-

¥OT TR g e
ROYAL AlRCrAeT £

ST A2 (Nt s
ESTASLISHMENT

BEDFORD,

R. & M. No. 2947
(15,933)
A.R.C. Techrical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
REPORTS AND MEMORANDA

The Calculation of the Loading and
- Pressure Distribution on |

Cranked Wings
By |

G. G. BREBNER, M.A.

Crown Cépyright Reserved

LONDON: HER MAJESTY'S STATIQNERY OFFICE

1955.
‘EIGHT SHILLINGS NET




The Calculation of the I.oading and Pressure
Distribution on Cranked Wings
B | 5 |
G. G. BREBNER, M.A.

COMMUNICATED BY THE PRINCIPAL DIRECTOR OF SCIENTIFIC RESEARCH (AIR),
MINISTRY OF SUPPLY

Reports and M. emoranda Vo, 2947"%
Janunary, 1953

Summary —Using distributions of vortices and sources over the aerofoil surface, approximate formulae are developed
for finding the spanwise and chordwise loadings of cranked wings (¢.e., wings with discontinuous changes of sweep),
and the chordwise pressure distribution at the crank, in incompressible flow. The method can be extended to sub-
critical compressible flow by’ considering the ‘ analogous wing.” Calculations by the present method are compared
with experimental results on two wings and with calculations by another method for wings of M, W and A plan-form.
Agreement with experiment is good. Comparison with the other method shows satisfactory agreement between the
spanwise loadings, but the present method yields more information about chordwise distributions, and is quicker.

1. Introduction.—The term ‘cranked wing ’ is here used to denote a wing on which the angle
of sweep changes abruptly at one or more sections between the centre and the tip. These cranks
are distinct from the ‘ kink ’ at the centre-section of a swept wing, which is, indeed, a special
case of a crank. Effects at the kink of a swept wing have been extensively studied (e.g., Refs.
18, 19, 20), but so far those at a crank have not. ‘

The use of cranked wings has been considered for some time, ever since swept-back wings
were seen to have unsatisfactory stalling and pitching-moment characteristics and to involve
structural difficulties due to elastic distortions. The typical longitudinal instability of a swept-
back wing is due to flow breakdown near the tips and the comparatively long moment arm
between the tips and the centre of gravity. To minimise this instability, wings have been
designed on which the sweepback decreases near the tip, thereby reducing both the likelihood
of flow breakdown and the length of the moment arm. Such a change of sweepback usually
takes place suddenly at a crank, and up to the present has been of the order of 10 to 20 deg in

_practical cases. To overcome the bending moment and torsion problems while trying to preserve

_the benefits of sweepback, wings of M, W and 4 plan-form have been proposed. In such cases
the changes of sweep at the cranks are usually greater than the 10 to 20 deg mentioned above,
and may even be as large as 90 deg, or more.

Investigations into the behaviour of such wings have, in the past, been mainly experimental.
No real theoretical study has been made of conditions near the crank, although some existing
calculation methods for the loading distribution can be applied to wings of cranked plan-form
and take account of the crank effect to a certain extent. For instance, in Refs. 1 and 2, horseshoe
vortices are distributed along the quarter-chord line, and Falkner’s method® can also be used

by placing the horseshoe vortices so as to conform to the wing geometry. The first two methods
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give no information about the chordwise loading, however, and the third method would require

a number of chordwise pivotal points, which would greatly increase the computational work
involved. :

The presence of the crank affects the chordwise loading in its vicinity, and hence the sectional
lift slope and the spanwise loading. This report presents a method of calculating these loadings
and pressure distributions. The method is based on the velocities induced in incompressible
flow by distributions of source lines and vortex lines cranked to follow the wing plan-form.
The calculation of the pressure distribution and loading at a crank is one of the “ basic ’ solutions
for a swept wing, like those for the kink and the part of the wing which acts as a sheared wing.
Conditions at other sections are determined from the basic solutions by superposing the contri-
butions from the kink, crank and sheared part. It can be seen intuitively that conditions at a
crank like those shown in Fig. 2a bear some resemblance to conditions at the centre of a swept-
forward wing, and therefore high suction peaks can be expected near the nose of the crank
section. A means of reducing these suction peaks by the use of camber and twist is suggested.
The results of the calculations are compared with experimental data at the crank of the wing

shown in Fig. 2b and a double-cranked wing, and also with the results of other calculation
methods for wings of complicated plan-forms.

The present report fits into the calculation scheme for wings of any planform, which was
originated in Refs. 4 and 5 and recently extended in Ref. 6. The method may be extended to
compressible flow below the critical Mach number by using the well-known concept of the
.“ analogous wing ’ as described in Ref. 6. The effect of cambered sections may be dealt with by
.the method of Ref. 7 and wing-body combinations by the method of Ref. 8. In connection with
.the suggested use of cranked wings for structural reasons, it is of interest to note that Hunn®
has recently extended the spanwise loading calculation procedure of Refs. 4 and 5 to elastic wings.

2. The Chordwise Loading at the Crank of an Infinite Thin Wing of Symmetrical Section.—
We will deal first with the chordwise loading of a thin cranked wing of symmetrical section,
and represent the lifting effect of the wing by a sheet of vortex lines distributed over the chordal
plane of the wing. These lines run in a spanwise direction and are kinked and cranked to follow
the wing plan-form. To isolate the effect of a crank from that of a kink or tip, we will treat
initially a wing which extends to infinity on either side of a single crank : thus the vortices
which represent the lifting effect of this wing extend to infinity on either side of the crank.

Consider two semi-infinite vortex filaments in the plane z = 0 stretching to infinity on each
side of their intersection in the plane y = 0, as in Fig. Ta. All the vortex lines in the two filaments
~are of equal vorticity y(x), which is independent of y. The sweep angles of the filaments are
"¢; and g,, the former being regarded as the sweep of the inboard panel of the starboard half of

a cranked wing, and the latter as the sweep of the outboard panel. Both angles are regarded as
positive in the directions shown in Fig. 1a. The strengths of the vortex filaments are y (x) cos ¢; dx
and y(x) cos ¢, dx, where dx is the width of the filament in the free-stream direction and ¥ (%)
is a function of x, the streamwise distance from the leading edge of the wing. '

From equation (1) in Appendix I of Ref. 5 it can be seen that in the plane y = 0, 4.e., at the
crank, the downwash velocity at a point (x, O, z) due to the left-hand filament through

(%", 0, 0) is
vl y(x') dw’ x— x' o x— 1
I:VO],—__ 47-E-VO (X _ x/)z + z {1 S \/[(x - xl)z -+ 22]} a ( )
cos? ¢,
. and the downwash due to the right-hand filament is
dv.]  y() da’ x— - . x—x'
: [ } A o {1 + sin g, . VI — %) 22]} C (2)

VO a_ ne
(x_x) +C052¢0
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If we now consider the lifting effect of a thin infinite cranked wing of symmetrical section
as being represented by a continuous chordwise distribution of such vortex filaments y(x'),

(x” being the current co-ordinate), in the range 0 < ' < 1, then the downwash at a point (x,0,0)

on the crank section (0 < x < 1) is obtained by integrating equations (1) and (2) over the chord
and putting z = 0. That is, the downwash at the crank is half of that at the kink of a swept-
forward wing (¢ = ¢,) plus half of that at the kink of a swept-back wing (p = ¢,).

For an infinite kinked vortex distribution, as in Ref. 5, the downwash in the plane y = 0 is

v(x%,0,2) 1 . :
Vﬂ - ZJ‘TVO {Il(x’ OJ Z) _l_ IZ(xJ 07 Z) + Is(x, 0) Z)} . .« .. (3)
‘where
I, '—J V(x/) iy 22 dx'
0 (x — x/)2 __I_ Cosztp
. B , dx’
e SMJ ) = #
and ’
22
I, = — sin sz y(x") cos’ ¢ dx’.
0 ne . z _ ah\2 2
o= Bt =+ 21

Since we are dealing with a representation of a thin wing, these integrals are evaluated for
z—>0. If this proves impracticable, however, they may be evaluated for » = 0, since the
assumption of a thin wing is meant to be a simplification, not a complication. I, is the ordinary
downwash integral for a two-dimensional aerofoil and can be evaluated at z=0. I, has a
logarithmic infinity on the x-axis and calculating it for non-zero values of z reveals that within
the practical range of thickness/chord ratios it is not very sensitive to the value of ¢/c or of x.
Thus a mean value can be used for the practical range of thickness/chord ratios. For a given wing,
I, = constant X y(x). The integrand of I; has an infinity at the point (x, 0, 0), the appropriate
value of I, being the principal value. This, too is proportional to y(x). Equation (3) then becomes

. . _l .
v, 1 A dx :
VO_ZnVO{Ly(x)x—%' —|—_\7ztanzp.y(x)}, S . .. (4)
the second term comprising I, and Is. & I o

Therefore for the left-hand distribution of semi-infinite swept vortex filaments, the downwash
at the point (#, 0, 0) is given by the approximation

