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Summary.--A theory is developed for estimating the effect of wind-tmmel walls on the air forces acting on an aerofoil 
oscillating in a subsonic airstream. I t  can only be applied for a range of frequencies well below the frequency at which 
transverse vibrations of the air stream may be induced. The possibility of resonance occurring for certain combinations 
of tunnel height, frequency of oscillation of aerofoil, wind speed and Mach number was first pointed out by Runyan 
and Watkins, and the present paper confirms their conclusions. 

The method is applied to calculate aerodynamic derivatives for an oscillating flat plate in a wind tunnel of height 
equal to 4.75 aerofoil chord and a Mach number M = 0-7. Results obtained are tabulated for comparison with the 
known theoretical free-stream values. I t  is shown that  the influence of the walls is considerable even at frequencies 
of oscillation well below that  of resonance. 

Measurements of the pitching-moment damping coefficient for the RAE t04 aerofoil of 2-in. chord in:the 9.5-in. 
x 9.5-in. "Wind Tunnel have been made by  Brat t  and his results for M = 0- 7 differ appreciably from the corresponding 

estimated values given in this note. However, by the use of the equivalent profile method much better  agreement may  be 
obtained. This method is used to estimate the pitching-moment damping for a range of Much numbers and low-frequency 
parameter  values corresponding to those used in the tests. Fa i r l y  good agreement  between estimated and measured 
values is obtained up to M = 0-8, and the calculations indicate, in accordance with experiment, a loss of damping 
at the highest Mach numbers considered. 

In the Appendix the properties of the series of Hankel functions 

So = ½ HoCk) (~1<) + E ( -  ])'~ Ho ~) [~v/(a ~ + ~ 2 ) ] ,  

and 

~ l  - -  2ral 47 ( -  [#%/(a~ + ',=1 ~V/(Ct 2 47 ~ : 2 )  

which arise in the theory are discussed. Some results of general mathematical  interest are obtained. In particular it 
is proved that  the real parts  of E0 and E1 are zero when 0 < # < 1. When lal = 0, these real parts degenerate to the 
well-known null series considered by Schl6milch. 

1. Introduction.--The problem of a two-dimensional aerofoit oscillating between two parallel 
walls in incompressible flow has been considered by many writers 1,2,~, but little is known about 
the corresponding problem for subsonic compressible flow. Measurements of pitching-moment 
damping made by BratP at the National Physical Laboratory t differ considerably from the 
theoretical values for free-stream conditions. It  is suggested in Ref. 1 that the discrepancy is 
mainly due to wall interference effects. In Ref. 5 Runyan and Watkins draw attention to the 
possibility of transverse vibrations of the flow in the tunnel at certain critical frequencies and 
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suggest that  at such frequencies tunnel corrections may be large. The present paper confirms 
their conclusion as to the existence of critical frequencies, but no at tempt  is made to estimate 
the interference effects under such critical conditions. The experimenta ! results obtained by 
Brat t  relate to frequencies well below the first critical resonance frequency, and the derivative 
values estimated in this report correspond to similar conditions. The method of calculation 
used is not sufficiently accurate at frequencies approaching resonance. 

Over the limited range of frequencies considered it is found that  the lift and moment damping 
derivatives are very sensitive to interference effects. The experimental values for tile pitching- 
moment damping for the RAE 104 aerofoil agree in trend with theory up to M = 0.8, when the 
aerofoil is represented by a flat plate, but better agreement with the actual values is obtained 
when the equivalent profile method of Ref. 6 is used. This method makes use of the measured 
steady motion characteristics of the aerofoil section and indirectly allows for thickness and 
boundary-layer effects. To some extent it also appears to t a k e  the effect of shock-wave-- 
boundary-layer interaction into account. 

~(= 2l) 

U0 

p0 

Ox, Oz 

X ( =  IX = --  1 cos ~) 

z ( =  lz/~) 
z(= lz'e'*') 

o~(= c~'e 'p') 

t(---- IT/Uo) 

f (= ~/2~) 

H1 

M ( - ~  Uo/U,) 

U, 

¢ ( =  l Ce ~'~ + ~)) 

w ( =  w'e '°~) 

~(= 2~ = pc/Uo) 
= ~/~; 

k ( =  1Kd (~x + ~r)) 

/ ; (= ~ , -  ~) 

W(=(w'/~) e -~x) 

Notation and Basic Formulae 

Chord 

Main stream velocity 

Air density 

Axes of co-ordinates (see Fig. 1) 

Distance along Ox of Point P 

Distance normal to Ox 

Downward displacement at mid-chord 

Angular displacement 

Time 

Frequency of oscillation 

Downward displacement of P 

Tunnel height 

Mach number 

Velocity of sound 

Velocity potential of disturbed motion 

Downwash distribution, ~¢/~z 

Frequency parameter 

n = M v ;  X = M ~ v ;  / ~ = % / ( 1 - - M 2 ) ;  

