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Summary.--A method is presented of analysing experimental curves obtained in flight when an aircraft is disturbed 
longitudinally by a suitable elevator input and performs mainly short-period oscillations. Determination of frequency, 
damping factor, amplitude ratios and phase angles of various oscillatory curves leads to formulae for evaluating 
stability derivatives. Cases of elevator fixed or oscillating, for tailed and tailless aircraft, are considered and illustrated 
by numerical examples. 

The main results of the investigation are listed in section 6. 

1. Introduct ion.--Many types of modern aircraft, especially tailless, suffer a certain loss of 
rotary damping at high speed, particularly ill the transonic region. The effect is not always 
important  but, in some cases, it may be so strong as to make the damping of the short-period 
longitudinal oscillation nearly zero or even negative, and so make the aircraft almost uncon- 
trollable. The loss of damping depends critically on the Mach number, and a small increase of 
the latter in the transonic range may sometimes cause a sudden collapse of damping. The mat ter  
is being investigated theoretically and by oscillatory tests in wind tunnels, but serious difficulties 
are encountered. A considerable time may pass before the problem is mastered completely and 
the designer is able to predetermine, in a simple way, the stabili ty derivatives for any aircraft 
shape, and thus design safely against the trouble. That  is why the appropriate flight tests on 
prototypes are now of great importance, and they are frequently undertaken by aircraft firms 
and research establishments. 

I t  is the object of this paper to work out the theoretical bases of such flight tests, and to find 
correct and convenient ways of interpreting them, i.e., of determining as many  aerodynamic 
derivatives as possible from the graphs of variables recorded by instruments during the tests. 
The original purpose of the tests was merely to find out whether the short-period oscillatory 
damping was adequate at various Mach numbers and altitudes ; in particular, to determine critical 
conditions if the aircraft was so unfortunate as to encounter them. However, the progress of 
instrumentation has made it  possible to obtain continuous and fairly accurate simultaneous 
records of several variables during appropriate oscillatory disturbances deliberately excited by 

* R.A.E. Report Aero 2479, received 30th January, 1953. 
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the pilot. The quantities usually recorded are: angular velocity of pitch q, normal acceleration 
ng, and elevator deflection ~, but  some alternative schemes are possible. A mass of quanti tat ive 
information is thus obtained which, combined with the existing theory of dynamic stability, 
may be used for calculating all (or almost all) aerodynamic derivatives involved. These may 
then be applied for predicting the behaviour of the aircraft in modified conditions (e.g., predicting 
the damping with elevator fixed from tests with elevator oscillating, etc.). Also, the values of 
derivatives obtained from flight tests may be usefully compared with those estimated theoretically, 
or furnished by wind-tunnel tests. 

The correlation of the  experimental curves with the equations of aircraft dynamics requires a 
rather elaborate mathematical  procedure. I t  will be shown, however, that  simple final formulae 
can be obtained which may be directly used in practice. The indispensable simplifications 
introduced in the theory and the unavoidable experimental errors will cause all results to be only 
approximate. I t  would be premature to t ry  to assess fully the order of accuracy attainable, 
although an at tempt  in this direction is made, and the value of the method proposed here will 
only be revealed by its application. 

A longitudinally disturbed motion of an aircraft, following an arbitrary initial disturbance, 
consists normally of two oscillatory modes. The short-period oscillation, with a period no more 
than a few seconds (sometimes below 1 second) is usually so strongly damped as to become not 
recordable after two or three periods, except for the dangerous cases of inadequate damping. 
The properties of this oscillation depend practically on only a few most important  aerodynamic 
derivatives (z~, m~, m~, m;). The phugoid oscillation has a period of the order of one minute 
(up to 2 minutes or more at very high speeds), and its natural  damping is always low (positive 
or negative), the practical importance of this damping being, however, very much less than that  
of the quick oscillation. The properties of the phugoid oscillation, especially its damping, 'depend 
on a great number of derivatives, and there are considerable difficulties in correlating calculated 
and measured characteristics. The disturbed flight consists initially of both short-period and 
phugoid modes but, after a comparatively short time, the former is normally damped out and the 
latter only persists for quite a long time. The short-period oscillation can, therefore, be only 
studied during the early stage of the disturbed flight. If this contains comparable amounts of 
the two modes, then tile recorded curves of any measured quantities are complicated and not 
very suitable for analytical interpretation; it would be difficult to resolve the recorded motion 
into its two constituent modes and to isolate the short-period mode which is of tile first importance. 
The flight tests must therefore be arranged in such a way as to produce initially mainly the short- 
period oscillation, while the phugoid mode should be excluded as far a s  possible. The usual 
simple manoeuvre applied for the purpose consists in pushing the stick rapidly forwards and then 
pulling it quickly back to its original position. The operation may, of course, be carried out in 
the inverse order, but  the essential requirement is that  the elevator is suddenly deflected one way 
and then quickly brought back to its original equilibrium attitude. I t  may be easily explained in 
general terms why only very little phugoid motion should result from such a manoeuvre. The 
two opposite elevator movements in quick succession produce (theoretically) two equal and 
opposite phugoid waves with a phase difference which is small compared to the phugoid period. 
Two such waves very nearly cancel each other, and so only a small residual phugoid oscillation 
remains*. 

In spite of this, the experimental curves often present some more or less marked deviation 
from the ideal shape of a pure single-mode damped oscillation, and this may cause some troubles 
in interpreting them. If the motion consisted exclusively of the short-period oscillation, then 
the variation of each recorded quantity,  such as q or n, would be expressed by the simple formula : 

Ae -~/ ' - t° /s inJ( t  -- to) , . . . . . . . . . . . .  (1.1) 

the shape of the curves being as shown in Fig. 1. Such curves have two simple properties: 
(a) the points of intersection with the horizontal axis are equidistant, the distance being half the 

* The reasoning, of course, does not apply to the two rapid oscillatory w.aves; because the phase difference is not 
small compared to their short period. 
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period ~ / J  ; (b) the successive peak values form a geometrical progression whose ratio depends 
on the damping factor N. The curves recorded in flight tests look quite similar to those of Fig. 1, 
but  they deviate somewhat from the theoretical shape so that  neither of the above properties is 
reasonably satisfied. Therefore, even the simplest information required from the tests, i.e., the 
magnitudes of frequency and damping, cannot be directly obtained with anything like the 
desirable accuracy. This circumstance may jeopardize the accuracy of all more elaborate 
conclusions to an even higher degree, and it was thought necessary to analyse the matter  in a 
more detailed way. To this purpose, the theoretical response to an idealized elevator movement 
(' rectangular i n p u t '  according to Fig. 2) was calculated, and formulae for the variation of q 
and ~¢, following such a movement, derived. The calculation was done first in the simplified 
way, i.e., neglecting the changes in forward speed (putting u = 0), and thus eliminating the 
phugoid motion right from the start ;  and then in a more exact way, admitting u variation as 
well, and hence obtaining both short- and long-period oscillation. The details of the calculation 
are described in Appendix I, and illustrative diagrams presented in Figs. 3, 4, 5 and 6. I t  is 
seen that  the response curves in both cases are quite similar, and the amount of phugoid motion 
introduced by an elevator input of short duration is small as expected. The theory thus confirms 
the intuitive expectation in broad lines. Nevertheless, the smal! phugoid contribution is quite 
sufficient to distort the response curves in a similar way to tha t  found in experiments, i.e., making 
it  difficult to determine the frequency and damping accurately. 

I t  appears, therefore, that  the uncomfortable distortion of the experimental curves must not  
necessarily be at tr ibuted to instrument errors or f au l ty  technique (though, obviously, an 
additional distortion due to such causes may often take place). Distorted curves should not be 
considered as unpleasant exceptions, but  as usual occurrences, and a method is therefore required 
to treat  them properly. The problem is quite simple if the distortion is small and, as in the 
given case, due to an additional oscillation of a period much greater than the duration of the 
recorded event. The long-period (phugoid) contribution may be safely approximated by a straight 
line of a small slope and, as shown in Appendix II, the parameters of such a line can be easily 
determined by measuring a few co-ordinates of appropriate points (upper and lower peaks or, 
sometimes, points of intersection with the horizontal axis), and then using simple standard 
formulae. I t  will be seen that  the curves need not be re-drawn but  merely referred to new, 
slightly inclined, axes - ins t ead  of the original horizontal axes. The proposedprocedure may be 
termed ' filtration ' If correctly applied, it should reinstate the two properties of the oscillatory 
curves of the type (1.1), previously mentioned. The frequency and damping parameter may 
then be determined in a much more reliable way. 

The response theory will not be applied at all in connection with the principal subject of this 
paper, as described in the main text. This is because we cannot, in general, assume the control 
input to be exactly known, and even if so, the input will usually be very different from the simple 
' rectangular ' form of Fig. 2, and quite unsuitable for analytical representation. Our method is 
completely different from the elaborate American '  dynamic response ' technique reported recently 
in a comprehensive way by W. Milliken 17. In this paper, only the curves obtained during a free 
oscillation are taken as a basis, with no specific assumptions as to the initial elevator i npu t - -  
except the general assumption that  the amount of phugoid oscillation produced is small. 

If only the period and damping of the rapid oscillation were required, it would suffice to record 
only one response curve, e.g., q alone, or ~¢ alone. This would give some information about the 
stability derivatives, but not nearly enough for a complete investigation. However, in most 
cases, we shall have at least two such curves (e.g., q and ~, if the elevator is kept fixed efficaciously 
after the initial manoeuvre), or three of them (q, ~, and ~, if the elevator is free, or oscillates 
slightly owing to elasticity of the control circuit). In such cases, further valuable information 
can be obtained by determining the amplitude ratios and phase differences between particular 
curves. The procedure is quite simple, but  it was thought not superfluous to describe it in detail, 
and this has been done in Appendix III .  
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In the main text  of this paper, it will be assumed tha t  the frequency and damping parameter 
of the recorded curves, and also the respective amplitude ratios and phase differences, are known, 
and the formulae for determining stabili ty derivatives therefrom will be derived. I t  will be 
seen that  the system of equations disposable is redundant with respect to some derivatives, and 
this will provide a useful check of accuracy of the experimental technique. With  respect to 
some other derivatives the system of equations may prove to be indeterminate, and then it will 
be possible to calculate only some combinations of derivatives from which it will not be possible 
to isolate the individual derivatives. For example, the full rotary damping derivative m i can 
be determined but  not its constituent parts m e and m;. This will have to be acknowledged 
as a certain imperfection of the method, but  the information obtained will still be quite valuable. 
I t  may, of course, be supplemented by data furnished by alternative methods of research. 

Section 2 deals with the case of elevator fixed, and sections 3 and 4 with those of elevator 
oscillating, on tailed and tailless aircraft, respectively. The difference between the two latter  
cases is merely that  for a tailed aircraft the effect of elevator deflection on the total  lift may 
normally be neglected (the derivative z,, omitted), while such a simplification does not apply to 
tailless. However, including this effect makes the algebra more complicated, and it was thought 
advisable to treat the simpler case first, whereupon the more complicated one becomes more 
tractable. Section 5 contains an at tempt to assess the accuracy of the analysis in the case of 
elevator fixed. The main conclusions are summarized in section 6. 

Acknowledgments are due to Z. Olenski, of A. V. Roe & Co., Ltd., to whose initiative this 
paper is largely due, and to A. W. Thorpe for his several valuable suggestions; also to Mrs. J. 
Collingbourne, W. P. Gillott and C. G. Price, who helped to work out examples, did the computation 
and prepared the illustrations. 

2. Case  o f  E l e v a t o r  F i x e d . - - 2 . 1 .  T h e o r y . - - L e t  us assume that  the initial manoeuvre has been 
terminated by bringing the elevator back to its original equilibrium position (corresponding to 
level flight) and that,  from this instant  onwards, the elevator is kept rigidly fixed*. We may 
also assume that  the forward speed is constant (u = 0), i .e . ,  tha t  the phugoid oscillation is absent, 
and thus the disturbed motion will be governed by the familiar simplified system of equations 
(2nd order only, dimensionless, referred to a moving system of axes II, level flight)" 

( D  + - -  = 0 . . . . . .  . . . .  ( 2 . 1 )  

( x D  -t- c~)z~ -l- (D -~ ~,)c] = 0 ,  . . . . . . . . . .  (2.2) 

where the meaning of the main symbols is as follows (see also List of Symbols) • 

D = d / d r  (differential operator); , = t / l  (aerodynamic time); 

Z = W / g p S V  = V C L / 2 g  (unit of aerodynamic time); 

z~ = w / V  (increment of incidence); ~ = ql (dimensionless rate of pitch) ; 

a = ~CL/~cz (lift-curve slope) ~ ; ~ = -- mq/iB ; X = - -  m ; / i B  ; (2.3) 

#~4% pc C 
co = - -  -~-ff - -  ~8 2l  aK , , ,  where K,,, = - -  ~C,,,/OCL (' restoring margin); 

= W / g o S l  = V l /1  (relative density); i~ -- k~ ~ (inertia coefficient). 

* This is not quite equivalent to keeping the stick fixed ; in the latter case, the elevator may  still oscillate appreciably, 
because of the elasticity of the control circuit. In many  cases, only a special clamping device can assure a complete 
immobili ty of the elevator. If  the elevator is power operated, however, it carl usually be considered as fixed unless 
actuated by the power unit. 

The equation (2.!) is often written, as (D-  z,o)w- q = 0 where, strictly, zw = - -½(a  + C~). In view of our 
simplification through which the entire drag equation has been omitted, the term C. may be reasonably neglected in 
the last expression, as small compared to a. 
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T h e  notation is tha t  of Bryant  and Gates 1, with some usual modifications and additions 4' 5,11, 1~, 15 
T h e '  compound '  derivatives co, v, x are merely convenient algebraic combinations of the more 
familiar aerodynamic derivatives m~, mq, m~ with the factors ~ and i~, and with signs inverted 
so tha t  they are positive when contributing to stability, and they are used mainly in order to 
simplify writing. I t  may be mentioned tha t  the definition of m; adopted here differs from that  
of Ref. 1 inasmuch as the factor/,  is omitted, so tha t  we define m;~ = M~v/pSl 2 instead of gM~i,/Wl 
(cf. Ref. 13, form. 5.3). This is more consistent with the definitions of all other aerodynamic 
derivatives (which are independent of/~ and thus of the aircraft weight). I t  is also convenient 
because we now have the simple relationship" 

m~ + m ;  = m ~ ,  . . . . . . . . . .  ( 2 . 4 )  

where m~ represents the rotary derivative in the system of axes fixed in space, determinable 
directly by  oscillatory tunnel tests (cf. Ref. 13). I t  should be emphasized tha t  the derivative m~ 
has now a much wider meaning than that  envisaged in Refs. 4 and 5, i.e., it comprises not only 
the effect of downwash lag at the tail but  (especially for tailless aircraft) the important  effect 
due to the ' unsteadiness ' of the oscillatory motion. I t  should also be mentioned tha t  ~C,J~CL 
in the definition of K,, is a partial derivative ' at constant speed '  ; therefore, K~ does not include 
any effects of varying Mach number and, at high speeds, differs considerably from the static 
margin K,, (cf. Ref. 9). The term ' restoring margin ' for K,, seems suitable as, when the aircraft 
incidence is changed from its equilibrium value, there arises a ' restoring ' moment, proportional 
to K,, which tends to reinstate the original incidence. 

In the subsequent considerations, we shall represent all variables in complex form, which 
simplifies mostderivat ions greatly. The equations (2.1) and (2.2) represent a damped oscillation 
of a certain angular frequency J ,  with a certain damping parameter R*. Thus, for instance, the 
solution for z~ will be" 

z~ = z~* e --R( .... I sin f(* -- *0) , (z~*, %--constants  of integration) . . . .  (2.5) 

but  it will be more convenient to write it in the complex form" 

z~ = ~* e (-R+o)( .... ), . . . . . . . . . . . . . . . . . .  (2.6) 

all further deductions applying either to the real or to the imaginary part  of the complex 
expressions. For instance, (2.5) is the imaginary part  of (2.6). 

Differentiating {2.6), we obtain" 
D~ = (-- R + i ] ) ~ ,  . . . . . . . . . . . . . . . .  (2.7) 

which means tha t  the differentiation of expressions of th e t y p e  (2.6) reduces to multiplying 
them by  (-- R + i J), or tha t  the symbols D and (-- R + i]) are interchangeable. 

Substitution of (2.7) into (2.1) yields" 
= ( ½ a -  + . . . . . . . . . . . . . . . . . .  ( 2 . s )  

Introducing this into (2.2), and splitting real and imaginary parts, we obtain" 
.. [{co + ½av q - / ~  -- := -- ( la q- v + x)R} q- i]{(½a q- v q- x) -- 2/~}]zO = O. (2.9) 

This equation must be satisfied identically, thus the real and imaginary parts in the square 
bracket must vanish, and hence~ 

½a + + x = 2 R ;  . . . . . .  ' . . . . . .  ( 2 . m )  

. co + ½a~ = R ~ + f ~  . . . . . . . . . . .  ( 2 . 1 1 )  

* f a n d / ~  are both  dimensionless ; the bars  are used to denote the values corresponding to the case of elevator fixed. 
The  relationships (2.10) and (2.11) can, of course, be found more simply, b y  eliminating w and q from (2.1) and 

(2.2), whence : . . . .  
D~ + (½~ + v + ~)D + (~ + ½a~) = 0, 

and, if we put  D = - - R  ± i J ,  the equations (2.10) and (2.11) are obvious at  once. I t  was thought  useful, however,  to 
follow the,al ternative,  sl ightly longer, derivation because an analogous me thod  will be ind!spensable later  on, in the case 
of elevator  free. 