1
Ul 1 ) , dx' _
[ﬁ],_éano{Ly(x)x—x’ ntan%-y(x)}

and the downwash due to the right-hand distribution of vortex filaments is

: 1 ([0, 4
,:—;—0:' Zzz_ﬁ,{J y(x)xfx,—l—ntan%.y(x)}.
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Therefore the total downwash at the point (x, 0, 0) is

1 ~
v, 1 N ax’ tan ¢, — tan ¢;
Ve  2aV, {L”x)x— P 2 Y(")}

where

tan ¢, — tan ¢;

defines ¢* ¢* has no geometrical significance : it is a measure of the .| crank effect,” which
equation (5) shows to be like that at the kink of a wing swept at an angle ¢*

tan ¢* =

As in Kiichemann’s reports on wing loading™®, y(x) is assumed to be of the form C{(1 — )%},
where C is independent of x. If v,/V, is constant -over the chord and equal to the effective
incidence «,,, then a solution of equation (5)

l—x

y(%) = 2V o, SIN 77, ( (7)

where #,* is the value of n at the crank -of the infinite wing. (The suffix , applied to «, and »
denotes the infinite wing.) '

Combining equations (5) and (7),

v, 2V o0t SIN 77, * 7 7 ) 1—x o ¥
— == Oy = : Pl *—ntantp
V, 2V, sin wm,* .\ tan nn, x

which is to be independent of x. Therefore

, - ‘
tan ¢* = cot nn,* = tan <§ — omﬁ‘) ,

¥ * :
1 Y _ (1.2
n¥ =g — 2(1 n/2> . .. .. . (8)

The kink of an infinite swept wing corresponds to the case ¢; = — ¢, = ¢, and #,* becomes

1.e.,

the result obtained in Ref. 5.

The infinite sheared wing corresponds to the case ¢; = ¢,, and #,* becomes
%0 = %; ‘

the ‘ flat-plate distribution ’ parameter for a two-dimensional wing.

The term containing x varies from { 1 — x)[x}"* at the crank to {(1 — #)/x}'/* far away
from the crank. In practice, this distribution is usually reached at a d1stance of about one
chord from the crank.  As shown in Ref. 5, the chordwise position of the aerodynamic centre,
measured from the quarter-chord point, is

11— 2%

Axa.c. = Xae, — i 4




where # is the index in the function of x. It is reasonable to assume that the aerodynamic centre
changes. continuously from its pesition at the sheared wing to its position at the crank, and thus
that the chordwise vorticity distributiens at intermediate points have the one-parameter form
of equation (7), with # varying continuously. At such an intermediate point we can write

1— 2#n 1 — 2m,*
4 - Axa.c. - j'[A-I)ca.c.]cr. - ]' ( 4 ) ’

where 0 < 2 < 1 and 4 depends on the spanwise distance from the crank:ie., 2 =4(y). 1 =1
at the erank and 0 at the sheared part. The intermediate value of # is then given by
*

_ _ % _ _ .7
1 —2(1 —2n,%) 1 —24+14 , An/Z

2 2

As for the dependence of 1 on ¥, it is assumed that the same functional relationship as has
been derived for the special case of the kink still holds. 4(y) may be obtained from Fig. 1 of Ref. 5,
Fig. 1 of Ref. 7 or Fig. 23 of Ref. 6, in which A(y) is plotted against y (dimensionless with the
Tocal chord at the spanwise position concerned) ; or from the formula®:

A(y) = 1-40 + 1-33y — 4/(0-16 + 7-30y) . o 9)

2 measured from the crank section will be called .. If ¢, << ¢,, the crank effect is like that of
the kink of a swept-back wing and 1, ¢* > 0. If ¢; > ¢, the crank effect is like that of the kink
of a swept-forward wing and 4, ¢* << 0. From now on the definition of #, and #,* will be
extended as follows : A ' '

1
%D=é<1—17§2>,

where 1 is measured from the centre of an infinite swept wing of sweep angle ¢ :

1 ¥
* __ = i
o 2 <1 Fe. n/2>

where 1., is measured from the crank of an infinite cranked wing of sweep angles ¢; and ¢, such
that tan ¢* = §(tan ¢, — tan ¢;). At a section near the crank y(x) may still be obtained from
equation (7) if #,* has the value given above ‘

1 (P*
% _ (1 ¥
o =5 <1 Aer. /2>.

The chordwise vortex distribution is now known in the neighbourhood of the cfank, but the
chordwise loading, 4C,(x), is not yet determined. The general relation between y(x) and 4C,(x) is

ACP(x)z—-ZZ—(—x-)COSsz, . . . . .. .. .. (10)
Vo - .

where ¢, is the sweep of the vorticity vector at the point x. The value of ¢, depends mainly

on the spanwise co-ordinate y,-and also to some extent on the chordwise co-ordinate x. In

practice 1t is necessary to simplify matters by taking a mean value of ¢, over the chord. This

is the same simplification as has been used in Ref. 6 for swept wings without cranks, where it

was found to be adequate. :
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If the aerodynamic centre changes continuously from the sheared wing position to the position
at the crank and back again, the vorticity vectors will also curve round with a continuous change
of sweep in the neighbourhood of the crank. At the crank itself they will have turned through
about half the difference between ¢; and ¢, : 7.e., the sweep of the vorticity vectors at the crank
may be approximated by :

[qucr,:"i";“—"’", L N 0§ )

Any errors involved in this assumption will be small and certainly less than those introduced by
taking a mean value of ¢, over the chord.

This picture of curved vorticity vectors appears to conflict with the model of cranked vortex
lines previously considered. We may continue to use the latter, however, by resolving the
vorticity vector at any point into a component parallel to the line of sweep and a component in
the chordwise direction. The latter will not contribute towards producing the lift force. The
component parallel to the line of sweep will not have vorticity y(x) but the value

i) = 28 ()

COS @; . :
on the inboard part, and . .. . .- . o .. .. (12)
_ cosgy
i) = oo ()

on the outboard part. Thus if we retain the concept of cranked vortex lines, their Vortici{y
must be allowed to vary from y(x) on the sheared part to another value at the crank. On
approaching the crank from the inboard side

cos @ + Yo

2
(%)

¥ = " os g

and from the outboard side

P 1 @,
COS ———
2
yo(x) - (003 (po o ')/(x).

This means that not only does the vorticity component in the sweep direction, i.e., the vorticity
of the ‘ cranked vortex lines,” change gradually between the sheared part and the crank, but
there is also a jump discontinuity at the crank itself. There is-however no discontinuity in the
chordwise loading—a physically real quantity. From the inboard side, the value of 4C,(x)
at the crank is

ACy(x) = — 2)% oS g;
= — 2 ?% oS [@p]er. from equation (12)
= —2 y,,_évxo_) oS @, from equation (12)
— AC,(%) from the outboard side.
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There is one quantity in each of these expressions for 4C,(x) which is not determined, namely .
vi(%), v,(x) and cos [py],,.. We must assume a value for one of them. Equation (11) gives a
better approximation to [¢y].. than we can get for y;(x) or y,(x), and so we use the expression :—

Acﬁ(x):_zyéo)cos‘““g*”“ | ey
. o %
= — 4a,, Sin wm,* . cos(pi—;(’v"<]L p, x>0 oo . . . (14)

This can be interpreted roughly as the loading at the kink of a wing swept at an angle ¢* and
yawed at an angle 1(¢; + ¢,).

The sectional lift coefficient at the crank is :

1
C, = — J AC,(x%) dx = 4o,gun,* cos L "gi’e

0

P 1 P

. , 2 : S
on putting 2z = a,, the lift slope of a thin two-dimensional wing. Therefore the sectional lift
slope at the crank C,/a,,, is

= 2a.m,%x,, COS

®; 1+ P,
T

At distances greater than about one chord from the crank (i.e., 4, = 0), sheared wing condi-
tions obtain, and

AC,(x) = 40450 cos ¢ (1 - x>

C, = g0, COS p

Ayr. = 2agn,* COS

and
@ == @y COS @ ,

where ¢ = ¢, or ¢, depending on which wing panel is being considered.

At intermediate positions between crank and sheared part, the expressions for 4C,(x), C; and
@ must contain a suitable interpolation factor to take account of the change in ¢. Thls factor is

@i + @,
cos [/lcr. o }
C0S [Aer. @]

b

where ¢ = ¢, or ¢, depending on the wing panel. This factor is consistent with equation (12)
and with the sheared wing and crank expressions. Then :

COS[ 9 + 90} o
AC,(x) = — 4ot Sin 7wa,™ cos ¢ ( >
cos [Aer, @]
cos l}cr' & —5—%}
C; = 2a,%x,, COS
i o ¥ 008 [her 9]
cos [Am‘_ & —I2_ %}

a = 2a3m,* cos ¢

oS [Ae. @]



are general equations applying to any spanwise position on an infinite cranked wing. The t erm
COS @ COS | Aq,. <p,_—{2—q?_,, cos {44, @] is equal to cos ¢y, the cosine of the mean sweep of the vorticity
vectors. At the crank, 4, = 1 and cos ¢, = cos {(p; + ¢,) as was assumed in equation (11).
Far from the crank on either side, 4., = 0 and cos ¢, = cos ¢ where ¢ has the value appropriate
to the wing panel concerned. The case of a finite cranked wing will be dealt with in section 5.

