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Summary.—A. theory is developed for estimating the effect of wind-tunnel walls on the air forces acting on an aerofoil
oscillating in a subsonic airstream. It can only be applied for a range of frequencies well below the frequency at which
transverse vibrations of the air stream may be induced. The possibility of resonance occurring for certain combinations
of tunnel height, frequency of oscillation of aerofoil, wind speed and Mach number was first pointed out by Runyan
and Watkins, and the present paper confirms their conclusions.

The method is applied to calculate aerodynamic derivatives for an oscillating flat plate in a wind tunnel of height
equal to 4-75 aerofoil chord and a Mach number M = 0-7. Results obtained are tabulated for comparison with the
known theoretical free-stream values, It is shown that the influence of the walls is considerable even at frequencies
of oscillation well below that of resonance. ‘

Measurements of the pitching-moment damping coefficient for the RAE 104 aerofoil of 2-in. chord in:the 9-5-in.
X 9-5-in. Wind Tunnel have been made by Bratt and his results for M = 0-7 differ appreciably from the corresponding
estimated values given in this note. However, by the use of the equivalent profile method much better agreement may be
obtained. Thismethod isused to estimate the pitching-moment damping for a range of Mach numbers and low-frequency
parameter values corresponding to those used in the tests. - Fairly good agreement between estimated and measured
values is obtained up to M = 0-8, and the calculations indicate, in accordance with experiment, a loss of damping
at the highest Mach numbers considered. .

In the Appendix the properties of the series of Hankel functions

So =4 H® (plal) + 3 (— 1 B [uy/(@ + wa)]

n=1

and

@ w @' , ,
21 = &El—(oﬁw + 2 (=1 B Luy/le® + wia)]

ney Vi@ + nr?) ’

which arise in the theory are discussed. Some results of general mathematical interest are obtained. In particular it
is proved that the real parts of ¥, and Y, are zero when 0 < g << 1. When |a| = 0, these real parts degenerate to the
well-known null series considered by Schlémilch. .

1. Introduction.—The problem of a two-dimensional aerofoil oscillating between two parallel
walls in incompressible flow has been considered by many writers®®?, but little is known about
the corresponding problem for subsonic compressible flow. Measurements of pitching-moment
damping made by Bratt* at the National Physical Laboratoryt differ considerably from the
theorerical values for free-stream conditions. It is suggested in Ref. 1 that the discrepancy is
mainly due to wall interference effects. In Ref. § Runyan and Watkins draw attention to the
possibility of transverse vibrations of the flow in the tunnel at certain critical frequencies and

*Published with the permission of the Director, National Physical Laboratory.
TA full report on this work has not yet been issued.



suggest that at such frequencies tunnel corrections may be large. The present paper confirms
their conclusion as to the existence of critical frequencies, but no attempt is made to estimate
the interference effects under such critical conditions. The experimental results obtained by
Bratt relate to frequencies well below the first critical resonance frequency, and the derivative
values estimated in this report correspond to similar conditions. The method of calculation
used is not sufficiently accurate at frequencies approaching resonance.

Over the limited range of frequencies considered it is found that the lift and moment damping
derivatives are very sensitive to interference effects. The experimental values for the pitching-
moment damping for the RAE 104 aerofoil agree in trend with theory up to M = 0-8, when the
aerofoil is represented by a flat plate, but better agreement with the actual values is obtained
when the equivalent profile method of Ref. 6 is used. This method makes use of the measured
steady motion characteristics of the aerofoil section and indirectly allows for thickness and
boundary-layer effects. To some extent it also appears to take the effect of shock-wave—
boundary-layer interaction into account. ‘
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Notation and Basic Formulae
Chord
Main stream velocity
Air density
Axes of co-ordinates (see Fig. 1)
Distance along Ox of Point P
Distance normal to Ox
Downward displaéement at mid-chord
Angular displacement
Time
Frequency of oscillation
Downward displacement of P
Tunnel height '
Mach number
Velocity of sound
Velocity potential of disturbed motion
Downwash distribution, 8¢/0z
Frequency parameter
=My, A=M%»; B=+1—M"); h=Hp
Discontinuity in ¢
Discontinuity in @
Downwash 8#/0Z
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K,,V distributions _ |
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Jalv) = Bessel functions
H,®(v) = Hankel functions.

