

dVo 
Vo 

½~-~ sin 2~o do, o, . .  (111.6) 

dV1 
Vo 

Upon subst i tut ion 

dy 
dx 

- -  ½e~[-- ~ - ~  W-1 2~0]dc%. ½~-~ sin 2~0 d ~  --  sin 2 2c% 4- 2 cos 

of (III.5), (III.6), (III.7) and the  relations 

-- tan  (00 4- e0) , 

. .  (111.7) 

and after considerable reduction, the compat ibi l i ty  equat ions (III.1), (III.2), become those in 
the main text,  namely  

for C~ dy + D~ ~ -  (D1F1 4- E1)O~ -- G1 ~ 4- E~ ~.1 = 0, . .  (111.8) 

d~ D2 dO~ ( d~o ) forC~ ~ - -  ~ +(D~F~+E2)O~-- G ~ y  + E ~  ~ = 0 ,  .. (III.9) 

2 s in  ~ s o + r -  1 
where D~ = D~ = 2 cos 2 c~o ' 

E1 kdY/c~l sin 2~o sin (0o + o:o) ' \dy/111 sin 2~o sin (00 --  ~o) ' 

sin (0o -- c~o) 1 sin (00 + ~o) 1 
F1 ---- sin (00 + c~o) _~' F~ = sin (00 --  ~o)y '  

+ 1) 
G1----G2----tan~o 2 s i n ~ o + ~ _  1 '  

c~1 and 01 can obviously be in degrees, but  so must  be in radians. 

In applying the method,  the coefficients D1, El, etc., and also the coefficients pl, ql, etc., below, 
may  be evaluated in terms of 0o, ~o, and Y, the ar i thmetic  means for each strip ; the derivatives 
in E1 and E~ can be evaluated by  averaging the values of d o~/dy on the strips on ei ther side of, 
and of opposite family to, the  strip in question. This last step is consistent with the  order of 
accuracy of the calculations only if the difference in length of adjacent  characteristic strips of 
the same family is 0(AS) : this condit ion was satisfied in the  present  case. 

I t  is wor th  noting tha t  in a field of finite extent  considerably less labour is required to evaluate 
the  coefficients immedia te ly  in terms of mean values 0o, ao and ~, than  is required to evaluate 
the coefficients at all the  intersection points in the field, and then  to calculate mean values of 
these coefficients on the  strips : the accuracy, as predicted by mathemat ica l  order arguments,  
is the  same for the  two methods.  
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To proceed from a point A, where (0q, 01) are known, to a point C where (al, 01) are unknown, 
by  means of a characteristic strip of the first family, we replace the differential equation (III.8) 
by  the following difference equation : 

(O~c - -  oqA) + D~(01c - -  01A) - -  (D~Ft + E l ) .  1(01c + 01A ) . (Yc --FA) 

-- [(C~oc -- c~oA)G~ + E~CYc - -  YA)]. ½(~1c + ~IA) = 0 . . . . .  (III.10) 
This may be written 

where 

Similarly, for a strip 

S l C  

where m2 = 

P 2  - -  - -  

Oqc = p loq ,  + q, OiA - -  r~O~c . . . . . . . . . . . . .  (III.11) 
1 

= ½(D FC+ Y2, 

1 + m l  
151 -- 1 -- ml '  

q~ -- 1 - -  m l  ' 

9 1  - -  ~i 

BC of a second family characteristic we obtain 

P 2 ~ B  - -  q20~v + r201c . . . . . . . . . . . . .  (111.12) 

q2  - -  

1 q - m ~  

1 - -  m 2 '  

D~ -F n~ 

I - - + 2 '  

D 2 - -  ¢4 2 

When 01c is given by the boundary condition (II1.11) or (III.12) are used, but for a point within 
the field the two are solved simultaneously, so that  

1 
01 c - -  r l - - +  r2 [Pl~IA Jr- q~O1A - -  p 2 0 t l B  @ q201Bl .  . . . . . . . .  ( I I I . 1 3 )  

An analysis of the above procedure of the type given in Refs. 8 and 18 shows that  the error 
is the larger of 

O(0q z) and O(~Ay3) ,  

the former being inherent in the theory of lineal:ized characteristics. In principle the error 
represented by the second O-term calmot be reduced by iteration or by a more comp!icated 
procedure, but only by tightening the mesh. 