3. The Chordwise Pressure Distribution at the Crank of an Infinite Thick Wing of Symmetrical
Section at Zevo Lift—We will now deal with the pressure distribution at the crank of a thick
wing at zero lift. The effect of the wing thickness is represented by a distribution of source lines
cranked to follow the wing plan-form. -As in section 2, the crank effect is isolated by treating
a wing which stretches to infinity on each side of the crank. ' '

Consider two distributions of semi-infinite source lines in the plane z = 0, joined at the crank
like the vortex filaments of section 2. ILet g(x) represent the strength per unit area of such an
elementary source line, so that the source strength per unit length is g;(x) cos¢;dx and
g.(%) cos g, dx for the inboard and outboard panels respectively. In the notation of Appendix I
of Ref. 10, £ = g(x) cos ¢ dx. From the expressions given in that report for the velocities induced
by a swept source line, the velocities induced in the x and y directions at the point (x, 0, z) by
one such semi-infinite source line through the point (x’, 0, 0) may be written down :

’ 7ye o Sie
dv, q(x’)cosqadx’(x_x)\/[(x_x)'+zj._cosz¢z
VO: 4V, a2 z e 2
d U e e Vi —
an
' na . x — % 2
b g eospa ~ D VIE— £ X 2
V(]— 472:V0 ) ne 22 . . )
= RO

These expréssions can be integrated with respect to x" over the chord to give the induced
velocities at the point (x, 0, z) due to two distributions of semi-infinite source lines joined at the
crank. These velocities are :

U, 1 vxl “
7{): Q{VD CoOs¢p — gi(ﬁz Cos @ f((p>}
and | '
U . I+i1+sin I
Ve  4aV, P sing ST
where

is the velocity component in the x-direction due to such a source distribution with p = 0 deg,

1 1+ sing
/(9) __nlo 1 —sing

and I,, I, and I, are the three integrals which appéar in section 2, with ¢(x’) replacing »(x').
' 8



I, and I, again have finite values at the point (x, 0, 0), but I, is infinite in the plane z = 0.
This kind of infinity occurs whenever. source lines are cut off sharply, as at a wing tip. If we
consider the two distributions of semi-infinite source lines, each distribution will induce an
infinite velocity v, at the crank in the plane z = 0. These two velocities will be in opposite
directions, and their difference may be finite. Then the total velocity in the y-direction at a
point (x, 0, 0) will, in general, be finite and not zero. This means that there is a flow of source
material across the crank. If the source strength is the same on each side of the crank (i.e.,
7:*") = g,(x")) then the aerofoil section which is represented will be thinner on one side of the
crank than on a similar sheared wing. Correspondingly the aerofoil section on the other side
of the crank will be thicker than on the sheared wing. Therefore if the aerofoil section is to
be kept constant everywhere the source distributions near the crank cannot be independent of y ;
they must vary with spanwise position to compensate for the distorting effect of the spanwise
velocity v,. Far from the crank, ¢;(x') = ¢,(#) as before. The dependence of ¢(x) on ¥ is the
stumbling-block to a solution on these lines. The calculation of the spanwise variation of g(x)
and the subsequent calculation of the velocities induced by the source distributions would be
very long and complex and the procedure is quite unsuitable for a routine method. '

The contribution to the v,-velocity due to I, can be made finite by calculating it on the surface
of the aerofoil instead of on the chord line (¢.e., in the plane z = 0), as was done for v, in section 2.

Evaluating [,, I, and I; as in Ref. 5, we get

Yy o U gx) tang + f(p)
v, T EMPY T4y, sing

29 rig) sing

_|_

If ¢ = 0 deg, then the first and third terms become zero, but the secohd term (evaluated on the
aerofoil surface) becomes

_ 9 2
4V, (1 + n)

If we now combine the induced velocities due to the two semi-infinite source distributions, '
the velocity components at the crank are : -

Uy COSQ; + cosg, v,) | cosg; S w:) 3; cos @, . f(p,) (%) o (15)'
0 2 Ve 2 ‘ 2V, o o
and - :
v, sing; + sing, v,
Ve 2 Vs
() Jtang; 4 f(@) :
_I— 4:V0 { Sin @; f((Pt) S @;
() Jtane, + fle) Ly . :
AV, { sin g f(gvo} sin g, p . ‘e .. - .. (16)

In general v,/V, % 0 and the source distributions must vary spanwise, as shown above. The
refinement of evaluating I, on the aerofoil surface has thus failed to simplify the calculation.

We therefore look for an approximate method for calculating the perturbation velocities
which avoids the discontinuity and variation in ¢(x) and the infinity in »,. The first term in
equations (15) and (16), 7.¢., the term which is derived from sheared wing conditions, is retained.
The effect of the crank—which will fade out to zero at some distance from the crank—is obtained
by using the same conception as in section 2 for cranked vortex lines, vsz., the kink of a wing

C\;,,N‘J 1819 ' -
)““'5 [\“‘ 55‘"'\‘“‘“& ﬁ‘c“/ = n {() \3 \‘\““\j " ./:(LL(] /lj\-', ij-.»a’{'\f\\mfa\/f vx’-:fr /I(\,\,s
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swept at an angle ¢* and yawed at an angle (¢, 4 ¢,) (Fig. 1b.) The source strength corresponding
to such a wing is constant over the span and is given by .

dz dz dx
* e
X) =% = dwax
= g(x) L 17
=W o5 p* (17)

where g(x) is the distribution of source strength in the x-direction at the sheared parts of the
wing on either side of the crank: z.e., it is based on the profile shape along wind. The X and
Y-axes are drawn in Fig. 1b.

For such a distribution of source lines the perturbation velocity components in the X and Y
directions are :

by )

'Uiz * X # *
7. cos p* . 7, cos ¥ . flg¥) 3y,
Uy

Then

% = %Xo sin (%%
From equation (17),
vy = v, ! %
‘ CoS ¢
Therefore, ,
%z cos L2 ¥e —; P . 7%)— cos i Pe —Zl— (P".f(qa*) g(—;i

The ‘crank’ term in this expression is — cos ¥(p; + @,) . f(¢*) ¢(x)/2V,, which will be used in
the final formula.

P —I— Po zﬁl + : (F'i —I_ Po -f(fp*) 9(’5)

% i sin
= — sin £
2 2V,

—V—:o 2 .Vo'

which is neither infinite nor zero. The ‘crank’ term in this expression is sin (¢; + ¢,) .
f{@*) q(%)[2V,, which will be used in the final formula.

The terms from the  sheared wing ’ equations are :

v, COSe¢; -+ cosgp,v,

Ve 2 Vo
v, sing; 4 sing, v,
Ve 2 .V
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t.e., the first terms in equations (15) and (16). Finally, combining ‘ crank ’ and ‘ sheared wing ’
terms, we obtain the equations :

’

v, COS@; + cose, v, i . x
Ys _ @ + Po , _COS‘P+‘P.f((p*)9()

. 2 V, 2 2V,
1:: __sing; —;— Sm%'%n n sin(p‘_lz_%'f(«p*) g(_;i )
Let '
v S, and Q(af) _ % (for a symmetrical section) .
o > 2V, dx _ '
— 5@

S, and S,® are related to the functions 4, and B, of Ref. 11 (see section 4).
Then '

Uy COs P; —'_ COS Do 1y __ % _l_ ‘770 * (2)
v,= 9 S,M — cos & 2 fle*) S, .. .. .. (18)
) vy _— ._ Sin (p’i + Sin (pﬂ (1) (pz —i_ (pO * (2)
. 78— SP +sint—— - flp¥) S,P . .. .. . (19)

Equations (18) and (19) give the linear perturbation velocities at the crank of a wing with
symmetrical section at zero incidence. The chordwise pressure distribution follows from

Bernoulli’s equation
. .
Colx) =1 — =1— KX) —sin®¢p  (equation (33) of Ref. 11).
VO Vn h . - N

Vx here includes the factor

5 @
()
cOS @
a correction to allow for second—order effects which is significant near the leading edge. This
correction, derived for infinite sheared wings in Ref. 11, is assumed to be true also for the present

case at the crank. @ now becomes }(g; - @,). Expressed in terms of ¥ and y components of
velocity, the above equation for the pressure coefficient becomes

{272
C?( < + ) —I— VZ_}_Slng(pz_;(PO [Sv ]
R < L2 /cos ?i T (p> i cos? %%

where v, and v, are given by equations (18 ) and (19).

