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Summary.---The methods of classical aerofoil theory are used to derive a general theory for wings of any given plan 
form. Accordingly, the general downwash equation is split into two parts : one, the effective incidence, being due to 
the downwash induced by the vorticity component along the span;  and the other, the induced incidence, which is 
due to the downwash induced by the streamwise vorticity component. The latter is related to the downwash in the 
Trefftz plane, and a downwash factor is introduced to include both the limiting cases of very small aspect ratio (Jones) 
and of very large aspect ratio (Prandtl). The downwash resulting from the spanwise vortices is approximated by a 
simple relation, the accuracy of which is proved to be satisfactory for practical purposes, and an exact solution of this 
equation is given for wings of very large aspect ratio, swept or unswept. For wings of moderate or small aspect ratios, 
the solution given fulfills the approximate downwash equation only in the mean over the whole chord, i.e., the downwash 
is correct not at a few discrete points but on the average. Again, the limiting cases of Jones and Prandtl  are included 

i n  the present solution. Thus, the load over the whole surface of a given wing can be calculated at a given subcritical 
Mach number, and the procedure is as simple and rapid as that of the classical aerofoil theory. The calculated results 
are confirmed by experiment. 

With this method, the effects of wing thickness and of the boundary layer can easily be taken into account, as well 
as aero-elastic effects. Non-linearity of the lift due to tip vortices is also treated. 
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1. Introduct ion.- -The purpose of the present report is to provide a method for calculating the 
load over the surface of a thin wing of any given plan form, which is suitable for practical appli- 
cation in the design of high-speed, subsonic aircraft. To be of use, such a method must be simple 
enough to be performed in a few hours by a computer, and it must be applicable to wings of any 
taper and sweep and to aspect ratios down to about one. It is also essential that  the method 
can easily be extended to cambered wings, cranked wings, and to wings with fuselage or with 
other bodies attached to it, and also to elastic wings*. Such a method should alsb provide the 
basis for calculating the pressure distribution on the surface of wings of non-zero thickness and 
for estimating the effect of the boundary layer on the lift and pressure distribution t. The 
application to compressible subsonic flow should not necessitate the use of ' r u l e s '  which are 
based on two-dimensional flow conditions but enable the load on the given, three-dimensional, 
wing to be computed at a given subcritical Mach number. With the complete method at his 
disposal, the designer should be able to choose wing plan form, camber and twist, section shape 
and fuselage contours so as to obtain the best compromise to meet his  requirements. 

The present report deals with part of the general problem, namely, the 10ad on thin un- 
cambered wings. Use is made of existing methods which are valid in the following limiting cases : 

(a) The classical aerofoil theory of L. PrandtP for unswept wings of very large aspect ratio 
(above .6, say), and for sheared wings of infinite span. 

(b) The the'ory of R. T. Jones 2 for straight and swept wings of very small aspect ratio (below 
about 0.5). 

(c) The theory of Ref. 3 for swept wings of large aspect ratio (above about 3). 

Nearly all practical wings without sweep, and many swept wings, fall in the aspect ratio 
range between these limiting cases, and the aim of the method presented here is to be applicable 
to this intermediate range of aspect ratio and, at the same time, to fulfil the requirements set 
out above. S ince  an investigation of a wing in compressible subsonic flow usually means treating 
an analogous wing of smaller aspect ratio than the original, some emphasis is put here on the 
effects associated with small aspect ratio. 

The three limiting theories are fundamentally similar to each other in that the span loading 
is obtained from the same type of integral equation as that  which occurs in the classical-aerofoil 
theory. This type of equation is, therefore, assumed to hold also in the intermediate cases 
which thus retain the simplicity and advantages of the classical aerofoil theory. The induced 
downwash on the wing surface is then always considered in two parts : the ' effective incidence ', 
ee, which is related to the spanwise vortex component ; and the ' induced incidence ', ~i, which 
is related to the streamwise vortex component, consisting mainly of trailing vortices. Further, 
a certain type of chordwise loading which is characterised by a single shape parameter, n, is 
common to all the limiting theories. This type of chordwise loading is, therefore, assumed to 
hold also in the intermediate cases. The shape parameter ~, depends mainly on tile aspect ratio 
of the wing-and can be related to the effective incidence and the induced incidence. In deter- 
mining these relations; use i s  again made of the results obtained in the limiting cases. 

The present method is different from current theoretical work on the subsonic flow past three- 
dimensional aerofoils, which is characterised by efforts to solve the problem by more mathematical 
methods, the use of physical concepts being on the whole limited to the basic equations of motion. 
.This procedure is necessarily complicated, and an application to the practical problems mentioned 
above is not normally possible. Since the methods so far available always involve simplifications 
(even in the numerical evaluationl such as restrictions in the number of terms in series), none of 

* Cambered wings aretreated on the basis of the present method in Ref. 4, cranked wings in Ref. 5, wings with fuselage 
in Ref. 6, wings with tip tanks in Ref. 7, and fin-body combinations in Ref. 8. B. A. Hunn 9 has shown how a method 
like the present one can be adapted to calculate elastic wings. 

Wings of no~-zero thickness are treated in relation to the present method ill Ref. 10, and the effects of the boundary 
layer, for a simple case, i~ Ref. 11, 

3 



the solutions obtained are exact enough to be considered as a s tandard against which the present 
method could be checked. In general, the only means of checking is by experiment. There are, 
however, a number of special cases which have been treated by means of a formidable mathema- 
tical apparatus. Comparison between the results obtained in those, cases and the results of the 
present method give very good agreement. This appears to show that  the approach used here 
takes adequate account of all the main factors involved, in spite of its simplicity. 

The report is div.ided into two parts, the first dealing with unswept wings and the second with 
swept wings. To clarify the present approach, Prandtl 's  classical aerofoil theory will be re- 
interpreted and the similarities to Jones's method demonstrated. At the same time, the meaning 
of the terms ' lifting-line ' theory and ' lifting-surface ' theory, as used here, will be more clearly 
defined, the present method representing essentially a lifting-surface theory. I t  will be shown 
that  methods based on the concept of a lifting line and the three-quarter chord theorem cannot 
be justified. Non-linear lift effects will be considered and, finally, the method will be applied 
to compressible flow at sub, critical Mach numbers by means of the Prandtl-Glauert analogy. 
The purpose of the present r~port is to derive and explain the theoretical basis of the calculation 
method. A more detailed description of the calculation procedure will be given in a later note, 
in which the practical application of the methods of Refs. 4 to 8, and !0, 11 will also be explained, 
together with worked examples. 

2. Straight Wings.--The theory will first be developed for unswept wings. These are assumed 
to have no appreciable kinks in either leading or trailing edge, the mid-chord line being roughly 
at right-angles to the direction of the main stream. 

2.1. Re-interpretation of PrandZl's Aerofoil Theory.--Consider a plane unswept wing. As a 
lifting surfaee, the wing is replaced by a system of vortices* situated par t ly  on the wing (bound 
vortices) and part ly left behind in the free stream (free vortices). If the wing is symmetrical 
about the x-axis, as in Fig. 1, the bound vortices will cross the centre-line at right-angles. Else- 
where on the wing they are curved and neither parallel to the y-axis nor to the x-axis. The fore- 
most vortex runs parallel to the leading edge. When leaving the wing, the vortices ought to cross 
the trailing edge at right-angles to avoid a vorticity component parallel to the trailing edge ; 
otherwise, the Ku t t a  condition of smooth flow from the trailing edge would not be fulfilled t .  