5 



The frequency f and damping parameter R can be determined from any curve recorded during 
an oscillation in flight, e.g., from the ~- or g-curve (for details, see Appendices II  and III).  A 
0- or z0-curve could be used as well (if suitable instruments were available), because the frequency 
and damping should be exactly the same for all of them, at least theoretically. If only one curve 
is recorded, we have only two equations (2.10) and (2.11) for determining f o u r  u n k n o w n  derivat ives 
a, v, x and co (the three last symbols representing m~, m; and m~). I t  is seen that,  in such a case, 
we obtain only the two combinations of derivatives (½a + v + x) and (co -/½av), but  not the 
values of  particular derivatives, unless we make use of some alternative sources of information, 
such as theoretical calculations, wind-tunnel tests, or steady flight tests. I t  is very desirable, 
however, to make no use of such extraneous information and t ry to deduce as many results as 
possible from the oscillatory flight tests alone, these results to be compared afterwards with any 
other available data. This is particularly important  because the oscillatory flight tests supply 
the information on the values of ' uns teady '  derivatives, and it is of particular interest to find 
out how far these deviate from the ' s t e a d y '  counterparts (such as z~ and m~ obtained from 
static tunnel tests). 

In most cases, two curves representing ~ and g are simultaneously recorded, and then, in addition 
to R and J,  two more quantities may be determined, viz,  the amplitude ratio and phase difference 
of the two curves (see Appendix III). I t  seems that,  with two more equations, it will be possible 
to calculate all four derivatives. The position is not quite so satisfactory, however, as will be 
seen from the following analysis. 

The normal acceleration gg (in the direction of the negative z-axis, i .e.,  of the lift in original 
undisturbed flight) is given by 

dw V 
gg = Vq  - -  dt - -  ~ (~ - -  Dye ) ,  . . . . . . . . . .  (2.12) 

or, in view of (2.1) : 
V 

g . . . . . . . . . . . . . . . . .  ( 2 . 1 3 )  

Dividing (2.8) by (2.i3), and replacing ~ by ~,  we obtain" 

~ _  g ½ a - - R - l - i f  
V ½a . . . . . . . . . . . .  (2.14) 

We assume that  the amplitude ratio ~*/g* and the phase difference qZq,~ have been obtained from 
the recorded curves, and so we may write: 

g -- g ,  e~7~, = ~ (cos 95q,~ -[- i sin ~,,) . . . . . . . . .  (2.15) 

The exp/essions (2.14) and (2.15) must be equal, and hence: 

½a - -  R + i f  = ½a V~* (cos ~ + i sin qZq,,) (2.16) • g g - - - ~  . . . . . . . . . . .  

Equating the real and imaginary parts in this complex equality, and introducing, for abbreviation, 
the symbol : 

~ = V  ~* 
"g~ ,  • . . . . . . . . . . . . . . .  (2.17) 

we obtain the equations: 

a - -2 /~=a /ScosCq ,~ ,  2 f  -= @ sin Cq, , . . . . . . . . . .  (2.18) 

from which, taking into account (2.10) and (2.11), we deduce: 

@ = ~/(4o9 -- 2ax)  . . . . . . . . . . . . . . .  (2.19) 
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I t  is seen now tha t  each of the two new equations (2.18) contains only one unknown  derivat ive a 
which can thus be de te rmined  in two different ways : 

2 / /  
• . . . . . . . . . . . . . .  (2.20a) 

a = 1 - -  : COS ~q,~' 

2 f  . . . . . . . .  (2.20b) 
a --t5 sin qsv~ " . . . . . . . .  

I t  appears that ,  a l though we have al together four equat ions (2.10, 2.11, 2.20a, 2.20b) wi th  four 
unknowns,  the  system is r edundan t  with respect to a, while still inde te rmina te  wi th  respect to 
the  remaining derivatives v, x and co. The fact tha t  we have two formulae for a provides a useful 
check of accuracy of the  entire procedure*. 

The final result is that ,  when using the  flight-test technique as described, we may  determine  
a (in a twofold way), and then  the  sums (v + x) from (2.10) and (~ + }av) from (2.1). I t  is 
impossible, however,  to extract  the  values of the  individual  derivatives v, x, co from these sums. 
I t  m a y  be easily shown that ,  if a l ternat ive or addi t ional  quant i t ies  were recorded in flight, such 
as, for instance, angle of pi tch 0 or angular  acceleration ~, the  position would still remain unaltered,  
and only the same combinat ions of derivatives could be determined.  Al though this indicates a 
certain imperfect ion of the  method,  yet  the  informat ion obta ined is very  valuable. The 
combinat ion (~ + x) leads immedia te ly  to the  value of the  impor tan t  derivative m~ (the one 
direct ly measurable in oscillatory tunnel  tests) 
(2.3), we have :  

= + m ;  = - + x)  

because, in view of (2.4) and the  definitions in 

= - -  i B ( 2 / / - -  { a )  . . . . . . .  ( 2 . 2 1 )  

As to the  combinat ion (m -¢- ½av), this provides direct ly the  manoeuvre margin H,,, (stick fixed). 

z mq i .  2Z + ½a ) i .  . 2z 
H " =  K ' ~ - - c - ~  = fi-" c~ = 7  c~ (R2 + f=)' "" .. (2.22) 

as follows from Ref. 9, form. 114, p. 21. One might  object  tha t  the value thus obta ined could 
differ somewhat  from the  manoeuvre  margin as defined in connect ion wi th  the  usual recovery 
manoeuvre ,  because in our case we have to deal wi th  ' u n s t e a d y '  (oscillatory) derivatives, while 
Gates' manoeuvrabi l i ty  theory  3 is based on the  concept of a s teady circling motion.  However,  
the  only derivatives involved are m.  and m e, and these, as far as is known, are almost exact ly 
the  same in s teady conditions as in an oscillation at low reduced f requency, .  

We may  add tha t  some other  combinat ions of derivatives can be derived from the  above 
analysis, e.g., from (2.19) we get :  

c o  - -  }ax = ~a ' : '  . . . . . . . . . . . . . . . . . . .  (2.23) 

If the  values of the  two expressions (o) + {av) and (* --  {ax) are known, this will give in m a n y  
cases a p re t ty  narrow range for ~o, thus for the  restoring margin K, ,  

* I t  is possible to derive one more formula for a, free from the phase angle [~,~, by  equating the moduli of the two 
parts in (2.16): 

a - - ~  2 -  1 
but this can, of course, be also obtained by eliminating ~ ,  from (2.20a and b), and really contains nothing new. We 
can also eliminate/~, and then we obtain yet another formula for a : 

a = + 2 cot . . . . . . . . . . . . . . .  (2.20d) 

Either of the four formulae may be preferred, according to which of the recorded quantities seem more reliable. 

t Tile theoreticM investigation of Ref. 14 shows that  at least the two-dimensional derivatives m~ and m~ are very 
little affected by  the varying reduced frequency, provided this is small. There are no reasons to expect that  the 
position will be diff6rent in three dimensions, and the agreement is likely to be even closer. 
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More complete informat ion m a y  be obta ined if the derivat ive mq is es t imated  theoretically,  
as m a y  often be done wi thout  great  difficulties and with reasonable accuracy. Our system of 
equat ions will then  become determinate ,  and we shall be able to find the  values of m;~ and m~ 
(hence also the restoring margin K,,). 

No information about  the  static margin K,  (in the  sense of its now accepted definition as given 
by  Gates and Lyon ") can be obta ined from oscillatory flight tests, because the  definition involves 
the  effects of varying speed, i.e., first of all the  varying Mach number  effects. The determinat ion  
of the  static margin will, of course, always require flight tests at varying speeds, and does not  
come under  the  scope of this paper. 

2.2. Examples.--The following numerical  examples are not  supposed to apply to any specific 
aircraft, but  the data  are chosen so as to be realistic and il lustrate some typical  and diverse 
cases. In  each example, the  few required design and operat ing data, and all re levant  derivatives, 
are first assumed as given, and the  oscillatory characteristics calculated therefrom (first stage). 
I t  is then  supposed tha t  all derivatives a r e  unknown,  while the  oscillatory characteristics have 
been read from the  curves recorded in flight, and the  derivatives or their  combinat ions are 
de te rmined  from our formulae, in the way it is proposed they  should be in practice (second stage). 
The readings are occasionally supposed to deviate  somewhat  from the values calculated in the  
first stage, so as to illustrate part ial  effects of unavoidable  errors on the  accuracy of the  final 
results. In  the  first example, a detai led calculating scheme is shown, in the  remaining two only 
numerical  values are listed. 

The numerical  data  have been chosen so as to avoid rounding and ensure a very  good accuracy, 
certainly higher than  can be expected in practice. The errors assumed in the  second stage are 
also qui te  small, and much  greater errors can certainly be tolerated. I t  depends on the  precision 
of ins t ruments  and of the  entire test t e c h n i q u e w h a t s o r t  of accurkcy will be attainable,  and this 
m a y  only be ascertained experimentally.  An analysis of errors is given in section 5. 

Example I. Tailed Aircraft.--First stage.--The assumptions are as follows: 

Design and operat ing da ta :  l/c = 2.5,  iB = 0.08, V = 644 ft/sec, ~ = 88. 

Derivat ives:  a = 4 . 2 5 ,  m~ = --  0. 282, m ~ = - - 0 . 0 9 6 ,  K,,,=0.08. 

From these data,  further  derivatives are de te rmined:  
a 6  

m~ --  2l K,,, = --  0" 068 ; from (2.4) m~ ----- --  0" 378 ; 

manoeuvre  margin,  from (2.22) H,, = 0. 088. 

The ' c o m p o u n d '  derivatives now become:  ~ = 3.525, x = 1.2, co = 74.8. We then  calculate 
the  oscillatory characteristics from (2.19, 2.17, 2.10, 2.11, 2.18): 

/ 5 = 4 ,  ~ * / g * = 0 . 2  radn/sec, R = 3 . 4 2 5 ,  f = 8 . 4 ,  cos ~q,, = --  0.1529, 
sin ~q,~ = 0. 9882, and hence ~q,, = 98 ° 48'. 

Second stage.--We assume tha t  the  design and operat ing data  are known, exact ly the  same 
as in the  first stage, and tha t  the oscillatory characteristics, as obtained from the  recorded curves, 
are : 

R = 3.42, f = 8.4, ~*/g* = 0 .2  radn/sec, ~¢,, = 98 ° 50' (hence cos.qsq,, = -- 0. 1536, 
sm ~ = 0- 9881). 

We calculate from (2.17, 2.20a, 2.20b, 2.10, 2.23): 

/ 3 = 4 ;  a = 4 . 2 3 7 ,  o r a = 4 - 2 5 1 ,  s a y a = 4 . 2 4 ;  

+ X = 4 " 7 2 ;  ~ + ½ a ~ = 8 2 . 2 6 ;  ~ - - l a  x=71.91 .  
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For  a tailed aircraft, at  a modera te  Mach number,  there is no doubt  tha t  x is posit ive (v is always 
positive). The two last results thus show tha t  ~o lies somewhere be tween 72 and 82, hence the  
restoring margin K,, is between 0.077 and 0. 088 which is quite a narrow interval,  and we m a y  
expect  tha t  the  lower value will be nearer  to the  t rue one (which was 0" 08). 

The formula (2.21) now gives m~ ---- --  0-3776, and tile manoeuvre  margin is obta ined from 
(2.22) as H,,~ = 0.0882. 

Example I I .  Tailless Aircraft.--First stage.--Data assumed" 

l / c =  1, i B ~ 0 " 3 6 ,  V----800ft /sec ,  ~ - - - -82-26 ;  

a = 3 ,  mq------0"36, m ; = - - 0 " 1 8 ,  K , ~ = 0 . 0 4 .  

In te rmedia te  values calculated" 

m , = - - 0 . 0 6 ,  m~- - - - - -0 .54 ,  H ~ = - 0 . 0 4 4 4 ;  

v---- 1, x = 0 " 5 ,  co---- 13-71. 

Oscillatory characteristics calculated" 

1 3 = 2 . 4 ,  ~*/~* ---- 0. 0966 radn/sec, R =  1.5, ] - - - -3 -6 ,  ~q,~=90 ° . 

Second stage.--The first four data  assumed as above, and the  oscillatory characteristics taken  as 

R---- 1.5, f = 3 . 6 ,  ~ * 1 ~ * = 0 . 0 9 6 ,  ¢ q , , = 9 0  ° . 

The calculated results become" 

13----2.385; a ---- 3-00 or a ---- 3"019, s a y a = 3 ;  

+ x =  1.5, o~-[-}aN---- 15-21, co--½ax---- 12-80; n ¢ 6 = - - 0 " 5 4 ,  H,,,----0.0444. 

A rough es t imate  of ¢o and K~ is again possible, a is certainly smaller than  15.21, hence 
K,, < 0.0444. Supposing, however,  t ha t  mq has been calculated theoret ical ly as ( - -0 .432 ) ,  
i.e., with  as much  as 20 per cent error, we obtain v = 1.2, a = 13" 41, and K,,, = 0. 0391, wi th  
only 2 .2  per cent error, which is really much  more accurate than  required. 

Example ] I I .  Tailless Aircraft.--First stage.--Data assumed" 

1/c = 1, i~ = 0" 2, V = 750 ft/sec, /*----39"65; 

a----4, m q = - - 0 " 4 1 ,  m ~ =  + 0 " 1 3 ,  K,,~----0.06. 

In te rmedia te  values calculated : 

~ - - - - - - - 0 . 1 2 ,  ~ ----- --  0" 28, H,~----0.0703; 

v = 2 . 0 5 ,  x ~ - - 0 " 6 5 ,  ~o = 2 3 . 7 9 .  

Oscillatory characteristics calculated" 

13----2.5045, ~ * / ~ * = 0 " 1 0 7 5  radn/sec, t 2 ~ 1 . 7 ,  f - - - -5 ,  cos ~,, ~- 0" 0599, 

sin 6q,, = 0-9982, 6q,, ---- 86 ° 34'. 

Second stage.--The first four da ta  assumed as above, and the  oscillatory characteristics taken  as 

= 1-7, f = 5 ,  ~ * / g * = 0 - 1 0 8 ,  ~ , , = = 8 6  ° 30' (hence cos¢q,,----0"0610, 

sin 6q,~ = 0. 9981). 

The calculated results become" 

1 3 = 2 - 5 1 6 ,  a-----4.017, o r a = 3 " 9 8 2 ,  s a y a - ~ 4 " 0 0 .  

v + x =  1.4, co + ½ a ~ = 2 7 . 8 9 ,  o J - - ½ a x = 2 5 . 3 2 ;  m~ ----- --  0" 28, H , , , = 0 . 0 7 0 3 .  
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In this example, m; has been assumed positive (thus x negative), but  m~ is still negative, and the 
damping parameter R has a positive and quite satisfactory value. The true value of co lies 
not between 27.89 and 25.32 but below the latter value, hence a direct estimate of co would be 
somewhat uncertain. Supposing, however, tha t  mq has been calculated theoretically as (-- 0.3), 
i.e., with as much as 27 per cent error, we obtain v = 1.5, ~o = 24.89, and K,. = 0.0628, with 
only 5 per cent error. 

General Remarks.--In the three examples, the phase difference ~q,, is greater than, equal to, 
and less than 90 deg, respectively. I t  is obvious from (2.18) that  sin ~q,, must be positive, hence 
6g, always lies between 0 deg and 180 deg. I t  will be greater than 90 deg if 2/~ > a or, in view 
of (210), if 

+ x > ½a, or ( -  m~) > ½ai~ . . . . . . . . .  (2.24) 
i.e., when the rotary damping is quite large. 

If the worst happens and the damping becomes negative (R < 0), the angle ~q,, will be much 
less than 90 deg. However, this angle may be 90 deg or less, with still quite adequate damping, 
as in our examples II  and III .  

J 

30 Case of Elevator Oscillating. Tailed Aircraft.--3.1. Theory.--Let us again assume that  the 
initial manoeuvre has been terminated by bringing the elevator back to its original equilibrium 
position, but  then the elevator is let free or, at least, a certain measure of freedom is left to it 
due to elasticity of the control circuit, even while the stick is fixed*. The oscillatory motion 
will then differ more or less from that  with the elevator rigidly fixed (as described in the previous 
section), and even a small periodic motion of the elevator may modify the oscillatory character- 
istics of the aircraft considerably. A strict theory of such a motion would involve all additional 
degree of freedom which would raise the order of the system of equations by  two and lead to a 
very complicated algebra, with at least four new unknown derivatives, such as : elevator floating- 
moment parameter bl, restoring-moment parameter b2, elevator damping parameters (aerodynamic 
and frictional), spring constants of the control system, etc. ; also some further constants, such 
as elevator inertia and mass unbalance. The problem is of great complexity and notoriously 
one of the most difficult in the theory of stability, and its existing solutions ~, 6, 7, 8 are hardly 
suitable for use in connection with flight tests. Moreover, it is clear already at this stage that,  
with one more quant i ty  (7) to be recorded during tests, only two new independent quant i t ies  
(one amplitude ratio, and one phase difference) will be available, while the number of unknown 
derivatives will increase by four or more, thus making the algebraic system strongly indeterminate. 
However, the problem may be treated in a much simpler way. I t  is known ", G, 7, s tha t  there are 
two main effects of letting the elevator free : firstly, a new ' very rapid '  oscillatory mode makes 
its appearance, with a much higher frequency and much stronger damping than those of the 
' short-period'  mode; secondly, the frequency and damping of the lat ter  mode are considerably 
modified. The very rapid oscillation, owing to its heavy damping, dies out almost immediately 
after the initial cause of the disturbance has come to an end. Thus, in our present case, the 
motion of both the aircraft and the elevator consists almost exclusively of the modified short- 
period oscillation (with a small amount of the slowly developing phugoid oscillation, as before). 
The flight tests confirm this convincingly and, in the typical case, when q, ~¢ and the elevator 
deflection ~ are recorded, all three curves exhibit practically the short-period mode only, although 
its frequency and damping are now different from those observed with elevator fixed. This 

* If the stick is to be let free, it may  be difficult to bring it exactly to the original position and then to release it at 
once, and the pilot may  be inclined merely to push the stick forward and then simply let it go. I t  is believed advisable 
to t ry  to bring the stick back to its original position at least approximately, so as to avoid excessive phugoid motion. 
And, in any case, the stick force should have been tr immed out, by means of the trimming tab (or adjustable tailplane, 
or any similar device) before starting the initial manoeuvre, so that  the elevator later oscillates about its original 
position, and these is no tendency for the aircraft to climb or descend. 
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suggests a simple method of analytical treatment, by using again the equations of motion (2.1) 
and (2.2), and merely introducing additional terms due to the varying ~. The equation of motion 
of the elevator itself is then not introduced at all, thus avoiding the trouble of dealing with all 
additional derivatives. This means, of course, a somewhat defeatist attitude, shirking some 
difficulties temporarily, and postponing the more thorough analysis to the future. The elevator 
will be treated as an element of our oscillating system which, owing to its (unknown) dynamic 
characteristics, influences the short-period oscillation of the aircraft, and we shall t ry  to find 
what new information can be obtained by investigating oscillatory curves recorded in flight. 
The first a t tempt  of this kind was made by Dr. K. H. Doetsch ~ in connection with the lateral 
oscillations of an aircraft with rudder free; the results have been useful and interesting, and the 
method seems to deserve serious attention. 