4. The Chovdwise Loading and Pressure Distribution at the Cvank of an Infinite Thick Wing
of Symmetrical Section at Incidence.—By combining the results of sections 2 and 3, we can now
obtain an expression for the chordwise pressure distribution at non-zero incidences. The veloci-
ties induced on the aerofoil surface by the vortex filaments are - 1y (%) and — 1y (x) perpendicular
to the vorticity vector on the upper and lower surfaces respectively Their components in the
positive directions of x and y are then + Jy(x) cos (p; + ¢,) and F 3y (x) sin ¥(g; + ¢.)
respectively. The components of the free-steam Veloc1ty in the ¥ and 2 d1rect1ons are now
V, cos &, and — V), sin «,, respectively, where «,, is the eftective incidence.
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~ Then

Cow) = 1 — 1 x

SN
1 +< ®; + 9”0)
COS —“2’*‘

X HCOS g <1 4GOS T COSFy. g cos-w flo *) Sﬁ’)

2

%’{‘(Po 1 — a\"* S® 2
Sin o, SN 7, * cos
= 0% ° ( > < (P %)

- {COS aw(_ M}M S 4 m%wo ¥ S,(Z’)

(3)

. - ¢ i . 1 — % "o i S,,‘ Y 2
T sin o Sin ame* sin - —g %< - >; <1~ + m)}
cos “— =

: ' 2
+ cos? &, tanz(pi—_;—% - <S,(2’> } . .. .. .. .. (20)

S,m, S,@ and S, are functions of the aerofoil profile and are related to the functions a,, 4,,
B, and G, *in Ref. 11 as follows

A ' ' ,
Sv(l) = ;ﬂ : Sv(z) = _;Z_" : 57(3) = Gn*
7 n

vs

where a, has the sign appropriate to the upper surface. » and # are corresponding suffixes indi-
cating the chordwise pivotal points. (1 +- 5,%/cos 3{g; - ¢,)) is a factor to the velocity increments
due to the vortices, to take account of the wing thlckness

n,* is given in section 2, and o, is the effective incidence, the suffix , in both cases indicating
that we are dealing with a wing of infinite aspect ratio.

To a first-order approximation, the chordwise loading 4C,(x) can be obtained from thin-wing

theory by using equation (14). A more exact answer Wthh takes account of wing thickness
can be obtained from equation (20) by subtracting C, ;s from C, ys.

71'
4 cos o, SIN &g SIN 77, ( ) ( T o Rl Z —!— Po )

ACyx) = — S,® 2 )
17 + <COS s + (PO>
2 :
0s DT Pe )y COSPet COSPo gy s Pi T o + % fle®) Sv(z)] H
2 ) 2 2 I
X

(21)

. @ 0 sin @, -+ sin ¢, . .
,_Sm<P+<P{_ Pt singy gy | G 7t

9 9 . g - Sle?) 5;‘2’}
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- 5. The Loading of a Finite Cranked Wing.—Sections 2, 3 and 4 have dealt with conditions
‘at the crank of a wing stretching to infinity in both directions from the crank. The crank effect
is thus isolated. On a real wing, the pressure distribution and loading at the crank are affected
by the fact that the aspect ratio is finite and they may also be influenced by the centre and
tip effects if the aspect ratio is small enough for these to overlap the crank.

5.1. Wings of Symmetrical Section—The chordwise loading at any spanwise position on .a
wing of symmetrical section is characterised by the parameter », which depends not only on
sweep and spanwise position but also on aspect ratio. For an infinite cranked wing it has already
been seen in section 2 that

For a wing of very large aspect ratio such that the assumptions of section 2 still hold,

e
=p' =1({1—3 2 __ 5 P, Pr)
n_%0_2<1 lcr,n/z 2“7:/2 ZTn/Z)
#* Po . Po
2

=1— (22)

at any spanwise position.

e, pr are the sweep angles of the mid-chord lines of the wing panels adjacent to the centre-
section and tip-section respectively.

2, Ap, are functions of the spanwise distance of the section from the centre and tip respectively.
Ae 20,2y < 0and A, > 0. The magnitudes of 4, and A, may be obtained from Fig. 1 of Ref. 5,
Fig. 1 of Ref. 7 or Fig. 23 of Ref. 6, or from equation (9), v being measured, in terms of the
local chord, from the centre and tip respectively.

If there is more than one crank, the term A ¢ */in becomes Zi,. o*[$m.

If now we consider a practical wing of finite aspect ratio and symmetrical section, it is shown
in Ref. 6 that a factor )
1

{1 n (ﬂo ;C;IS %n)z}m

must be applied to the second term in the above equation, where

A is the aspect ratio of the whole wing,

9. 18 a mean sweep angle for the whole Wing, obtained as the sweep of the line joining
the mid-chord points of the centre and tip sections. S

Therefore the general formula for % at any section of a finite cranked wing (single crank) is

— Ef_ Pe 5 Pr

. . . . \ 27 1
2{1 + <~—~“° :;Sl ‘v—’”>} A+ oy, /070

-and this value of # has to be inserted in the expression for the chordwise vortex distribution at
that section,

n=1—

L e (23
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Wings of finite aspect ratio may be tapered and in such cases, if the aspect ratio is large, the
‘sweep angles taken, viz., g., ¢r, 9i, @, €lC., are those of the mid-chord lines of the appropriate
wing panels. As the aspect ratio gets smaller, however, there is a tendency for the sweep effect
_to become less and this may be allowed for by defining a new angle of sweep, namely the ‘effective
sweep,” ¢, (see Ref. 6). ‘Since the different wing panels have different mid-chord sweeps, their
effective sweeps will also be different and must be worked out separately. ¢, is thus different
from ¢,,, which represents an overall mean sweep ‘of the whole wing. For any wing panel, a
‘suitable approximation to ¢, is the sweep of the line joining the aerodynamic centres at ‘the
inboard and outboard edges of the panel. These aerodynamic centres may be calculated using
the mid-chord sweep angles and the relation %,, = §(1 — n). ¢,1isthen also defined in terms of the
aerodynamic centres, namely the sweep of the line joining the aerodynamic centres at root and tip.

For wings without cranks; ¢, is the same over the whole wing (and equal to ¢,), and can be
approximated by :
P

e = 4, cos g, \" 1
(s}

For cranked wings no such simple relation can be given since the aerodynamic centres on any
panel may depend on the wing geometry outside the panel. ¢, is used instead of the mid-chord
sweep in all loading calculations for wings of fairly small aspect ratio.

As a numerical example, an uncranked, constant-chord wing of 45-deg sweep would have the
following effective sweeps : ' ' '
A =38,¢p, = 42-6 deg
2, ¢, = 40-5 deg
1,9, =34-2deg.
The difference between effective and mid-chord sweeps on a cranked wing will be greatest on

wings of M and W plan-form. In the calculations for such wings described in section 7, mid-chord

sweep angles have been used. If ¢, had been used, the sweep of each wing panel would have been
reduced by 4 to 6 deg. SR T

Now that # is known from equation (23) we can go on to find the chordwise loading 4C,(x).
As in Ref. 8, it is assumed that at each spanwise position :

Ang_ﬁzmg<xx> L (24)

where C, is the local lift coefficient. This relation can be deduced, for the neighbourhood of the
crank, from the formulae of section 2. The relation between y(x) and 4C,(x) now has to take
account of the effect of the centre, crank and tip on the sweep of the vortex lines. As before,

AC}(%)Z——Z%@COS(}?V, . .. « . . ‘. » e . (10)
0
and near an isolated centre or tip, a reasonable approximation is :
oS COS @
where ?Y = sin an,
A P Pr
A LAS A
. 1+ on/2+’1T%/2
%0 — 1 -
2 , .
(see Ref. 7). When a crank is also present, we apply the interpolation factor used in section 2
so that

COS [lcr, @i + Po
y(x) cose. 2
255 —
Vo sinawn, oS [Aer, ]
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AC,(x) = —
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¢ is the mid-chord sweep or effective sweep of the particular wing panel being considered. At an
isolated centre or tip, . = 0 and we return to equation (10): at an isolated crank, i, = 1
and sin ##, = sin 4= = 1 and we return to equation (13). If there is more than one crank between
the centre and the tip, equation (25) becomes

( ) coS [ﬂ.cr‘ P _g ¢'a]
y{X¥) COSo@

AC,(x) = — — |
CP('V). 2 VO SIN 7 ¥, COs [Acr. (P:I ’

where /7 is the product of the terms cos [A.. ¥(p; + ¢,)1/cos [Ae. ] from all the cranks.

Combining equations (24) and (25), for a single crank between centre and tip,

C. V,sin an sin an, COS [Ao, @] 1 — 2\
pio) = Cfe San sn [.+ <f7>‘ (28
COoS [ﬂcn ?”2—99‘{]

Thus equations (24), (25) and (26) give the relationship between y(%), 4Cy(x) and C, on a single-
cranked wing. C; still has to be found from the. spanwise loading, and before that can be
calculated the effect of finite aspect ratio on the sectional lift slope, @, must be considered.