Discontinuity in ¢ 

Discontinuity in 

Downwash a O/OZ 
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K. distributions 

Ko =. 2(sin O + e "°°~ [Xo(~,)0 +2~.= ,  (--1)'X,(~,)si-n-n~-l} 

= 2~Xo(v) e -~'~ . • • X ~> 1 

sin 2~ 
K1 = sin # -t 

2 
K.  sin (n + 1) e sin (n --  1) ---- - -  . . . n ~ > 2 .  

n + l  n - - 1  

F. distributions 
OK. 

P . =  irK. + 8X 

Fo = 2[C(v)cot  ~ ] + iv sin 

F~ --  2 sin ~ + cot ~ ( - - - -  ~ + i v  s in~-~ 

2 sin nO + iv F sin (n + 1) N, 
L n + l  

/-/,%) 
c (v )=  H~c~,(~) + iH6~(v) 

sin (n -- 1) va] 
n + l  J " ' "  

n ~ > 2  

Xo(,) = 

x.(,) = 
j.(~) ---- 

H . % )  ---- 

c(~)jo(~) + ill  - c(~)]Z(v) 

c ( , ) j . ( , )  - i [ 1  - c(v)]j..(~) 

Bessel functions 

H~nkel functions. 

Lift and Moment Integrals 

R.  = . e~¢ x dX 
--1 

8 R .  i l  1 I'. e iaxxdx 
R . ' - -  8,l ,,-1 

R o =  2~ {c(~)[Jo(~) ' iJl(~)l + i v  } 

A 

- ~ .+~(~) + j . _ , (~ )  . . . n  f> 2 

R0 '=  2~{C(v)Uo'(~)- iJ,'(~)3 + i v  } [jo'(~) + j;(a)] 
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"/~) t ~dOT 
R , '  = - -  = 1 - ] [J= (4) + U / ( ~ ) ]  - y [J=(4) + U , ( 4 ) ]  

" {( l R~' = ( - -  ~)-+' ~ 1 - -  ~ o+1 (4) + J~_ ,  ( ) + b "+'(~) + j~_ , (4 )  . . .  ~ > 2. 

2. Basic Theory . - -An  aerofoil of chord c(= 2l) is assumed to be describing simple harmonic 
pitching and plunging oscillations in a wind tunnel of height Hl as illustrated by the following 
diagram • 

Z _ Z . . _ A _ / _ Z / _ _ / / / _ / Z Z  • / / / / / / / / . _ / / _ Z . _ / _ ~  

1 a. = Ct/¢ Jpb 

>- o x HT, 
" I "  . 

~' ~ = Lz '¢  iP r-" 

\K\\ \\ \ \ \ \ \ \ \\\ \\ \ \\\ \ \\\',,~\ 

FIG. 1. 

In the usual complex notation the downward displacement of the mid-chord point 0 is denoted 
by z ( ~  lz'dP~), and the pitching oscillation about the mid-chord axis is c¢(=--- ~ d~'), where p/2= 
represents the frequency and t denotes the time. The downward displacement ~ of the point P 
on the aerofoil is then defined by 

¢ = l(z' + Xlo~')e'P' . . . . . . . . . . . . . . . . .  ( 1 )  

The corresponding downwash w ( ~  w' ee0 is given by 

w = Uo[io(z' + X ~ ' )  + ~']e ¢' . . . . . . . . . . . .  (2) 

where co ~__ pl/Uo and U0 is the velocity of the undisturbed air stream. 

Let x = l X ,  z = lZ/fl, t = lT/Vo . . . . . . . . . . . .  (3) 

where/3 = 1/'(1 -- M S) and M is the Mach number. Then, if ¢ is the velocity potential of the 
disturbance caused by the oscillating aerofoil, t he  downwash is 

a¢ fl ~¢ 
w - ~z - Z ~ Z  . . . . . . . . . . . . . . . . .  (4) 

Let us now write 
¢ = l ¢  d lax+~rl . . . . . . . . . . . . . . . . .  (5) 

where 4 = M2v and v = ~of1-2. As in Ref. l, it may then be shown that q~ satisfies the wave 
equation 

~2q~ ~2q~ 
~ x  ~ + ~2~ + ~ = o,  . . . . . . . . . . . .  (6) 

where ~ = My, It  also follows from (2), (4) and (5) that  the corresponding boundary condition, 
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on the aerofoil in the new co-ordinates is 
~b w ' e  -~ax 

W -- ~Z -- fl . . . . . . . . . . . . . . . .  (7) 