When dealing with conventional tailed aircraft, we may neglect the very small effect of the 
varying elevator angle on the total  lift, and only consider its effect on the total  moment. The 
equation (2.1) will thus remain unchanged (no z~ term, s e e  section 4, equation (4.1)), and only:' 
an additional term introduced in (2.2). Our new system of equations will be : 

. . . .  (3.1) ( D  + ½a)z~ - -  (] = 0 ,  . . . . . .  

( x D - t -  c o ) z 0 + ( D +  ~ ) ~ + d ~  = 0 ,  . . . . . . . . . .  (3.2) 

where" 
z ~ ,  ~ .  c ac, ,~ . . . . . .  ( 3 . 3 )  

= - -  iB  = - -  ZB 2 ~  " ~ . . . .  

is the ' c o m p o u n d '  derivative measuring the effect of elevator deflection. The effect of m~, 
i . e . ,  of the change in aircraft moment due to the angular velocity of the elevator, is supposed 
small of the order of errors in the main terms, and therefore neglected. 

We may again assume, as in the previous section (form. 2.6)" 

7~ ==  7~*  e ( -R+i j ) (~-~°)  , . . . . . .  (3.4) 

so that  
. . . . . . . . . . .  ( 3 . 5 )  D ~  ( - - R + U ) ~  • • " 

and 
4 = ( l a  - R + q ) ~ ,  . . . . . . . . . . . .  (3.~) 

where j and R are angular frequency and damping parameter of the oscillation with elevator 
free. 

We now suppose tha t  the elevator motion, as recorded in flight consists also of a single 
oscillatory mode, of the same frequency J and damping parameter R ,  and let us denote by 

= v * / ~ *  . .  

the amplitude ratio of v and ~, and by 

~0 = % ~  . . . .  

the phase difference by which ~ leads z~. 

= ,~  e~*. . .  

. . o • • ° • • 

Then we may write • 

o . • * • • • • 

. .  (3.7) 

. .  ( 3 . 8 )  

. .  ( 3 . 9 )  

As the first equation of motion (3.1) is the same as (2.1) before, we obtain again the formula 
for the normal acceleration factor n, similar to (2.13)" 

V (3.10) 
~4 ~ ~ - ~  a Z ~ ,  . . . . . . . . . . . . . . . .  
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or, replacing f by  its expression from (2.3) • 

¢g 

= ~-2 ~ . . . . . . . . . . . . . . . . .  (3.11) 

and  it is seen tha t  n is still in phase wi th  4. Dividing (3.9) by  (3.11), we find" 

n a e~ --  n* e%,, . . . . . . . . . . . . .  (3.12) 

where ~ * / n *  is the ampli tude ratio, and ~,~ the  phase difference between ~ and n. I t  is seen tha t"  

= ~  ;~ . . . . . . . . . . . . . . . .  (3.13) 
and 

= % . . . . . . . . . . . . . . . . . . .  (3.14) 

so t ha t  ~ is the  phase difference between ~ and z~, or between ~ and n. If  curves of ~ arid n have  
been recorded in flight, e and ~ can thus  be determined at once. As to a, this  can be found 
again from either of the formulae" 

2R 
a -~ 1 - -  p cos qOq,' . . . . . . . .  (3.15a) 

2] 
/5 sin ~q,~ . . . . . . . . . . .  • . . . . .  (3.15b) 

analogous to (2.20a, b), because the derivat ion in section 2, depending on the first equat ion of 
mot ion only, still applies here, wi th  no al terat ion except t ha t  %, and 

V q* 
- -  o - -  P = g  ~, . . . . . . . . . . . . . . . .  (3.16) 

are now obtained from curves of q and n recorded in flight wi th  elevator oscillating. Formulae  
analogous to (2.20c, d) will, of course, also hold true in the  present  case, but  they  are mere ly  
consequences of (3.153, b). 

We have not  made  use of the second equation of mot ion (3.2) yet.  This being different from 
(2.2), we shall now arrive at  new results different from (2.10) and (2.11). Subs t i tu t ing  (3.5), 
(3.6) and (3.9) into (3.2), we obtain" 

[m - -  x ( R  - q )  q-  (~ - -  R -ff / J ) ( ½ a  - -  R q -  / J )  q_ oe  e,~]z~ = O . . . (3.17) 
The real and imaginary  par ts  in the square bracket  mus t  bo th  vanish,  and hence" 

o) -]- ½a~ - -  R ( ½ a - } -  ~,-t-x) q - R  2 - J ~ - } - d e c o s q g = 0 ,  . .  (3.18) 

J { ( ½ a  + ~, q-  x)  - -  2 R }  + Oe s i n  g = O . . . (3.19) 
W e  now obtain from (3.19)" 

2 R =  (½aq- ~ + x )  q- edsin~0 
j . . . . . . . . . . . . . .  (3.20) 

and, subs t i tu t ing  (½a ~ ~ ~ x) from this  into (3.18), and s impl i fy ing:  

= + + + R ) 
sin ~0 . . . . . . . . . . .  (3.21) 

Comparing (3.20, 21) wi th  (2.10, 11), we see tha t  R and J are now modified owing to the terms 
containing the factor e~. The formulae should be compared for the  same all-up weight,  height  
and speed, which means the same incidence and Mach number.  The frequencies f and J ,  and 
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hence the reduced frequencies, will then differ, however, and this may affect the derivatives to 
a certain extent (but only m~, hence x, may be appreciably sensitive to the variation of reduced 
frequency). I t  will be seen later that  the difference between J and f is not likely to be large in 
most cases, and hence it will be usually permissible to assume tha t  the derivatives a, co, v and x 
are practically the same in the cases of elevator fixed and free. Subtracting (2.10) from (3.20) 
and (2.11) from (3.21), we may then write: 

= R -- s~ sin~0 . . . .  (3.22) 
J ' . . . ° . o o . . . . . 

R ~ + J ~ = R  ~ - F J 2 -  ed cos~ +~-s inq0  , . . . . . . . . . .  

with an alternative formula for J ,  obtained by eliminating/~ : 

e~d ~ sin s ~0 ~ ed cos ~ 
jr, = j ,  _ so cos ~0 - 4 j  = = + 7- j , . .  (3.24) 

and it is seen how the damping and frequency are affected by the oscillating elevator. The values 
of R, J and (R 2 + J~) now differ from R, J and (R = + f2) by  the terms containing the factor 
e~. Owing to the normally large values of the elevator effect coefficient 8, these terms may  
often be quite large, even if the amplitude of the elevator (and hence the amplitude ratio s) is 
small. 

I t  may  bec°nven ien t  to introduce a new parameter : 

e~ 
k - . . . . . . . . . . . . . . . . . . . .  ( 3 . 2 5 )  

and re-write the formulae (3.22 to 3.24) in the form: 

R - - R  
j - ½k sin ~0, . . . . . . . . . . . . . . . . . .  (3.26) 

R~ q- f~  = R 2 + J~ - k J ( j  cos ~o + R sin ~o), . . . . . . . . . .  (3.27) 

f / J =  % / ( 1 - - k c o s ~ 0 - - ~ k 2 s i n ' ~ 0 ) = ~ d { ( 2 q - l - - c o s ~ 0 ) (  2 -  1 - - c o s g ) } . . .  (3.28) 

The formulae (3.22 to 3.24) or (3.26 to 3.28) may be directly used for solving the following 
important  problem. Suppose the oscillatory flight tests have been made on an aircraft with 
manual  controls (say a small model version of a large aircraft to be built) where it was difficult 
or impossible to prevent oscillations of the elevator. I t  may then be required to predict the 
behaviour of the same or analogous aircraft with power-operated controls (say of the intended 
full-scale type) assuming tha t  the elevator-fixed conditions will apply. The oscillatory 
characteristics R, J ,  e_ and ~0_having been determined by  flight tests, the only additional quant i ty  
needed to calculate R and J will be ~ (or too, or OC,,,/aV, see (3.3)). Now, it will be usually not 
difficult to have the latter estimated with reasonable accuracy, either theoretically or from static 
tunnel tests or, better  still, from previous static flight tests in similar operating conditions, and 
then R and f may be predicted at once. In most cases, R will be considerably smaller than J ,  
and e~ smaller than J~ (hence k < 1), and the inspection of the formulae (3.26, 28) shows tha t  
the effect of fixing or freeing the elevator on damping will often be very significant, while the 
change of frequency should not normally be so large. 

The formula (3.22) or (3.26) shows the importance of the phase angle 9 (measured in flight as 
%~), as regards its effect on damping. If 9 is between 0 deg and 180 deg, i.e., the elevator deflection 
leads the normal acceleration, then sin ~0 > 0, and freeing the elevator increases the damping--  
this case will seldom occur in practice. More usually, 9 will lie between 0 deg and -- 180 deg 
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or, meaning exactly the same, between 360 deg and 180 deg ; we shall say then that  the elevator 
deflection lags behind the normal acceleration, and in such a case freeing the elevator decreases 
the damping. 

The effect on frequency is somewhat more involved. I t  is first obvious from (3.24) or (3.28) 
tha t  if cos 9 > 0, then J > Or. However, this may still be true when cos 9 is small and negative, 
and an exact criterion is obtained by solving the inequali ty:  

k cos  9 + }k  2 s in  s 9 > 0 . . . . . . . . . . .  (3 .29)  

J > O r  when cos9 > / ~ - -  -b 1 , . . . . . .  (3.30) 

This means tha t  freeing the elevator increases the frequency if the elevator 

The solution is" 

and v ice  ve r sa .  
deflection leads the normal acceleration, or lags behind it, by an angle not exceeding the value" 

9 1 = ~ - -  cos  -1 + 1 - - ~  . . . . . . . . .  (3 .31)  

If the phase difference (positive or negative) exceeds numerically 91, then freeing the elevator 
decreases the frequency. The angle 91 is always between 90 deg and 180 deg, and in typical cases, 
when J is large and e small, is only slightly greater than 90 deg. The intervals for 9, in which 
R and J are increased or decreased, respectively, by  freeing the elevator, are illustrated graphically 
in Fig. 8. 

A complete illustration of the formulae (3.26, 28)_is given ill Figs. 10 and 11. I t  may be men- 
tioned that  the formula (3.28) gives real values for j only if 

2 
cos 9 < ~ -- 1 . . . . . . . . . . . . .  (3.32) 

This inequality is satisfied for any 9 if k < 1. If, however, k happens to be greater than 1; then 
the inequality may not be satisfied for small values of 9, and f becomes imaginary. In such a case 
the motion with elevator fixed would be aperiodic (consisting of two subsidences). This case is 
unlikely to occur in practice, and it is not proposed to discuss it in detail. 

The equations (3.22, 23) can also be solved for R and J ,  with some little algebraic effort. 
Introducing an alternative auxiliary parameter*" 

k =  ~ / 1 ~ ,  . . . . . . . . . . . . . .  (3.33) 

and eliminating R from (3.22, 23), we obtain a biquadratic equation for J : 

4J ~ - 4(1 + k cos 9) f ~ j 2  _ [~ f4  sin ~ 9 = O, . . . . . . . .  (3.34) 

the solution of which is: 

J/] = ½V 2{V(  + cos  9 + + 1 + cos  . . . . . .  (3.3s) 
and then, substituting this into (3.22), we get" 

R -- R k sin 9 
O r -- V[2{V'(1 + 2k cos 9 -b ~2) + 1 + k cos 9}] . . . . . . .  (3.36) 

* The parameter /~ m a y  be interpreted in an interesting way. ]2  can be approximately  replaced, in most  cases, by  
~o (cf. examples in section 2.2). Taking into account  the expression for co and ~ from (2.3~ and (3 .3) ,  and for e from 
(3.7), we m a y  write : 

7~ - -  w *  8C.J~¢¢ '  . . . . . . . . . . . .  (3.33a) 

and hence 7~ represents, approximately,  the ratio of ' moment  increment due to the greatest elevator def lect ion '  to 
' moment  increment due to the greatest  incidence change '  during the oscillation. 
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The two last formulae are illustrated by graphs in Figs. 12 and 13 which show again the effect 
of freeing the elevator on the frequency and damping of the short-period oscillation, as influenced 
by k (thus by the amplitude ratio e) and by the phase angle 9. I t  is seen again that  freeing the 
elevator decreases the damping if sin ~ > 0. The condition for the frequency to be increased 
by this operation is obtained from (3.35) in the form of the inequality:  

cos > - b + ' . . . . . . . .  (3.37) 

which is exactly similar to (3.30), with k repiaced by k. This result is illustrated graphically 
in Fig. 9. 

Interesting as the illustration of the solutions (3.35, 36) may be, it must be pointed out that  
these solutions do not, by themselves, provide means to predict the frequency and damping with 
elevator free from known characteristics of the oscillation with elevator fixed. This is because 
neither e (thus k) nor ~ are known before the tests with elevator free have been made, and they 
cannot be predicted without solving the full system of dynamical equations, including that  of 
the elevator, the procedure requiring the knowledge of an additional lot of troublesome derivatives 
and being outside the scope of this paper. The prediction in the inverse sense (from free to 
fixed elevator) has been shown already to be feasible and simple. 

I t  may still be pointed out that,  if flight tests with elevator both fixed and oscillating have 
been performed, then each of the equations (3.22, 23) may be used for determining ~ (thus m,, or 
a C , , / ~ v ) .  The system is then redundant for ~, and hence the recorded quantities must satisfy a 
certain relationship. This can be obtained, by eliminating e~ from (3.22 i and (3.23), in the form : 

2J(R -- R) cot 9 = f~ -- J~ + (R -- R) 2 , . . . . . . . .  (3.38) 

and may be utilized as a check of accuracy of the entire test technique. 

The results of flight tests with oscillating elevator may be again interpreted in terms of the 
full rotary derivative m~ and manoeuvre margin H,,. We may still write, by analogy with 
(2.21, 22)" 

• ' - -  iB(2R - -  ½a) . . . . . . . .  (3.39) ~ ] 4 ~ 9  - -  - -  , . . . . . . . .  

i~ 2l 
= j • + j 2 )  , . . . . . . . . . . . . . .  ( 3 . 4 0 )  

the dashes being used to denote ' effective' values for the case of the elevator oscillating. The 
meaning of the formulae (3.39, 40) is simply, that  the aircraft with oscillating elevator behaves 
just as it would with elevator fixed, if the manoeuvre margin and the rotary derivative had been 
given the values resulting from these formulae. If the tests are made w i t h  s t i c k  f r e e ,  then the 
value of H,, , '  should agree, at least approximately, with the familiar, ' manoeuvre margin stick- 
f ree '  (c f .  Ref. 9). The interpretation of ms' is not quite so simple. We may expect, however, 
that  such a value of the full rotary derivative would be obtained from oscillatory tunnel tests 
on the aircraft model, if its elevator were constrained to oscillate during the tests with the same 
frequency as the model, and with appropriate amplitude ratio and phase difference. This line 
does not seem very promising. 

The above analysis rests upon t:he assumption that  the quantities recorded in flight are ~ and~ 
(and, in addition, q which, however, is only needed for determining lift slope a). This may not 
always be so, and some alternative sets of recorded quantities may perhaps be found preferable 
m certain conditions. This would, of course, necessitate a modified analysis, on similar lines. 
I t  is not proposed to start  such an investigation now, anticipating changes in flight tests technique 
which may never take place. However, one case, based on recording 0 and ~, is examined briefly 
in Appendix V, because it links, in an interesting way, with an analogous flight-test technique 
for lateral oscillations, as described by DoetschlK 
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3.2. Examples.--Example I V . - - L e t  us  t a k e  t h e  des ign  a n d  o p e r a t i n g  d a t a  f r o m  E x a m p l e  I, 
s e c t i on  2.2, s u p p o s e  in a d d i t i o n  t h a t  CL = 0" 255, a n d  t h a t  t h e  osc i l l a to ry  charac te r i s t i c s ,  o b t a i n e d  
w i t h  s t ick  free, are"  

R =  1"925, J = 8 " l ,  q* /n* --= 0"1905 ; ~ 0 ~ = 8 8 ° 3 5  ' 

(hence  cos ~%,~ = 0-0247,  s in ~0q,~ = 0 .9997) ,  ~*/n* = 1.21 ° = 0 . 0 2 1 1 2  r adn ,  

9 = % , = - -  1 0 6 ° 3 0 '  (hence  cos ~0 = - -  0.  2840, s i n g = - - 0 . 9 5 8 8 ) .  

p is f o u n d  f r o m  (3.16) and ,  as a check  of c o m p a t i b i l i t y ,  we  d e t e r m i n e  aga in  a f r o m  (3.15a, b) • 

p = 3 .81 ,  a = 4 -250  or a = 4 .253 ,  s ay  4 . 2 5  (as before) .  