Lift and Moment Integrals
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2. Basic Theory.—An aerofoil of chord ¢(= 2I) is assumed to be describing simple harmonic
pitching and plunging oscillations in a wind tunnel of height HI as illustrated by the following
diagram : :
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AT TR TR

Fic. 1.

In the usual complex notation the downward displacement of the mid-chord point O is denoted
by z(==/z"e*), and the pitching oscillation about the mid-chord axis is «(= «’e#), where p/2x
represents the frequency and ¢ denotes the time. The downward displacement ¢ of the point P
on the aerofoil is then defined by ‘

=1z + Xa')e? . .. .. .. .. .. . e (1
The corresponding downwash w(== w’ e?) is given by , |

w=Ulio( + X) + «le* .. .. .. .. .. .. @
where o == p//U, and U, is the velocity of the undisturbed air stream. 4
Let - ¥ =1X, z=IZ|, t=IT|U, .. . . . (8

where # = 4/(1 — M?*) and M is the Mach number. Then, if ¢ is the velocity potential of the
disturbance caused by the oscillating aerofoil, the downwash is

_ 9 __fdd '
W= = . .. . . .. .. .. (4)
Let us now write
¢ = [ @ ltX+aT) .. .. .. .. .. .. .. .. (5)

where 4 = M* and » = wp™%. As in Ref. 1, it may then be shown that & satisfies the wave
equation
o | oo
0X* ' oZ*

+ %2 P =0, .. .. . . .. .. (6)

where » = My, It also follows from (2), (4) and (5) that the corresponding boundary condition
‘ 4



on the aerofoil in the new co-ordinates is

20  we

W;52= 5 .. . - . . .. . (7)
From Euler’s equations of motion it may also be deduced that the lift distribution /(X) is given by
UX) = poU,l et +en) | ‘e . .. .. . - . (8)

where _ :
I’=ivK—i—£< . . o . . . . . ©)

and K(= ¢, — @,)isthej ]ump in the modified velocity potential across the sheet of discontinuity
representmg the aerofoil and its wake. Since there is no pressure discontinuity in the wake

a .
wK+i<=O. y g

The solution of () for the boundary conditions specified by (2) and (4) has already been obtained
for free-stream conditions: In Ref. 7 it is shown that the problem reduces to that of solving the
1ntegra1 equation ‘

0 2 . : .
W (X, Z)) = — J K(X) s, {%z{ﬂm{(X — X)t Zf}”‘"J}dX oy
1
-1
where W is known on the aerofoil. From (10) and (11) the required distribution K(X) may be

determined. A
In the case of an aerofoil in a wind tunnel, the presence of the tunnel walls must be taken into
account. This is done by the introduction of a system of image distributions at z = 4= nHl
where # = 1,2,... oo . In view of (3) the image positions in the new co-ordinates would be
defined by 7 = i nh, Where h=Hp. It then follows that K(X) must satisfy the integral -
equation :
[ee] 82
2aW (X, Z,) = ——J‘ K(X)
-1

57 Sl — X, 2) dX, N ¢ V)

where

So(X — Xi, Z,) =%{H <2[ {(X X2+ Z 2}1/2} 3 (-1 H “’[ {(X — X + (nh — Zl)z}'“z}

#w=1

+ 3 (=1 H.,(m[x{(x — X, - (nh+ Z,) 2}1/2}
n=1
includes the effect of the image system.  Since (13)
Qz_‘i’ 9%5, S —
Y aXZ—{—xSO—O, .. .. . .. .. . (14)
it may be deduced from (12) by integration by parts that
” 2K 85, ,
— 2 - =
2 W (X, Z,) —-j 1 [ KS, Yo aX:I ax. .. .. .. . .. (15)