The strength and direction of the vorticity vector at ~ any point on the wing surface is deter- 
mined by the streamline condition, i.e., the resultant of the free-stream velocity, V0 and tha t  
induced by the vortex system, v,, must be parallel to the wing surface. For a thin flat wing at 
incidence ~, 

v,(x, y) dz (x, y) 
-- - -  -- ~ = const . . . . . . . . . . . .  (1) 

Vo dx 
everywhere. The induced velocity v, is obtained by integrating the contributions of the individual 
vortex elements over the wing surface and the wake. The velocity induced by a vortex element 
is given by the Biot-Savart law. If the strength and direction of the vortici ty vector at every 
point are known, the velocity field, and hence the forces on the wing can be determined. 

In view of the complexity of the problem of finding the unknown vorticity distribution from 
a double integral equation of the first kind, it is not surprising that  so far no exact solution is 
known. The theoretical t reatment here is, therefore based on physically plausible assumptions. 
In the following, Prandtl 's  t reatment of this problem will be interpreted in a way which readily 
alloWs it to be extended subsequently to wings of arbitrary plan form. 

* We prefer to retain the concept of vortices because of its obvious physical interpretation and because their behaviour 
is governed by  well-known theorems. The argument can, of course, be developed also in t e rmsof  a pressure potential  
(since dC~ = --  2y~/Vo), or in terms of the specific enthalpy of the flow (since Ai = - -  V07x), if one so desires. 

t This is, of course, generally ignored in any linearised theory, the free vortices being assumed to lie along the main 
stream everywhere. 
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The bound vorticity vector at any point is resolved into a component y, parallel to the spanwise 
co-ordinate y and a component eb parallel to the chordwise co-ordinate x . The former will be 
called the ' spanwise vortex component '; the lat ter  the ' chordwise vortex component '. Behind 
the wing, the chordwise vortices are continued by the trailing vortices, e~. The configuration of the 
vortices, as illustrated in Fig. 1, is essentially similar for both large and small aspect ..ratio. 

The problem of calculating the downwash v, may be greatly simplified by,considering the down- 
wash, V,l, induced by the spanwise vortices y, separately from the downwash, v,~, induced by 
the streamwise vortices e~ and e~. The sum of the two contributions must be constant across 
the chord : - -  

(x )  + = = 

by equation (1). The mean value 

1;i v 0 0  = . . . . . . . . . . . . . . .  ( 2 )  

may be described as the ' effective incidence ' of the aerofoil ; and the mean value 'fl Vo v . ( . )  d ,  = . . . . . . . . . . . . . .  (a) 

as tile ' induced incidence.' The  boundary condition (1) can then be replaced by the 'weaker  
condition ~ = c~ + e¢. 

The next step is to relate c~ to the distribution of the spanwise vortices. These are straight 
b u t  their strength varies along the span. They are of finite length, lying within the wing span. 
Here Prandtl  introduces what may now be formulated as tile hypothesis tha t  the downwash 
va induced by these at any spanwise station is, to a first approximation, the same as the down- 
wash V,o induced by vortices having the same direction and chordwise distribution as those at 
the station but of infinite length at either side of it. The fact tha t  the spanwise vortices are of 
finite length and that  their strength varies is thus ignored. This  hypothesis is obviously justified 
for wings of large aspect ratio, with the exception of their tip regions where it cannot be strictly 
true. Near the tips, the vortex lines are necessarily curved (see Fig. 1) and the ' small aspect 
r a t io '  effects, which will be discussed below, must therefore be expected in the tip regions of 
wings of very large aspect ratio; for instance, the position of the aerodynamic centre moves 
forward as the tip is approached. However, the tips contribute little to the overall lift of the 
wing and no great error is involved to the overall result by  applying Prandtl  s hypothesis to the 
whole span. 

i i, 

For a vortex distribution y~(x) of infinite length, 

v,1 V~o 1 ~1 dx' 
Vo--V0 2~V0 ~ , ( X ' ) x _ x  ~ 

d o  

by Biot-Savart 's law. If we take ~,(x) to be the 

° ° , . . , ° ° ° ~ 

' flat-plate ' distribution of Birnbaum TM, 

(4) 

then 

v~l 1 C 
- -  - -  C ~  - -  

..... I[o 2~ Vo 2 Vo ' 

1.e., v~l is independent of X~ and ~, = C/2Vo by equation (2). The constant C can be related to 
t h e  sectional lift coefficient. At any point, x, along the chord, the flow is inclined at an angle 
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f 
~, to the chord line and the velocity of the flow is V0 cos g~ ~--- Vo, because ~ is assumed to be 
small (see Fig. 2). The Kut ta - Joukowski  theorem states tha t  the force l(x) on the vor tex  
element ),,(x) is 

Z(x) = pVo~x(x). 
This"force is normal  to the relat ive wind direction, see Fig. 2. Only the spanwise vortices appear  
in this relation since the streamwise vortices lie along the wind and do not  sustain any  force. 
Thus c¢, gives the  direction in which the resul tant  air force has no component.  The aerofoil 
experiences this  force as a difference, -- Ap, in the  pressures on its upper  and lower surfaces. 
Ap is a force normal  to tile chord-line. Thus  -- Ap(x) = l(x) cos a~ -~- l(x), so tha t  

- ~p(x )  = pVo~x(x), 

or, non-dimensionally,  

~ C / x )  ~p (x )  2 
- ~ p v :  - Vo ~ ( x )  . . . . . . . . . . . . .  (s) 

The overall lift of the section is obta ined by  integrat ion : - -  -~ 
-1 

L = c j  l(x) dx. 
0 

Hence, 

; ;0 L dCp(x) dx = 2 
c~ - _~p Vo~ - . y o  ~,,(x) d~ . . . . . . .  (~) 

This gives for the  flat-plate dis t r ibut ion 

2 C 1 - - x  dx  
Cr - -  Vo x V-o C , 

so tha t  C = CLVo/~, and 

,~<x) = --V°s Cs(1  --x x )  ; AC,(x) _ ~2 Cs 1 --x x . . . .  (7) 

Fur ther ,  
C CL . CL 

~ - - 2 V 0  2 ~ '  or a - -  ~ - - 2 ~ = a °  . . . . . . . . .  (8) 

This states tha t  the effective incidence is a linear funct ion of the lift coefficient and t ha t  the  
' two-dimensional  lift slope ' ao has the value 2= for a flat-plate aerofoil*. In  the  classical aerofoil 
theory  the expression (8) for ~o is assumed to hold at any  spanwise s ta t ion of a wing of finite 
aspect ratio, a l though it is derived for and s t r ic t ly  applies only to two-dimensional  aerofoils. 

To find the induced incidence ~ from the downwash v, = of the  streamwise vortices by  equat ion 
(3), we consider first the contr ibut ion ~,: 0 of the trai l ing vortices. These, s tar t ing  at the trai l ing 
edge, induce a downwash at  the trai l ing edge which is equal to half the downwash induced by  
them far behind the wing, if the trai l ing edge is s t ra ight  and unswept.  This value, c~0, is given 
by  the well-known integral  

1 , +  d~,( ,)  r. ~ &q, . . . . . . .  (9) 
~ o - - 2 ~ j  ~__ dr/' ~ - - ~ / '  " . . . . . .  