More particular details of the numerical procedure used in the present case are given in 
Appendix I. 
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T A B L E  1 

Flows Along the Parallel Portion 

X 1 

0 
0.05 
0"10 
0.15 
0.20 

0 '40 
0"60 
0"80 

1 "20 
1 "60 
2"00 

0 
0-05 
0"10 
0"15 
0"20 

0"40 
0"60 
0"80 

1 "20 
1 "60 
2.00 

0 
0"05 
0.10 
0.15 
0.20 

0"40 
0 '60 
0"80 

1 . 2 0  
1 . 6 0  
0.20 

M1 

1'4116 
1.3440 
1"3049 
1.2801 
1.2463 

1.2336 
1.2187 
1.2118 

1.2060 
1.2036 
1.2024- 

1.5822 
1.5394 
1.5099 
1.4890 
1.4736 

1.4397 
1.4238 
1.4155 

1.4079 
1.4048 
1-4032 

1.7720 
1.7381 
1.7126 
1.6934 
1.6788 

1.6449 
1.6285 
1.6193 

1.6101 
1.6062 
1.6041 

0.2484 
0.1746 
0.1296 
0.1001 
0.0809 

0-0428 
0.0240 
0.0152 

0.0077 
0.0046 
0.0031 

0.1686 
0.1323 
0.1061 
0.0869 
0.0725 

0.0399 
0.0241 
0.0157 

0.0081 
0.0049 
0-0033 

0.1272 
0.1044 
0.0865 
0.0727 
0.0619 

0.0361 
0.0231 
0.0157 

0.0083 
0.0051 
0.0034 

1 dVl 

V1 dxl (in.) 

0.9071 
0.5530 
0.3489 
0.2275 
0.1539 

0.0699 
0.0303 
0.0154 

0.0055 
0.0026 
0.0014 

(a) M o = 1"2 

0.0020 
0.0038 
0.0055 
0.0071 
0.0085 

0.0139 
0.0188 
0.0233 

0.0317 
0.0397 
0.0472 

0.4382 
0..3096 
0.2242 
0.1659 
0.1254 

0.0554 
0.0278 
0.0153 

0.0058 
0.0028 
0.0015 

(b) M o = 1 "4 

0.0018 
0.0034 
0.0049 
0.0063 
0.0076 

0.0126 
0.0171 
0.0213 

0.0291 
0.0366 
0.0437 

0.2787 
0.2107 
0.1613 
0.1251 
0.0984 

0.0431 
0.0241 
0.0143 

0.0058 
0.0029 
0.0016 

(c) M o = 1"6 

0.0017 
0.0032 
0.0045 
0.0058 
0.0070 

0.0115 
0.0157 
0.0196 

0.0270 
0.0339 
0.0406 

(in.) 

0.0048 
0.0088 
0.0124 
0-0157 
0.0189 

0.0302 
0.0403 
0.0498 

0.0676 
0.0843 
0.1003 

0'0049 
0"0089 
0"0125 
0-0158 
0"0190 

0.0306 
0.0412 
0.0511 

0.0697 
0.0874 
0.1043 

0.0050 
0.0092 
0.0129 
0.0164 
0.0197 

0.0317 
0.0427 
0.0532 

0"0728 
0"0913 
0-1092 

d# 

dx 1 
(in.) 

0.0384 
0.0348 
0.0323 
0.0303 
0.0286 

0.0256 
0.0233 
0.0219 

0.0203 
0.0193 
0.0187 

0.0342 
0-0304 
0.0286 
0-0272 
0-0261 

0.0234 
0.0217 
0.0205 

0.0190 
0"0181 
0'0175 

0"0317 
0.0277 
0.0261 
0.0248 
0.0239 

0-0215 
0.0201 
0.0191 

0.0i78 
0.0170 
0.0164 

dd* 

dXl 
(in.) 

0.0871 
0.0750 
0.0685 
0.0638 
0.0603 

0.0534 
0.0489 
0.0463 

0.0429 
0.0409 
0.0395 

0.0878 
0.0748 
0-0691 
0.0649 
0.0620 

0.0549 
0.0510 
0.0484 

0.0451 
0.0431 
0.0416 

0.0918 
0-0775 
0.0715 
0-0671 
0-0642 

0.0571 
0.0533 
0.0508 

0.0475 
0.0454 
0.0439 

G 

0.00344 
0.00299 
0-00278 
0-00264 
0.00255 

0.00232 
0.00220 
0.00212 

0.00202 
0.00193 
0.00187 

0.00328 
0.00284 
0.00264 
0.00251 
0.00241 

0.00220 
0.00207 
0.00193 

0.00188 
0.00181 
0-00175 

0.00312 
0.00269 
0.00249 
0.00237 
0.00228 

0.00207 
0.00195 
0-00187 

0.00177 
0.00170 
0.00164 
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T A B L E  2 