T h e  a m p l i t u d e  ra t io  ~ is o b t a i n e d  f r o m  (3.13)" 

= O" 3 5 2 .  

S u p p o s e ,  in  add i t i on ,  t h a t  ~C,~/~ has  b e e n  d e t e r m i n e d  b y  t u n n e l  tes ts ,  or o the rwise ,  as 
( - -  0 .00571  p e r  degree) ,  so t h a t  

aC,,/OV = - -  0 . 3 2 7  p e r  r a d i a n ,  

a n d  ~ m a y  be  f o u n d  f r o m  (3.3)" 

- ' - 7 2 .  

T h e  f o r m u l a e  (3.22 to  3.24) n o w  g ive :  

R = 3 . 4 2 5 ,  R ~ + f ~ = 8 2 . 2 9 ,  f = 8 - 4  (as before) .  

T h e  p a r a m e t e r  k in th is  case is, f r o m  (3.28)" 

k = 0. 3 5 9 ,  

a n d  t he  f o r m u l a e  (3.35, 36) l ead  aga in  to  t h e  va lues  R = 1. 925, J = 8 .1 .  

T h e  ' e f fec t ive  ' r o t a r y  de r iva t i ve ,  f r o m  (3.39) • 
., m~ = - -  0- 138, to  be  c o m p a r e d  w i t h  m~ = - -  0.  378, 

a n d  t he  m a n o e u v r e  m a r g i n  s t i ck  free, f r o m  (3.40) • 

H,,,' = 0.  074, to  be  c o m p a r e d  w i t h  H,,, = 0.  088. 

I t  is seen  t h a t ,  b y  f ree ing  t h e  e leva to r ,  n e a r l y  t w o - t h i r d s  of t h e  r o t a r y  d a m p i n g  d e r i v a t i v e  mi  
ha s  b e e n  lost ,  a n d  t h e  osc i l l a to ry  d a m p i n g  has  b e e n  n e a r l y  ha lved .  T h e  m a n o e u v r e  m a r g i n  has  
b e e n  s o m e w h a t  r e d u c e d .  T h e  f r e q u e n c y  has  r e m a i n e d  a l m o s t  u n c h a n g e d .  T h e  a m p l i t u d e  
ra t io  q*/n* has  dec r ea sed  s l ight ly ,  a n d  t h e  p h a s e  ang le  ~e, has  b e e n  r e d u c e d  b y  a b o u t  10 d e g - -  
in  o b v i o u s  c o n n e c t i o n  w i t h  t h e  loss of d a m p i n g .  

Example V . - - A s s u m e  t h e  fo l lowing  des ign  a n d  o p e r a t i n g  d a t a :  

l/c = 3, iB = 0 . 0 7 5 ,  V = 6 2 7 . 9  I t /sec ,  E* = 99, CL - -  0 -23 ,  

a n d  s u p p o s e  t h a t  f l ight  t e s t s  w i t h  e l e v a t o r  b o t h  f ixed a n d  free h a v e  b e e n  m a d e ,  t h e  resu l t s  be ing"  

(i) w i t h  e l e v a t o r  f ixed :  /2 = 4, f = 3 . 6 ,  q*/n*= 0 . 0 8  r adn / sec ,  ~ , ,  = 112°37 ' (hence  
cos ~,~ = - -  0 . 3846 ,  sin qbe,~ = 0-9231)  ; 

(ii) w i t h  e l e v a t o r  free" R = 1, J = 3, q*/n* = 0 . 0 6 8 8  r adn / sec ,  ~Oq, = 63°26 ' (hence  
cos %,, = 0 .4472 ,  sin ~%,, = 0 .8944) ,  ~*/n* = 0 . 6 5  ° = 0 . 0 1 1 3 4  r adn ,  ~o = %,  = 
- -  125°45 ' or -t- 234o15 , (hence  cos ~ = - -  0 -5842,  s in ~0 = - -  0 . 8116 ,  co t  ~0 = 0-7199) .  
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We calculate,  from section 2: 

/~ = 1.56, a = 5, ~ + X = 5.5 ,  co q- 2 .5v = 28.96,  ~o --  2"5X = 15.21, 

and  hence m# = --  0-4125, manoeuvre  marg in  stick fixed H,,~ = 0.0263. 

Similarly,  using the  formulae of section 3, we obta in :  

/b = 1. 3416, a = 5 (from ei ther  3.15a or 3.15b) as before, and  hence :  

ma' = + 0.0375, manoeuvre  marg in  stick free H,, /= 0.0091. 

The  effect of freeing the  elevator  is e~ t remely  s trong in this case, a l though its oscil latory 
ampl i tude  is not  large. The effective ro t a ry  der ivat ive  ma' has its sign changed  to positive, 
and  this accounts  for a ve ry  str iking decrease of damping.  The  la t te r  is ma in t a ined  posit ive 
only th rough  the  large value of a. The  phase  angle ~q~ has been reduced  by  near ly  50 deg. The  
manoeuv re  marg in  has dropped to about  one- th i rd  of the  stick-fixed value. 

We  m a y  check t h a t  the  condit ion (3.38) is satisfied, and  hence we obtain  the  same value  for 
f rom (3.22) and  (3.23): 

= 90, thus  (from 3.3) ~C~,,/8~ ----- 0.4091 per rad ian  = --  0 .00714 per degree. 

The  ampl i tude  rat io e is now obta ined  from (3.13) : 

e = 0 . 2 4 6 5 ,  

and  hence the  pa rame te r  k becomes (from 3.25): 

k = 2.465, which  is a ve ry  high value.  

I t  is impossible, as usually,  to ex t rac t  the indiv idual  values Of co, v, x f rom the  flight tests 
alone. Suppose, however ,  t ha t  the  value  m~ = - - 0 . 2 7 4 8  has been calculated theore t ica l ly ;  
we then  obta in :  

m;  = --  0. 1377, v = 3.664, x = 1. 836, co = 19.8, and  K,,, = 0.018. 

4. Case of Elevator Oscillating. Tailless Aircraft.--4.1. Theory.--The only difference in this 
case, as compared  wi th  t ha t  of ta i led aircraft ,  is t h a t  the  effect of e levator  oscillation on the 
to ta l  lift cannot  be neglected.  The equat ions of mot ion  will thus  have  to be wr i t t en  : 

(D + ½a)z~ --  ~ --  z~v = 0 ,  . . . . . . . .  (4.1) 

(xD + o~)~ + (D + v)q + ~ ---- 0 ,  . . . . . . . .  (4.2) 

there  being the addi t ional  t e rm (--  z~) in the  first equat ion  (cf. 3.1), and  the  der ivat ive  z~ is 
defined b y :  

z~ = --  ½. ~C~ . . . . . . . . .  (4.3) 
8u . . . . . . .  

The theory  proceeds on exact ly  similar lines as before, bu t  the  algebra becomes more  complicated.  
We have  again:  

D ~  = ( - -  R + iJ)z~ . . . . . .  
and  

r / =  ez~e ~'~, . . . . . . . .  

bu t  ~ is ob ta ined  f rom (4.1) in a form different f rom (3.6): 

o r  

(1960) 

= ~ i R) + i ( J  ~z, sin , ) } ~  t ( ~ a  - -  e Z ~ C O S q ~  - -  - -  , 

= { y l -  R + i ( J  - y ~ ) } ~ ,  . . . . . .  
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. .  (4.6) 
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where  aux i l i a ry  symbols"  

Y l  = l a  - -  sz~ c o s  9 0 ,  

h a v e  been  i n t r o d u c e d  for abbrev ia t ion .  

V 
~ g  = 7 (q - D ~ )  . . . . . . . . . .  

but ,  in  v iew of (4.1) a n d  (4.5), we  obta in"  

V 
= ~ (y l  - ¢ y ~ ) ~ ,  . . . . . . . . . . .  

so t h a t  n a n d  z~ are no longer  in phase.  D iv id ing  (4.6) b y  (4.9) yields"  

q g y ~ - - R + i ( J - - y ~ )  q* . 
- -  = -  e , e q n  

n V 21 - -  iy= n *  . . . . .  

so tha t ,  p u t t i n g  again  (cf. 3.16)" 

V q* 
P - -  g n * '  " . . . . . . . . . . .  

we ob ta in"  

y~ - -  R 47 i ( J  - y~) = P ( y l  - -  iy~)(cos 90~, 47 i sin 90~,,), . .  

or, s epa ra t i ng  rea l  a n d  i m a g i n a r y  p a r t s :  

y~ - -  R = p ( y ,  cos %,, 47 y~ sin 90qn), 
• • 

J - -  Y~ = P ( Y l  sin 90q. - -  y~ cos %,,). 

y~ = ez~ sin 90 . . . . . . . . . .  (4.7) 

The  n o r m a l  acce le ra t ion  is still expressed  b y  (@ 2.12)" 

. . . . . .  (4.8) 

. . . . . .  (4.9) 

. . . . . .  ( 4 . 1 0 )  

. . . . . .  ( 4 . 1 1 )  

. . . . . .  (4.12) 

. . . . . .  ( 4 . 1a )  

Fl igh t  tes ts  will  p rov ide  the  va lues  of R,  J ,  p a n d  90¢,, a n d  t h e n  the  equa t ions  (4.13) give the  
fol lowing solut ions  for Yl a n d  y~" 

R(1 - -  p cos 90q.) 47 J p  sin 90q,~ 

Yl = 1 - -  2p cos 90q, 47 p'~ ' 
. . . . . . . .  (4 .14 )  

J (1  - p cos 90q~) - R p  sin %, 
Y~ = 1 - -  2p cos 90q,~ 47 p~ 

These  are  no t  sufficient for d e t e r m i n i n g  the  four  u n k n o w n  quan t i t i e s  a, z~, e a n d  90 in (4.7). 
H o w e v e r ,  f l ight tes ts  also s u p p l y  the  a m p l i t u d e  ra t io  r~*/n* a n d  the  phase  angle  90~,,. D iv id ing  
(4.5) b y  (4.9), We get" 

- -  g~ e ~  '7'~ e i~" (4 .15 )  
n V y~ - -  iy~ n *  ' " . . . . . . . . .  

a n d  hence ,  i n t r o d u c i n g  for abb rev i a t i on"  

V ~1" 2 ~/* 
m = ~-~ ~ = G "  n - ~ '  . . . . . . . . . . . . .  ( 4 . 16 )  

we ob ta in"  

e (cos 90 47 i sin ~o) = re(y1 - - / y ~ )  (cos %,~ 47 i sin %.) , . . . . . . . .  (4.17) 
whence"  

s = m ~ / ( y ~  ~ 47 y~=) = m 1 - -  2p cos 90e,~ 47 p~ . . . . . . . .  (4.18) 

a n d  

Yl cos % ,  47 Y2 sin 90,,~ y ,  sin 90~,~ - -  y~ cos %,, . .  . .  (4.19) 
cos 90 = %/(y,~ 47 y2~) , sin 90 = ~ / ( y 2  47 y~)  . .  
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I t  is seen that ,  using all three recorded curves of q, n and v, i t  is possible to calculate y~ and y~ 
from (4.14), then  ~ and 90 from (4.18, 19), and finally z, and a from (4.7) which give" 

Y~ --  Y~ . . . .  (4.20) 
z~ --  ~ sin 90 re(y1 sin 90~, - -  y~ cos ~n) ' " . . . . . . .  

a = 2@1 + sz~ cos 90) = 2(yl + y~ cot 90) . . . . . . . . . . . . .  (4.21) 

I t  should be not iced that ,  if z~ is negligibly small (assumption legi t imate only for most  tai led 
aircraft), then  we may  puty2 = 0, and in such a case the  formulae (4.14) lead to bo th  relationships 
(3.153, b), while (4.18, 19) reduce to (3.13, 14), and we come back  to the  case considered in 
section 3. 

I t  m a y  happen tha t  z, is not  negligible even for a tailed aircraft, especially one with a short  
fuselage and an al l-moving tail. Such cases will be recognized by  the  fact tha t  t h e  formulae 
(3.15a, b) give appreciably different values for a, and  then  the  present  me thod  should be used, 
ins tead of tha t  given in section 3. 

The second  equat ion of mot ion  (4.2) has not  been used yet. We now subst i tute  (4.4, 5, 6) 
into (4.2), and obtain" 

E m - x ( R - i J )  + ( v -  R + i J ) { y l - - R - } - i ( J - - y 2 ) } - } -  e s e ' * ~ z ~ = 0 .  . .  (4.22) 

The real and imaginary  parts in the  square bracket  must  bo th  vanish, and hence" 

~o + ~,y~ - -  R(y~ + ~, + x) + R ~ - J~ + Jy., + sa cos ~ = O, . .  (4.23) 

J { ( y ~ +  v + x ) - - 2 R } - - y ~ ( v - - R )  + s ~ s i n 9 0 = 0 .  ..  (4.24) 

We now obtain from (4.24)" 

s~ s i n ,  --  y=(v - -  R) . . . . . .  (4.25) 2 R = y ~ +  v + x +  j . . . .  

and, subst i tu t ing (yl + v + x) from this into (4.23); and simplifying • 

R ~ + J ~ - - c o  + v y ~ +  s ~ ( c o s ~ 0 + f s i n 9 0 ) - - y , o  J - - R ~  . . . . .  

These formulae are analogous to (3.20, 21), and become identical  when z, is neglected. The  
analogy can be carried th rough  even further. Let  us in t roduce two new parameters  ~', 90', defined 
by  the  relat ionships:  

8' cos  9 '  = {~ - z~(~ - R)}  cos  ~ + z J  s in  90, 
. . . . . . . .  (4.27) 

$' sin ~0' = {~ -- z~(v --  R)} sin 9 --  z J cos ~0, 

which also give:  

~'~ = ~ - 2 z ~ ( ~  - R)  + z~ ~ {(~ - -  R)  ~ + ] ~ }  . . . . . . .  (4 .28)  

Replacing then  y~ and y~ in (4.25, 26) by  their  expressions from (4.7), and taking into account 
(2.10, 11), we obta in :  

= R --  s~' sin ~0' . . . . . .  
2 ]  ' 

( R ) 
R 2 _ / f 2 = R  2 + J 2 _  s~' cos 90' + f sin 90' , 

wi th  an al ternat ive formula for J ,  obta ined by  el iminat ing R : 

~2~ ,2 s in .  90, 
f~ ---= J~ - e~' cos 90' 4j~ ..  
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The equat ions  (4.29 to 4.31) are exact ly  similar to (3.22 to 3.24), and  the  only difference consists 
in d and f being replaced by  rS' and  90'. The entire  remainder  of section 3.1, including the  
formulae  (3.25 to 3.40) a n d  Figs. 8 to 13, apply here therefore wi th  no modificat ion except  ~ and  
~0 being replaced by  d' and  90', and k, k being replaced b y :  

I t  m a y  be  men t ioned  that ,  ~ being usual ly  large and  z~ small, the  formulae (4.27, 28) show tha t  
the  differences be tween  d' and  d, or ~' and  ~0, are small. Also, Y2 is normal ly  m u c h  smaller t h a n  
y~, and  therefore ~0 differs l i t t le from %,. The three  angles %,, ~ and  ~o' will therefore usual ly  
have  ve ry  similar values. 

4.2. Example V / . - - A s s u m e  the  following design and  operat ing d a t a :  

l / c =  1, i ~ = 0 . 3 ,  V = 8 4 9 f t / s e e ,  .a = 120, 

and  the  following oscil latory character is t ics  obta ined  wi th  stick free: 

R =  1, J = 4, q*/n* = 0.08, % n = 7 8  ° 49' 

(hence cos %,, = 0. 1939, sin 

(hence cos %, = --  0. 7810, 

C L = 0 . 2 2 5 ,  

~oq,~ = 0"9810), V*/n* = 0 .716 ° = 0"0125 radn,  %, = --  141 ° 21' 

sin ~0~,~ = --  0. 6246). 

We  de te rmine  p from (4.11)" 

t5 = 2. 1093. 

Le t  us t ry  to find a as for convent ional  tai led aircraft.  The  formulae (3.15a) and  (3.15b) give 
the  values 3. 384 and  3.866, respectively.  These values differ considerably,  and  clearly the  
m e t h o d  of section 4.1 mus t  be used. We obtain  from (4.14, 16, 18, 19, 20, 21) : 

Yl = 1.9148 , Y2 = 0 .0637 ,  m = 0.1111 , e = 0 -2128 ,  

c o s ~ = - - 0 . 8 0 1 3 ,  sin~0 = - - 0 . 5 9 8 3 ,  ~ o = - -  143 ° 15 ' ,  z , = 0 . 5 0 0 ,  a - - 4 . 0 0 0 ,  

and  it is seen t h a t  our final value  of a differs considerably from ei ther  of the previous t en ta t ive  
values. Suppose now tha t  aC,,,/aV has been de te rmined  independen t ly  as (--  0.00358 per degree) 
so tha t  : 

aC,,,/aV = --  0. 205 per radian,  and  from (3.3) d = 41 , 

and  mq has been calculated theoret icaUy as (--  0.48) so t h a t  : 

9 = 1 . 6 .  