* a o -----2= only  for  t he  t w o - d i m e n s i o n a l  f lat  p la te  in inv i sc id  flow. F o r  t w o - d i m e n s i o n a l  aerofoi ls  on non-zero  th ickness  
in viscous  flow, a = a o = k(1 + e)27c, where  e t akes  a ccoun t  of t h e  th ickness  of t he  aerofoi l  a n d  can  be  a p p r o x i m a t e d  
by e ----- 0 - 8  tic. k measures  t he  l if t  r e d u c t i o n  due to t he  b o u n d a r y  layer ,  k = 0 . 9 2  for R A E  101 sec t ion  of tic = 0 - 1 0  
a t  a R e y n o l d s  n u m b e r  of a b o u t  2 × 106 at  zero lift ,  as exp la ined  in Refs .  11 and  13. 
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where ~ = 2 y / b  and y =- CLc / 2 b .  Prandtl 's  contention is now that  the wing chord is so small 
compared with the span that  the downwash from the trailing vortices does not vary  v e r y  much 
along the chord and that  the additional effect of the chordwise vortices *b is such as to  keep the 
mean value of c~i at the value g~o as given by equation (9), i.e., c~ ---- ~i0- This is reasonable for 
wings of large aspect ratio, again with the exception of the tip regions. 

From the boundary condition c~e ----- c~ -- ai we find now, from equations (8) and (9), 

CL 2b 2A 1 (+~dv(~/') dr'  

a o  - - = d , 7 '  ' " "  
(10) 

which is the well-known integral equation for the spanwise loading. Having determined ~(~) 
and thus CL(~), we find the chordwise loading from equation (7). 

The distribution of the various downwash contributions is similar to that  shown in Fig. 3*. 
The lift is produced by the interaction of the main flow, which has the velocity V0 at an angle c~ 
with the spanwise vortices, as explained above. The drag is produced by the interaction of the 
downwash v, ~ from the streamwise vortices with the spanwise vortices, since only the streamwise 
vortices are associated with the kinetic energy in downward movement of the air far behind the 
Wing. This energy is, in fact, equal to the work done by the drag force experienced b y  the aerofoil: 
Since c~e is assumed to be independent of the aspect ratio of the wing, by  equation (8), the value 
of ~ must depend on the aspect ratio, by  equations (9) and (10). The relation between the l i f t  J 
and the drag forces on the wing then depends also on the aspect ratio. Resolving the resultant 
air force into a component, CN normal to the chord-line and into a component, Cr, tangential  
to the chord-line, we find from Fig. 2 that  Cr = -- CN~. Since ~ is assumed to be independent 
of the aspect ratio, the relation between the normal and tangential forces on the wing should 
not depend on the aspect ratiot. In fact, C r  = - -  CN~/2~ ~ - -  CN~/ao by equation (8), since 
CN -~- CL. 

Whether this is sufficiently correct in practice can easily be checked by experiment. I t  is 
found that  a quadratic relation between CN and C~ is indeed fulfilled with remarkable accuracy, 
as can be seen from the examples ~ in Fig. 5. The fact that  the lines are straight shows that  it is 
reasonable to use the concept of the effective incidence. As the results for wings of large aspect 
ratio (from about 6 upwards) fall together, it follows that  the effective incidence and the sectional 
lift slope can be adequately determined from the properties of the two-dimensional aerofoil. 
In  this case the slope of the CN ~ vs. C~ lines is -- l/a0, where a0 is the two-dimensional lift slope, 
and it follows that  the chordwise loading is given by the two-dimensional distribution with 
sufficient accuracy. 

,-,, ] . 

f' q "b~ I' ;']/.~ 

However, it can be seen from FAg. 5 that  only the results from wings with large aspect ratio '-, 
fall together, the lines becoming gradually steeper as the aspect ratio decreases. This indicates 
the limitations of Prandtl  s aerofoil theory in its original form. An extension of this theory is 
obviously needed. In extending the theory, it does not seem necessary to abandon the concepts 
of the effective incidence and of a sectional lift slope which is independent of the geometric 
incidence since the CN 2 vs. C r  lines are still straight. However, there must be a redistribution 
of the spanwise vortices along the chord, for only this will give a sectional lift slope which 
decreases with aspect ratio and thus different slopes of the CN ~ )S. Cr lines. This, then, is the 1 
basic approach which will be used below. I 

* Fig. 3 is not  drawn to scale, and the lines representing the variations along the chord o5 the individual contributions 
are entirely arbitrary. 

Another  derivation of this relation is given in Ref. 14. 

These tests 1~ were made with cambered aerofoils, where 
C~ = - -  C ~ l a  - -  C~o~o 

as shown in Ref. 14. go is the zero-lift angle of the two-dimensional cambered aerofoil. 
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I t  may be noted tha t  such a simple relation as Cr = -- C2v2/a is not used in any of the mathema- 
tical lifting-surface theories, simply because the concepts of the effective incidence and of the 
sectional lift slope are not introduced. HOwever, the fact that  a ---- -- CN"/C2, has a constant 
value which is independent of the incidence is implicit in such theories, as can readily be seen 
from tile Kutta-Joukowski theorem under tile assumptions of linearised t~aeory. The tangential  
force is obtained by integrating along the chord the produc~ of density, p, vortex strength, 
yx(x), and downwash, z,l(x). According to linearised theory, both yx and v~l (and v~ = v, -- v,1 
for that  matter) are proportional to the incidence g. Hence, Cr is proportional to CN ~ which leads 
directly to a ---- CL/o~ if ~e is defined as c~ = -- Cr/CN, as above. 

The classical aerofoil theory of Prandt l  is often described as a ' lifting-line ' theory, in contrast 
to ' lifting-surface ' theories. I t  will be noted, however, that  it is quite unnecessary in the present 
derivation to introduce the concept of a lifting line on which all the circulation of the spanwise 
vortices is concentrated. Indeed, this concept could only be used to derive the relation for 
~ ( =  ~0 from equation (9)). But this relation is just as easily obtained from the assumption 
tha t  the chord is small compared with tile wing span*, as there is still a well-defined chord-wise 
distribution of vortices, namely that  of the two-dimensional flat plate, however small the chord is. 
The.assumption of a chordwise distribution of vortices, on the other hand, is essential for deter- 
mmmg the sectional lift slope, which cannot otherwise be obtained. I t  certainly does not follow 
from the assumption of a lifting line. Obviously, the term lifting-line theory has been loosely 
applied, and it is proposed to use it only in such cases where a theory is truly based and developed 
on the assure, priori that  the spanwise vortices are concentrated in one, or several, discrete vortex 
filaments. I t  is proposed to use the term ' lifting-surface theory '  to describe any method where a 
distribution of spanwise and streamwise vortices (or of any other singularities) over the whole 
wing surface is considered. In this sense, Prandtl 's  classical aerofoil theory is a lifting-surface 
theory, limited, however, to wings of large aspect ratio. A clarification of these concepts is 
particularly desirable since the literal application of the concept of tile lifting line to refining the 
classical aerofoil theory, and to extending it to swept wings, has not proved successful. This in turn 
has brought some unjustified discredit to the basic approach of Prandtl. I t  will be shown below 
that  tile basic concepts of the classical aerofoil theory can successfully be used for obtaining a 
method which is satisfactory throughout tile whole aspect ratio range. 