Flows Along the" Afterbodies 

X 2 

0 
0.054 
0.108 
0.162 
0.216 

0-324 
0.432 
0.540 
(3"648 

0 
0.054 
0.108 
0.162 
0.216 

0.324 
0-432 
0-540 
0"648 

0 
0.054 
0"108 
0"162 
0.216 

0.324 
0.432 
0-540 
0-648 

0 
0'054 
0"108 
0'162 
0.214 

0.324 
0-432 
0.540 
0"648 

M1 

1.2000 
1.2204 
1.2350 
1.2458 
1.2537 

1.2634 
1-2653 
1-2591 
1.2427 

1.4000 
1.4189 
1.4335 
1.4452 
1.4545 

1.4671 
1-4719 
1.4682 
1-4547 

- G  

0 
0.0262 
0.0446 
0'0581 
0.0679 

0'0798 
0'0821 
0.0745 
0.0542 

0 
0"0196 
0"0337 
0"0452 
0'0543 

0.0663 
0"0709 
0.0673 
0-0545 

1 d V  1 

Vi dx2 

0.2850 
0"2007 
0.1437 
0.1042 
0-0758 

+0.0320 
--0.0112 
--0.0601 
--0.1293 

0.2105 
0"1534 
0"1188 
0-0960 
0.0732 

0.0379 
+0.0034 
--0.0363 
--0.0852 

(in.) (in.) 

(a) t = O. 1, Mo = 1.') 

0.0472 0.1002 
0.0470 0.1008 
0.0475 0-1029 
0"0486 0.1058 
0.0503 0.1099 

0-0552 0.1214 
0-0631 0.1389 
0"0756 0'1658 
0.0974 0.2117 

(b) t = O . 1 ,  M o = 1 . 4  

0'0437 
0'0440 
0'0448 
0'0460 
0"0476 

0.0523 
0.0596 
0.0710 
0.0905 

0.1041 
0.1059 
0.1087 
0.1124 
0.1171 

0.1297 
0.1482 
0.1761 
0.2225 

(c) t = O . 1 ,  M 0 = 1 . 6  

d# 
dx.~ 
(in.) 

l--0.0130 
+0.0031 

0.0153 
0.0256 
0.0354 

0.0576 
0.0905 
0"1483 
0"2711 

--0~0006 
+0.0102 

0-0186 
0.0262 
0-0346 

0.0540 
0.0831 
0.1340 
0.2393 

dr}* 

dX 2 
(in.) 