When Z;, = 0, W on the aerofoil is given by (7) ; the problém is then to find a distribution K
which satisfies the wake condition (10) and the following equation, namely

we- [ oK 3S,
2 ; :JI[WZKSO—BXBXJdX .. SR .. . (16)
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where now

'a:%&mMX—&Wm§¢4WWWHW~XN+W%}

=ni X, .. .. e .. . .. .. . (17)

and o ,
25, . HOWX —X|) o H®e/{(X — X)* 4+ n))
a?(:—n’m(X—~X1){ 2|X—X1¥ +n§l(_ 1) \/{(X__Xl)z_}_%zhz} }
E_W(X_Xl)’—;zl,‘ o e (18)

The properties of the series represented by 2, and Z, are discussed in the Appendix. It is shown
that, for given values of X — X, the series %, becomes divergent when x% = (2m — 1)a where
m =1, 2, 3, etc., and that Z, has discontinuities in slope at these critical values. The series
%, has also been considered by Runyan and Watkins® and they suggest that some kind of
‘ resonance ~ effect should arise when X, becomes infinite. ‘

The parameter x4/ is independent of aerofoil chord and depends only on the frequency, the
tunnel height, the velocity of sound, U,, and the speed of flow in the tunnel. In terms of these
variables the first critical condition occurs when the frequency

_pgvi—M) Up
f=1U. 2H! ~ 2HI
where H/ is the tunnel height.

(19)

The numerical results given in this paper correspond to values of frequency well below the
first critical and refer to the range O << x4 ¢ = and small values of ». It is shown in the
Appendix that

S,— log, tanh MQ;—XJ + 00

. (20)

— 2 —_—
2% 7 cosech WX = X)X — X))

80X " h o2

Hence, if x is such that terms of order »* and greater can be neglected, equation (16) may be ex-
pressed in the approximate form

log, tanh 7—EIX2—;)—Q~] + O (%)

2mw'e=™ 42 /3 ® ® K 25,
3 ——§<6—X1—}—1>J1K50dX—J_15}?5}—(dX . .. .. (21)
where
-~ . X —-—X
So = ].Oge t&nh ﬂ”‘——Zh 1|‘ 22
Sy cosech -
If terms of order «* are also neglected, equation (21) reduces to
2nw'e”? g " 2K (X — X,)
—“—ﬁ = — }J_l e cosech — ax ., - (23)
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which corresponds in form to the integral equation which arises in the incompressible flow
problem, namely

2nw'=~%J %cosech’ig—;ﬁdx.. e (24)
-1 ' ,

The solution of this equation is given in Ref. 1, and by using similar methods the solution of (23)
may readily be found. In the present paper equation (21) is treated similarly to obtain a solution
which includes terms of order x® It is thought that solutions of (21) obtained for small values
of » would approximate closely to those given by equation (16) provided =4 is much less than .

3. Method of Solution.—As in the case of incompressiblé flow, the integral equation (21) is
reduced to a system of linear simultaneous equations. It is assumed that the distributions of
I' and K can be represented in the form

I' = U,[C,Ty + CiI'y + etc.] , (25)
and K = Uy[CK, + C.K; + etc.] o o o o h

where I',, K, are defined in the list of syfnbols.
The corresponding downwash W is given similarly by
W = U,[CW,y + CW, ... 1], . Ce e e .. . (26)

where W, is the dqwnwash distribution correspondihg to K, as defined by (21), which is regarded
as being equivalent to (16) for small values of x. .