There are certain similarities in the basic concepts between Prandtl 's  theory and R. T. Jones's 
theory ~ for wings of very small aspect ratio. I t  is found that  the ctlordwise loading is different 
from that  of the two-dimensional aerofoil in that  the lift concentrates nearer to the leading edge 
as A -+ 0. In tile limit as A --+ 0, the effective incidence induced b y  the spanwise vortices tends 
to zero, leaving only the chordwise and the trailing vortices to fulfil the boundary condition : 

= a; for c~, = 0, in contrast to the two-dimensional aerofoil where ~ = ao because ~; -~ 0. 
As the downwash from the spanwise vortices decreases, the chordwise vortices grow longer 
compared with tile wing span and the downwash induced by them increases. In tile limit A = 0, 
their effect is such as to keep the mean value of ~ at the value 2 × c~0 as given by equation (9), 
i.e., twice the value for wings of very large aspect ratio. This implies that  the flow in planes 
x = const can be considered as being two-dimensional, the chordwise and trailing vortices 
together being effectively of infinite length on either side of the section coiasidered, instead 
of semi-infinite length as for high aspect ratio wings. For the present purpose, it is important  
to note that  the span loading is again obtained from an equation of the same type as Prandtl 's  ~ 
equation, equation (10), the left-hand side being zero and the downwash integral having a factor 2. 

2.2. Exposition of the New Method. - - In  order to treat wings in the practical range of aspect 
ratios between the limiting cases of Jones and Prandtl,  we shall first of all show that  it is 
reasonable to retain the concepts of an effective incidence and of a sectional lift slope, i.e., to 
treat  {he effect of the spanwise vortices separately from that  of tile chordwise and trailing 

* S e e  also the analytical derivation given by H. R. Lawrence1% 
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vortices. This call readily be seen from experiments such as those plotted in Fig. 5. We find 
that  CN and Cr, which depend on the chordwise distribution of the spanwise vortices only, 
obey the relation Cr ---- -- C2v2/a throughout the whole aspect ratio range tested. This implies 
that  it is still reasonable to use an effective incidence, as in Fig. 2, and that  the relation CL = ac~ 
holds throughout the whole range, the value of a being independent of incidence for each aspect 
ratio but  varying with aspect ratio. This follows also from the Kutta-Joukowski theorem under 
the assumptions of linearised theory as shown above (the derivation applies to any section on 
any wing of any given aspect ratio) and is thus tacit ly implied in any existing theory. 

On this basis we may proceed to determine the Value of a. 
hypothesis from above which leads to 

o~ = V-o dx -- 2~-Vo 7,(x') x---- x' dx . 

This will be done by using the 

. . . . .  . .  ( 4 a )  

This follows from equations (2) and (4) ; it is reasonable in both limiting cases. We shall have to 
assume, however, a more general relation than equation (7) for the chordwise load distribution 
which must include the different solutions in the limiting cases. We put 

( 7  ( Y  y , ( x ) = C  1--x ' i ' e " A C / x ) = - - V o o  C 2  1--Xx 

by equation (5). The constant factor C can be related to the sectional lift coefficient CL by using 
equation (6). This gives 

2 C 1 - - x  d x =  2 ~rn 
CL = Vo x ~ C sin a n '  

so that  
t 

C -- V0 sin an  CL. 
2 a n  

Then, finally 

~(x) = V, sin2~n~n CL (1- -x  X)"., ACp(x )=  _sin~rn~r______n C~ ( 1  x X )  ~ . .  (11) 

• which contains a single parameter, n. The value of n does not depend on x or y, but on the aspect 
ratio A. The function (11) fulfills the condition A Cp = 0 at the trailing edge and the vorticity 
is zero there. 

We Can'see immediately that  n -+  ½ as A -+ oo, since equation (11) then reduces to the fiat- 
plate distribution from equation (7). In the other extreme, A --> 0, the value of n must ' tend to 
one in order to obtain R. T. Jones's solution; namely A Cp ---- 0 for x > 0 ; A Cp = o~ at x = 0 ; 
i.e., the load is concentrated at the leading edge. Equation (11) thus represents a family of 
chordwise loading functions which includes both the extremes of very small and very large aspect 
ratio and gives a continuous variation in between. Hbw n depends on A in the intermediate range 
will be determined later. 

Equation (11) gives also the correct position of the aerodynamic centre in the limiting cases. 

This is given by 

Xa.e. 1 - -  

C - -  2 ~ • • • • • , • • • • . . . .  • , , " ,  ( ] [ 2 )  

(see Ref. 3), so that  xa.o./c = } for n = ½, i.e., A = oo ; and xa.o. = 0 for n = 1, i.e., A = 0. 
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Inse r t ing  the  chordwise  d i s t r ibu t ion  f rom equa t ion  (11) in to  the  d o w n w a s h ' e q u a t i o n  (4a), 
we ob ta in  

o~ = 2~ 2 ~ n  Cc x '  x = x '  

7 - - - -  - -  

2~ 2m¢ s i n ~ n  tan-~n  x 

_ C~ ( 2 - ~ n c o t ~ n ) ,  
4~n 

and  finally, for t he  sect ional  lift slope, 

C~ 4un 2n 
a - -  - -  = ao . . . . . . .  (13) 

c~o 1 - -  ~ n  cot xn  1 - -  xn  cot ~n 

The  m e a n  induced  incidence f rom the  chordwise  and  t rai l ing vortices,  0~, can be expressed  as 
a mul t ip le  of its value,  c¢~ 0, a t  ve ry  large aspect  rat ios  : - -  

;+i d y ( ~ ' )  d n '  . . . . . .  (14) 
~ i =  c o ~ 0 - - 2 ~  _ d ~ '  ~ - - ~ '  ' " '  '"  

by  equa t ion  (9). The  value  of the  ' d o w n w a s h  fac tor  ' ~o does no t  depend  on x since ~ is defined 
as a m e a n  value  over  the  chord  by  equa t ion  (3), and  we a ss~uo~e* t h a t  it is also i n d e p e n d e n t  of y. 
oJ does d e p e n d  on the  aspect  ratio,  and  we k n o w  a l ready  t h a t  m = 1 for A ---- oo and  co = 2 for 
A = 0. T h u s  co = 2n in b o t h  l imi t ing  cases, and  we propose  to use this  re la t ion for the  whole  
aspect  rat io  range as an approx ima t ion .  Physical ly ,  as the  aspect  rat io  decreases, n represents  
the  d is tor t ion  of the  chordwise loading  (in the  sense of concen t ra t ing  the  vor t i c i ty  towards  the  
leading edge) and  o) represents  the  increase in the  downwash  f rom the  s t reamwise  vortices.  
These  effects clearly arise f rom the  same change in vo r t ex  p a t t e r n  and  so co and  n m u s t  b o t h  
s tead i ly  increase wi th  decreasing aspect  ratio.  