We now calculate  from (4.27, 28)" 

d' cos ~0' = - -  3 1 . 8 9 7 ,  

cos ~0' = --  0 . 7 7 1 4 ,  

and  from (4.29 to 31) • 

R = l . 7 ,  

~' sin ~o' = - -  2 6 -  3 1 2 ,  

sin ~o' = --  O. 6363,  

~' = 41 .349 ,  
t = --  140 ° 2 9 ' ,  

f = 4 . 7 2 2 ,  R" -t- f2 = 2 5 . 1 9 .  

The  parameters  k' and  k' are, f rom (4.32)" 

k'  = 0 . 5 4 9 9 ,  k '  = 0 . 3 9 4 6 ,  

and  the  formulae (3.35, 36), using the  values of k '  and  ~o' lead again to R = 1, J ---= 4. 
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We obtain further, from (2.18) : 

@ = 9.4632,  :5 = 2.3658;  ~*/g* = 0-0897, 

cos ~q,, = 0"0634, sin (%, = 0.9980 ; ~q,~ = 86 ° 22 ' ,  

and it is seen that,  by  freeing the elevator, the amplitude ratio q*/n* and the phase difference ~q,~ 
are both reduced, this accompanying a significant loss of damping and a slight decrease of 
frequency. 

The formulae (2.10, 11) now give : 

v + x = 1 .4 ,  x = -- 0 . 2 ,  ~o = 21.99,  

and hence, 

mi = -- 0 .42 ,  mq = -- 0 .48 ,  m~ = + 0 .06 ,  K,,, = 0 .0275,  H,,, = 0. 0315. 

The ' effective' rotary derivative, from (3.39) becomes: 

m~' = 0 ,  

and the manoeuvre margin stick free, from (3.40): 

H , , / =  0 . 0 2 1 3 .  

I t  is seen that ,  in this case, there is no rotary damping left at all with elevator free, and the 
oscillatory damping is maintained positive only through the lift derivative a. 

5. Remarks about Accuracy of the A~alysis.--The presentation of the method proposed in this 
report would be incomplete without an a t tempt  to assess its accuracy. The numerical examples 
have been based on tile assumption of almost perfect exactitude of the measured quantities and 
thus give an idealized picture which will never be at tained in practice. All directly measured 
quantities will in reality be burdened with errors which will entail errors of calculated derivatives. 
The initial errors may be due to various causes, such as : 

(a) incomplete fulfilment Of the assumed circumstances of the flight disturbance, e.g., through 
gusts, small unintended stick movements, friction in the elevator circuit, etc., 

(b) imperfection of instruments, 

(c) individual inaccuracies in instrument readings. 

The final errors in estimating the derivatives may be caused to a small degree by  certain 
simplifying assumptions of the theory, but  they will be mainly due to the effects of the initial 
errors in the measured quantities. They may be represented as combinations of these initial 
errors depending on the structure of determining formulae. All final inaccuracies may be con- 
siderably reduced by  repeated tests and correct application of the theory of errors. 

I t  is seen tha t  we have to deal with a major problem which it would be premature to solve in 
its entirety at the present stage, before a considerable experience is gained in practical application 
of the proposed method. The main difficulty is to assess the probable magnitude of initial errors 
of recorded quantities which, of course, may vary  considerably in different tests, and will be 
gradually diminished by  improving the instruments and test technique. I t  is not intended to 
give here a complete s tudy of the problem. We shall limit ourselves to examining briefly only the 
simplest case of oscillations with elevator fixed, as described in section 2, assuming only unrepeated 
tests, and introducing certain hypothetical  numerical magnitudes of initial errors, based on some 
past experience. 
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Let us consider, as direct ly measured  quanti t ies,  the  f requency J ,  damping parameter  R, 
dimensionless ampl i tude  ra t io /5  (see 2.17) and the phase angle 6e,,. The ini t ial  independent  
errors assumed will be :  

A J / f ,  A R / ~ ,  Af / f i ,  and A~q,,, 

i.e., per cent errors in f ,  R and fi, and absolute error in ~e,, (in degrees or radians). The  main  
calculated quant i t ies  are:  

a ,  ma = --  iz(v + x), and H,,,. 

The first of them,  lift slope a, is determined b y  either of the formulae (2.20a, b). Tak ing  
logari thms of bo th  par ts  in each formula and differentiating, we obta in :  

da dR cos ~q,, /5 sin ~q,, 
-a = ~ + 1 --~-c~:~,, dfi --  1 --/5 cos:e,, d~q''' • . . . . . . .  (5.1a) 

o r  

g~ g: g: 
a --  f p cot ¢~,, d¢e~. . . . . . . . . . . . .  (5.1b) 

Replacing differentials b y  finite (but supposedly small) errors, we m a y  re-write (5.1) as follows: 

Aa _ AR /5 cos ¢~,: A/5 f ACe~ " " (5.2a) 
a R P l - / s c o s ¢ , , ,  / 5  R ' " . . . . .  

or 

cot ~Se, ~- ACe . . . . . . . . . . . . . .  (5.2b) 

and  these formulae give an es t imate  of percentage error in a, in terms of the  init ial  errors, when 
a is calculated a l te rna t ive ly  from (2.20a) or (2.20b). I t  should be noted tha t  A ~q,, mus t  be t aken  
in radians.  

Similarly, the  ro ta ry  derivat ive m j is determined by  the formula (2.21) which, if a is obtained 
from either of (2.20), becomes a l te rna t ive ly"  

- 1 --  2p cos ~q,, 
--  m~/iB = R 1 -- /5 cos ~e,, ' . . . . . . . . . . . . . . .  (5.3a) 

o r  

: (5.ab) 
- -  m~/iB = 2R --  t5 sin qsq,, " . . . . . . . . . . . . . . .  

Tak ing  logar i thms again, differentiating, simplifying, and replacing differentials b y  finite errors, 
we obta in"  

A ~ A/~ /5 cos ¢., A/5 
m - ~ =  R - -  ( 1 - -  /$ cOS Cq,, ) (1--  2/s cos Cq,,) " f i -  + R ( 1 - -  cOSCq,,)'ACe,, (5.4a) 

o r  

A ~  _ AR d :  d/5 
m~ R f / ~ -  + cot ~q,~. A~¢, , .  . . . . . . . . . .  (5.4b) 

Final ly ,  the manoeuvre  margin  H,,, is determined b y  (2.22) or" 

H,, = const (R ~ + J ' ) ,  • . . . . . . . . . . . . .  (5.5) 

and hence" 

AH,, 2~: z~ R 
H,,---~ R ~ + J  ~ R 
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We shall now assume two following alternative sets of initial errors, given by W. Pinsker, as 
reasonable upper and lower limiting values, according to the experience of the Flight Section, 
Aerodynamics Department, R.A.E." 

Large ini t ia l  errors 
Smal l  in i t ia l  errors 

" . ± 1 5 %  
.. ± 2% 

±5% 
ml% 

:56% 
+2% 

A ~o-~,, 

± 1 0  deg ----= 4-0" 1745 r adn  
-t-2" 5 deg = 4-0.0436 radn  

The values of the first line seem very pessimistic ; they have been thought, however, to apply 
when the damping is very high so that  the oscillatory curves possess only two detectable peaks. 
The satisfactory values of the second line are the best obtainable now but  only when the damping 
is not very strong so that  several peaks are clearly seen on the curves. All sorts of intermediate 
values may, of course, apply. The progress of instrumentation and test technique should bring 
their values nearer to the present small limits, and possibly even lower. 

Considering our three numerical examples of section 2.2, introducing alternativel.y the larger 
or smaller values of the initial errors as listed above, with such signs that  all terms m the error 
formulae (5.2, 4, 6) add up (the most disadvantageous case), the following table has been 
obtained" 

Greatest possible percentage errors of the calculated results in Examples I, I I ,  I I f  

In i t i a l  
errors 

assumed 
E x a m p l e  

Aala 

from 
(2.20a) 

from 
(2 .SOb) 

Am~/m~ 

f rom from 
(5.3~) (5.3b) 

Large 

Small  

I 
I I  
I I I  

I 
I I  
I I I  

59 "8 
56"9 
67" 4 

19"3 
12 "5 
15 "2 

13-7 
11 "0 
12 "0 

3"7 
3 ' 0  
5"7 

35"1 
56-9  
90 .6  

7"1 
12 "5 
21 "0 

28-7 12.8 
26-0 13-0 
27" 0 12.1 

5"7 2 "3 
4"0 2 . 3  
7"7 2 .2  

The results given in the above table are instructive, and contain both an encouragement and 
a warning. I t  is seen first that ,  of the two alternative formulae (2.20a) and (2.20b), the latter 
is much more reliable and gives tolerable errors even if the initial errors are very large. If the 
initial errors are reasonably small, then the accuracy of all calculated results is entirely satis- 
factory. I t  must be stressed that  the figures in our table have been obtained on the most 
pessimistic assumption that  a l l  partial errors add up, while in reality they will part ly cancel 
each other, so that  the average errors should be about half those given. I t  is seen, however, 
that  an uncritical interpretation of inaccurate initial data may lead to quite unreliable results, 
and that  no efforts should be spared to keep the initial errors as small as possible. This requires : 

(i) a constant striving to improve the experimental technique and instrumentation, 

(ii) efforts to improve, the interpretation of the recorded curves. 

The first point is beyond the scope of this paper. As to the second one, however, it is expected 
that  the method of filtration, expounded in Appendix II, will contribute considerably to the  
accuracy ill determination of R and f from the curves. This should apply especially in cases of 
heavy damping which have been considered with pessimism by experimenters using less refined 
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methods. I t  seems now that,  even when only three or two peaks of the curves are detectable, 
the method of filtration if judiciously applied (@ Note 2, Appendix II) should ensure much 
smaller errors than heretofore. The mat ter  may be investigated further by applying the theory 
of errors, but  this seems somewhat premature at present. 

6. Conclusions.--The main conclusions of the report can be summarized as follows : 

(a) Valuable information about the main longitudinal stability derivatives may be obtained 
from flight, tests by recording curves of rate of pitch q, normal acceleration factor n, and elevator 
displacement ~, during the initial stage of a free disturbed flight with elevator fixed and/or free, 
following a rapid fore-and-aft stick movement. This set of quantities to be recorded seems most 
appropriate, and ~ should be recorded even when the elevator is intended to be fixed, if only 
as a check. 

(b) The initial elevator manoeuvre required to start the disturbed flight should consist of two 
opposite elevator movements following each other rapidly so that,  at the end of the manoeuvre, the 
elevator is brought back to the original equilibrium position of trimmed level flight. The 
resulting disturbance then consists mMnly of the short-period oscillation, with only a small 
amount of the phugoid one. 

(c) In order to eliminate the small distortion of the recorded oscillatory curves caused by the 
unavoidable phugoid intrusion, a simple filtering procedure, as explained in Appendix II, should 
be applied to the curves, prior to interpretation. 

(d) The following quantities should then be read (in the manner described in Appendix III) 
directly from the curves: frequency J and damping factor R, common to all curves; further, 
amplitude ratio q*/n* and phase angle %,, and (if applicable) ~*/n* and %,, 

(e) The final step is to calculate the derivatives according to formulae given in section 2 for 
the case of elevator fixed, in section 3 for orthodox tailed aircraft with elevator oscillating, and 
in section 4 for tailless or short-tailed craft with elevator oscillating. The quantities which can 
be calculated are: the aircraft lift slope a, the total  rotary damping derivative ms, and 
the manoeuvre margin tI,,~ for elevator fixed or oscillating; also, for the case of section 4, the 
derivative z,~ (aircraft lift slope due to elevator). 

(f) Unless supplementary information from other sources is available, the technique described 
gives no means for isolating the partial damping derivatives mq and m~, being the constituent 
parts of mi, nor does it furnish more than a rough estimate of the restoring margin K,,, 

(g) From a test with elevator moving the characteristics with elevator fixed can be deduced, 
assuming the derivatives do not change with frequency, for both tailed and tailless aircraft--  
see se.ctions 3 and 4. This process cannot be put  in reverse. 
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B 

BI, C1, D1, E1 

b', c', d' 

C 

C .  

CL 

c,,, 
C 

D 

g 
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H,,, 
H,,/  

iB 

ic 

J 
] 

J 
K 

k~ 

k~ 

1 

M 

M;~ 

y/$ 

~4¢q 

m~ 

LIST OF SYMBOLS 

General symbol for amplitude of any oscillating quantity, see (I. 1) and (II. 1) 

Lift-curve slope, see (2.3) 

Speed of sound, ft/sec 

Auxiliary constant, see (II. 11) 

Coefficients of stability quartic, see (I. 17) 

Coefficients, see (I.8) and (1.23) 
Free term of stability quadratic, see (I.2, 3) 

Drag coefficient 

Lift coefficient 

Pitching-moment coefficient 

Wing mean chord 

Differential operator, see (2.3) 

Gravity constant, ft/sec ~ 

Free terms of quadratic factors of d (D), see (I.17) 

Manoeuvre margin, stick fixed, see (2.22) 

Manoeuvre margin, stick free, see (3.40) 

Inertia coefficient (about y-axis), see (2.3) 

Inertia coefficient (about z-axis), see (V. 14) 

Angular frequency of short-period oscillation, dimensionless, see (III.4) 

Angular frequency of short-period oscillation, in sec -1, see (III.3) 

Angular frequency of phugoid oscillation, dimensionless, see (1.19) 

Parameter depending on height, see (IV.4) and Fig. 15 

Restoring margin, see (2.3) 

Static margin 
Auxiliary parameters, see (3.25, 33) and (4.32) 
Radius of gyration of aircraft about y-axis, ft 

Coefficient, see (11.7) 
Representative length (tail arm or, for tailless aircraft, mean wing chord) 

Mach number, see (IV.2) 
Pitching-moment derivative due to rate of change of w, dimensional, see 

text following (2.3) 

See (4.16) 
(Steady) rotary damping derivative in pitch, dimensionless 

Pitching-moment derivative due to w, dimensionless 

Pitching-moment derivative due to rate of change of w, dimensionless, 
see (2.3) and following text 
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m~ 

m ~  

N 

P1, (71, 
R1, $I,  T1 

P 

p 

q 

ql, q~, q~ 

R 

S 

¢ 

to 

tl, t 2 ,  t a  . . . 

tI, t,i, tm, • . • 

V 

v 

W 

LIST OF S Y M B O L S - - c o n t i n u e d  

Pitching-moment derivative due to elevator displacement, dimensionless 

Full rotary damping derivative, dimensionless, see (9..4) 

' Effective'  value of m~ for elevator oscillating, see (3.39) 

Arbitrary integer, see (11.7) 
Shorthand symbol for function of T representing normal acceleration factor, 

see (I.11) and (1.22) 

t Shorthand constants, see (I.18) 
3 

Normal acceleration factor (number of ' g s  ' recorded during a disturbance), 
equal to ' load factor minus one ', dimensionless, see (2.12) and (3.10) 

Consecutive peaks of ~, see (111.5) 
Yawing-moment derivatives, dimensionless, see (V.14) 

Period of oscillation, in seconds, see (111.3) and Fig. 1 

Amplitude ratio q*/~¢* made dimensionless, see (2.17) and (3.16) 

Shorthand symbol for function of , representing rate of pitch, see (I.10) 
and (I.21) 

Rate  of pitch, in radians per sec 

Consecutive peaks of q, see (III.10) and Fig. 1 

Rate of pitch, dimensionless, see (2.3) 

Angular acceleration in pitch, in radians per sec ~ 

Damping factor of short-period oscillation, dimensionless, see (111.8) 
Damping factor of short-period oscillation, in sec -1, see (Ili.7) 
Damping factor of phugoid oscillation, dimensionless, see (1.19) 

Rate of yaw, dimensionless, see (V. 13) 

Gross wing area, sq ft 

Time, secs 

Value of t corresponding to the first zero value of the oscillating quantity, 
see (1.1) 

Values of t corresponding to consecutive peaks of x, see (11.20) 
Values of t corresponding to consecutive zeros of x, see (I1.22) 

Unit of aerodynamic time, in seconds, see (2.3) and Appendix IV 

Increment of velocity along x-axis in disturbed flight, ft/sec 

u / V .  Increment of velocity along x-axis in disturbed flight, dimensionless 

Velocity of aircraft in undisturbed flight, ft/sec 

Increment of velocity along y-axis in disturbed flight, ft/sec 

Weight of aircraft, lb 
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LIST OF SYMBOLS--continued 

go 

z~ 

X 

Xo 

Y 

Yl, Y~ 

Yo 
Z,,, Z~ 

Zr/ 

(z 

0C0, /~0 

9 = 

9qn 

9m~ 

9~o 

91 

f l  

f i x  

0 

~9 

Increment of velocity along z-axis in disturbed flight, ft/sec 

Increment of incidence in disturbed flight, dimensionless, see  (2.3) 

General symbol for any recorded oscillatory quantity, see  (II.1) 
Ordinate of ' zero line ', see  (11.2) 
Consecutive peak values of x ,  see  (II.13) 
Longitudinal force derivatives due to u or w, dimensionless, see  (I. 16) 

Elevator impulse, see  (I. 12) 

Auxiliary symbols, see  (4.7) 

Lateral force derivative due to v, dimensionless, see  (V. 13) 

Normal force derivatives due to u or w, dimebsionless, see  footnote to 
equation -(2.3), and (I. 16) 

Normal force derivative due to elevator displacement, see  (4.1) and (4.3) 

Wing incidence, radians 

Angle of sideslip 

Parameters of ' zero line ' ,  s ee  (u.1, 2) 
Auxiliary constant, see  (u.11) 
Operational determinant (stability quadratic or quartic), see  (I.2) and (I. 17). 