When the aspect ratio is so small that fundamental assumptions based on the flow past a
cranked wing of infinite span are no longer valid (i.e., below about 6), then the effective incidence
o, 1s taken to be

1
o, = J % (%) dx  (x is dimensionless with the chord),
o

z.e., the mean value over the chord of «,(x), which is the effective incidence of a wing having
the same chordwise vortex distribution as the finite wing, but extending to infinity on each
side of the section considered. We can thus follow a similar development to that of section 2
and use the results derived there. The downwash equations (4) for a kink section and (5) for
a crank section can be generalised for any section by replacing the factors to y(x), viz., tan ¢
(= 1/tan @m,) and tan ¢* (= 1/tan an,*), by 1/tan an,’, where n, is given by equation (22).
This gives the following downwash equation for the present wing.

o, 1 [[" . a | a
ol) = Vo 2aV, {JD YO T T an 79y’ y(x)} B " o (27)

- Substituting for y(x) from equation (26),

() = Cosinmnsinan,  cos [Ag, ¢ 7 7 7 1—x\
T 4x am cosg [l @+ ¢0:,~ sin #n tanzn  tan zn, x
coS | Aof ——F=— .

cr. . 2

1
%zJ%MMx

0

C, sin =# sin an,  cos[A, 7 n
= 250 2, er. 7] . —(nco’wm—:rzco’wmo’).Lw
dn  7wn  cosg @; + @,] (sinzn sin z#
COS | Aqy, Tg

_ C, sinam,  cos [Aqy 9]
"~ 2ma, cose -
' o cos [ﬂcr. @ + %}

{1 — an (cotan — an,)}.

2
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on putting 2= = a,. Therefore the sectional lift slope at any spanwise position on a thin cranked
wing of finite aspect ratio is - ,

cos l:/lm_' @i + (PO:I

L, 20 . cos ¢ 2 (28)
o, °1 — an(cot an — cot wny) sin wn, oS [Ae ] o

a, is the two-dimensional lift slope of the aerofoil section and is 27 for a thin wing. However
thickness and viscosity effects can be allowed for by taking a, = k.27 {1 + (0-81fc)[cos ¢},
where % is a factor to take account of the reduction in lift due to the boundary layer®: £ ~ 0-9.
{1 + (0-8#/c)/cos ¢} is a factor to allow for the thickness of the wing, ¢/c being the thickness/
chord ratio in the wind direction. At the crank itself, a, changes discontinuously from its value
with ¢ = @; to its value with ¢ = ¢,. Normally the two values will not differ by very much
and the arithmetic mean may be used at the crank. It will be noticed that in the limits when
the crank becomes a sheared wing section (i.e., ¢; = ¢,) Or a kink section (¢; = — ¢,), the lift
slope equation becomes the same as those given in Ref. 8 for the two cases. In the former,
1§(¢z+¢o) =9, qj*‘:O, %0:71’0,:—7%1 and '

2% cos @
a=a
"1 — ancot an

(equation (78) of Ret. 6).

In the latter case, %—? =0, ¢¥*=¢, #,=7% and
2n.

a=a : :
*1 — an(cot an — cot an,’)

We can now go on to calculate the spanwise loading using equation (16) of Ref. 6:

n=1

Zb m , ' ‘ ”
y,(byv —l_ a)ﬂpCV> - ZC—)” + Z bvn -V . .o “ e . . .. . (29)
‘ " (notation as in Ref. 6).

In this equation a, is found from equation (28) above, and the downwash factor  is found from
equation (89) of Ref. 6 in which ¢ is the angle ¢,, of the cranked wing, 7.e., :

o—2_ P 1)

2
{1 + <6lo COS @m) }4(1 + 1@, 1/47)
7A

Owing to the presence of the crank. and the more rapid spanwise variations of C; which it intro-
~ duces, it may be advisable to calculate a 31-point solution instead of the more usual 15-point

solution. The spanwise positions of the pivotal points and the Multhopp coefficients for m = 31
are given in Ref. 4. ' -

The chordwise loading at any section is obtained from equation (24). #is given by equation
(23) and C, = awx,. « is the difference between the geometric incidence of the section and the
induced incidence from the trailing vortices, which follows from the spanwise loading calculation,
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The chordwise pressure distribution is given by a similar equation to (20). However, the
incidence term must be modified to take account of the finite aspect tatio and centre and tip
effects, since y(#) is given by equation (26) instead of équation (7) as for an infinite wing. Then
the chordwise pressure distribution at the crank becomes.. . 7

Col#) = 1. — 1 -

14 (COS s -ZF %) |

X‘[{cos o, [l -+ C?S % ;— F:OS Po S,M — cos 9#0 f(tp exe) Sv(z)]

e S .,
:I:QL sinan /1 —2\" /14 SN
RN cos‘q%%

1 {cos «, [__ S_m_‘PiSMf S,w 4 gin P @ + % Flo®) 5»(2)}

2 2
: :F Cosinznsing, /1 — x\" /1 4 # A
’ 4 zn cosq, X : CQS%_T_(% /
- oot o tan® (p—i'Zi.ﬁ- [5v<2)]2] - e e e (31)

5.2. Cambered Wings.—The method described in Ref. 7 for calculating the loadings and
pressure distribution over swept wings with cambeted sections. may be easily applied to eranked
wings with cambered sections. This method is strictly applicable only to wings. for which low
aspect-ratio corrections can be neglected (i:e.,; 4 = about 3). The family of camber liries of
Ref. 7 and their aerodynamic characteristics were derived from the same type of downwash
€quation as equations (4), (5) and (27) of the present report, and thus the. results. may be applied
directly to cranked wings. ; : : T
.- Consider first a given cranked wing with a cambeted section. The spanwise loading is cal-
-culated as explained in section 4.1 of Ref. 7. In the present case however, the lift.slope, 4, is
obtained. from -equation (28), and » from equation .(30}. The only remaining, pararmeter to be
inserted-in the spanwise loading equation (equation (58) of Ref. 7°1$ equivalent to equation (29)
of this report when the w term has been included) is the equivalent incidence of the camber hine,
Aa, at the various pivotal points. This can be read directly from Figs. 6.and 7 of Ref, 7 as before :
but in the case of a cranked wing the quantity iy against which Ao/ fis plotted becomes
209 = A @, + Ay @u + Ao 9* This is necessary because, on a cranked wing, centre, crank and
tip effects may overlap even at fairly high aspect ratios. The chordwise loading at any spanwise
position is calculated from equation (32) and section '4.1.8. of Ref. 7 The chérdwise pressure
distribution at the crank may be obtained from equation (31).of the present report with the
camber effect added: = .. - - .- T Y s ST
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Colx) = 1 — L - %

S® 4 5B\ ¢
1+ ( et %)
‘COS "—“_'"2

> Ii{cos %o [1 1 CoS ¢; ‘;‘ COs @, S — cos (fi_—__gﬁﬂ f(tp*) S"(z):l

S®
’ 1-+ r 2
+ 9\22%,% [7 (X).a< + cos ¥ ~12— %) + y(x)f}}

- {COS %o [‘“ S+ 0G0 gy sin PLP pio S»‘z’]

2 2
S.®
. 1 ¥ 2
T %I%V [y (x)a< " cos L ¥ _12— %> + y(x)fjl } |
+ cos? a,, tan® (p’——;% (S,% + S,(’")z} . . . - (32)

oo is used because fairly high aspect ratio is assumed.

y(x),, the vortex distribution due to incidence is given by equation (7) or by equation (26)7
with # = #,%, and y(x);, the vortex distribution due to camber, is given by :

y(x), = 2V, . 453 . C(m) .f(l = ")x

% 1 __ sinzn 1 g 1—a\"™"
mm(cot wm — cot am)  sinam \ wm(cot am — cot an) N x (83)
from equation (28) of Ref. 7.

S,® is the slope of the camber-line and in the notation of Ref. 11, S,* = (D,/a,)vs. .-

It has already been pointed out in section 2 that, physically, a crank has the same sort of effect
on the pressures and loadings on a wing as has the kink of a swept-back or swept-forward wing.
If, as is usual, the sweep decreases towards the tips, the effect will be similar to a swept-forward
kink. There will be high suction peaks near the nose of the crank section and the chordwise
loading will also be concentrated near the nose. If these peaks are to be eliminated without loss
of lift, camber and twist must be applied to the basic aerofoil section in the neighbourhood of
the crank. The camber and twist should be properly matched to each other to give the required
chordwise loading, and to do this the procedure of section 4.2 of Ref. 7 can be followed. For

instance, on a thin high aspect ratio wing with symmetrical section and one crank, the chordwise
loading at the crank is

_— 1o %
AC:P(x) = - 4[0560]“. sin ﬂno* COS .(pi —’2— o <l P x) ’
and :

no ¥
7(x) = 2V0 [aeﬂ:]cr. sin 7”/Lo”k' . (1 ; x) ' :

+ It should be noted that C, in equation (26) is the local liit coefficient due to incidence only.
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- Suppose we want to incorporate camber and twist so that the chordwise loading at the crank
1s like that on a sheared wing of symmetrical section and sweep equal to 4(p; + ¢,) at an effective
incidence [e,q);. This would eliminate the excessive suction peaks at the crank and produce a
smooth spanwise pressure distribution. The required loading is

. . 1/2
ACP(x) = — 4 [O(-eO:Is COS 7 _5 %o . <1 o x)

o) = 2V [l (15 ”)/

X

and

The suffices ., and » refer to the crank and sheared wing conditions respectively.
Following the method of section 4.2.2 of Ref. 7, the required camber line at the crank is given
by - : ,

e, = 22 g, [;” (1 — 2%) —sin™* (1 — 20) + v/{1 — (1 — 2x>2}]

and the required effective incidence at the crank by :

[Oceojcr. = <1 + gCOt 7.6%0916> [Oceo]s t

It should be noted that z is measured positive downwards.