W i t h  these  re la t ions for ~i and  ~i, the  in tegra l  equa t ion  (10) for the  spanwise loading can be 
general ised in to  : 

2 b  = , ,  . . . . . . . . . .  . .  

which  is of the  same type  as P r and t l ' s  original  equa t ion  and  can be solved in the, same way.  
For  pract ica l  purposes  it  appears  bes t  to emp loy  Mul thopp ' s  m e t h o d ' ,  where  equa t ion  (15) is 
t r a n s f o r m e d  in to  a s y s t e m  of l inear equa t ions  : 

),~ b~ + 2b = _°~ + x '  b,~7 . . . . . . .  . .  . . . .  (16) 
~= i 

* The assumption that  both n and ~o do not  depend on y may  lead to errors near the wing tips. I t  implies tha t  the 
chordwise load distribution is of the same type at all spanwise stations and a forward shift of the aerodynamic centre 
as the tips are approached is not represented: The error cannot be serious, however, as the lift falls to zero there (see 
also section 2.6). A refinement of the pi:esent theory in this direction is, of course, possible.~, On the other hand, the 
wing tips are much affected by  the presence of the tip vortex (see sections 2.6 and 3.8), and th'e interest in the precise 
chordwise loading, as given by  linearised theory, is therefore much reduced. 
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The suffix v indicates tha t  the respective quan t i ty  is taken at a fixed spanwise position v. The b, 
and b,, are  known coefficients and can be found in Refs. 3 and 17. From this the spanwise loading 
can be de termined in about  the same t ime as the ordinary large aspect ratio calculation of 
Multhopp ~7 (about one computer-hour),  and the chordwise loading found from equat ion  ( t l ) .  
The overall  lift coefficient is 

CL A ~,(v) d~] . . . . . . . . . . . . . . .  (17) 
- - J .  / 

I t  remains to determine the shape parameter  n on which both  sectional lift slope a and down- 
wash factor ~o depend. For this purpose, we consider again the l imit ing case of very small aspect 
ratio. As A ~ 0, the plan-form term 

2_b_2_ A 
ac acl5 

in equat ion (15) tends to zero, provided A goes to zero more quickly than a. If the above te rm 
can be ignored as compared wi th  ~, equat ion (15) reduces to 

~o dy d~' 1 + d7 d~' (18) 
- -  - -  t - -  ~ ' i  . . . . . .  

~ =  ~ d~'~ - - v '  ~ d~'~ - - v  

since ~o --+ 2 at the  same time. The solution of this equat ion is 

~(W) = c~,V/(1 _ W~), . . . . . . . . . . . .  . . . .  (19)  

i.e., the span loading becomes elliptic, and the overall lift is, by equat ion (17), 

( ~  ._ 

These results agree with those of R. T. Jones. 

--~ 0 as A -+  0 . . . . . . .  (20) 

F rom equations (18) and (19), 

Cc 
~ = m ~ = co ~ - +  ~as  co--~ 2, i .e . ,asA--+O.  

This means tha t  the chordwise and trailing vortices alone fulfil the boundary  condition, the 
downwash being produced in equal parts by the chordwise and trailing vortices since 

1 C L - -  1 ~ A s - - c t  
~o - -  ~ A  ~ A  " 2 2 

for A = 0, by  equations (9), (19) and (20): Also, for wings of elliptic plan form, CL = CL, by 
equat ion  (19), so tha t  ~, = Cda. Hence, from the boundary  condit ion ~ = ~, q- c~: 

CL __ 1 __ 4~n . . . . . . . . . .  (21) 
J 

1 ~o 8n ~ 
h + ~A 1 --  ~n cot ~n + ~ -  

from equat ion (13) and co = 2n. Combining equations (20) and (21), we find tha t  n behaves like 

- -~  1 a s  A - -~  0 . . . . . . . . . . . . . .  ( 22 )  
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for small aspect ratios. This gives for the sectional l if t  slope 

a = 2 ~  - -+  0 as  A - +  0 . . . . . . . . . .  . . . . .  ( 23 )  

and for the effective incidence 

~ N/A -- g --> 0 as A --->0 . . . . . . . . . . . . . . .  (24) 

by equation (20), in agreement with R. T. Jones's theory. Equation (23) is consistent with the 
initial assumption that  A/a --+ 0 as A -+ 0. 

Equation (22) can be used to derive a general relation between n and A for the whole aspect 
ratio range. At the high aspect ratio end, n must approach the value ½ and it is known f rom 
experience that  n does not appreciably differ from ½ for aspect ratios of about 6 and greater. 
A simple monotonic function n(A) to fulfil the condition (22), and which also approaches the value 
n = ½ for very large aspect ratio in a reasonable manner, is 

1 
$//, ~ - -  1 - -  

or, more generally, 

n z l - -  
1 

f 2[ 1 + j 

This approximation is quite sufficient for practical purposes. At any rate, existing theories cannot 
provide a more accurate relation. Thus, with n being known, the load over the surface of any 
given wing can be determined. 

There are various experimental means of checking the accuracy of the present method. The 
value of n from equation (25) can be checked directly against measured values of the position 
of the centre of pressure, using equation (12). I t  is found that  the experimental values from 
Ref. 15 and the theoretical values are identical within the accuracy of the experiment. The values 
of a from equation (13) can be compared with the slopes of the Cr(C~?I curves as plotted in 
Fig. 5, and again good agreement is found. Finally, overall lift coefficients for a series of rec- 
tangular wings have been calculated* from equation (16) and compared with measured values 
from various tests. Fig. 6 shows that  the measured lift is well predicted throughout the whole 
aspect ratio range. 

2.3. Comparison with the Results of Other Calculations.--Some indication of the accuracy of 
the new method can be given by comparing the results with those obtained in some special 
cases by the most thorough mathematical treatment so far. These are: the wing of circular 
plan form by Kinnerl°; some ellipti.c wings by Krienes~5; and some rectangular wings by 
Wieghardt ~B. In the latter case the spanwise loading .was assumed to be elliptic so that  the 
results are likely to be slightly wrong for aspect ratios above one. 

By considering the results obtained for the chordwise., loading, we find that  equation (11) 
is a good approximation in all cases. In particular, the position of the aerodynamic centre, found 
by various methods and plotted in Fig. 8, is well approximated by equation (25) ; this agrees 
rather better with Wieghardt 's results in the lower aspect ratio range than with the other less 
accurate calculations, as one would expect. 

* In  this calculation allowance has been made for the thickness/chord ratio of the wing by  pu t t ing  s = 0.08 ; and for 
the effect of the bounda ry  layer by  pu t t ing  k = 0.92. Hence a o = 0.92 × 1.08 × 2z~ = 2z~. 
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Fig. 9 shows a typical example of the chordwise loadings obtained by the various methods, 
illustrating the degrees of approximation. The other methods are based in one way or another 
on the series of functions devised by Birnbaum 12 of which the first term is the flat-plate distri- 
bution from equation (4). The number of terms taken determines at how many  points along the 
chord the boundary condition can be fulfilled. Both the number and position chosen for these 
points affect the result. Obviously, two terms (FalkneP 3, Multhopp) ~7 can only give a crude 
approximation. The three-term approximation of Scholz 1° lies to th~ other side of the present 
one, whereas Wieghardt 's  four-term approximation ~6 reverts to the original side*. Considering 
the general tendency of the various approximations, it appears tha t  equation (11) with the 
appropriate value of n from equation (25) gives a very satisfactory approximation. 