Compound pitching-moment derivative due to elevator displacement, 
dimensionless, see  (3.3) 

Compound yawing-moment derivative due to rudder displacement, dimen- 
sionless, see  (V.14) 

S e e  (4.27, 28) 

Amplitude ratio of ~ and zO, s ee  (3.7) 

Angular displacement of rudder from equilibrium position 

9"w. Phase angle by which ~ leads w ,  see  (3.9) 
S e e  (4.27, 28) 

Phase angle by which q leads n, see  (2.15) 

Phase angle by which ~ leads n ,  see  (3.12) 

Phase angle by which ~ leads 0, see  (V.2) 

Value of 9 corresponding to equal frequencies with elevator fixed or 
oscillating, see  (3.31) and Fig. 9. 

Angular displacement in yaw from equilibrium position, radians 

Angular displacement of elevator from equilibrium position, radians 

Magnitude of instantaneous angular displacement of elevator, see  Figs. 2a 
and 2b. 

Angular displacement in pitch from equilibrium position 

Auxiliary variable, see  (II.3) 
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LIST OF S Y M B O L S - - c o n t i n u e d  

00 Auxiliary constant, see  (11.4) 

01, 02, ~ Values of # corresponding to Consecutive peaks of x 

=--/*m,,/iB. Compound pitching-moment derivative due to u, dimensionless, 
see  (I.16) 

A1, A2 Coefficients of response functions, see  (I.24, 26) 

/* Relative density of aircraft, see  (2.3) 

/*2 Alternative relative density of aircraft (for lateral disturbances) 

Compound (steady) rotary damping derivative, dimensionless, see  (2.3) 

~ Compound rotary damping derivative (in yaw), dimensionless, see  (V. 14 

H1, H~ Coefficient of response functions, see  (I.24, 26) 

p Air density, slugs/cu It 

po Value of p on ground level 

Relative density, see  (IV.2) 

Aerodynamic time, dimensionless, see  (2.3) 

~:o S e e  (2.5) 
7× Time interval between two consecutive elevator displacements, see  Fig. 2b 

x Compound pitching-moment derivative due to rate of change of w, dimen- 
sionless, see  (2.3) 

o~ Compound pitching-moment derivative due to w, dimensionless, see  (2.3) 

c% Compound yawing moment derivative due to v, dimensionless, see  (V. 14) 
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APPENDIX I 

Response to Typical Elevator Manoeuvres 

The purpose of this Appendix is to calculate the response in q and n following a double elevator 
movement (rectangular input) as described in the Introduction and illustrated in Fig. 2b. Such 
an elevator movement may be considered as a combination of two consecutive instantaneous 
movements (with step inpu t - -@ Fig. 2a), the two elevator displacements being opposite but  
numerically equal (~ ×) and following each other with a time interval ,× (in aerodynamic units). 
We shall start by determining the response to a single step input. The calculation will be done 
in two different ways: (a) neglecting the speed variation and thus arriving at an approximate  
solution with the short-period mode only, and (b) including the speed variation, and thus obtaining 
a more rigorous solution with both short-period and phugoid mode. 

(a) Approximate Solution (speed variation neglected).--The equations of motion will be written 
in the form similar to (2.1, 2) and (3.1, 2) : 

(D -[- ½a)@ -- ~ = 0 ,  ) 
(I.1) (xD-I- oa)@+ ( D +  v ) c ] = - -  @x, J "" "" 

the constant term (--a~×) in the second equation expressing the effect of a sudden elevator 
displacement of 7× a t ,  = 0. An analogous term (z~×) could be introduced in the first equation 
for greater accuracy, However, it has been decided to neglect this term because the derivative 
z~ is usually small, especially for conventional tailed aircraft, and the effect of this term would 
be often negligible and always much smaller than that  of @ ×. 

We shall solve the system (I.1) by the method of Heaviside's operatorsS,1L The operational 
determinant of the system is: 

- 

A ( D ) =  x D q -  co D q -  

where R and J are the damping parameter and frequency of the oscillation with elevator fixed, as 
in section 2 (bars being omitted for simplicity), and 

C = R ~ + f f  

has been introduced for abbreviation. 

0 
@= 

- -  d U x  

. ° • • o . . . . . . .  

The operational solution of (I.1) is: 

- -  1 a ~ x  

D +  v " A(D) = --  D~ + 2 R D  + C ,  

I a~× (D -[- ½a) D q- ½a a~O× . A(D) : --  D2 _/ 2 R D  + C . q= xD+o, - 

. .  ( i . a )  

. .  ( i . 4 )  

. .  ( i . 5 )  

The corresponding operational expression for the normal acceleration factor n is: 

V a a a~× 
n =  f i  ( ~ - -  DzO) = CL @ =  -C--~L D ~-+- 2 R D  + C . . . . . . .  (I.6) 

The explicit solutions in terms of aerodynamic time T (for the case of complex stability roots, as 
assumed) may now be obtained by applying the interpretation formulae : 

D ( D  + R) = e -R~ J r  D __ e_R~ sin J r  
D ~ + 2 R D + C  cos ' D 2 + 2 R D + C -  - 7 -  . . . . . .  (I.7) 

(see Ref. 16, p. 112). These may be used to derive a much more general formula, suitable for 
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calculating response for an a rb i t ra ry  oscil latory system of the  second order. Let  us consider the  
algebraical iden t i ty  : 

D ~ + 2 R D + C  - - C  + b ' - -  + 'R  , (1.8) - ~ D ~ + 2 R D + C  + c ' - - b  - -  D ~ + 2 R D + C  

which is proved wi thout  difficulty (b', c', d' are a rb i t ra ry  constants).  In t roducing  (1.7), this 
becomes : 

b'D= + c 'D + d ' d' [ d' " d@_R) s i 3 J r  ] 
- - ,  (1.9) 

and  may  be applied to in terpret  any  operat ional  solution, such as (1.5, 6). 

e - R ~ I a  (1  2c)aR si~J-c]  a ~ ~ ffd cos J-~ - - - -  - 
= ' 2C Q(T), say, 

a n d  

We obtain  : 

(1.1o) 

&l× --  Q C  e-R" cos J ,  + 7- sin J ,  - 1 = N ( , ) ,  say . . . . .  (1.11) 

Considering now the case of rectangular  elevator input  (Fig. 2b), it  will be convenient  to introduce 
the not ion of ' e l eva to r  impul se '  

y = v×~× . . . . . . . . . . . . . .  (1.12) 

which is a convenient  quan t i t a t ive  measure of the manoeuvre  (it represents the  ha tched  area 
in Fig. 2b). The  response formulae will be:  

q _ Q(, + , × ) -  O(,) n N(~ + , × ) -  N(~) . .  (1.13) 
~ Y -  ~× , ~ =  ~× , . -  . .  

val id for ~ > 0. They  may  be used to calculate the response curves for a rb i t ra ry  ~ × a n d ,  ×. 

An interest ing approximat ion  can be obta ined if we assume tha t  the  t ime in terval  ,× is small, 
and  u l t imate ly  tends to 0, while the impulse Y remains constant .  The  assumption may  seem 
absurd because it involves ever increasing values of ~ ×, bu t  we m a y  t ry  it  to see whether  the  
results will be similar to the  solution (1.13) for small bu t  finite ,×. The limits are obviously:  

~)~×+0 = 0'(~), ( n ) = N'(~) . . . . . . . .  (I.14) 
Tx÷O 

and the  explicit  formulae may  be obta ined either by  differentiat ing (I.10, 11) or, more simply, 
by  mul t ip ly ing (1.5, 6) by  D and interpret ing by  means of (I.9). We thus ob ta in :  

( ~  ~ ) ~ × ÷ 0  = e-R~ [ -  cosJ~ + (R - ~ )  s i ~  J - ~ ]  

n a R~ sin J r  

i 

(1.15) 

The above results have  been applied in one par t icular  case, assuming the following da ta  : 

C L = 0 " 4 ,  a = 4 ,  v =  1,  x = 0 " 4 ,  ~ - - - -25-89 ,  

which give (see 1.2) : 

R = 1 . 7 ,  C ---- 2 7 . 8 9 ,  J = 5 ,  
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and hence" 
~ - - -  e -1'7. (0"0717 cos 5~ -- 0" 1756 sin 5~) --  0 .0717 ,  

= e -1'7~ (0. 3586 cos 5~ + 0- 1219 sin 5,) --  0 .3586 ,  

= - -  e -~'7~ (cos 5~ + 0 .06 sin 5,) , 

A (D) : D ~ -1- B I D  "~ + C~D ~ -k D~D + E~ = (D ~ -k 2 R D  -Jr H ) ( D  ~ -t- 2rD -Jr-h), 

where : 
B I - - ~  N I - ~ -  v + x ,  

D 1 = P I ~  + R l X  + Q I  0") - -  $ 1 ~  , 

E1 = R l o )  - -  T i n ,  

N 1  = - -  X~ - -  Z w ,  

-Pl : X~,Zw - -  XwZ,~, 

Q 1 = - -  "~u , 

R 1  : - -  ½ZuC L , 

= - 

T1 = - -  ½z~CL. 

~r/x 

R, J are the  damping  parameter  and frequency of the  short-period oscillation, 
quant i t ies  for the  phugoid mode, and 

H = R ~ + f f  , h - - - - P + j  ~ . . . . . . . . .  

The  operat ional  solutions for zO and ~ are" 

I 
D - - x , ,  0 0 

- -  z,, 0 - -  1 

- - 1  D + ~ ,  

0 0 - - 1  

½CL 

0 
• = 

0 

D 

- -  D ~ + x,,D + ½CLz,, 
A(D) 

32 

. .  ( 1 . 1 6 )  

(1.17) 

(1.18) 

r, j the analogous 

. .  ( 1 . 1 9 )  

, . .  ( i . 2 0 )  

- -  zd2  + ( D  - -  z~)z~ - -  ~ = 0 

~ + ( xD  -}- ~o)zO + (D + ~,)~ = - -  ~ × 

D o  = 0  

The operat ional  de te rminan t  of this sys tem is" 

( ~ Y ) ~ × ÷ 0  = - -  2 e-17~ sin 5~ " 

The response curves to rectangular  elevator inputs  are given in Fig. 3 for three va lues  of ~× 
(0.5, 0.1 and 0). They  are t raced only from the  ins tant  T = 0 ( terminat ion of the  elevator  
manoeuvre)  onwards, so tha t  the  initial  response be tween the two elevator movemen t s  is omit ted.  
I t  is seen tha t  there  is a considerable effect of decreasing ~× from 0 .5  to 0.1. However,  the  
differences be tween the  curves corresponding to ~× = 0.1 and T × = 0 are very  small and hence 
the  simple t en ta t ive  solutions (I. 14) m a y  be considered as good enough if ~× is small of the  order 
of 0.1. '  I t  should be remembered  tha t  ~× represents the  durat ion of the  elevator manoeuvre  in 
ae rodynamic  units, and the  corresponding value in seconds is obta ined by  mul t ip ly ing by  ~. 
The  magni tude  of ~ is discussed in Appendix  IV, and it  is shown tha t  it lies usually be tween 
1 and 10 seconds, the  higher values occurring at high altitudes. The value ~× = 0.1 can thus 
mean  anyth ing  between 0.1 sec and 1 sec, which may  often be quite a realistic value. 

(b) Rigorous Solut ion (@eed variation i nc luded ) . - -The  principle of calculation is exactly the  
same as in the  previous case, bu t  we have  now to deal wi th  the  full system of differential equations,  
of the  fourth order, for a simple elevator displacement  according to Fig. 2a: 

(D - -  x,)¢~ - -  x~,ga q- }CLO = 0 



D -- x,~ --  x~ 0 ½CL[ 

, - - z .  D - - z .  0 i l" A ( D ) - - I  
@× ~ xD + o --  1 

0 0 0 ,- 

and the  corresponding operat ional  expression for n" 

D 3 + N1D ~ + P1D 
~ ( D )  

= Q(~) ,  say  . .  (1.21) 

,~ _ 2 ~ -  D ~  _ 2 ~ D  ~ - -  (P~ + ~C~z,,)D,=~j¢(~) 
say  ( 1 . 2 2 )  @× C~ @ × eL A (D) . . . .  . . . .  

The explicit  solutions Q(~) and N(~) can be obtained by  using the  following ident i ty ,  which is 
easily proved : 

b'D 8 + c'D ~ + d 'D D(D + R) D 
A (D) : A1 D 2 + 2 R D  -l- H + II1 D 2 _+. 2 R D  + H 

D(D + r) D , (I.23) 
--  A1 D ~ + 2rD + h + (b' --  111 + ( R - -  r)A1} D 2 + 2rD + h 

where:  

(H --  h)(2Rb' --  c') --  2(R --  r)(Hb' --  d'.) 
A1 = ( H -  h) 2 + 4(R --  r ) ( R h -  rH) 

. .  (I.24) 
H1 --  {H --  h --  2 R ( R  --  r)}(Hb' --  d') + {R(H + h) -- 2rH}(2Rb' -- c') 

--  ( H -  h) ~ + 4(R --  r ) ( R h -  rH) 

This leads to tile following in terpre ta t ion  formula" 

b'D~ + A(D)C'D~ + d 'D = e -R~ (A1 cosJz  + H1 sin__~)J~ 

+ e - ~ ' [ - - A l c o s j ~ + { b ' - - I I l + ( R - - r ) A 1 } S ~ ] ,  . .  (1.25) 

which may  now be used directly for evaluat ing ~] .and n from (I.21, 22). 

In  this case, again, the response to a rectangular  elevator input  will be given by  (1.13), and 
the  approximate  solution, for ~ × - + 0 ,  by  (I.14). The first derivat ive of (I.25) may  be found, 
wi th  li t t le effort, in the following form : 

D(b'D3+c'D2+d'D)A(D) =- e-R~( A~ c°s J~ + H2 sin J ~ - )  

+ [ (b"-- cosg  -- [ (m fH) A2 + hH2 sin j ,  - U - '  
where"  

A~ --  2(Rh --  rH)(2Rb'  --  c') + (H --  h)(Hb' --  d') 
--  ( H -  h) 2 + 4(R --  r ) ( R h -  rH) 

(1.27) 
Ha = {R(H + h) --  2Hr}(Hb' --  d') --  {H(H -- h) + 2R(Rh  --  rH)}(2Rb' --  c') 

( H -  h) ~ + 4(R --  r ) ( R h -  rH) 

The above results have been applied in the same case as tha t  following equat ion (I. 15), wi th  tile 
following addi t ional  data" 

Ca = 0 .02  , CAS = 0" 01 , dC~/d~ = 0 . 2 ,  ~ = 1.907 . 
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F r o m  these,  i t  follows" 

x,, = --  C~ --  CAs = --  0. 03 , 

z , , =  - -  C L =  - -  0 . 4 ,  

dC~ ) 
x , = ½  C L - -  dc~ = 0 " 1 ,  

z. = --  ½(a - / C . )  = --  2 . 0 1 .  

Then ,  f rom (I.18)" 

N1 = 2" 04 , 

B ~  = 3" 4 4 ,  

P 1 = 0 " 1 0 0 3 ,  

C i = 2 8 " 0 4 2 3 ,  

Q I = 0 . 0 3 ,  R 1 = 0 . 0 8 ,  $ 1 = 0 " 1 ,  

D 1 = 0 " 7 1 8 3 ;  E i = 1 " 3 0 4 6 .  

T~ = 0. 402 ; 

The  d e t e r m i n a n t a l  qua r t i c  (I. 17) m a y  now be wr i t t en  and  factorized" 

A(D) = D ~ -k 3"44D ~. -t- 28"0423D ~ -t- 0 . 7 1 8 3 D  -k 1 .3046 

= (D ~ -k 3 . 4 2 D  -k 27"9272)(D ~ ~- 0 . 0 2 D  -t- 0 . 0 4 6 7 1 ) ,  

a n d  hence  t he  d a m p i n g  fac tor  and  frequencies  are ob ta ined"  

R = 1.71 , J = 5 . 0 0 0 ,  f = 0 . 0 1 ,  j = 0 . 2 1 6 .  

T h e  final solut ions  are" 

c~ rl × 

74 
@ × - N ( 3 )  

- -  e -° ' ° l~  (0" 

q¢ 
0 Y  - N ' ( 3 )  = - e 

t_ e -o'01z 

= e -1"71. (0 .0723 cos 5,  - -  0. 1751 sin 5~) 

--  e -°'~1" (0. 0723 cos 0. 216~ + 0. 0075 sin 0. 216~) , 

= e -~'Tt* (0. 3607 cos 53 -t- 0. 1230 sin 53) 

--  e -°°~" (0. 3607 cos 0.216~ -k 0. 0097 sin 0 .216 , )  , 

= --  e -1'7~* (0. 9991 cos 5~ + 0. 0624 sin 5~) 

0009 cos 0. 216T --  0. 0157 sin 0. 216T) , 

(0. 0015 cos 53 + 2. 0138 sin 5~) 

(0.0015 cos 0 :  216~ + 0. 0780 sin 0 ~ 216T) . 