From Euler's equations of motion it may also be deduced tha t  the lift distribution i(X) is given by 

i(x) = p 0 u 0 r  e ' ~ + ° ~  , • . . . . . . . . . . . . .  (S )  

where 
0 K  

1 ~ = i r K  + ~ X  . . . . . . . . . . . . . . . .  (9) 

and K(-~- #~ -- #b) is the jump in the modified velocity potential across the sheet of discontinuity 
representing the aerofoil and its wake. Since there is no pressure discontinuity in the wake 

~K 
i r k  + a X  - -  0 . . . . . . . . . . . . . . .  (10) 

The solution of (6) for the boundary conditions specified by (2) and (4) has already been obtained 
In Ref. 7 it is shown that  the problem reduces to that  oI solving the for free-stream conditions, 

integral equation 

K(X) ~ . . . .  

where W is known on the aerofoil. From (10) and (11) the required distribution K ( X )  may be 
determined. 

In the case of an aerofoil in a wind tunnel, the presence of tile tunnel walls must be taken into 
account. This is done by  the introduction of a system of image distributions at z----- -t-nil1 
where n = 1, 2 , . . .  oo . In view of (3) the image positions in the new co-ordinates would be 
defined b y  Z = + nh,  where h ~ Hfl. I t  then follows that  K ( X )  must satisfy tile integral 
equation 

2 ~ w ( x l ,  z~) = - , K ( x )  22~? S o ( X  - x~ ,  z l )  d x  . . . . . . . . .  (12) 
1 

where 

X 1 )  ~ 

(13) 
includes the effect of the image sys tem.  Since 

~S0 ~S0 
~Zl-- ~ + ~ + ~2So -= 0, . . . . . .  . . . . . .  (14) 

it may be deduced from (12) by  integration by parts that  

2,~w(xl, z~l = 1 ~2Kso ~x.5-2J d x  . . . . . . . . . . .  (is) 

When Z~ = 0, W on the aerofoil is given by (7) ; the problem is then to find a distribution K 
which satisfies the wake condition (10) and the following equation, namely 

2~ - - ~  -- - ,  u~KSo ~X ~ ]  d X ,  . . . . . . . . . .  ( 1 6 )  
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where now 

& = -~{H0(~'(~l X -  Xll) + 2 .=1 ~ ( -  1)" Ho(2 ' ( zV£(X-  X~) ~ + n~h2})} 

and 
= ZdZo . . . . . . . . . . . . . . . . . .  (17) 

CHI'~'(,~IX - -  X l  ) a ) . H ~ ( ~ ' ( , ~ V { ( X  - -  X l )  ~ + ~h~-})~ 
~S° ~ i ~ 4 ( X -  Xl) l 1 2 ~ - - - ~ ~  -~ ~ ( "  2 2 - -  .=1 V ( ( X -  X1) 2 -~- ~ -  -f 

= ~ i , ~ ( x -  x~ )  ~ . . . . . .  zl . . . . . . . . .  ( i s )  

The pr@erties of the series represented by Eo and X~ are discussed in the Appendix. It  is shown 
that,  for given values of X -- X1, the series 2;0 becomes divergent when nh = (2m -- 1)~ where 
m = 1, 2, 3, etc., and that  2~ has discontinuities in slope at these critical values. The series 
2;0 has also been considered by Runyan and Watkins5 and they suggest tha t  some kind of 
' resonance ' effect should arise when ~;o becomes infinite. 

The parameter ~h/z~ is independent of aerofoil chord and depends only on the frequency, the 
tunnel height, the velocity of sound, U,, and the speed of flow in the tunnel. In terms of these 
variables the first critical condition occurs when the frequency 

f =  U, V(1 -- M2)-- Ufl 
2Hi 2Hl 

where H1 is the tunnel height. 

. .  (19) 

The numerical results given in this paper correspond to values of frequency welt below the 
first critical and refer to the range 0 < ~h ~ ~ and small values of n. I t  is shown in the 
Appendix that  

So-+ logo t a n h  ~ l X  - x1[  2h + °(~2) 
57: 0S0 ~ cosech ~(X X1) ~2(X -- Xd log~ tanh ~ ]X -- X~] (20) 

0 X - +  h 2 2h + 0 (~') 

Hence, if ~ is such tha t  terms of order ~4 andgrea ter  can be neglected, equation (16) may be ex- 
pressed in the approximate form 

where 

27~wte -i~x, 

fl -- 2 ~ + 1 K g o d X - -  ~ x o x d X  . . . . . .  (21) 
1 1 

S0 ---- logo tanh ~ IX -- XI! 
2h 

~g0 n n ( X -  X1) . . . . . . .  (22) 
~X -- h cosech h 

If terms of order ~ are also neglected, equation (21) reduces to 

2~w,e-~x, ~f° ~cosech~( x - x '  ) ~- aX ., (23) 
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which corresponds in form to the integral equation wifich arises in the incompressible flow 
problem, namely 