I t  ma 3} seem surprising tha t  a single term should give at least as good an approximation as 
four terms of the ordinary series. This may be due to the fact that  the original flat-plate distri- 
bution is very unsuitable to start  with and that  the further terms do not represent well enough 
the necessary modifications to the loading. The second term in Birnbaum's series is derived from 
tile flow around a two-dimensional circular-arc cambered aerofoil which is quite different from 
tile flow and the vortex system of a small aspect ratio wing. I t  may be said now, tha t  Birnbaum's 
functions could really not have been expected to be useful unless a number of terms were taken 
(at least four terms, as may be seen in the present case). 

I t  should be possible to find the value of the sectional lift slope a from the theories mentioned 
above as a = --CN"/Cr. Unfortunately, only Kinner has considered the suction force at tile 
leading edge and thus Cr in some detail. He finds that  a has a constant value, independent 
of the incidence, as in any linearised theory ;  but  he is not able to give a direct derivation of 
the value of C~ so that  values of a cannot be obtained for the present purposet. 

Calculated overall lift values from the present method are compared with those of Krienes 
for elliptic wings in Fig. 7. Complete agreement is found. Also, tile span loading is found to 
be nearly elliptic by  both methods. Overall lift values of rectangular wings are considered in Fig. 6. 
The results from the present method agree with Wieghardt 's  results in the low aspect ratio 
range up to one. Other calculation methods give different answers from the present method 
mainly in the higher aspect ra t io  range, but experimental evidence favours the latter. 

The case of the circular plate, which has also been treated by Multhopp ~7, may be briefly 
considered. Multhopp has shown that  the four chordwise terms taken by Kinner are not suffi- 
cient to give a correct value of the overall lift. With  five terms, CL/a ---- 1.804, whereas Kinner 
gave 1.82. Multhopp found 1.799, and tile present method gives 1.805. The position of tile 
overall aerodynamic centre, measured from tile leading edge at the centre in terms of the centre 
line chord, is 0. 243 from Kinner (four terms) ; 0. 236 from Multhopp ; and 0-231 from the present 
method. The span loading distribution from the present method agrees with that  of Kinner. 

On the whole, the agreement with the results of Kinner, Krienes, and Wieghardt  is such that  
the present method can also be regarded as an interpolation between these results for special 
cases, which are the most accurate so far available. 

2.4. The Three-quarter Chord Theorem.--In various methods use has been made of the so- 
.called ' three-quarter  chord theorem' to refine Prandtl 's  aerofoil theory. I t  is ill these methods 
only tha t  the concept of a lifting line must necessarily be introduced. The three-quarter chord 
theorem was derived by Pistolesi 28 for the properties of the bound vortices on a wing of infinite 
aspect ratio. It  states that,  concentrating the lift at the quarter-chord line, the downwash 
produced by it at the three-quarter chord line is the same as that  produced by the flat-plate vortex 
distribution, equation (7), which is constant along the chord. I t  has subsequently been applied 
to the, combined effect of bound and trailing vortices on wings of finite aspect ratio in that  the 

* I t  should also be borne in mind that Wieghardt's assumption of elliptic span loading leads to rather high C~ values 
at tile centre, s e e  Fig. 10. 

t I t  is found, however, that a is considerably smaller than a o = 2a for tile circular plate (A --  1.27). 
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strength of an isolated vor tex line at quarter-chord is so determined as to give a downwash at  
three-quarters  chord from the leading edge on the centre-line of the wing which is equal  to the 
given geometric incidence. This is not  correct, but  we shall see tha t  it is possible in some cases 
tha t  the various errors involved just  cancel each other. 

Assuming elliptic span loading, 

p = /~oV(1  _ ,7~) _ 2V0g CL V(1 -- V ~) . . . . . . . . . . .  (25) 
7g 

we find tha t  the downwash from a straight  l ift ing line at  quarter-chord and the corresponding 
trail ing vortices induced at the three-quarter  chord point  on the centre-line is gl'ven by  (see 
Ref. 26) 

v~ 2 - f_ ~ ~¢/{(4/~A)~q - 1} E(k2)} 
Vo = ==A CL + 4/azA 

where E is the complete elliptic integral  with the modulus 

1 
k 2 = . . . . . . . . . .  (26) 

1 4-(4/~A) 2 . . . . . . .  

Equa t ing  vz/Vo to the geometric incidence ~, we obtain 

CL 2~ 
-- ~/{1 + (41=A)~}E(k ~) + 21A . . . . . . . . . . .  (27) 

This can be simplified by using the approximat ion  

E(k =) ~--- g (1 -- k =) q- k = . . . . . . . . . . . . .  (28) 

which leads to 

C~ 2~ ao 
~ - -  ~/{1 + (2/A) 2} + 2/A = v/{1 + (ao/azA) ~} + ao/=A . . . . .  (29) 

This relation was first derived by  H. B. Helmbold 29 and again by  H. Multhopp (see Ref. 30), 
and has frequently been used or derived again by  several authors,  as recently by  N. Scholz ~ 
and F. W. Diederich a*. 

Equa t ion  (29) can be wri t ten in terms of a sectional lift slope, a, and a downwash factor, to. 
Determining tha t  par t  of the downwash which is due to the lifting line, we find 

v0 - ~° - ~A 1 + (~=A) ~ E(~ ~) - - v ' { 1  + ( ~ A )  }] ' 

where K is the elliptic integral  of the first kind, with k from equation (26). Hence, 

CL CL ='~A 1 
- - - [ N k2) ] . .  (30) 

~, ~., 2 V ( 1  + (~A)2}E(k ~) - - V { 1  + (~A)~} /  

Combining equations (21) and (29) and inserting a from equation (30), we obtain for the downwash 
factor 

~ / (  ( A )  2} azA . . . . . .  (31) o ~ = 1 +  1 + a . . . .  
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From equation (30) the value of a tends to infinity as the aspect ratio tends to zero, Fig. 11, 
whereas it should tend to  zero. This is compensated for (so far as overall loads are concerned) 
by  the values of o~ from equation (31) being much greater than those of the present theory;  
unlike a, co does, however, tend to the correct limit (2) for zero aspect ratio. 

Further, the values of a and co implied by the three-quarter chord theorem are more .sensitive 
to the shape of the  spanwise loading than could be expected from physical considerations; 
this may be seen from Figs. 11 and 12 where curves are given for a constant loading as well as an 
elliptical one. The contribution of a bound vortex line of constant s t r e n g t h / '  ----/% = {V05CL 
along the span is obtained from 

C~ 1 . . . . . . . .  (32) 
~ " =  2~ V ( 1  + 1/A~) ' " . . . . .  

which gives 
a = V ( 1  + 1 / A  . . . . . . . . . . . . . . .  (33) 

Thus the three-quarter chord theorem has basically unsound physical implications and the fact 
that  it provides reasonable answers in some applications must be largely fortuitous. 

The value of a from equation (13) can be obtained from a lifting line of either constant or 
elliptic spanwise strength if the chordwise position of the point at which the downwash is 
calculated (' incidence point ') is varied with aspect ratio. The result is plotted in Fig. 13 and it 
Call be seen that  it is correct to take the three-quarter chord point only for a wing of infinite 
aspect ratio, i n  accordance with Pistolesi's original derivation. With decreasing aspect ratio 
the position of the incidence point should move forward and reach the leading edge at A = 0, 
in accordance with R. T. Jones's results. 