The  response curves  are g iven in Fig. 4, for t he  same  values  of 3x as in Fig. 3. I t  is seen t h a t  
t he  curves  in b o t h  figures are ve ry  similar,  and  hence  the  effect of speed va r i a t ion  is qu i te  small .  
Compar ing  the  final fo rmulae  With numer i ca l  coefficients in b o t h  cases, we f ind t h a t  the  f r equency  
a nd  d a m p i n g  of the  shor t -pe r iod  mode ,  and  also the  cor responding  cons t an t  factors,  are nea r ly  
equal.  As regards  the  p h u g o i d  m o d e  in the  second case, t he  coefficients of sine t e rms  are all 
small ,  a nd  those  of cosine t e rms  near ly  equal  to the  cons t an t  t e rms  in the  first case. T he  two 
solutions,  for ~× = 0, are shown toge the r  for compar i son  in Fig. 5, and  i t  is seen t h a t  t h e y  are 
a lmos t  ident ica l  dur ing  the  first period,  and  some not iceable  discrepancies  on ly  develop  later ,  
obv ious ly  due  to the  p h u g o i d  t e rms  in the  second solution.  The  respect ive  con t r ibu t ions  to  t he  
two  modes  are shown in Fig. 6, where  the  response to  a r ec tangu la r  i n p u t  of r a the r  long d u r a t i o n  
(3× = 0.5)  is i l lus t ra ted  on a large scale. The  curves  represen t ing  the  p h u g o i d  osci l latory m o d e  
are seen to be ve ry  near ly  s t ra igh t  lines, of ve ry  smal l  ordinates ,  t h r o u g h o u t  t he  shor t  t ime  
covered  b y  t he  d iagram,  because  this  t ime  i s  o n l y - a  smal l  f rac t ion  of t he  p h u g o i d  per iod  
( ~  29 a e r o d y n a m i c  units}. 



I t  may be interesting to examine also the curves representing response to a single elevator 
displacement (step input), i.e., the curves of O(,) and N(,), from both approximate and rigorous 
solutions. Such curves are given in Fig. 7 and, in the case of the rigorous solution, the short- 
period and phugoid contributions are also shown. I t  is seen that  the resultant rigorous curves 
agree with the appproximate ones initially, but  the agreement soon gets much worsebecause the 
phugoid contributions (especially the cosine terms) are quite large. I t  should be noticed tha t  
the approximate solutions tend to finite asymptotic values f o r ,  -+  oo, in agreement with Gates' 
manoeuvrabil i ty theory ~, and these values are nearly reached in a short time shown in Fig. 7. 
The rigorous curves, however, ul t imately converge to 0, and it is seen that,  for values o f ,  greater 
than those shown in Fig. 7, there will be a considerable amount of the phugoid oscillation left 
which will disappear only after a long time. I t  is clear tha t  a motion produced by  a single 
elevator displacement would not be suitable for analysing the short-period oscillation. On the 
contrary, a motion following a rectangular elevator input, as illustrated in Figs. 4 to 6, is eminently 
suitable for this purpose, especially if the small amount of the phugoid mode is eliminated by  the 
' filtration ' procedure, as described in Appendix II. 
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A P P E N D I X  I I  

' Filtratio~¢ ' of  Exper imenta l  Oscillatory Curves 

If  an oscil latory mot ion  consis ts  of a single mode,  of f requency J and damping  factor N, then  
its equa t ion  can be reduced  to the  form (1.1). The exper imenta l  curves wi th  which  we have  to 
deal, however,  are normal ly  dis tor ted slightly,  owing to the  small  amoun t  of long-per iod (phugoid) . 
oscillation added  to the  main  short-period one. I t  has been shown in Appendix  I t ha t  the  phugoid  
cont r ibut ion  m a y  be safely approximated ,  in the  early stage of the  motion,  by  a s t ra ight  line, 
of small ordinates.  The recorded curve m a y  thus  be expected to satisfy, wi th  sufficient accuracy,  
the  equat ion : 

x = A e -~ / t -~ . / s inJ ( t  --  to) + c~o --  / ~ J ( t  --  to) , . . . . . .  (II.1) 

where  x denotes any  recorded quan t i t y  (e.g., q or n), J and ~ are (dimensional) f requency and  
damping  factor, A is the ampli tude,  and c~o, /~0J small  unknown  constants.  In  spite of thei r  
smallness, the  two addi t ional  terms in (II.1) distort  the  curve so as.-to make  it difficult to 
de termine  J and  ~ accurately.  If  a m e t h o d  is found to de termine  the constants  ~o and  $0fl, 
i t  will be possible to t race the  oblique s t r a igh t  line : 

Xo = ~o - Z 0 S ( t  - t o ) ,  . . . . . . . . . . . . . . .  ( 1 1 . 2 )  

and  if this ' zero line ' is used ins tead of the  original hor izontal  axis, then  our curve will satisfy 
the  equat ion  (1.1). 

We  are going to show now t h a t  C~o and  ¢?oJ, and all other  constants ,  can be found b y  mere ly  
measur ing  the  co-ordinates of a few m a x i m a  and  min ima  of the  exper imenta l  curve. Let  us 
in t roduce  a more  convenient  var iab le :  

= t ( t  - -  to) . . . . . . . . . . . . . . . . . .  (I1.3) 

and  an auxi l iary cons tan t :  

c o t ~ o  = ~ / J  , • . . . . . . . . . . . . . . . . .  ( 1 1 . 4 )  

and  then (i i .1)may be wr i t t en :  

x = A e -° cot ~o sin # + C~o -- /3o~ . . . . . . . . . . .  ' . .  ( I I . 5 )  

The condit ion for x a t ta in ing  its m a x i m u m  or m i n i m u m  will be : 

A e -~ co~ ~0 (cos v~ --  sin ~ cot eo) --  /~o --  0 . . . . . . .  (11 .6)  

If/~0 were equal  to 0, the  equat ion  (11 .6 )  would  be satisfied b y  any  of the  values ~ =- ~'0 + (N --  1)~, 
where  N denotes an a rb i t r a ry  integer. W i t h  /~o different f rom 0 bu t  small, the  solution m a y  be 
wr i t t en  : 

~ = ~o + ( N  - -  1 )~  - -  k ~ o ,  . . . . . . . . . . . .  (11 .7)  

where  kN/~O is a supposedly small  correction term,  depending on N. W e  then  obtain,  neglect ing 
powers of//o higher  t han  the  first:  

t an  ~N ----- t an  (V~o - -  klv/~o) =- t an  V~o - -  kN/~o sec 2 vao 

cos va, v = (--  1) N-I cos v%(1 - /  kN/3o tan  ~9.o) , . . . . . .  ( I I . S )  

sin eN = (--  1) ~-1 sin ~o(1 --  kN/~o cot ~o) 

and, in t roducing  (11.7, 8) into ( I 1 . 6 ) ,  and  keeping only terms of the  first order  in /30, we get :  

kN (--  1) N-1 sin v% 
= A e~Oo÷~I~-,i} co~ ~o. . . . . . . . . . .  (11.9) 
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I t  is seen t h a t  the  t e rm k ~ o  is real ly small of the  order  ~0, bu t  the  coefficients k~ increase rap id ly  
wi th  N,  so tha t  the accuracy  of our  procedure  m a y  be adequa te  only for a few first peaks, and  it  
deter iorates  wi th  increasing N. Let  us now denote  the  first m a x i m u m  of x by  xl, the  subsequent  
m i n i m u m  b y  (--  x~), the  next  m a x i m u m  by  x~, nex t  m i n i m u m  by  (--  x~), and  so on. The  values 
of the  consecut ive peaks will all be represented  b y  the  formula,  correct  to the  first order of ~0" 

(--  1)N-~XN = ( - 1)N-1A e-°o~°~°e-~(N-~)~°~osin~o + ~.o - ~o{V% + ( N - -  1)~}. (II.10) 

In t roduc ing  for abbreviat ion" 

B = A sin v% e -°o°°t ~o, 7 = e . . . .  t~, , . .  . . . .  . .  ( I I .11)  

we m a y  wri te  (II.10) more  simply" 

x ~ - -  B7  N-~ + ( - -  1 ) ~ - ~ [ ~ o -  ~o{~o + ( N -  1)~}~, . . . .  (I1.12) 

and  hence the  consecut ive peak  values will be : 

xl = B + ~o --  ~#o 

x~ = B 7  - ~-o + ~o(~o + ~) 

x~ = B 7  ~ + ~o - -  ~o(~o + 2~) 

x~ = B7 ~ - ~o + ~o(~o +3~)  

x5 = B7 ~ +~o --  flo(Oo + 4~) ,  etc. 

We  then  obtain,  e l iminat ing C~o: 

x~ + x~ =- B(1 + 7) + ~ o  

X2 -~- X3 ~ 

x ~ +  x ~ =  

fur ther ,  e l iminat ing ~o : 

x~ + 2x2 + x~ = 

x~ + 2x~ + x4 = 

x3 + 2x~ + x5 = 

and  finally, e l iminat ing B :  

B~(1 + 7) --  ~ o  

By2(1 + 7) + ~ao 

B7~(1 + 7) --  z~;?o, etc. ; 

4 Q 0 m (I1.13) 

(11.14) 

B(1 + 7) = 

BT(1 + ~)2 

B72(1 q- 7) = , etc., 

. .  (11.15) 

I t  is seen tha t  7, and  hence v*0, can be de te rmined  by  measur ing  s imply a few consecut ive peak  
values of x. I t  m a y  be not iced t ha t  

x~ + 2x2 + x~ l ( x~ + x~ x2 + x~) 
4 - - 2 \  2 -t 2 

is a ' second ar i thmet ica l  mean  ' of xl, x~, x~, and  hence 7 equals, wi th  a good approximat ion ,  a 
rat io of the  second mean  of (x2, x~, x~) to t ha t  of (xl, x2, x3), or a rat io of the  second mean  of 
(x~, x4, xs) to t ha t  of (x2, x~, x~), etc. Once 7 has been determined,  we can easily find the  remain ing  
constants ,  viz." 

x ~ + 2 x 2 + x ~  x 2 + 2 x . ~ + x ~  x ~ + 2 x ~ + x ~  
B = (1 + 7) ~ --  7(1 + r) ~ r2(1 + 7)2 e t c  . . . . . . .  (11.17) 

x17 - x2(1 - 7) - x~ - x27 + x~(1 - 7) + x~ x~7 - x~(1 - 7) - x5 
flo = ~(1 + 7) = ~(1 + 7) = ~(1 + 7) , etc. (11.18) 

c~o = x~ - B +/~oV% = --  x2 + B7 +/3o(~ + v%) = x8 - -  B7 ~ + flo(2z~ + v%), etc. (Ii.19) 
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Each  of the  parameters  y, B, P0 and go is thus represented by  a sequence of formulae, involving 
a few consecutive peak values, s tar t ing from the  first one, or from the second one, etc. All formulae 
should give consistent results, but  the first formula in each sequence may-be expected to be most  
accurate. I t  will suffice in practice to use only the  first formula in each case, more so as, usually, 
only few peaks can be read from the  recorded curve wi th  reasonable accuracy. 

The value of J is still required. To find this, we write, in view of (II.7, 9) and (II.3), pu t t ing  
in turn  N = 1, 2, 3, etc. :  

/3o s i n  V~o eO ° cot Oo 
 l=J(tl-to)= o- A 

/30 sin V~o echo+ ~ 1 oo,~o . . (11.20) = ] ( 4  - to) = + + A 

#~ = J (4 -- to) = ~o - / 2 ~  /3o sin #o e!~o + 2~/cot o0; etc. 
A 

and  hence, subtract ing tile first equat ion from each of the  following ones, and using (II. 11) : 

) fil -tl) + 1 sin  0 

J ( 4 - - t l )  = 2 ~ - - ~  ~ - -  1 sin ~0,0 ..  (II.21) 

) ~ + 1 sin S~0, etc. 

The abscissae tl, 4, 4 , .  • • ma y  be read directly from the diagram, and the  formulae (II.21) shou ld  
then  give consistent values foro¢ ; N will then  be found from (II.4). 

In  such a way, we have  a purely algebraic me thod  to determine the  frequency f i  and damping  
factor N. I t  will be better,  however,  to trace the  ' zero line ' (I1.2) in the  diagram. To do this, 
we notice tha t  the  lines (II. 1) and (II.2) intersect  at  t = to, x = ~o. I t  suffices therefore to draw 
a horizontal  line x = c~0 and find its ' f i rs t '  point  o f  intersection with the  recorded curve. The 
zero line will then  pass th rough  this point  and have  the  slope (-- /30J). i f  the  recorded curve is 
now referred to the zero line, instead of the  original horizontal  axis, it  should have the  properties 
of a single-mode oscillatory curve (1.1). If several recorded curves (such as q, ~, v) are to be 
invest igated,  appropriate  zero lines should be t raced for all of them, and then  they  will be ready 
for the  procedure described in Appendix  III .  

Exam2bles.--In the  following examples, numerical  values of all parameters  of the  equat ion (II. 1) 
will be first assumed as given, and co-ordinates of several peaks de te rmined  exactly to the fourth 
decimal figure. These co-ordinates will then  be used to calculate the  parameters  by  using the  
formulae of this Appendix  and, in such a way, the  accuracy of the  procedure will be established. 
Whenever  a l ternat ive formulae are available, the  first one will be used, and the  consistency 
checked occasionally. 

(1) Assume ~ = 1.7, J = 5 ,  A = 1, C~o=- -0"06 ,  /3o=0"005 ,  t o = 0 " 2 s e c .  The equat ion 
(II.1) is therefore: 

x = e -~'7~t-°2/sin 5(t --  to) --  0 .06 --  0.025(t --  to) 

(see Fig. 14a), and we have, from (11.4): 

cot #o = 0.34, hence 0'o = 1.2431 radn, sin ~o = 0.9468, cos #o = 0. 3219. 

The condit ion (I1.6) for x a t ta ining its peak  values becomes : 

e -°3~ (cos ~ -- 0 .34 sin ~) - -  0. 005 = 0 ,  
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a n d  the  exact 

X 1 = 

We calculate, 

7 =  

calculated values of five first peaks are as follows" 

0 :4472, .  t ~ = 1 - 0 8 1 2 ,  

1.2858, 0 2 = 4 . 4 0 6 0 ,  

0.5542, x~ = 0.2952, 

from (II.16 to 19): 

~ = 1 . 6 9 3 2 ,  ~ = 2 . 3 7 1 8 ,  

~ = 7 " 4 6 6 0 ,  ~ = 1 0 " 8 5 9 0 ,  

x a = - - 0 " 0 2 4 2 ,  x ~ = 0 " 1 3 9 0 ,  

h = 2 . 8 7 0 2 ,  

~ 5 = 1 3 . 3 5 1 0 ,  

& = - - 0 " 1 1 9 2 .  

0.3443 (al ternative value 0-3489), hence cot ~o = 3. 3394, ~o = 1.2436, 

sin ~o = 0.9470. 

B = 0.6200, A = 0.9985, /3o = 0.0051, ~o = --  0.0595. 

The  formulae (II.21) then give:  

J = 5.0006 (al ternative value 4. 9987), hence floJ = 0.0255, 

and (II.4) gives N = 1.6972. 

The accuracy of all results is very  satisfactory, and  greater errors mus t  certainly be expected  
from other  sources. 

(2) Assume ~ = 0 . 8 ,  j = 5 ,  A = 1, e o = 0 " 1 8 ,  r i o = 0 " 0 2 ,  t o = 0 " l  sec. The  equation 
(II.1) is: 

x = e -°8/~-°'1/sin 5(t --  to) + 0-18 --  0. l(t  --  to) 

(see Fig. 14b), and we have, from (II.4) : 

cotz% = 0.18, Oo = 1.4121 radn, sin~o = 0.9874, cos4o = 0.1580. 

The condi t ion (II.6) for x a t ta in ing its peak values becomes : 

e -°1°° (cos v~ --  0 .16 sin v ~ ) -  0 .02  = 0, 

and the exact calculated values of six first peaks are as follows: 

*~1 = 1" 3875, x, ---= 0"9397, 

~ = 4" 5949, & = 0" 3880, 

v% = 7. 6284, xa = 0" 3151, 

v~ = 10.9511, & = 0- 2122, 

v% = 13.7982, & = 0" 0077, 

~o = 17. 4481, xo = 0. 2294. 

t i = 0 - 3 7 7 5  

t 2 = 1 . 0 1 9 0  

& = 1 . 6 2 5 7 .  

& = 2 - 2 9 0 2  

t 5 = 2 . 8 5 9 6  

t 6 = 3 . 5 8 9 6  

16 to 19): 

hence cot a o = 0 . 1 5 9 5 ,  

sin ~ o ~ 0 . 9 8 7 5 .  

(al ternative values 0.6073, 0. 6116), 

(al ternative values 1.4134, 1.4155), 

We calculate, f r o m ( I I .  

7 = 0 . 6 0 5 9  

0 o = 1 - 4 1 2 6  

B = 0 - 7 8 7 5  

r io=  

The formulae 

(altern. 0-7842, 0. 7691), A = 0.9990 (altern. 0- 9978, 0. 9716), 

0. 0201 (altern. 0. 0199, 0. 0203), ~-o = 0. 1806 (altern. 0. 1787, 0.1833). 

(II.21) then  give: 

J = 5.0001 (altern. 4"9994, 4.9990, 4.9985), hence /~0J  = 0-1005, 

and  (II.4) gives N = 0. 7975. 

The value of to can now be found from ei ther  of (II.20) : 
to = 0. 1000 sec (altern. 0. 0999, etc.) 

The accuracy of all results is again very  satisfactory, in spite of the increased slope of the  zero line. 

39 



N o t e . - - I t  is generally easy to measure accurately the peak values x~, x~, x~, . . . . The values 
of ~, ~o, B,  A ,  {3o and c~0 are expressed in terms of these peak values only, and so we may expect 
a good accuracy for all of them. The position is less satisfactory as regards the determination 
of J from (II.21) because these formulae involve the abscissae tz, &, &, . . . which can be only 
read from the diagrams with a comparatively poor accuracy. It  would perhaps be better in 
some cases to read instead the values of the abscissae t~, tH, t i l l ,  • • • Of the zeros of the experimental 
curve, which can be determined with a better accuracy. If c<0 and {30 are both small then, 
following similar lines as before, we may obtain the formulae: 

and hence : 

J ( h - - t 0 ) - -  A ' 
(X 0 - - -  ~rt;{3 0 j(t, -to) + 

j ( t , , ,  - to) = - 
C<o - -  2~ ~6 

A7  ~ 
, etc., . . . . . . . . . .  (11.22) 

0~0 C Z 0  - -  ~ / ~ 0  

. . . . . . . .  (11.23) 
C~o C~o- 2~3o 

J(t i~ -- t,) = 2~ + A A ~  , etc. 