If the basic section itself has a camber the more general results of section 4.2.2 of Ref. 7 may
be similarly applied.

Hitherto in this section it has been assumed that the wing has an aspect ratio of about 3 or
greater. The effect of low aspect ratio on the camber characteristics derived in Ref. 7 is not yet
known, but an estimate of the loading and pressure distribution of a cambered cranked wing
with 4 < 3 could be made on the basis of the high aspect ratio characteristics. That is, equation
(32) would still be used for the chordwise pressure distribution with «,, replaced by «, from
section 5.1, % given by equation (23) and y(x), by equation (26).

6. Comparison Between Experiment and Calculation.—8.1. Constant-chord, Cranked Wing,
A =35 (Wing I).—A test was made in the No. 2, 114-ft x 81-ft Wind Tunnel at the Royal
Aircraft Establishment in September, 1951, on a constant-chord cranked wing of aspect ratio 5.
The crank was at a spanwise position # = y.c/$b = 0-5 (i.e., y = 1-25), the sweep of the
inboard panel being 45 deg and that of the outboard panel 0 deg. A sketch of the plan-form
is given in Fig. 2b. The wing was modified from Wing C of Ref. 13 and thus near the centre
section it had camber and twist applied to the basic symmetrical section, RAE 101, ¢/c = 0-12.
This camber and twist modification decreased rapidly away from the .centre and had become
zero by y = 1-00, s.e., at 0-25¢ from the crank section. Thus the flow conditions at the crank
were not likely to be affected. '

The test consisted of static-pressure measurements by means of flush holes on both surfaces
of the wing at the crank section, at incidences from — 2-2 deg to -+ 11-1 deg. These pressure
distributions were integrated to give the local normal force coefficients at the crank.

The chordwise pressure distribution at the crank and the chordwise and spanwise loadings
have been calculated for Wing I, using the formulae developed in section 5. The experimental
data are compared with the calculations in Figs. 8 to 11. Fig. 8 shows the experimental and
calculated chordwise pressure distribution at zero incidence. The agreement is good enough
to justify the suppositions made in deriving the expressions for the velocity increments due to
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wing thickness in section 3. Pressure distributions at incidences up to 11-1 deg are shown in
Fig. 4. The agreement between experiment and calculation is good at « = 2-2 deg, but becomes
less good as the incidence increases. Over most of the section the pressure becomes greater
than calculated and over the last 5 to 10 per cent of the chord it becomes less than calculated.
This is consistent with the effect of viscosity. The boundary layer effectively reduces the inci-
dence and on the greater part of the section the upper surface pressures are correspondingly
increased. At the rear of the section the pressure is no longer constant through the thick boundary
Jayer and is less than the potential-flow value. This is noticeable even at zero incidence (Fig, 3) ;
it is of the same order but somewhat greater than one would expect on a two-dimensional
section because of the steeper adverse pressure gradient which thickens the boundary layer.
Moreover, at the crank section the spanwise boundary layer flow characteristic of swept wings
may combine with the chordwise flow over the unswept panel to thicken the boundary layer.

_ Fig. 4-shows that the flow separated at the rear of the section at the higher incidences. This
separation is just starting at « = 8-8 deg and extends over the rear 30 per cent of the chord
at 11-1 deg.

The chordwise loading at the crank (i.e., Cpys. — Cprs. = ACy) at a = 2-2 deg is plotted in
Fig. 5 and compared with calculations by thin-wing theory and the more complete thick-wing
method. It can be seen that both methods give reasonable agreement, with the thick-wing
distribution rather more accurate. The effective incidence used in the calculations included
the factor 2 = 0-92 to take account of the overall viscosity effects on a corresponding two-
dimensional wing at C, = 0***. Even so, some additional viscosity effect is still noticeable near
the rear of the section, which means that # must be less than 0-92 at the crank.

'Fig. 6 shows the chordwise loadings at the crank and at a 45-deg sheared wing, plotted so
that the effects of viscosity may be clearly seen. The experimental results are extrapolated to
« = 0 deg, thus eliminating those boundary-layer effects which vary non-linearly with lift.
The factor £ = 0-92 was used in both calculations and the values of C;/« obtained by chordwise
integration show that it gives good agreement in the case of the sheared wing, but that it
underestimates slightly the viscosity effect at the crank. It can be seen from the figure that the
discrepancy occurs at the rear of the section where the boundary layer must be thicker than
on the sheared wing. A value of £ = 0-90 is appropriate to the crank section.

Fig. 7 shows the chordwise loadings at « = 88 deg and « = 11-1 deg. Here the discrepancies
between calculated and experimental values are much greater, even though the factor £ = 0-92
is again included in the calculation. This indicates the effect on % of the thickening of the
boundary layer with lift, but an accurate estimate of % is not possible since an experimental
spanwise loading is not available. A rough estimate, however, shows that the boundary layer
thickens more rapidly with lift than on the two-dimensional wing of Ref. 12 and at approxi-
mately the same rate as on the sheared part of a 45-deg swept wing”. There is a slight increase
in lift at the rear of the section at « = 11-1 deg due to the separation, which can be clearly seen
in Fig. 7. The separation is just starting at « = 8-8 deg.

The high loading near the nose of the crank section is well shown in Fig. 8, in which experi-
mental values of 4C,/« (extrapolated to « = 0 deg) are plotted for the crank section and for
the centre-section and sheared part of a 45-deg constant-chord swept wing of aspect ratio 5
with 12 per cent RAE 101 section (Wing A of Ref. 18). The calculated distributions for these
sections are also shown. The calculated peak at the crank section is not plotted but is approxi-
mately equal to 60, 7.e., nearly four times as great as the peak on the 45-deg sheared wing.
Admittedly the difference in sweep between inboard and outboard panels on the present model,
viz., 45 deg, is considerably greater than has been usual up to the present, but it is not excessive
compared with the M, W, and 4 plan-forms being investigated for structural reasons"**.
The existence of such large local suctions and forces must therefore be recognised when these
plan-forms are being considered. ‘ : : ‘
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The calculated spanwise loading of Wing I is plotted in Fig. 9, along with the calculated loadings
for the corresponding unswept and fully-swept-back (45-deg) wings. The spanwise variation
of lift slope is plotted in Fig. 10 and the local induced drag in Fig. 11.

Fig. 9 shows that, as one would expect, the local lift coefficient changes gradually from roughly
the swept-wing value at the centre towards the unswept-wing value near the tip. The only
experimental point is the C;, at the crank section obtained by integrating the chordwise pressure
distributions. (As «—0, Cy—>C;). As with the chordwise loading, the spanwise loading
calculation includes the two-dimensional viscosity factor, £ = 0-92, to the local lift slopes, and
the discrepancy between the experimental and calculated C; at the crank is due to the boundary
layer being thicker than on a two-dimensional wing. As seen above, & = 0-90 at the crank.

Since decrease of sweep near the tip is often considered as a possible means of alleviating tip
stalling, Fig. 9 poses the question whether any real improvement is likely to come about by this
means. It has already been shown in Ref. 14 that leading-edge separation may take place first
near mid-semi-span on a swept wing. On the present wing, the local lift coefficient is higher there
than elsewhere and the chordwise pressure distribution is very ‘ peaky,” so that separation is
likely to occur first at that section. Moreoever, the breakdown of flow may still spread outboard
rapidly as in Ref. 14, since the C; values outboard of the crank are higher than on the fully
swept wing, and may offset the flatter pressure distribution on the unswept panel. The data
from Wing I, however, probably present too pessimistic a view of the problem owing to the
constant chord near the tip. ﬁ

If camber and twist were applied to the crank of Wing I to restore a sheared-wing chordwise
loading, as described in section 5.2, the amounts of camber and twist required would be

f = — 02504 [ocgjs{g (1—2x) — sin™* (1 — 20) 4 /[1 — (1 — 2x)2]}

and
[%)er, = 0-214 [a, ] -

The camber is positive in the usual sense, since 2 is measured positive downwards. If [e,], = 2 deg,
the camber required ~ 1 per cent. ,

Fig. 11 shows the spanwise variation of local induced drag. The high value at the crank may
be offset in the low incidence range by the reduction in the drag induced by the bound vortices,
owing to the ‘peaky’ pressure distribution. In the present example there is in fact a thrust
at the crank instead of a form drag. This thrust is the same as that found at the tip of a fully-
swept wing, and counterbalances the form drag at the centre-section, since there can be no net
drag or thrust force in potential flow. :

6.2. Double-cranked Wing (Ref. 17).—The spanwise loading has been calculated for the wing
of Ref. 17 which has two cranks between centre and tip and an aspect ratio of 4. The change
of angle of mid-chord sweep in each case is of the order of 10 deg so that the crank effects are
- much more gentle than in the case of Wing I. The calculated loading is compared with the

experimental local lift coefficients in Fig. 12, the agreement being quite good. Owing to the
small changes of sweep however, the spanwise loading does not differ much from that of a wing
of constant sweep, as can be seen from the calculated loading for a wing swept at an angle of
19-6 deg, which is the sweep of the middle panel of the cranked wing. A similar calculation using
the mean sweep, ¢,, = 21-3 deg was not significantly different. Even though the spanwise
loadings are nearly the same, the chordwise loadings near the cranks will be appreciably different
~from those calculated on the basis of a uniformly swept wing. They have higher suction peaks
further forward, and one can expect viscosity effects to be rather more noticeable.
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7. Comparison with Other Calculation Methods.—Two recent American reports“® have dealt
with the calculation of the spanwise loadings of wings having M, W and 4 plan-forms. Both
of these methods replace the wing by a series of horseshoe vortices, each of which is centred
on the quarter-chord line. The downwash due to these vortices is calculated on the intersection
of the three-quarter-chord line with their axes of symmetry. Three of the wing plan-forms
considered in Ref. 1 have been calculated by the method of the present report and the results
are given in Figs. 13 and 14. TFig. 13 shows the most extreme cases of M and W plan-form likely
to occur, and Fig. 14 shows a wing with similar sweep characteristics to Wing I (section 6.1)
but with the crank at 5 = 0-3 instead of 0-5, and a taper ratio of 0-5 instead of 1-0.