H f  ~ oK ~(X -- Xd dX 2~w' = -- }-~ cosech H " 
--=1 

(24) 

The solution of this equation is given in Ref. 1, and by using similar methods the solution of (23) 
may readily be found. In the present paper equation (21) is treated similarly to obtain a solution 
which includes terms of order a'. I t  is thought that  solutions of (21) obtained for small values 
of ~ would approximate closely to those given by equation (16) provided ah is much less than .~. 

3. Method of Solut ion . - -As  in the case of incompressible flow, the integral equation (21) is 
reduced to a system of linear simultaneous equations. It  is assumed that  the distributions of 
F and K can be represented in the form 

and 

/~ = Uo[CoFo + CI/'1 + etc.] "~ 

f K = Uo[CoKo + C,K1 + etc.] 
(28) 

where/',, ,  K.  are defined in the list of symbols. 

The corresponding downwash W is given similarly by 

w = Uo[CoWo + Q w 1 . . .  ], 

where W,, is the downwash distribution corresponding to K~ as defined by (21), which is regarded 
as being equivalent to (16) for small values of ~. 

By the use of (9) and integration by parts, it may  be shown that  

~,--= 021 iv I'So d X  + v- ~ ON ~ d X  . . . . . . .  (27) 
i - - 1  1 

where the first integral on the right, namely 

f fl ~IX- Xll FSo d X  = F logs tanh 2h - d X  
- - 1  - - 1  

12h~ ( X  - -  X 1 )  ~ + . . .  t i N .  . .  . .  (2S) 

The second integral occurs in the incompressible flow problem and has been dealt with in detail 
in Ref. 1. From (21), (27) and (28)~ and by the use of previous work, it may then be deduced tha t  

FoSo d X  = 2z(B0 + B1 cos v~l + B~ cos 201) 

OK0 
0X h 

cosech ~(X1 -- X) d X  = 2~(A0 + A1 cos 01 + etc.) 
h 

(29) 



where, if o n l y  first-order terms lng(~----~s/12h~) are retained, 

( 1  C(~,)"~ 
Ao = 1 + Jo(~)f(~) - 2g ~ + i~ ./ 

n >1 1 . . .  A ,  = 2 i"J , (v) f (v )  

7) s 
Bo = c( , )E1 - g - ¢~(L - -  g)] + ~ (Z - -  g) + -  

B1 = 6,C(~,)(1 -- g) -- iv(1 --  g) + 2gC(~) 

6, 
Bs = --  ~- [i~(1 --  g ) , -  2gC(~)] 

F(v) = 2gXo(,,)e-'~ ( 1 - -  i ) --  6,Xo(,,) [p _ (2] 

I i  e-iV~ 
P =  T de 

e -~'~ cosech d~ Q =  ~ g 

L = logo (~/4h). 

v~g 

8 

] 

(3o) 

I t  follows from equations (21) and (27) tha t  

Wo = X A~ cos nv~l 

+ 2v s Bo - -  Ao - -  B1 + A1 --  3A3 + (B1 --  A, -- 4B2 + 4A2) cos 01 

+ (Bs --  As --  6A3) cos 201} + etc . . . . . . . . .  (31) 

Terms of higher order than  cos 2v~1 are neglected in (31) and in the subsequent analysis. 

Since the distr ibutions K1, Ks are independent  of frequency (21) yields simpler expressions for 
WI, W , , . . . W ~ .  Thus 

1 g + cos ~1 @ -- g) cos cos 2~1 (32) W1 = 2 2 g 4 2 2 

2 8 L - -  + ~ - ( 1 - - g )  c o s e l +  1 - - ~  1 - -  cos2v~l (33) 

where L ~ logo (~/4h). 

I t  is assumed tha t  sufficient accuracy is obtained by  the use of only three terms in (25) and (26), 
and tha t  therefore 

w = Uo[CoWo + c ,w,  + c~w~] 

= Uo[Po + P1 cos v,, + P~ cos 20,] 

8 
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where 

po=co o+ ~(B0- A0- B1 + A, + 3Aa)] 

+ C 1  g +  L - - - -  
2 

[A ] P~ = Co 1 + ~ (B1 -- A1 -- 4B~ + 4A~) 

+ C111 -- ~5~ (1- -  g)] -[- C2 (1 --g)k~4 

P~ = Co ~ + 2- ~ (B~ - A~ + 6A~) 

- -  G - f ~  ( l + g) + C~ 1 - -  ~2 1 - -  . (3s) 

It should be noted that higher powers of g than the first are neglected in the above formulae. 