By the use of (9) and integration by parts, it may be shown that

© 1 o0 o
- 179 . = 1 0K 85, .
J_IKS(]&ZX_ﬂ(a—}(I—w)JIFSodX—l—wzflaXaXdX, .. .. .. (27)
where the first integral on the right, namely
M 1 ) X X
rS,dX = [ I log, tanh ’EL—Z%—A‘ ax
-1 ‘ W =1 :
‘ X x| _ = |
44 — T
= J JLF[loge o Y — o7 X — X))+ .. :J ax . .. e (28)

The second integral occtirs in the incompressible flow problem and has been dealt with in detail
in Ref. 1. From (21), (27) and (28); and by the use of previous work, it may then be deduced that

~

1
<£{_ _ z‘,,> J r,S,dx = 2n(B, + By cos 9 4 B, cos 28,)
s -
% -
oK, X, — X
J 1 a—f%COSGCh n_(lT_)_dX = 2n(4, + A, cos ¢, 4 etc.)
- ' J
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where, if only first-order terms 1n g(== #*/12A% are retained,

l%=1+fwww—a4é+%§)
n=1...4,=2" J.0)Fp)

o

o =CO)l—g—wL —g]+5(L—g+"5

v =2CO)(1 —g) — (1 —g) + 2C()
e = — 5 [l — &) — 26C)]

W =
!

Fy) = 2gX,(v)e™” (1 — %) — wX,(v)[P — Q]

® e—ivf
P = d
Jl § é:

— my_z —iv§ 72_5
0 _Jl 7, ¢ cosech 7 A&

L =log, (z/4h) .

It follows from equations (21) and (27) that
W, = 2 A, cosnd,

=0

%2

‘**272{30_1‘10_31—?—4‘11*3!43-{— (B, — A, — 4B, + 44,) cos &,

—H&—Arﬁmnmﬁ$+ﬁa 8

Terms of higher order than cos 29, are neglected in (31) and in the subsequent analysis.

Since the distributions K, K, are independent of frequency (21) yields simpler expressions for
Wl) Wz, B Wn. ThuS

2
=g remo i g [i-F-fu-pemn—fwmm] @

where L = log, (= /4#h).

It is assumed that sufficient accuracy is obtained by the use of only three terms in (25) and (26),
and that therefore

W= UO[COVVO + C1W1 + C2W2]

= Uy[Py + P, cos ¥, + P, cos 20,] .. .. - .. . (34)
. g .



wheré
i

P=ci| 3B O—Ao~Bl+A,+3A3)]

r sg
sal-ge3G-9]

r 2

g = 2g
+Cz—""‘— “‘_J

2

P, =G, [Al + 2"7 (B, — A, — 4B, + 4A2):J

+CI[1‘ i (l—g)]+cz(~1—-—4ik2

2
P, =C, [Az o (Ba — 4 + 6A3)}

«* L& 3
—Cl—l—é(1+g)+C2[1—12 11— ] e e (38)

It should be noted that higher powers of g than the first are neglected in the above formulae.

For the oscillating flat plate shown in Fig. 1, the downwash dlstnbutlon w is given by (2).
It then follows from (7) that, on the aerofoil,

W—— a— wa' — |etcosd, .. .. . . . .. (36)
where X, = — cos #; and @ = &« + 7w2’. Now
Cetesth — J(2) + 2 Z4"], cos n b, e . .. . .. (37)
n=1

and, by subst1tut1ng (37) in (36), it follows, since (34) and (36) must be identical, that

Po=3 (5= oo ) 10

P,,,—%l:a—woc—}],,()... > 1

By combining (35) and (38), a set of equations is obtained from which the coefficients C,, C,,
C, may be determined in the form

VC,, = g,z -+ b,a

(38)

where a, and b, are numerical coefficients.



For the relatively low frequencies considered in this report sufficient accuracy is obtained
when only three equations are retained ; C; . . . C, being assumed zero. When C,, C, and C, have

been determined the lift distribution (X) is given by (8) and (25) in the form
.. S (39)

Z(X> = pUP[CoI'y + C.Iy + CoT,) X +eD

-~

1

Let R, :J r, e dx | ,
-1

N 7 1)

1
and R, = zj Ir, e X4x
-1 J
where R,” = 9R,[64 when I, is assumed to be independent of 4.