--0.0025 
+0.0248 

0.0467 
0.0661 
0.0853 

0-1326 
0"1978 
0"3157 
0.5636 

0.0238 
0.0436 
0.0607 
0.0772 
0.0955 

0.1400 
0-2073 
0-3243 
0"5652 

1.6000 
1.6189 
1.6344 
1.6472 
1.6579 

1.6733 
1.6808 
1.6794 
1-6666 

1.2000 
1'2305 
1'2537 
1'2722 
1.2869 

1.3071 
1"3153 
1-3104 
1'2881 

0 
0.0154 
0.0279 
0'0378 
0'0461 

0.0577 
0.0634 
0.0624 
0.0527 

0 
0.0389 
0.0679 
0.0905 
0.1082 

0.1321 
0'1417 
0"1360 
0-1096 

0.1592 
0.1283 
0.1036 
0-0850 
0.0691 

0"0410 
-I-0"0117 
--0.0238 
--0.0676 

0.4226 
0"3026 
0"2320 
0-1839 
0.1404 

0.0747 
+0.0115 
--0.0662 
--0.1789 

0.0406 
0.0411 
0.0421 
0.0433 
0.0480 

0-0495 
0"0564 
0.0669 
0.0850 

(d) t = o- 

0.0472 
0'0459 
0"0454 
0"0457 
0"0465 

0-0498 
0.0559 
0.0664 
0.0858 

0.1089 
0.1116 
0.1152 
0.1196 
0.1249 

0.1388 
0"1587 

0 .1882  
0"2367 

1414, M o = 1 . 2  

0.1002 
0.0990 
0.0994 
0.1009 
0.1036 

0.1123 
0.1268 
0"1501 
0.1913 

0.0067 
0-0137 
0.0203 
0.0268 
0.0339 

0.0512 
0.0775 
0.1237 
0.2•89 

--0.0372 
--0.0154 
--0-0138 
+0"0096 

0"0204 

0.0424 
0.0733 
0'1277 
0'2457 

0"0429 
0"0582 
0"0734 
0.0895 
0-1073 

0.1523 
0.2211 
0.3407 
0.5858 

--0,0418 
--0.0058 
+0.0188 

0.0393 
0-0598 

0-1043 
0"1677 
0"2783 
0"5141 

G 

0"00187 
0"00186 
0"00185 
0'00184 
0'00183 

0.00179 
0-00175 
0"00170 
0-00163 

0.00175 
0.00175 
0.00173 
0.00172 
0.00171 

0.00167 
0.00164 
0.00159 
0.00153 

0-00165 
0"00163 
0"00162 
0'00161 
0"00160 

0"00157 
0"00153 
0"00148 
0"00143 

0"00187 
0'00186 
0'00186 
0'00185 
0'00184 

0'00181 
0"00177 
0-00172 
0-00165 

~Gt 

--0-0003 

+0.0034 

0.0042 

0.0044 
0.0046 
0.0059 
0.0101 

0.0020 

0-0035 

0.0038 

0.0040 
0.0043 
0.0053 
0"0087 

0.0028 

0-0036 

0.0036 

0.0037 
0.0041 
0.O050 
0.0078 

--0-0071 

+0.0030 

0.0055 

0'0067 
0.0076 
0'0099 
0'0172 

"t" A @ is the increment in pressure coefficient due to the boundary-layer displacement effect. 
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T A B L E  2--continued 

Flows Along the Afterbodies 

2 2 

0 
0.054 
0.108 
0.162 
0.216 

0.324 
0.432 
0.540 
0.648 

0 
0.054 
0.108 
0.162 
0.216 

0.324 
0.432 
0.540 
0.648 

0 
0.054 
0.108 
0.162 
0.216 

0.324 
0.432 
0.540 
0.648 

0 
0.054 
0.108 
0.162 
0.216 

0-324 
0-432 
0"540 
0-648 

M1 

1.4000 
1.4275 
1.4506 
1.4700 
1-4863 

1"5105 
1.5236 
1"5238 
1"5067 

1"6000 
1"6275 
1.6514 
1.6723 
1"6903 

1"7188 
1-7362 
1.7404 
1.7269 

1-2000 
1.2442 
1.2802 
1-3102 
1.3356 

1.3740 
1.3957 
1.3979 
1.3736 

1.4000 
1.4401 
1.4748 
1.5056 
1.5328 

1.5767 
1.6053 
1-6156 
1-6002 

- G  

0 
0.0278 
0.0505 
0.0691 
0.0843 

0.1066 
0.1183 
0,1185 
0.1,031 

0 
0.0223 
0.0411 
0.0570 
0.0705 

0.0910 
0.1031 
0.1060 
0.0966 

0 
0.0561 
0.1001 
0.1358 
0.1651 

0.2080 
0-2315 
0.2339 
0.2076 

1 dV  1 

V 2 ~X: 2 

0.2809 
0.2337 
0.1897 
0.1545 
0.1279 

0.0790 
+0.0296 
--0.0312 
--0.1175 

0.2286 
0.1898 
0.1617 
0.1385 
0.1169 

0.0782 
+0 .0378  
--0.0119 
--0"0815 

0.5855 
0.4513 
0.3562 
0.2888 
0.2362 

0.1482 
+0.0606 
--0.0457 
--0.1990 

# 

(in.) (in.) 

d# 
d x  2 
(in.) 

(~) t = 0 . 1 4 1 4 ,  

0.0437 
0.0432 
0.0432 
0.0438 
0.0447 

0.0481 
0.0539 
0.0635 
0.0807 

M o = 1"4 

0.1041 --0.0144 
0.1046 --0.0041 
0.1061 +0.0054 
0.1086 0.0140 
0.1121 0.0221 

0.1223 0.0410 
0.1381 0.0682 
0-1627 0.1154 
0.2047 0.2154 

( f )  t = 0.1414, M o = 1.6 

0.0406 
0.0405 
0.0409 
0.0416 
0.0427 

0.0461 
0.0516 
0.0606 
0.0763 

0.1089 
0.1105 
0.1131 
0.1165 
0.1208 

0.1326 
0.1502 
0.1768 
0.2209 

--0-0053 
+0 .0027  

0-0097 
0.0164 
0-0235 

0-0402 
0-0646 
0.1070 
0.1952 

(g) t = O . 2 ,  M o = t,.2 

0.0472 0.1002 
0.0446 0.0970 
0-0431 0.0958 
0.0425 0.0961 
0.0425 0.0975 

0.0442 0 .1038-  
0.0486 0.1155 
0.0569 0.1354 
0.0731 0.1714 

--0.0626 
--0-0365 
--0"0187 
--0.0056 
+0"0055 

0.0272 
0.0556 
0.1040 
0.2097 

(h) t = 0.2, M o = 1.4 

dd* 

dx2 
(in.) 