For the oscillating flat plate shovcn in Fig. 1, the downwash distribution w is given by (2). 
It then follows from (7) that, on the aerofoil, 

W = - ~  a - ~ '  cos  o l  . . . . . . . . . . . .  (36) 

where X1 ---- -- cos 01 and a ~ o~' + icoz'. Now 

e ~a~°S°l = Jo(a) + 2 ~ i"J. cos  n 01 • . . . . . . . . .  (37) 

and, by substituting (37) in (36), it follows, since (34) and (36) must be identical, that 

~o=~ ~ - ~ ' ~  J0(X) 
(3s) 

By combining (35) and (38), a set of equations is obtained from which the coefficients Co, C1, 
C. may be determined in the form 

C. = a.z' + b,,o~' 

where a. and b. are numerical coefficients. 
9 



For the relatively low frequencies considered in this report sufficient accuracy is obtained 
when only three equations are retained ; C , . . .  C, being assumed zero. When Co, C~ and C~ have 
been determined the lift distribution l(X) is given by (8) and (25) in the form 

Z(X) = p U02[C0/'0 + C1/'~ + Cfl'~] e '(ax+ orl . . . . . . . . .  . (39) 

Let R,, = f1_1 / "  eiax dX t 

and R j  = ij  -~ 1 ~. e iax X dX 

(4o) 

where R,' = OR,/OZ when/ ' , ,  is assumed to be independent of t. 

The total lift L and the pitching moment M about the half-chord axis are then defined b y  

L---- potUo ~ ~ C,R,, e ~r 

M = pol~Uo 2 2 C . i R j  e i ~ r  
i t = 0  

(41) 

where R,, R,/ are the known functions of Mach number and frequency listed in section 1. The 
coefficients C, are linearly dependent on z' and ~' and given by (35) and (38). In terms of the 
chord c(=  2/) as standard length, formulae (41) are expressed in the usual non-dimensional form 

L - -  (Zx + z + (Zo + icoZ,)  
p oC go ~ c 

M -- (m~ + irSm~)z_ + (m~ + icSma)~ . . . . . . . . . .  (42) 
p oc2 Uo 2 c 

where ~5 = 2,o = pc/Uo. When Co, C1 and C~ are known, the numerical values of the aerodynamic 
coefficients l,, l~, etc., may be derived by a comparison of formulae (41) and (42). 

For low values of the frequency parameter, approximate formulae for the derivatives may be 
obtained by neglecting terms of second order ill frequency. Equations (35) and (38) then yield 

2 

i(~a - ~o~') _ CoA~ + C~ 

0 = CoA~ + C~ 

. . . . . . . .  (43) 

from which the limiting forms of Co, C1 and C2 may be determined. After substitution in (41), 
and by the use of (42), the following approximate formulae may be derived : - -  

10 



z, = zo = ? (1 + 2g) 

l ~ -  2~ 8 (3/~ 1)(12 + g) -- (1 + 4g) 

7~ 

~.~ = ~ o  = ~ . ( 1  + g) 

m ~ - - 8 ~  ~ (l'-¢-3g) E + ( 1 - - f l ' )  1 +  

. . . . . . .  (44) 

where E = logo cosh~ 

It should be noted that  these limiting values of l~ and m~ are finite and not infinite as for free- 
stream conditions. 

The values of the derivatives obtained for M = 0.7, and H = 9.5 are given in Table 2 and 
plotted in Figs. 4a, 4b, 4c and 4d. This particular value of H was chosen to correspond to Bratt 's 
tests in the 9½ × 9½-in. Wind Tunnel on an aerofoil of 2-in. chord. It is thought that for this case 
the values obtained are fairly reliable up to 05 = 0.4 ; the first critical value of 05 for resonance 
being 05 = 0.67. The method of calculation used cannot be applied for 05 values near or higher 
than the critical value for the first resonance. 

4. Further Aflplications.--In Figs. 5 and 6, Bratt 's  experimental values for the pitching- 
moment  damping derivative for an RAE 104 aerofoil oscillating about an axis at 0.445 chord 
are compared with the estimated values. It was found that  agreement between theory and 
experiment, even when in allowance was made for wall interference, still remained unsatisfactory. 
This was not unexpected as similar discrepancies had been obtained for incompressible flow 1. 
In the latter case satisfactory agreement was obtained by the use of the equivalent profile method 
of Ref. 6 which makes an approximate allowance for thickness and viscous effects. The same 
method was therefore used to obtain the final results given ill this paper. 