These formulae may be sometimes used to determine J ,  instead of (I1.21). However, some 
tentative examples have shown that  the formulae (11.22) are usually less accurate than (II.20), 
and therefore the greater accuracy in reading the asbcissae may not necessarily lead to better 
values of J .  Moreover, the first determination of J is only needed to calculate {30J, the slope 
of the zero line and, obviously, this need not be very accurate. When the zero line is traced 
in the diagram, its points of intersection with the experimental curve should be equidistant, 
and the peak values should form a geometrical progression. This will give an excellent check 
of the entire procedure and means t o  determine J and N with the best accuracy, following the 
lines of Appendix III.  

Note 2.--The entire method of filtration seems to break down when the damping parameter 
is large compared to the frequency J (thus cot G0 large), and the slope /~o Jcompara t ive ly  large, 
because then the curve may present 0nly a small number of peaks. Four  peaks are needed for 
determining 7 from (II. 16). If only a lesser number is available, the problem seems indeterminate, 
there being only three or two of equations (II.13), while the number of unknowns is four (B, ~, 
~0, {3o). However, the method may be easily modified in such cases. If three peaks  only exist, 
the curve beyond the last one converges rapidly towards the zero line, and at least the slope 
of the latter /~o J m a y  be determined with a good accuracy, While J is still found approximately 
from the first of (II.21), neglecting the correction of the order of {30. In such a way, a sufficiently 
accurate vMue of {3o is determined, and then the first two of equations (11.14) give: 

x2 + + {30 
• • • . . . .  . . . . , , = xl + x~ -- ~ {3o ' (11.24) 

B is then found from (II.17)" and e0 from (II.19), and the zero line may be traced, the procedure 
being practically self-checMng. Alternatively, the zero line may be traced backwards at sight. 

If only lwo peaks  are available, the curve converges so rapidly towards the zero line that  the 
latter may be traced immediately. In some cases, a tentative zero lirle may be traced so as to 

exhib i t  four peaks, and then the original method applies in the usual way. 

I t  seems that, by applying such devices, the frequency and damping can be determined for 
heavily damped curves with a similar accuracy as in the case of low damping. 
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APPENDIX I I I  

Determination of Frequency, Damping Factor, Amplitude Ratios and Phase Angles 
of Experimental Curves 

Experimental curves of any recorded quantities (such as q and n - -F ig .  1) being available, 
it  is required to determine the characteristic quantities as listed above. I t  is  supposed that  we 
have to deal with simple damped oscillatory curves of a single (short-period) mode, and therefore 
their equations may be written : 

n = n* e -~ / , - ,0 / s in j ( t  -- to), ..  

q ---- q* e-~/,-,0/sin {J( t  -- to) + %,,}. 

The quantities required are J ,  ~,  q*/n* and ~%. 

. o q I ( I I I . i )  

(111.2) 

The period P can be read directly from the diagram, as the horizontal distance between any 
two alternate zeros (or between alternate peaks, but  this will be usually less accurate). The 
frequency is then:  

J = 2~/P,  ( i n  sec -~) . . . . . . . . . . . .  (In.a)  

and the dimensionless frequency : 

J = I 1  = 2=l/P . . . . . . . . . . . . . . .  (111.4) 

To determine the damping factor ~, we notice tha t  the consecutive peaks of the curve (III.1) 
are (with signs inverted for the minima)" 

n ,=n*e-d t I t ' - ' ° ' J /~v / (~  +J'), corresponding to t.--:-to + )  t a n - ' ~  , 

n= = n*e-~I ' ,- tolJ/~/(~= + j = ) ,  corresponding to & -- t, + =/J, etc., (III.5) 
hence • 

n~/n2 . =  e ~(',-*,) = e : ~ / f ,  

and thus" 

= f  in ~tJ (in sec -1) 
n 2  • . .  

The dimensionless damping factor becomes" 

R = ~1 21 = ~ l n  n~ " . .  
n~ 

. . . . . . . . . . . .  (111.6) 

. . . . . . . . . . . .  (111.7) 

. . . . . . . . . . . .  (III .8)  

• The ratio nl/n~ may be replaced by n~/n~, etc., or similarly by ql/q~, q~/q~, etc., and the results 
should be Consistent. 

To find the phase angle 9q,~ (by which q leads n), it  suffices to measure the time interval AP 
between two corresponding zeros (or peaks) of the two curves, as shown in Fig. 1. We have then : 

, . . .  = (in r a d i a n s ) ,  or  = 3G0 (in d e g r e e s )  . . . . . . .  (111.3) 

The amplitude ratio q*/n* differs, of course, generally from the ratio of peaks ql/nl--unless 9,,, ----- 0. 
The peak value q~ is, by  analogy with ( I l l . S )  : 

where 
ql = q* e - ~ q J - t ° ) , ~ / ' ~ / (  .¢g~ -~-a g") , • . . . . . . . . .  (III.10) 

t~' ~ tl -- (pq" j -- t1 -- A P .  

41 

. . . . . . . . . .  ( n i . 1 1 )  

( 1 9 6 0 )  D 



We have therefore: 

and hence : 

or finally : 

q~ -- q* q* e ~ / J  

q* 

~z \ n 2 /  

e,__ 
q$* q41 \ ~ 2 /  • 

. .  ( I I I . 1 2 )  

. .  ( I I 1 . 1 3 )  

As expounded in Appendices I and II,  the experimental curves will normally be distorted by  a 
small amount of the phugoid mode, and they have to be ' filtered '. The zero line (Figs. 14a and 
14b) is then determined, and this is to be used instead of the horizontal axis, for reading off the 
period and the peak values. The latter should then, strictly speaking, be measured at the points 
where tangents are not horizontal but  parallel to the zero line, but  this refinement is usually 
negligible. 

A usual graphical procedure is illustrated in Figs. 15 and 16. In the first one, logarithms of 
the peak values n~, n2, . . . and q l ,  q~ . . . are plotted against the corresponding time abscissae 
t l ,  t2,  • • . and t ~ ' ,  t ( ,  . . . (best done on g r aph  paper with a logarithmic vertical scale), and the 
nearest straight lines drawn through each series of points. The two lines should be parallel, 
and their slope determines the damping factor ~ because, from (III.6) we have* : 

log nl - -  log n2 
t2 -- tl 2" 3026" . .  ( 1 1 1 . 1 4 )  

The vertical distance between the two lines represents the amplitude ratio in logarithmic scale 
because, from (III.12), we have:  

[ ~ (t l--t l ' )  I (III.15) log ( n * / q * )  = log n~ -- log ql -- 2-3026 . . . . .  

The period P and phase time interval A P  can also be read directly from Fig. 15, thus using tile 
time abscissae of the peaks. A better accuracy, however, is obtained by  using zeros, and this 
may be done graphically as shown in Fig. 16. The indices I, II, III ,  . . . of the consecutive zeros 
are plotted against the corresponding time abscissae t~, tn, tm for n, and similarly against 
t~ ' ,  t n ' ,  t i n ' ,  for q, and the nearest straight lines drawn through each series of points. The two 
lines should again be parallel ; their slope determines P, and their horizontal distance A P. 

* On the logarithmic scale, decimal logarithms (log) are used, instead of natural logarithms (In), and this explains 
the factor 2.3026 = In 10 in (111.14) and (111.15). 
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A P P E N D I X  IV 

Remarks about the Unit  of  Aerodynamic Time 

The unit  of aerodynamic time ~ is defined by" 

W 
~ q ° ,  • • ° ° . . ° . pgSV' " "  

but a somewhat more convenient formula may be proposed. We have:  

p = p o a ,  and V = a s M ,  . . . . . . . .  

and hence" 

where" 

(IV.I) 

(iv.2) 

w/s 
Z = K - ~ - - ,  . . . . . . . . . . . . . .  ( I V . 3 )  

1 13. 072 
K -- -- . . . . . . . . . . . . .  (IV.4) 

gpoaa~ aa~ 

I t  is seen tha t  ~ is proportional to the wing loading W / S  and inversely proportional to the Mach 
number M, and the coefficient K depends on the height only. The values of K,  calculated for 
the Standard Atmosphere, are given in Table 1, and the corresponding curve shown in Fig. 17. 
The Table 2 gives some illustrative values of ~ corresponding to M = 0.8, for several heights 
and wing loadings, and it will be quite easy to obtain values for lower or higher Mach Numbers. 
I t  is seen tha t  Z may vary  within surprisingly wide limits, but  will seldom fall below 1 second. 
I t  increases very strongly with height, and unusually large values of the order of 20 seconds or 
even more may be encountered in the foreseeable future. For the present, ~ seldom exceeds 
10 seconds. 
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APPENDIX V 

Alternative Analysis with Attitude Recorded Instead of Normal Acceleration. 
Analogy with the Case of Lateral Oscillations 

Let us suppose that, during flight tests with oscillating elevator, the quantities recorded are 
and 0. The latter is the angular displacement in pitch and can be registered by taking photo- 

graphs of a distant fixed object continuously. This technique is not usual, but may sometimes 
be found convenient. 

We shall consider equations (3.1, 2), thus neglecting z~. The relationship (3.6) still holds, being 
merely a consequence Of (3.1), and hence we obtain : 

o = D - * 4 =  ½ a -  R + q ~  = ( 1  ½a " ~  (v.1) 
-- R + iJ R - -  iJ / . . . . .  

The amplitude ratio ~*/0" and the phase angle %o having been determined from flight tests, 
we have" 

= ~ e%0, . . . . . . . . . . . . . .  (v.2) 

and hence" 

~* . ( ½a ~ ~ (v.3) = ~ e % o  1--  R _ i j  / . . . . . . . . . . .  

Substituting (3.6) and (V.3) into (3.2), we obtain" 

o~ x ( R - U ) + ( ~ - - R + U ) ( ½ a - - R + U ) + a ~ e ' % °  ~ R - - U  J " 

The real and imaginary parts in the square brackets must both vanish, and hence" 

~*( J s i n % o - - R c o s % o )  
c o + ½ a v - - R ( ½ a + ~ , + x ) + R ~ - - J 2 + ~  cos %o+½a R 2 + J ~  = 0 ,  

v* ( ~a J cos %o + R sin %o) J(½a+~,+x--2R)-/~o~ sin % o - - -  R ~ + j ~  = 0  . . . . . .  

(v.4) 

(v .s )  

(v.6) 

We now obtain from (V.6) • 

~ * (  ~_aJ cos %o + Rs in  %0) 
2 R = ( l a + v + x ) + ~  sin~%0--- R ~ + J ~  .. 

and, substituting (½a + v + x) from this into (V.5) " 

_~ + j~  = (~o + ½a,) + ~ 0-~ 1 - aR ) ( .  R q%o) ~f sin ~0¢ R~ + j~ cos %0 + ~/sin + a 

(V.7) 

. .  (v .s )  

Comparing (V.7, 8) with (2.10, 11), we may write" 

d r * (  J c o s % o + R s i n % o )  
/2 ---- R 2J o* sin ~¢ - ½a R ~ -t- J~ ' 

R ~ + j ~ = R  2 + ] 2 _ ~  1 - - R ~ + j ~  cos % 0 + f s i n  
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%0 + ~-j sin ~%o 

? • 

, • • 

(V.9) 

(v.l,o) 



with an alternative formula for J ,  obtained by el iminat ing/~:  

~ * (  ~aJ  sin 9 , 0 -  R cos ~%0) 

- - {  ~ ~*( ~a Jc°s%°  + ~ s i n  9~°)} ~ .. (V.11) 
~ ~ k sin % o  - -  - R ~ + . . . . .  

The formulae (V.9 toVi  11) are rather similar to (3.22 to 3.24) but  considerably more complicated. 
They may be directly used for finding the frequency and damping with elevator fixed from those 
with elevator oscillating, but the value of a is then required. This cannot be determined from 
0- and ~-curves only, so one more quant i ty  must be recorded, and this can hardly be anything 
but  n. Recording q woltld not help because the relationship between 0 and q : 

= (--R + i])O . . . . . . . . . . . . . . . . . . .  (V.12) 

involves only the parameters R and f ,  but  not a. 

I t  is seen therefore that  our alternative analysis does not seem very promising. I t  is interesting, 
however, because of the similar technique proposed by Doetsch 1~ for investigating lateral 
oscillations. We may expect a complete analogy between the problems of pitching and yawing 
oscillations, with elevator (or rudder) fixed and oscillating, provided speed variation is neglected 
in the former, rolling in the la t ter  case. The equations of lateral oscillation with no rolling are 1° : 

( D - - y ~ ) ~  + ~ = 0 ,  

- co ,~  + ( D  + ~,,)¢ + ~,,,, = 0 ,  . . . . . . . .  ( V . 1 3 )  

where : 

(V.14) 
~ "  = ~ ' i ~  ~,~ ~ = - t , , ~  , • . . . . . . . . .  

and an analysis, exactly similar to that  expounded before, leads to the formula : 

) . . . .  ~ + ] ,  . . . . . . . . .  ( v . 1 5 )  

and to another formula similar to (V.11). The symbols R and J now refer to the lateral 
Oscillation. I f  the entire second term in brackets were neglected, we would have a simpler 
approximate relationship : 

R = R - -  2 J  ;p~ s i n  ~o; , ,  . . . . .  . . . . . . .  ( V . 1 6 )  

which is exactly identical (apart from notation) with Doetsch's formula (Ref. 12, page 6). 
Although no derivation is given in Ref. 12, it is clear tha t  the terms containing y~ have been 
neglected by Doetsch. Our formula (V.15) thus represents an improvement on his formula. 
I t  m u s t  be mentioned tha t  the correction term in (V.15) may often be of little significance, 
because y~ is usually small (-- 0.2 to -- 0.4). In some cases, however, the correction term may 
be far from negligible and, if sin ~0~,~ and J happen to be small and y~ comparatively large, the 
correction term may become greater than the main term sin ~ .  As to the case of the longitudinal 
oscillations, tile terms with the factor a should never be neglected in (V.9 to V.11) because a is 
usually quite large (of the order of 4). For instance, the second term in brackets in (V.9) attains 
its maximum value when tan %0 = R/J', and then it becomes a/2v/(R ~ -/J~), while the first 
term sin %0 is then equal to R/~/ (R"+ J~), and the two terms .are of the same order of 
magnitude. 
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I n  the case of longi tudinal  oscillations, a relat ionship m a y  be easily der ived be tween  the  
ampl i tude  ratios e, v*/0* and  the  phase angles ~o and  ~%0. Making use of (3.9) and  (V.1, 2), we 
obtain  : 

0 * -  ~ ( ~ -  R) ~ + J~ 

(R 2 --  ½aR + J~) cos ~o - ½aJ sin ~o 
2 1 . . . .  cos ~0 = ~/[(R ~ -k J ){(va - R) ~ q- J~}J (V.17) 

(R ~ --  ½aR -k J~) sin ~ q- ½aJ cos ~o 
sin ~0 = W/[(R ~ q- J~){(½a - R) ~ -k J~}] 

Taking,  e.g., the  numer ica l  da t a  from Example  V, we obtain 

v * / 0 " = 0 . 2 3 2 4 ,  cos % 0 = 0 " 1 6 0 8 ,  sin %0 = --  0" 9870, % 0 = - - 8 0  °45 ' ,  

and  the  formulae (V.9, 11) g ive /~  = 4, f = 3 .6 ,  as before. 
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T A B L E  1 

Coefficient K (for calculating unit of aerodynamic time ~, see Appendix IV)for 
Varying Altitude--Illustrated in Fig. 17 

Altitude K 
thousands feet 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3O 
31 
32 
33 
34 

0-01170 
0-01209 
0.01250 
0.01293 
0.01336 
0.01382 
0.01429 
0.01479 
0.01531 
0.01585 
0:01642 
0.01701 
0.01762 
0-01826 
0-01894 
0-01964 
0-02036 
0.02113 
0.02193 
0.02279 
0.02366 
0.02457 
0.02553 
0-02653 
0.02758 
0.02868 
0.02987 
0.03106 
0.03235 
0.03371 
0.03512 
0.03658 
0.03813 
0.03980 
0.04151 

Altitude K 
thousands feet 

35 0.04335 
36 0.04525 
37 0.04747 
38 0.04981 
39 0.05226 
40 0.05483 
41 0'05754 
42 0.06037 
43 0-06334 
44 0-06646 
45 0-06975 
46 0-07315 
47 0-07677 
48 0.08057 
49 0.08451 
50 0.08867 
51 0.09320 
52 0.09764 
53 0.1025 
54 0.1076 
55 0'1128 
56 0.1187 
57 0.1245 
58 0.1306 
59 0.1370 
60 0.1435 

65 0.1830 
70 0-2332 
75 0.2961 
80 0-3772 
85 0-4806 
90 0.6083 
95 0-7761 

100 1-023 

T A B L E  2 

Illustrative Values of the Unit of Aerodynamic Time 
(see Ap25endix IV) 

1Viach N u m b e r  M = 0 .8  

~ - .  Height 
. ~  thousands 

wm.g ~ feet 
loaamg 
lb/sq ft 

0 20 40 60 80 100 

40 
80 

120 
160 
200 
240 

0"585 
1.170 
1"755 
2.340 
2.925 
3"510 

1"183 
2"366 
3.549 
4-732 
5.915 

2-741 
5.483 
8-224 

10.966 

7.175 
14-350 
21-525 

18.86 
37.72 

51.15 
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Typical curves of a damped oscillation. 
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Single instantaneous elevator movement. (Step input.) 
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Double elevator movement. (Rectangular input, i 
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