In view of this, i t  is remarkable how well Helmbold's formula (29) agrees with the results of 
Krienes and those of the present method, as shown in Fig. 7. This is due to the two errors in 
a and ~o opposing each other, and the error involved in the approximation from equation (28) 
also has a beneficial effect. Thus, in spite of the fortuity of the agreement, Helmbold's formula 
may be used for some special t)urposes (see, e.g., sections 2.6 and 4 of this report) and also to 
obtain a quick estimate. 

I t  becomes very doubtful, however, whether the three-quarter chord theorem can profitably 
be applied to obtain more detailed span loading distributions by  calculating the downwash from 
a lifting line at the three-quarter chord points of several spanwise stations, thus upsetting the 
equilibrium of errors. The results of Weissinger's L-method~% and those of Young ~ which are 
based on this, may therefore be appreciably wrong, as is demonstrated by the examples given 
in Fig. 6. 

2.5. Induced  D r a g . - - I n  experiencing a drag force, the wing which moves at a velocity Vo 
performs the work D~Vo per unit time on the flow. This makes itself felt as an increase of the 
kinetic energy of ' the flow in that  a certain mass of air pVoS'  is moving downward at a uniform 
velocity v,o~ far behind the wing, where v,o~ is the downwash at the vortex sheet. The kinetic 
energy given to the flow per unit time is then p V o S %  o~/2. Hence, 

7. 

D~Vo = pVoS' v'~2 
2 

On the other hand, the momentum of the air moving downwards is equal to the lift force on the 
wing, i.e., 

L = p V o S ' v ~ .  
This gives a relation between the overall lift and the overall induced drag forces : - -  

. _  CL . . . . . . . . . . .  (34) D~=-~I I)0 L o r C D i - ~ V 0  
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The derivation of this formula, which follows that  in Ref. 32, applies to any wing, whether its 
aspect ratio is large or small, if v,* is taken as the mean downwash at the vortex sheet far behind 
the wing. 

The induced drag at a given overall lift is at its minimum if the downwash v, ~ is constant 
along the span. In that  case, consideration of the flow in the Trefftz-plane leads to elliptic span 
loading and gives 

- -  - -  2 ~ , 0  • . . . . . . . . . . . . . . .  ( 3 5 )  
V0 =A 

/ 

so that, by equation (34), 

~ - -  ~ 7 ~ A  - -  " " " ° ° * " ° ° " " " . . . . .  

This is the well-known relation of M. M. Munk 3~ which was originally derived for wings of very 
large aspect ratio and then shown to hold also for wings of very small aspect ratio by N. F. Ward% 
Clearly, it holds also for wings of any aspect ratio. 

Equation (36) may seem to contradict our concept of the mean downwash at the wing being 
a~---- o ~ ,  as the induced drag is commonly assumed to be equal to c~CL, which would give 
Cz)~ = aCL2/=A. However, in determining the induced drag correctly from the Kutta-Joukowski 
theorem, the product of the local downwash and the local vortex strength must be integrated 
along the chord of the wing, and this is not necessarily equal to the product of the mean downwash 
and the mean lift along chord. In the extreme case of a wing of very small aspect ratio as sketched 
in Fig. 4, where the lift is nearly all concentrated near the leading edge, the downwash from the 
trailing and chordwise vortices at the position of the spanwise vortex is obviously equal to 
a~oVo, which leads to equation (36), whereas the mean downwash across the whole chord is very 
nearly co a~ 0-~ 2c~0, which confirms equation (14). 

Equation (36) can be g~neralised for arbitrary Wing plan forms, which do not give minimum 
induced drag. In that  case, 

C a ,  = A (7)d  . . . . . . . . . . . . . .  (37) 

where ~0 is given by equation (9) for a known span loading y (7), which can be found from equation 
(16). This relation was ~ checked against measured values from the series of rectangular wings 
from Ref. 15. Good agreement was found throughout the whole aspect ratio range. 

2.6. Non-l inear E f f ec t s . - -The  theory developed so far always leads to linear relations between 
lift and incidence. I t  has been observed, however; that  the lift of small aspect ratio wings is 
by no means a linear function of the angle of incidence but rises more steeply. Various hypo- 
theses have been put forward to  explain this effect (see, e.g., Refs. 35, 36 alid 37). Here, we 
interpret the physical phenomena as follows : 

Consider the flow past a flat plate 5f, say, rectangular plan-form, as in Fig. 14. If this plate 
is inclined against the stream at a large angle near 90 deg, the flow will separate at all four edges, 
forming a dead-air region behind the plate, like Kirchhoff's flow ; the dead-air being separated from 
the main stream by a surface of discontinuity which may be interpreted as a vortex sheet, 
see Fig. 14a. At moderate incidences, below ~m~x (which normally gives maximum lift), the flow 
is able to take the turn around the leading edge of the wing without separating, especially if 
the leading edge is suitably rounded off. In this stage, the flow separates from only three edges 
of the wing,, Fig. 14b, forming a vortex sheet which Consists of a horizontal part, originating 
from the trailing edge, and two vertical sheets attached to it, originating from the two sides of 
the plate. With the flow having broken into the dead-air region, the latter disappears. At still 

!6 



smaller incidences, below a certain value ~,, the flow may also attach to the sides of the wing, 
especially if these are rounded off, Fig. 14c, and only the vortex sheet from the trailing edge 
remains. This is the case that  has been considered so far, leading to linear relations; any 
deviations from it must be connected with the existence of the vertical vortex sheets at the sides. 

This problem has been treated by W. Mangler a" by making use of the fact that  a spanwise 
cross-section through the vortex sheet has the same shape as  that  obtained behind a wing with 
solid end-plates attached to it. If the height of the ' end-plate vortex,' or ' tip vortex ' is known, 
the lift change due to its presence can be found as described in Refs. 39, 40 and 41 for the case 
of minimum induced drag. The overall lift from linear theory can then be approximated by 
Helmbold's equation (29), and the effect of the end-plates can be expressed as a factor, 1/~, 
to the aspect ratio. Hence the overall lift is given by 

C L ~  ' 15~0 

- - - -  / {  ( c z  1 +  "~//a°'~2} +~=_~ao . . . . . . . . . . . .  , (38) 

or, at the same incidence, 

_ + 

CL 1 +  ~ )  j q - ~ - -  
~A 

. . . .  ( s g )  

where CL o is the overall lift coefficient as obtained from linear theory. The proper values of 
CL o for the given wing from equation (17) may be taken here instead of the approximate value 
from equation (29); The value of a depends only on the ratio, h/b, betweenend-plate height and 
wing span, and can be taken from Refs. 39 and 40, see also Ref. 41. ~ = 1 for h/b = 0 ; ~ < 1 
for h/b % O. 

The calculation method of Ref. 39 does not give the spanwise loadings of a given wing both 
with and without end-plates but only those of a wing without end-plates that  has elliptic span 
loading and of another wing with end-plates, each giving minimum induced d rag .  I t  is assumed 
here that  the difference, A CL, in span loading between the two minimum induced drag Wings 
can be taken as the difference in spanwise loading due to end-plates (or due to the tip vortex) 
for a given wing whose basic loading is not ellipti& In this case, 

ACL( ) _ ao ' 

where l ls a known function of the spanwise co-ordinate and of the ratio between end-plate height 
and  wing span. Curves of l(~ ; h/b) are plotted in Ref. 41. 