The basis of the scheme is to represent the aerofoil by a thin line which gives, according to 
the linearized theory for steady flow, the measured lift distribution (steady derivatives if the 
distribution is unknown). Let the measured lift distribution for an incidence e be represented by 

l(~) = po~ro~EA(~)To + B(~,)P~ + etcl 3 . . . . . . . . . .  (45) 
where 

0 4~ 
= - - 2 s i n v ~ + c o t ~ ,  T . = - - 2 s i n O  . . . .  (46) /~0 = 2 cot ~, ~ 

Then, if only the first two terms are used, the equivalent thin surface would be defined by 

. . . . . . . .  

11 
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where ~c is the distance of the axis of rotation behind the leading edge (see Fig. 2). i t  also foliows 
from (45) tha t  the lift and pitching-moment coefficients referred to quarter-chord are 

CL = 2~A(~) = 2~A'~ 

c ~ ( 1  ) _ ~B(~)  _ ~ B ' ~  ~ . . . . . . . . . . . . .  (4S) 
4 4 

Hence from a knowledge of CL and CM, the equivalent profile defined by (47) could be determined. 
For the purposes of this illustration the lift distribution is represented by two terms only, and 
in the more general case of an aerofoil with a flap it seems that  one more term would be sufficient 
provided the frequency parameters considered are not too high. 

FIG. 2. 

For an aerofoil at an incidence c¢, as shown in Fig. 2 above, the equivalent profile is represented 
by the line LE. As the aerofoil oscillates, LE is assumed to change shape in phase with incidence. 
The corresponding downwash is then given generally by  

and, hence, 

where 

w = + U, z 

= a ~ +  Uo~ z 

w(xl) = ~Uo[Po + p~ cos ~ + p, cos 2ed 

f lo= A' +--~ + io~ A' + 4 

iooB' 

P ~ -  4 

. . . . . . . . . .  ( 4 9 )  

; . . . . . . . .  (so) 

and the symbols A' and B' represent the slopes of A and B respectively at zero incidence. 
follows that  W would be given by (34) where now 

Po = <pojo(a) + i~1]1(~) -~2J~(~)] 

and so on. 

I t  

( s l )  
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The above formulae replace those obtained for the fiat plate in section 3. By combining (35) 
with (51), a set of equations is obtained from which the coefficients Co, C~ and C~ can be determined. 
The values of A' used were obtained from pressure measurements given in Ref. 8* for a 5-in. 
chord aerofoil of the same section, and the values of B' were chosen to give the measured value 
of the steady pitching moment about the 0. 445c axis obtained from Brat t ' s  results by  extrapola- 
tion to zero frequency. Unfortunately his apparatus could not be used to measure steady loads 
and so the true values of A' and B' for the oscillated aerofoil are unknown. However, it was 
thought  tha t  it would be worth while to a t tempt  calculation Of the derivatives with the steady 
data available, in order to illustrate the method. Calculations were done for several Mach 
numbers and the values of A' and B' used are given in Table 1 below 

TABLE 1 

Values of A' and B' 

M A'  B '  

0"7 

0.8 

0.825 

0 '85 

0"875 

0"9 

1.062 

1.359 

1 .254  

1.108 

0.926 

0"730 

0.2786 

0.1051 

0.1687 

--0.1615 

0"0309 

0.5809 

Unfortunately it is not certain tha t  the values for a 5-in. chord aerofoil given in Ref. 8 are 
directly applicable to the 2-in. chord aerofoil used in the oscillatory tests. However, the agree- 
ment between the estimated values .and the measured pitching-moment damping is fairly good 
(see Fig. 6). Even the experimental drop in damping at high M is indicated by the method of 
calculation suggested. The above comparison illustrates the possibilities of the scheme, but, 
~n view of the uncertainties mentioned above, further calculations for an aerofoil with accurately 
known steady characteristics are required to test the validity of the method. 

Concluding Remarks.--This paper draws attention to the importance of wind-tunnel inter-  
ference in oscillatory tests on two-dimensional aerofoils and emphasizes the difficulty of interpreting 
wind-tunnel data for free-flight conditions. The effect of the tunnel walls on the derivatives 
7.~ and m~ is very important at  low frequency parameters in the range of interest ill stabil i ty 
,esearch. T o  estimate the effect on flutter derivatives the present theory would have to be 
extended to higher frequencies and a method would have to be developed for obtaining solutions 
near the critical frequencies for '  resonance.' Near such frequencies one would expect interference 
2ffects to  be large. In the three-dimensional case, similarly, interference effects would probably 
be important  near the  critical frequencies for transverse vibrations in the wind tunnel. 