The total lift L and the pitching moment M about the half-chord axis are then defined by
n=2
L= pJUg 3 C,R, ein '
n=90
.. .. .. .. (41)
n=2
M = pPU2 3 CaR,’ 7
' #n=0
where R,, R,” are the known functions of Mach number and frequency listed in section 1. The

coefficients C, are linearly dependent on 2’ and «’ and given by (85) and (38). In terms of the
chord c¢(= 2I) as standard length, formulae (41) are expressed in the usual non-dimensional form

+ (la + ,I’d)ld)a'

SN

L >
;)m = (l, —}— Mt)l,)

(42)

= (m, + z'cbmz.)f + (M, + idm)o

pec®Uq?
where & = 2w = pc/U,. When C,, C; and C, are known, the numerical values of the aerodynamic

coefficients [, /,, etc., may be derived by a comparison of formulae (41) and (42).

For low values of the frequency parameter, approximate formulae for the derivatives may be
obtained by neglecting terms of second order in frequency. Equations (35) and (38) then yield

i 1 C.
%:COAO+ C1<"2"_§>+_Qg'
i(3a — wo) _ Cd 4 C > (43)
]3 1 1

0= C()Az + Cz J
from which the limiting forms of C,, C; and C, may be determined. After substitution in (41),

and by the use of (42), the following approximate formulae may be derived :—
- 10



lz=la=g(1+2g)
_on (@ =1){1+g =
b= | =) (t+ ég)E}
Wy = My = @,(1 + ) . (44)

ma=8%[(+ég>ﬁ:+< (1 Sg)]

()

where E = log, l

. b/ 2
smhz J -

~

. It should be noted that these limiting values of /, and m, are finite and not infinite as for free-
stream conditions. :

The values of the derivatives obtained for M = 0-7, and H = 9-5 are given in Table 2 and
plotted in Figs. 4a, 4b, 4c and 4d. This particular value of H was chosen to correspond to Bratt’s
tests in the 94 X 94-in. Wind Tunnel on an aerofoil of 2-in. chord. Itis thought that for this case
the values obtained are fairly reliable up to & = 0-4 ; the first critical value of & for resonance
being @ = 0-67. The method of calculation used cannot be applied for @ values near or higher
than the critical value for the first resonance.

4. Further Applications.—In Figs. 5 and 6, Bratt’s experimental values for the pitching-
- moment damping derivative for an RAE 104 aerofoil oscillating about an axis at 0-445 chord
are compared with the estimated values. It was found that agreement between theory and
experiment, even when in allowance was made for wall interference, still remained unsatisfactory. °
This was not unexpected as similar discrepancies had been obtained for incompressible flow'.
In the latter case satisfactory agreement was obtained by the use of the equivalent profile method
of Ref. 6 which makes an approximate allowance for thickness and viscous effects. The same
method was therefore used to obtain the final results given in this paper.

The basis of the scheme is to represent the aerofoil by a thin line which gives, according to
the linearized theory for steady flow, the measured lift distribution (steady derivatives if the
distribution is unknown). Let the measured lift distribution for an incidence « be represented by

1(8) = poU[A(a)T, + B(o) T, + etc.] N € ),
where .
T,=2coty, T,=—2sind+coty, T,=—2sind .. .. (4

Then, if only the first two terms are used, the equivalent thin surface would be defined by

2_2_5[ +B+XA+> BXZJ_—zﬁa..A N )
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where %c is the distance of the axis of rotation behind the leadlng edge (see Fig. 2). It also follows
from (45) that the lift and pitching-moment coefficients referred to quarter-chord are

Cr=2nd(x) = 2rA '«

aB(a) 2B« . .. .. . .. .. . (48)
4 4 '

Hence from a knowledge of €, and Cy, the equivalent profile defined by (47) could be determined.

For the purposes of this illustration the lift distribution is represented by two terms only, and

in the more general case of an aerofoil with a flap it seems that one more term would be sufficient
provided the frequency parameters considered are not too high.

Culd) =

.
- = le 'PC

% Fic. 2.