--0.0007 
+0.0191 

0.0380 
0.0357 
0.0738 

0.1170 
0.1801 
0.2890 
0.5152 

0.0218 
0.0387 
0'0547 
0.0712 
0.0890 

0"1327 
0.1975 
0"3085 
0"5351 

--0.0814 
--0.0387 
--0.0080 
+0.0158 

0.0370 

0.0810 
0.1402 
0.2404 
0.4538 

0 
0.0402 
0.0736 
0.1021 
0.1264 

0.1640 
0.1875 
0.1956 
0.1833 

0.4142 
0.3364 
0.2857 
0.2468 
0.2091 

0.1433 
+0.0771 
--0.0342 
--0,1211 

0.0437 
0.0423 
0.0416 
0-0415 
0.0418 

0.0438 
0.0482 
0-0560 
0.0706 

0.1041 
0.1033 
0.1037 
0.1052 
0-1077 

0.1159 
0.1297 
0.1517 
0.1894 

--0-0330 
--0-0183 
--0.0077 
+0.0013 

0,0101 

0.0287 
0.0537 
0.0959 
0.1857 

--0.0291 
--0.0027 
+0.0181 

0.0371 
0.0563 

0.0993 
0.1590 
0.2590 
0.4650 

c, 

0.00175 
0.00175 
0.00174 
0'00173 
0.00171 

0.00168 
0.00165 
0.00160 
0.00154 

0-00165 
0-00164 
0-00163 
0.00161 
0-00160 

0.00157 
0.00153 
0.00149 
0-00144 

0.00187 
0.00187 
0.00186 
0.00186 
0.00185 

0.00182 
0.00•78 
0.00•73 
0.00166 

0.00175 
0.00175 
0.00174 
0,00173 
0-00172 

0.00169 
0-00165 
0.00160 
0.00154 

~ G  

--0.0001 

+0.0038 

0.0052 

0.0060 
0.0069 
0.0088 
0.0145 

0.0020 

0.0045 

0.0051 

0.0057 
0.0065 
0.0082 
0.0127 

--0.0195 

--0.0019 

+0-0052 

0-0090 
0-0118 
0-0160 
0"0281 

--0.0048 

+0.0015 

0.0056 

0.0083 
0.0105 
0.0139 
0-0230 
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TABLE 2--contlnued 

Flows Along the Afterbodies 

X 2 

0 
0.054 
0 .108 
0.162 
0.216 

0.324 
0.432 
0.540 
0.648 

M1 

1.6000 
1"6397 
1 '6756 
1.7083 
1i7377 

1.7874 
1.8227 
1.8396 
1.8308 

- G  

0 
0.0320 
0.0595 
0,0835 
0.1042 

0 '1372 
0"1593 
0.1696 
0.1643 

1 d V  1 

V I d:c 2 
# 

(in.) 
(~,'g 

(in.) 

dO 

dx 2 
(in.) 

0 '3222 
0.2763 
0 '2425 
0.2134 
0"1860 

0"1359 
0"0823 
0"0165 

--0"0741 

(i) t = 0 - 2 ,  M o = 1 . 6  

i 0.0406 O. 
0-0399 O. 
0.0397 O. 
0-0399 O. 

1 0-0404 
! 

1 0 . 0 4 2 8  
1 0.0472 
i 0.0547 
I 0.0683 

1089 
1096 
1114 
1141 

0.1177 

0.1283 
0.1445 
0.1694 
0.2104 

- -0 .0176 
- -0 .0082  
- -0 .0005  
+0"0067  

0"0140 

0.0302 
0-0529 
0-0913 
0.1705 

dd* 

dx 2 
(in.) 