To obtain realistic estimates of flutter and stabili ty derivatives at very high subsonic speeds, 
it appears tha t  thickness and viscous effects must be taken into account. The equivalent profile 
method allows for such effects and seems to be fairly reliable at high as well as low speeds (see 
Fig. 6). I t  may also be used to estimate control-surface derivatives for high speeds, but as yet 
it has only been shown to be satisfactory at low speedst If the method is to be applied to the 

*The results for a 2-in. chord aerofoil given in Ref. 8, thought to be less reliable than those given for the S-in. chord 
~,erofoil, were not used. The values of A'  for M ---- 0.875 and M ---- 0.9 given in Table 1 may  also be inaccurate as 
heywere  estimated by  extrapolation. 
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best advantage, then i t  is essential that the characteristics of the aerofoil control system in 
steady motion should first be accurately determined experimentally to provide reliable values 
of A', B', etc., for use in the calculation of the oscillatory derivatives. 

A cknowledgement.--The numerical results given in this paper were computed by Miss Sylvia  
W. Skan of the Aerodynamics Division, N.P.L. 
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A P P E N D I X  

S u m m a t i o n  o f  Series 

(i) Series E~.--The series E1 defined by  (18) is summed  by  the  use of the  theorem of residues. 
Wri te  ff ----- ~h/~ and a -= ~ ( X  - -  X~)/h. Then consider the  integral  of the function F(Z) ,  where 

F(Z) ~ e2"z H~¢2I {ffA'/(a2 -]- Z2)} (52) 
1/(a ~ + Z 2) . sin Z ' " . . . . . . . . . . . .  

• ~ound the  semi-circular contour  shown in Fig. 3. 
\ 

Y 

%%. 

\ 
\ 

a i ~"'~<" "~ \\ 

) -C~i 

/ 
/ 

I 
, I  

@'l" • 

! 
I 

/ 
/ 

/ 
/ 

/ -  

> ×  

FIG. 3. 

Since sin Z ----- 0 when Z ----- 0, ~, 2~, etc., F(Z) will have poles at these points. The radius of 
he semi-circle is such tha t  the contour  passes between two of these singularities.: 

Since 2i 
HI~2~{~'V( a2 + z ' ) } ~  v,(,~ + z 2) . . . . . . . .  (53) 

.,hen Z - +  4- ai, the  function F wi l l a l so  have poles at these points. Fur thermore,  it may  be 
bown tha t  the integral  round the semi-circle will vanish when 2m --  1 < ff < 2rn + 1. For 
~tegral values of m the residue R, at  the  pole Z ---- na  is given by 

v/(~2 + ~ , ~ 2 )  . . . . . . . . . .  (s4) 
[ence it follows tha t  f'° 

2 ~ i  ~: R° + F d z  = o . . . . . .  . . . . . .  (ss) 

'here the integral  along the y-axis is taken  round the  poles at Z -= - -  ai, O, ai. On integration,  

l s 



and  after some reduction,  it m a y  then be shown tha t  

H,¢=,(~lal) ~ (-- 1) '~ Hl(2'@,v/(a = + n=~2)} 

~' - 21~t + ~ ,  ~ / ( ~  + ~ )  
i cosh 2 ma iI 

_ _  ~ - - -  , o  . .  . o  

~a/, s inh a 
where 

- 7  ~, ~/(1  - y'-) ay 

= f o  e 
y~/(1 -- y2) . s inh a_ 

Y 

sinh 
2~q~g 

Y 
. K1 ( y  . V / ( 1 - - y ' ) ) d y  

y~/(1 -- y~). s inh _a 
Y 

--fro sinh2may'H~121@a ~/( 1 -  Y~)} dy 
~/(1 --  i f)  . sinh ay 

and ,u is assumed to be positive. 

(56) 

(57) 

When  m = 0, (56) and (57) yield 

~ a #  s i n h  a 

i 
= a ~  sinh a 

~¢/(t = -- 1) sinh at 

i/, la.I 
logo t anh  ~ + 0(~3). 

2= 
.. (ss) 

Hence 

. .  (59) 

By differentiation, it follows tha t  

1 d2o 
f~a da 

Hl(~)(mla[) -t- ~ (--  1)" Hl(~,{m~(a~ + ~ ) }  
- 21~1 .=1 ~ ' ( ~  + - ~ )  

= ~ . . . . . . . . . . . . .  . . . . .  (62) 

!6 

I t  should be noted tha t  the real par t  of 21 is zero when m = 0 and 0 < ~ < t. 

J l (~lal)  1> J1{*'~/(a~ + n==~)}-  O. . . . . .  

When  a tends to zero (59) reduces to 

1 m 
7~ + ~1 ( -  1) . j d ~ = )  - o . . . . . . . . . . . . .  (60) 

= # n z ~  

This is the  well-known result given by  Watson  1° of which (59) appears to be a generalization. 