For an aerofoil at an incidence «, as shown in Fig. 2 above, the equivalent profile is represented
by the line LE. As the aerofoil osc111ates LE is assumed to change shape in phase with 1nc1dence
The corresponding downwash is then given generally by

w=<§t-|—Uﬂ—aTx>z ,
/B )
:<a502+ Uoé;)z

and, hence, , ‘
w(x) = afU[po + p.cOs 9, + pycos 28,] .. . .. .. .. - (49)
where pozA’+%+iw<A’+3f —gﬂﬁ ‘
plzB'—m<A'+%> = (50
by = — ia;B’

~

and the symbols 4’ and B’ represent the slopes of A and B respectively at zero incidence. It
follows that W would be given by (34) where now

Py = 05[]50]0(1) + z'Pljl(/l) '“ 2]2(2)

Po= 2ia|plt) = B (70 = 1)) + 5 (1w — o )]
Py — 2| pufia) ~ B <J1 J3> (Jo +70)]

12
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The above formulae replace those obtained for the flat plate in section 3. By combining (35)
with (51), a set of equations is obtained from which the coefficients C,, C; and C, can be determined.
The values of A4’ used were obtained from pressure measurements given in Ref. 8% for a 5-in.
chord aerofoil of the same section, and the values of B’ were chosen to give the measured value
of the steady pitching moment about the 0-445¢ axis obtained from Bratt’s results by extrapola-
tion to zero frequency. Unfortunately his apparatus could not be used to measure steady loads
and so the true values of A" and B’ for the oscillated aerofoil are unknown. However, it was
thought that it would be worth while to attempt calculation of the derivatives with the steady
data available, in order to illustrate the method. Calculations were done for several Mach
numbers and the values of 4’ and B’ used are given in Table 1 below

TABLE 1
Values of A" and B’

M 4 | B
0-7 1-062 0-2786
0-8 | 1859 0-1051
0-825 1-254 0-1687

085 1-108 | —0-1615
0-875 0-926 0-0809
0-9 0-730 0-5809

Unfortunately it is not certain that the values for a 5-in. chord aerofoil given in Ref. 8 are
directly applicable to the 2-in. chord aerofoil used in the oscillatory tests. However, the agree-
ment between the estimated values and the measured pitching-moment damping is fairly good
(see Fig. 6). Even the experimental drop in damping at high M is indicated by the method of
calculation suggested. The above comparison illustrates the possibilities of the scheme, but,
in view of the uncertainties mentioned above, further calculations for an aerofoil with accurately
known steady characteristics are required to test the validity of the method.

- Concluding Remarks.—This paper draws attention to the importance of wind-tunnel ‘inter-
ference in oscillatory tests on two-dimensional aerofoilsand emphasizes the difficulty of interpreting
wind-tunnel data for free-flight conditions. The effect of the tunnel walls on the derivatives -
!y and m, is very important at low frequency parameters in the range of interest in stability
research. To estimate the effect on flutter derivatives the present theory would have to be
extended to higher frequencies and a method would have to be developed for obtaining solutions
near the critical frequencies for  resonance.” Near such frequencies one would expect interference
cffects to be large. In the three-dimensional case, similarly, interference effects would probably
be important near the critical frequencies for transverse vibrations in the wind tunnel.

To obtain realistic estimates of flutter and stability derivatives at very high subsonic speeds,
it appears that thickness and viscous effects must be taken into account. The equivalent profile
method allows for such effects and seems to be fairly reliable at high as well as low speeds (see
Fig. 6). It may also be used to estimate control-surface derivatives for high speeds, but as yet
it has only been shown to be satisfactory at low speeds®. If the method is to be applied to the

* *The results for 2 2-in. chord aerofoil giver in Ref. 8, thought to be less reliable than those given for the 5-in. chord
ierofoil, were not used. The values of 4" for M = 0-875 and M = 0-9 given in Table 1 may also be inaccurate as
hey were estimated by extrapolation.