0.0036 
0"0230 
0-0409 
0.0587 
0-0773 

0.1212 
0-1837 
0.2877 
0.4966 

G 

0.00165 
0.00164 
0.00163 
0.00161 
0.00160 

0 '00157 
0.00153 
0.00149 
0.00143 

AG 

0.0005 

0-0039 

0"0061 

0"0078 
0 '0097 
0.0126 
0.0196 

T A B L E  3 

Afterbody Wave Drag Coej~cients 

CD = Wave  drag coefficient in inviscid flow, based on m a x i m u m  cross-section area. 
A CD = Change in the  Wave drag coefficient due to the presence of the boundary  layer. 

12 

0"108 
0.216 
0"324 
0 '432  
0"540 
0"648 

0.108 
0.216 
0 '324  
0.432 
0"540 
0"648 

0.108 
0.216 
0.324 
0.432 
0.540 
0.648 

M o = 1 ' 2  M o : 1 " 4  M o =  1"6 

C~ 

0.0008 
0.0047 
0.0128 
0.0242 
0.0369 
0.0477 

0'0011 
0"0074  
0"0205 
0"0398 
0"0622 
0-0828 

AC~ 

--0-0001 
- -0-0003 
--0"0008 
--0"0014 
--0"0022 
- -0 .0035 

0 
- -0 .0003  
- -0 .0010  
- -0 .0020  
- -0 .0034 
- -0-0055 

C~ AC; 

(a) t = o ,  1 

0.0006 
0"0037 i 
0"0103 
0"0199 i 
o.o311 ! 
0.0413 i 

-1 

- -0 .0001 
- -0 .0003  
- -0 .0007  
- -0 .0013  
- -0 .0021 
- -0 .0032  

(b) t = 0 . 1 4 1 4  

0.0008 
0.0056 
0.0161 
0.0319 
0.0510 
0.0695 

--0 .0001 
- -0 .0004  
- -0 .0010  
- -0 .0019  
--0.0031 
- -0 .0050  

(c) t = 0 .2  

Ca 

0.0005 
0.0031 
0.0088 
0.0173 
0.0274 
0.0371 

0"0007 
0"0046 
0"0135 
0"0271 
0"0439 
0 '0609 

0.0017 
0.0110 
0-0315 
0-0624 
0"0999 
0"1368 

+0 .0001  
0 

- -0 .0008  
- -0 .0023 
- -0 .0045 
- -0 .0079  

0,0012 
0.0083 
0,0242 
0.0489 
0.0797 
0.1113 

0 
- - 0 ' 0 0 0 3  
--0"0010 
- -0 ' 0023  
- -0 ' 0043  
- -0 '0071  

0 '0010 
0"0067 
0 '0200 
0"0408 
0"0673 
0"0951 

AC~ 

--0"0001 
- - 0 ' 0 0 0 3  
- - 0 ' 0 0 0 7  
- - 0 ' 0 0 1 3  
--0"0020 
- - 0 ' 0 0 3 0  

--0 .0001 
- -0 .0004 
- -0 ' 0010  
- -0 .0019 
- -0-0030 
--0"0047 

--0-0001 
- -0 .0004 
- -0-0012 
- -0-0024 
- -0-0042 
- -0-0067 
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TABLE 4 

Total Skin-friction Coe~cients 

(a) Parallel portion 

Mo 

1.2 
1.4 
1.6 

Body 
Cl, 

0.00217 
0.00202 
0.00189 

Flat plate C2, 

For R, based 
on distance 
from nose 

0.00204 
0.00190 
0.00178 

For R, based 
on distance 

from shoulder 

0.00217 
0.00203 
0.00190 

0.1 

0.1414 

0.2 

(b) Parallel portion + afterbody 

Body 
M 0 C~ 

1.2 
1.4 
1.6 

1.2 
1.4 
1.6 

1 "2 
1"4 
1"6 

0.00203 
0.00189 
0.00176 

0.00206 
0.00192 
0-00178 

0.00209 
0.00194 
0.00180 

Flat plate C~ 

For R, based 
on distance 
from nose 

0.00196 
0.00183 
0.00172 

0 . 0 0 2 0 0  
0.00186 
0.00174 

0-00201 
0.00185 
0"00175 

For Ro based 
on distance 

from shoulder 

0.00206 
0.00193 
0.00179 

0.00210 
0.00196 
0.00183 

0.00211 
0.00197 
0"00184 
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COEP'VICIENT CORRESPONDING TO MINIMUM PRESSURE 
CP~tN = ON AN AFTERBODY IN INVISCID FLOW, 
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FIG. 5. Changes in the afterbody pressure coefficients due 
to the presence of boundary layers. 
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