Tt is clear that as far as the results of these spanwise loading calculations are concerned there
is little to choose between the present method and that of Ref. 1. With regard to the aerodynamic
centre, the simple approximations of Ref. 1 seem to be inadequate for predicting the spanwise
variations, and discrepancies up to 0-05¢ are apparent between the two methods.

Apart from specific examples, however, the method of Ref. 1 is not well founded in theory,
since the °three-quarter-chord theorem,” developed initially for two-dimensional aerofoils,
has been applied beyond the limits of its validity to estimate not only the effect of bound vortices
of finite length but also the effect of trailing vortices at many spanwise positions. The method
cannot be used to predict the chordwise loading. It is applicable only to thin wings and cannot
predict the pressure distribution. Similarly the effect of camber cannot be taken into account.
Finally, the calculation is much longer and more cumbersome than the one described in this
report.,

The present method, which is based on the approach to swept wing problems described in
Refs. 5 and 11, can provide the spanwise and chordwise loading and the pressure distribution
on a cranked wing in incompressible flow. The calculation can be performed quite rapidly,
even for 31 spanwise pivotal points. It can readily be extended to cambered aerofoil sections
(Ref. 7). Hunn® has shown recently how the spanwise loading calculation method presented in
Ref. 5 and followed in the present report can be extended to the case of elastic wings. Since
cranked plan-forms may be contemplated primarily because of aeroelastic considerations, this
last feature is an important advantage.

thickness

NOTATION
a Sectional lift slope, Cpfe,
@ Two-dimensional lift slope, Cp/d¢.o
¢ Local chord
f Camber, in terms of the chord
(%) A function of sweep which appears in the expressions for the velocities
near a crank or kink
h Chordwise distance of the local aerodynamic centre from the leading edge
iy Chordwise distance of the local aerodynamic centre from the quarter-chord
point )
k Reduction factor to the lift slope due to the boundary layer
m Chordwise loading parameter due to camber
7 Chordwise loading]parameter;due to incidence
n, = m near the centre or tip of a wing of very large aspect ratio
n,* = 'n mnear the crank of a wing of very large aspect ratio
n,, = mon a finite wing for which low aspect ratio effects need not be considered
g(x) Chordwise source distribution (strength per unit area) to represent wing
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NOTATION—continued.

Source distribution along X-axis at the crank of a wing
Thickness/chord ratio '

Velocity increments along the x, y, 2z, X and Y axes respectively

Rectangular axes : x in direction of free steam, y spanwise to starboard
and z vertically downwards: co-ordinates non-dimensional with the
chord

Aspect ratio
A function of m plotted in Ref. 7
Pressure coefficient = p — p,/Lp Vo
Chordwise loading = difference of C, on the two wing surfaces
Sectional lift coefficient -
Overall lift coefficient
Sectional induced drag coefficient
Overall induced drag coefficient

- C,?
Induced drag factor = Cj, / ;ﬁ
Normal force coefficient
Source strength per unit length = ¢(x) cos ¢ . dx
Functions of the wing profile
Total velocity at a point = 1/{(V, - v,)* + vf + v}
Free-stream velocity

Rectangular axes: X in direction perpendicular to the line of sweep,

Y parallel to the line of sweep : co-ordinates non-dimensional with
the chord

Geometric incidence

Effective incidence

Effective incidence of an infinite wing
Equivalent incidence due to camber A
Chordwise distribution of vorticity representing lifting effect of wing
Non-dimensional spanwise co-ordinate = v . ¢/}b
Spanwise interpolation function

Angle of sweep (usually of mid-chord line)

tan™" }(tan ¢, — tan ¢,

Mean sweep angle of the vorticity vectors

Mean sweep angle of complete wing

Effective sweep

Induced downwash factor
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NOTATION—continued.

Sujfixes A L : : , o
ConnaXY In the x, v, 2, X and Y directions respectively
o, o At the centre tip and crank of a wing, respectively
077 A the shedred part of a ng
Ta - Due to incidence
f Due to camber
g Indicating chordwise and spanwise pivdtal points
i Referring to the inboard side of a crank
0 Referring to the outboard side of a crank
— Referring to an infinite wing
or
Referring to the free stream
U, L.S. Upper surface, lower surface réspectlvely
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TABLE 1

Pressure and Normal Force Coefficients at the crank of Wing I (Fig. 2b)

Cy
x o (deg)
¢ —2-2 —1-1 0 1-1 2-2 3:3 4-4 55 6-6 88 11-1
@ 0-95 0-117 0-122 0-120 0-121 0-120 0-121 0-121 0-115 0-082 0-054 | —0-090
0 0-85 0-064 0-062 0-058 0-058 0-057 0-057 0-057 0-055 0-055 0-024 | —0-113
é 0-75 0-027 0-022 0-016 0-011 0-006 0-001 | —0-001 —0-004 | —0-001 —0-011 —0-109
o 0-65 _0-033 | —0-044 | —0-053 | —0-058 | —0-067 | —0-074 | —0-077 | —0-079 | —0-078 | —0-071 —0-115
) 0-50 —0-109 | —0-125 | —0-142 | —0-157 | —0-174 | —0-191 —0-204 | —0-215 —0-222 | —0-221 —0-197
w 0-35 _0-214 | —0-245 | —0-288 | —0-304 | —0-333 | —0-362 | —0-387 | —0-413 —0-436 | —0-464 | —0-450
Eé 0-225 | —0-263 | —0-311 —0-363 | —0-419 | —0-468 | —0-523 | —0-566 | —0-621 —0-663 | —0-743 | —0-800
~ 0-15 —0-256 | —0-322 | —0-396 | —0-472 | —0-548 | —0-629 | —0-686 | —0-757 | —0-833 —0-977 | —1-076
o 0-08 —0-186 | —0-294 | —0-414 | —0-536 | —0-646 _0-788 | —0-837 | —0-969 | —1-070 | —1-359 | —1-587
= 0-03 —0-001 —0-184 | —0-390 | —0-609 | —0:834 | —1-153 | —1-321 —1-624 | —1-875 | —2-470 | —2-964
0-01 0-309 0-034 | —0-292 | —0-658 | —1-044 | —1-4687 | —1-835 | —2:516 | —3-027 | —4-288 | —5-342
0 — — 0-990 0-992 0-994 0-692 0-058 | —0-604 | —1-918 | —3-562 | --6-047
0-01 —1-002 | —0-599 | —0-229 0-096 0-373 0-615 0-780 0-902 0-969 0-941 0-754
@ 0-03 —0-834 | —0-567 |- —0-347 | —0-142 0-043 0-226 0-374 0-502 0-622 0-793 0-900
O 0-08 —0-629 | —0-507 | —0-380 | —0-273 | —0-166 | —0-055 0:040 0-135 0-221 0-388 0-527
g 0-15 _0-520 | —0-452 | —0-377 | —0-303 | —0-232 | —0-158 | —0-093 | —0-030 0-033 0-159 0-269
o 0-925 | —0-450 | —0-400 | —0-349 | —0-296 | —0-245 | —0-191 —0-144 | —0-099 | —0-051 0-044 0-134
a 0-35 —0-328 | —0-298 | —0-281 —0-243 | —0-210 | —0-174 | —0-145 | —0-117 | —0-086 | —0-025 0-033
0-50 —0-169 | —0-150 | —0-131 _0-118 | —0-100 | —0-108 | —0-078 | —0:057 | —0:039 | —0-006 0-029
g 0-65 —0-056 | —0-044 | —0-036 | —0-026 | —0-015 | —0-006 | —0-003 0-005 0-012 0027 0-044
= 0-75 0-003 1 0-011 0-012 0-019 0-024 0-029 0-036 0-037 0-038 0-044 0-047
O 0-85 0-058 0-059 0-059 0-064 0-065 0-068 0-069 0-066 0-066 0-058 0-047
~ 0-95 0-120 0-121 0-120 0-120 0-117 0-118 0-114 0-107 0-099 0-073 0-038
Cy

—0-149 | —0-080 0 0-077 0-154 0-232 | 0-289 0-364 0-425 0-556 ' 0-703
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Fic. la. Cranked vortex filament.
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OUTBOARD

OUTBOARD

Yy = k‘?oz

U .
 CRARK 'VTRf‘UNq EDGe. |

CRANK 2~
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F16. 2b. Plan-form of cranked wing tested (Wing I).