13



best advantage, then it is essential that the characteristics of the aerofoil control system in
steady motion should first be accurately determined experimentally to provide reliable values
of A’, B’, etc., for use in the calculation of the oscillatory derivatives.

Acknowleﬂgement.—The numerical results given in this paper were computed by Miss Sylvia
W. Skan of the Aerodynamics Division, N.P.L.

10

11

Author
W. P. Jones

R. Timman
E. Reissner

J. B. Bratt
H. L. Runyan and C. E, Watkins
W. P. Jones
W. P. Jones

E. W. E. Rogers, A, Chinneck and
R. Cash

C. S. Sinnott

G. N. Watson

L. Infeld, V. G. Smith and W. Z. Chien

REFERENCES

Title, etc.
Wind-tunnel interference effects on measurements of aerodynamic .

coefficients for oscillating aerofoils. R. & M. 2786. September,
1950.

The aerodynamic forces on an oscillating aerofoil between two
parallel walls. Applied Scientific Research, Vol. A3, No. 1.
February, 1951.

Boundary value problems in aerodynamics of lifting surfaces in
non-uniform motion. Bulletin of the American Mathematical
Society, Vol. 55, 1949.

Report not yef issued.
Considerations of the effects of wind-tunnel walls on oscillating air
forces for two-dimensional subsonic compressible flow. N.A.C.A.

Tech. Note 2552. December, 1951.

Aerofoil oscillations at high mean incidences. R. & M. 2654. April:
1948. '

The oscillating aerofoil in subsonic flow. R. & M. 2921. February.
1953. ‘

The comparison of results obtained at high subsonic speeds on two.
aerofoils having the same section but different chord. A.R.C

13,628. December, 1950. (Unpublished.)

Hinge-moment derivatives for an oscillating control. R. & M. 2923.
February, 1953.

Theory of Bessel Functions. Cambridge University Press.

On some series of Bessel Functions. Jowrnal of Maths and Physics.
+ April, 1947. :

14



APPENDIX

Summation of Series

(i) Series Z,,—The series 2, defined by (18) is summed by the use of the theorem of residues.
Write 4 = #hfn and @ = #(X — X,)/h. Then consider the integral of the function F (Z), where

L eimiZ Hl(z) { \/(“2 _,__ Zz)} .
F(Z) = \/(a“rf‘zz)'smz, N 153

round the semi-circular contour shown in Fig. 3.

Y

' Fic. 3.

Since sin Z = 0 when Z = 0, =, 2=, etc., F (Z) will have poles at these points. The radius of
he semi-circle is such that the contour passes between two of these singularities.,

Since 9
A&
aur/(a® + Z%)
‘hen Z — 4 ai, the function F will also have poles at these points. Furthermore, it may be
hown that the integral round the semi-circle will vanish when 2m — 1 < w <2m 4 1. For
itegral values of m the residue R, at the pole Z = u= is given by

_ (= 1) H%u/(@® 4 win?)}
R, = \/(azﬂ+ e . 7))

HM /(@ + 2%} — (%)

fence it follows that

'2m'§ze,,+f Faz=0 .. .. ..o .. .. .. 55

n=1 X

‘here the integral along the y-axis is taken round the poles at Z = — ai, 0, ai. On integration,
15



and after some reduction, it may then be shown that

H®ulal) | 2 (= 1) H®{py/(a® + #'=")}
Z, =
2al  TE V@t
1 cosh 2ma 11

e e e L (56)

where

[ sinh 2may . H{pa /(1 — ¥} dy
. 4/ (1 — »% . sinh ay

and p is assumed to be positive.
When m = 0, (56) and (57) yield
i iJ“’ L{pay/(* — 1)} dt
= + -

mau sinh a v/ (f* — 1) sinh at

U 2l | opsy.
= aa sinh a 2ﬂlogetanh 5 + O(u®). .. .. . . (58)

It should be noted that the real part of Z, is zero when m = 0 and 0 < » < 1. Hence