(ii) Series £o.--Let  us next  consider the series I;0 defined by  

~o = H°'~'(~I~I) + :~ ( : -  ~)" Ho~"{~V'(~ ~ + '~'~)} . . . . . . .  (~a) 



Hence f ]  
Eo = /~ot Eldat, . . . . . . . . . . . . . . . .  

where I;1 is given by (62). For small values of ~, (62) and (6:3) yield 

Eo = ~j~ b i n h  ot ~ logo tanh + 0 ( . ' )  da 

_ i logo tanh 2 + 0(~) 
_ _  - -  - -  ° o , o , o o o o o o ° o 

(63) 

(64) 

It is clear from (64) that the real part of Eo vanishes when 0 </~ < 1 ; hence 

" ~ 1  . . . . . .  

This is again a generalization of a null series discovered by Sch15milch, namely, 

1 

+ ~ ( -  1 ) J o ( ~ )  = 0 . . . . . . . . . . . .  

w h e n 0 < t ,  < 1. 

Furthermore, in Ref. 11, it is proved that 

E0 = + 2i ~ exp{-- av'[(2n -- 1) 2 -- tt~]} 
.=1 v / [ ( 2 ~ -  1) ~ - ~3 . . . . . . . .  

and hence, by differentiation and use of (62) 

£1 = 1 d£0 
trot dot 

= + za---~,=12i ~ exp{-- ot~/[(en. -- 1) ~ - / P ] }  . . . . . . .  .. 

Since formulae (62) and (68) correspond, it follows that, 

Jo(~lot])  (2n  2 + ~ ( -  a)° Jo("~/(ot~ + "~=~)} = +_2 ~ cos ot~/[~2- - 1)~1 
. = 1  9"g~.=l V[t, 2 -  ( 2 n -  1) 2] "" 

When 2n -- 1 < # < 2m + 1. Similarly 

Jd2~271 ! -  q_ ; ( _  l~,J~{/zV'(ot2 + n==~)} 2 ~ sin ot~/[#=-- (2n- 1)2] ' 
,,=1 ' ~/(ot~ + n~= ~) - ~ e o t . = l  " "  

and it follows that 

(6s) 

(66) 

(67) 

(68) 

(69) 

(70) 

y~e/(1 -- y2) . sinh a 
Y 

sinh 2 m a y .  Y1 {~ot~/ (1-  y2)} dy 

~/(1 -- y~) sinh ay 

- -  ~ £ sin a v ' [ t ? - -  ( 2 n -  1) 8 ] . . . . . . .  . .  
ot~ n = l  " " 

Formulae (69) and (70) are generalizations of those given by Watson for the case l a I = 0, 
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T A B L E  2 

Mid-Chord Derivatives .for Flat Plate 

M = 0 . 7  ; T u n n e l  h e i g h t  = 4 . 7 5  c h o r d  

c5 
free wind free wind free wind free wind 

stream tunnel stream tunnel stream tunnel stream tunnel 

4.556 4.399 4.556 --  oo 0 

0.04 

0-08 

0.20 

0.40 

0.60 

0 

0.022 

0.063 

0.185 

0.297 

0-311 

4.399 

0 . 0 1 6  4 . 0 6 1  

0.058 3.740 

0-238 3.054 

0.427 2 .504,  

2.269 

4.506 

4.321 

3.579 

2.799 

4-066 

3.757 

3.117 

2.638 

2-471 

4.510 

4.339 

3.657 

2.975 

--12.981 

- -8 .903 

--3 .877 

--1-274 

--0-367 

- -8 .882 

- - 8 - 7 1 5  

- -7 .979 

- -5 .084 

--2-026 

M = 0 . 7  ; T u n n e l  h e i g h t  = 4 . 7 5  c h o r d  

- - ~ z  - -  1~4~ - -  ~/4 a ~ ~ n ~  

free wind free wind 
stream tunnel stream tunnel 

0 

0.04 

0.08 

0.20 

0.40 

0.60 

0' 

--0.006 

--0.019 

--0.063 

--0.133 

--0.201 

0 

- -0 .005 

--0-018 

- -0 .078 

--0 .176 

free wind 
stream tunnel 

--1-100 --1-119 

--1.014 --1.104 

- -0 .928 - -1 .056 

--0 .743 - - 0 . 8 5 6  

--0.581 --0.645 

- -0 .496 

bee  wind 
stream tunnel 

- -1 .100 - -1 .119 

--1 .015 - -1 .106 

--0 .933 --1.061 

--0 .759 - -0 .880 

--0 .617 --0 .694 

- -0 .548 

o o  

4.030 

2.981 

1-669 

0.976 

0.735 

3.012 

2. 969 

2. 778 

2.023 

1.236 
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