86

L

. -0

05
7 ¥ TWO-DIMENSIONAL STRAIGHT
. WING OF.SAME SECTION
-0-4f- /“\G\ i/
' Y __ CALCULATION BY
/ \\. PRESENT METHOD
, / \ o EXPERIMENT
-0-3 " S
I A==
CP 7/ s \
o | /45 SHEARED WIN
aell! /OF SAME SECTION'\ oL=0°
It/ N
I
[
1
] \
I
-Q-1 i <
| SO
| \\ \
| X N\
Q { ANY
]
(5; Q.2 Q4 0.6 0] - -0
[ ' VN
| DK
i © NN
I M\
ot N
! §
02

Fic: 3. Exﬁerimental and calculated chordwise pressure

. distribution at zero incidence at the crank of Wing I.

~3.0fl

0|

Je oL =11
A 83.8°
@ 6-8° EXP
S| .. 4.4
> 2.2°

CALCULATION

o
+h0fe

IF16. 4. Experimental and calculated chordwise pressure

distributions at incidences up to 11-1 deg

at the crank of Wing I.




65

EXP Gy ful =4~ 24

o K=0:90

CALC G ju =432

‘@'X EXPERIMENT

A5 SHEARED

WING
EXP. C_/d = 365 -
CALE. S Jot = 366
K=0

o

710'4 r/—c 06

0:8

ol
0

'o-é '

o —> 0 deg.

Fic. 6 Chordw1se loadlng at the crank of \7V1ng I:

SO _crank

ExF’ERlMENT{
@ AT CRANK

1 ]
T { ] 08,
, of = z-2°
| CULATIO o
—— CALCULATION:
THICK WING X
—-—CALCULATION: acedE
THIN WING
© EXPERIMENT
B : -Q-4
, -0
‘ ! . ‘
‘ ‘ — CALCULATION -
-6-ot=8-8" C,<0-56
0‘ F@rode= [144° 67':0-70}5’@
‘ , 0 02 04 f—‘ 0-6
Al = FIG 7. Chordwise loadmgs at the crank of Wing I:
—l e O L oc—88degandoc—111deg
0-2 4 Xf 06 08 0
. 5. - Chordwise loading at the crank of Wing T -
x =2-2deg.
T 40 ! ! IA= 5
(CRANK SECTION: At CONSTANT CHORD
' ~— CALCULATION s ‘RAE I0ISECTION
FOR ol + O ,

[a wio- semisPan Y= 45"
{® CENTRE HROUGHOUT

===} CALCULATION:

S
08

0

0 =
R 1

04 x/c 08

F16. 8. Comparison of chordwise loadings on a fully swept wing
and a cranked wing (Wing I) : o — 0 deg.



0e

&0
54 B———
~]
\\
\/9\ \ E
40 - \ q
= T D \
~
3-0 \\
Cou ‘\\
Z'O v —I 4
—— UNSWEPT WING: CL =452 ‘
CALC: CRANKED WING: T/ - 3+68 (WiNG' )
— — —~45° SWEPT WING:C, /i =34
 {EXP. © GRANKED ' WING .
10 ‘
0 0z 07 06 G

Fic. 9: Comparison of spanwise loédings.

80

6-0f==

7]

4.0 —

20

——-UNSWEPT WING
CALCL——GRANKED WING (WING

———45° SWEPT WING.

0z

04 3y 06

Fic. 10. Comparison of local lift slopes.

0-8

o5 "
e \
Ty = K & /\ : ; \
: - TA - ,
\/ - N
0410 _ - L
: Ve
. . s 1
cDl. /// ,/"- RN
=z _—_;:_/ \
L. P VA
L - — —— M
0-08 ] 4
7 ot
ee—  UNSWEPT WING K = 03 -
S tAc {~—— CRANKED WINGK; = 19 (WING T)
ol L= 45°SWEPT WING:Kj » 17 |
o 02 04 = 00 0B -0
Fic. 11, Comparison 6i'local induced drag.
50

CRANK 2

o}

EXP. RER17 _ :
CALC CRANKED WING: Co /w2393
—-— CALC. CONSTANT SWEEP ¥ =13-6°.

€/

2-0

1+0

s}

0 Q-z

08

o
Fic. 12. Spanwise loading of a cranked wing. Ref. 17,



£92/pe 0D SS/0T LA 9676/31IM TEERE

Nivitgg 1vaao NI againiyd

I8

5.0
/7\ WING 5
4.0
/_.\s\ // \\
P —
- \\\"\\/ = N \\
7 ~E=TIWING 2N N
30 S A
N\ \
¢ NN
2 WING 5 \\ “
Ml
2.0
—— PRESENT CALC |
CL/2 |
WING S :- 3:58 |
WING 2 - 356
[a]
——=NACA CALC WING 2
CL/aL
WING 5:- 3.57
WING 2 :=3-54 .
[a} | L .
0 0-2 04 fv7 06 08 -0
0-1
[~ ~ WING 2
~d4 ~
0.2 {A \\ P
N ~
b
h/C e
/ // \\
o3 o N yis WING 5O
. U~
4 WING 2
04

F1G. 13. Spanwise loading and aerodynamic centre :
Wings 2 and 5. Ref. 1.

50 :
UNSWERT
T~ Wi
\\
N
4.0 \
7 . SWEPT WiNG \
Sy PRESENT GALC
oL zoont I Rem— e UNSWEPT
Cofu =416 Swine
a0l ——— NACA cALc WING 7
G fo =4-16 N
\.\ N\
OY-SWEPT
N WING
1-0
0
) 02 oa M 0B 08 »
Qd
e AN
Q-2 1
yan —
ae WNGT7 -
/ R
P
03—
QIA

Fic. 14. Spanwise loading and aerodynamic centre :

Wing 7. Ref.

1.




R. & M. No. 2947

Publications of the
Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL
(BOUND VOLUMES)

1938 Vol. 1. Aerodynamics General, Performance, Airscrews, 5os. (51s. 2d.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials, 30s. (31s. 24.)

1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. zos. (51s. 24.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etec.
635. (64s. 24.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control
Structures, and a miscellaneous section. sos. (518, 24.)

1941 Aero and Hydrodynarics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures.
' 635. (645, 2d.)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 7gs. (76s. 34.)
Vol. 1I. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d.
(48s. 84.)
1943 Vol. 1. Aerodynamics, Aerofoils, Airscrews. 8os. (81s. 4d.)

Vol. I1. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures.
gos. (91s. 64.)

1944 Vol. 1. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (85s. 84.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance,
Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (8zs. 84.)

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL—

103334 1$. 6d. {1s. 84.) 1937 : 2s. (2s. 2d.)
193435 15, 6d. (15. 84.) 1938 1. 6d. (1s. 84.)
April 1, 1935 to Dec. 31, 1936 45. (45. 44.) 193948 3s. (3. 2d.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL
REPORTS, AND SEPARATELY—

April, 1950 -~ - - = - R.&M. No.26oo. 25. 6d. (25. 73d.)

AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH
COUNCIL~ '

19og—~January, 1954 -~ - - R. & M. No. 2570. 155 (155, 44.)
INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL—
December 1, 1936 — June 30, 1939. R. & M. No. 1850.  15. 34. (15. 434.)

July 1, 1939 — June 30, 1945. - R. & M. No. 1950. 18, (15, 144.)

July 1, 1945 — June 30, 1946. - R. & M. No. 2050.  15. (15. 144.)

July 1, 1946 — December 31, 1946. R. & M. No. 2150. 15, 34. (xs. 434.)

January 1, 1947 — June 30, 1947. - R. & M. No. 2250.  15. 3d. (15. 43d.)

PUBLISHED REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCIL—

Between Nos. 2251-2349. -~ - R. & M. No. 2350.  15. 9d. (15. 10}d.)

Between Nos. 2351-2449. - - R. & M. No. 2450. 25, (2s. 13d.)

Between Nos. 2451-2549. - - R. & M. No. 2550.  2s. 6d. (2s. 73d.)

Between Nos. 2551-2649. - —  R. & M. No. 2650.  25. 6d. (25, 73d.)

DPrices tn brackets include postage

HER MAJESTY’'S STATIONERY OFFICE

York House, Kingsway, London W.C.2; 423 Oxford Street, London W,1 (Post Orders: P.O, Box 569, London 8,E.1};
13a Castle Street, Edinburgh 2; 39 King Street, Manchester 2; 2 Edmund Street, Birmingham 3; 109 St. Mary Street, -
Cardiff; Tower Lane, Bristol 1; 80 Chlchester Street, Belfast, or through any bookseller .=

8.0. Code No. 23-2947

R. & M. No. 2947