Julela) T/ (@ + wa)
B TR Al v pl

When « tends to zero (89) reduces to

(39)

1 - /- " ]1(!’”7’75) _ ' |

| + 2 (- 1)_ﬂ%n = 0. .. o . . .. . (60)

This is the well-known result givéh by Watson® of which (59) appears to be a generalization.
(ii) Series Z,.—Let us next consider the series Z, defined by |

Hy?(p]al)

3y == +§1<—' 1) H®{un/ (@ + n'n?)}. N (1)

By differentiation, it follows that

idZo . Hl(z)(,u|(ll) ® n
Cpa da 2la| +n§1(— D

H®{un/ (@ + 7))

V(@ + )
= 3, e (62)
16




Hence N
2 =[ ua 2 da,

@

where 2, is given by (62). For small values of 4, (62) and (83) yield

Q71w la] | oy
”J [ - log, tanh 5 + O(u*) | da

sinh a
a

I

2

=2 log, tanh 2 + O(p?) .
2 2

It is clear from (64) that the real part of %, vanishes when 0 < 4 << 1 ; hence

/“!“l s E ( )n ]o{ﬂ\/(“z + n2n2)} = 0.
This is again a generalization of a null series discovered by Schlémilch, namely,

5 + E (— 1) Jo(unz) = 0

#=1

when 0 < p < 1.

Furthermore, in Ref. 11, it is proved that
2% s exp{—ay/[(2n— 1) — 47}
P T
and hence, by differentiation and use of (62)
1dz,

El._ _/Tcz da

= _{_% 2 exp{— ay/[(2n — 1)* — w*}.

Since formulae (62) and (68) correspond, it follows that,

Jiula) oy 25 cos a/[u — (2 — 1)
2 VTV @ i)y = 4 e a1
when 2% — 1 < u < 2m + 1. Similarly
Llula) | § gy Llev@ ey 2 g G e o 1y

- 2|a| - v (a® + n'n?) TUA n=1
and it follows that

"sinh 2may . Y, {nay/(1 — y8)} dy

_{_

pola

f sinh % K, ‘iyf‘ V(1 — y2)> dy

’ y4/ (1 — 9% . sinh & Jo 4/(1 — »?) sinh ay
y

}é sin ay/[p® — (2n — 1)2).

\./“g

Formulae (69) and (70
17

are generalizations of those given by Watson for the case |a| = 0,

(63)

(64)

(65)

(66)

(68)

(69)

(70)

(71)



TABLE 2

Mid-Chord Derivatives for Flat Plate

M = 0-7; Tunnel height = 4-75 chord

L, Iy la la
@ free wind free wind free wind free wind
stream tunnel stream tunnel stream tunnel stream tunnel
Ol 0 0 4-399 4-556 4-399 4-556 —c0 —8-882
0-04 0-022 *0-016 4-061 . 4-506 4-066 4-510 |—12-981 —8-715
0-08 0-063 0-058 3-740 4-321 3-757 4-339 —8-903 —7-979
0-20 0-185 0-238 3-054 3:579 3-117 3-657 —3-877 —5-084
0-40 0-297 0-427 2-504 2-799 2-638 2-975 —1-274 —2-026
0-60 0-311 — 2269 — 2-471 — —0-367 —_
M = 0-7; Tunnel height = 4-75 chord
—m, — — My — My
© free wind free wind free wind free wind
stream tunnel stream tunnel stream tunnel stream tunnel
0 0 0 —1-100 —1-119 —1-100 —1-119 o] 3-012
0-04 —0-006 —0-005 —1-:014 —1-104 —1-015 —1-108 4-030 2-969
0-08 —0-019 —0-018 —0-928 —1-056 —0-933 —1-061 2-981 2-778
0-20 —0-063 —0-078 —0-743 —0-856" | —0-759 —0-880 1-669 2-023
0-40 ~0-133 —0-176 —0-581 —0-645 —0-617 —0-694 0-976 1-236
0-60 —0-201 — —0-496 — ~0-548 — 0-735 —
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