The difficulty lies in determining the value of h/b, which will depend on the incidence of the 
wing and also on the tip shape. Since the shape of the tip vortex is hardly investigated at all, 
we can only make plausible suggestions. According to W. Mangler 38, 

h ~ c T 0~ cr 1 
= 2 b - = 2  5 " A  . . . . . . . . . . . . . . .  (41) 

where cr is the tip chord. This implies' that the height of the tip vortex increases gradually with 
incidence, and the lift increment will increase correspondingly, being zero at c¢ = 0. Hence, the 
initial lift slope CL/c¢ at zero lift is the same as that  given by linearised theory. 
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Equation (41) will be sufficiently .accurate for many practical purposes, at least for the deter- 
mination of the overall lift*, as shown in Fig. 15. 

I t  will be seen that  the lift increment due to the tip vortex is only approximately a quadratic 
function of the incidence. As an illustration, the spanwise loadings of a square wing are shown 
in Fig. 16. 

I t  can be seen from equation (41) and Fig. 15 that  the non-linear lift increase becomes smaller 
with increasing aspect ratio, although the height of the tip vortex does not change. This explains 
why the effect of the tip vortex has rarely been noticed for wings of moderate and large aspect 
ratio although it always existed. 

I t  may be noted that  the points in Fig. 15 from Scholz 19 for wings of aspect ratios 0.7 ; 1.2 ; 
and 2.2 agree with those from other experiments for aspect ratios 0.5 ; 1.0 ; and 2.0. Whereas 
the latter wings had square cut tips, those of Scholz had rounded tip fairings added to wings whose 
basic aspect ratios were 0.5 ; 1.0 ; and 2.0 again. The agreement shows that  the span of the 
trai l ing edge determines the shape of the wake and is, therefore, the decisive parameter in 
determining the effective aspect ratio, and not the maximum span from tip to tip. 

I t  is difficult to assess the effect of the tip vortex on the drag. Primarily, the induced drag is 
reduced due to the aspect ratio being effectively increased. On the other hand, however, tile 
extra lift from the tip vortex will have a chordwise distribution different from that  of the 
linearised theory, being concentrated further back on the chord where the height of the vortex 
sheet is greatest. (see, e.g., Ref. 42.) This results in an additional form drag which counteracts the 
initial reduction of the induced drag. I t  may well be tha t  all the extra lift A CL from the tip 
vortex acts further back on the aerofoil and does not produce a suction force at the leading edge 
(for a flat plate). In that  case, 

C L  0 2 

This appears to be confirmed by experiments. 

The rearward position of the non-linear lift increment has an appreciable effect on the position 
of the aerodynamic centre. This is demonstrated for the case of a square wing in Fig. 17. TWO 
more approximations for the height of the end-plate vortex are suggested here : 

h c~ -- cq CT 1 
5 = - 2 ~  ~ "A . . . . . . . . . . . . . . . . .  (42)  

which differs from equation (41) in that  the tip vortex is assumed to exist only when the inci- 
dence is greater than a ' separat ion incidence,' c~,, which is 4 deg in the present case-~; and 

h ( ~ -  O~ s C T 1 

b - -  c ~ - -  • . . . . . . . . .  (43)  o%~- c~ g A . . . . . . .  

where it is assumed that  the flow separates first near the trailing edge at ~ = ~s and then extends 
gradually over the tip chord until the leading edge is reached at c~ = ~ .  (see Ref. 41.) The three 
different estimates do not lead to very different values for the overall lift, but  the position of 
the aerodynamic centre obtained varies considerably. Further, it is essential to know where the 
resultant of the non-linear lift increment acts, and it may not be accurate enough to assume 
it to act at the three-quarter chord line. Further work on the flow in the tip region in the presence 
of the tip vortex is therefore needed. There is, however, no doubt that  the tip vortex is responsible 
for the non-linear effects. 

* That  good agreement with experiments could not be obtained from the method in Ref. 38 is due to the fact that the 
linear part of the lift was then calculated from Prandtl 's original formula for very large aspect ratio. 

t This delay in the first appearance of the tip vortex is also apparent in the experiments of Scholz in Fig. 15, evidently 
bein 6 caused by the we!l-rounded tip fairing. 
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3. Swept Wings.--It is difficult to give a precise definition of a swept wing as opposed to 
a straight wing. For instance, a highly tapered wing of very small aspect ratio with its leading 
edge swept back by the same amount as its trail ing edge is swept forward might, on the whole,  
be considered as an unswept winga l though  localised sweep effects near the leading and trailing 
edges will no doubt occur. In most cases of practical interest such extremes will, however, not 
occur and we shall consider a wing as being swept if its mid-chord line is not straight but has a 
kink a~t the line of symmetry of the wing. 

3.1. Description of the General Approach.--The general approach used in extending the 
calculation method to swept wings is the same as above and can be described under three main 
headings : 

(i) The lifting surface and its wake are replaced by a system of vortices, and the vorticity 
vector at any point is again subdivided into a component along the span (' spanwise vortex ') 
and into a component along the main stream (' chordwise vortex ' on the lifting surface ; ' trailing 
vortex' in the wake). The spanwise vortices are no longer normal to the direction of the free 
stream, Fig. 18. They still produce the lift force on the aerofoil and no overall drag force ; the 
trailing vortices are responsible ,for the drag of the aerofoil in inviscid flow; chordwise and 
trailing vortices do not produce a lift force. The ctownwash at any spanwise station is again 
subdivided into the ' effective incidence,' ae, from the spanwise vortices, equation (2) ; and the 
' induced incidence,' ~,-, from the streamwise vortices, equation (3). The boundary condition 
is then c~ = ~e +cci, as before, which is thus fulfilled at any spanwise station only for mean 
values over the chord of the downwash v, = v,1(x) + v~2(x). All angles are assumed to be small. 

(ii) The. effective incidence is determined from the hypothesis that  the mean downwash over 
the chord, 

c¢o - Vo v . (x )  d x ,  
¢ 

equation (2), which is indaced by the spanwise vortices at any spanwise station, is,  to a first 
approximation, the same as the mean value of the downwash V,o which is induced by vortices 
having the same direction and pattern and the same chordwise distribution as those at the station 
but  of infinite length on either side of it. Thus 

lflv'°(X)dx . . . . . . . . .  (44) 
0%- Vo V0 . . . . . .  

which corresponds to equation (2). The suffix 0 in v,0 is used here to signify tha t  the quant i ty  
is determined for a wing of infinite aspect ratio. 

(iii) The induced incidence c¢~ at any spanwise station is taken as a multiple of the downwash, 
0¢~o, far behind the wing at that  station. This is expressed by equation (14), where the ' downwash 
fac tor '  o) varies between 1 (for very large aspect ratios) and 2 (for very small aspect ratios). 

The method is thus basically the same for both straight and swept wings. The only new 
problem arises from the fact tha t  the spanwise vortices change their direction at the centre of 
swept wings, even on a wing of infinite aspect ratio. Thus the determination of v~o at the centre 
is also affected. Whereas V~o is found from a two-dimensional vo~-tex distribution for straight 
wings and for the sheared part  of swept wings from equation (4), tile centre of swept wings 
requires the treatment of a special vortex distribution with a kink. At the centre, v~ 0 is not the 
same as v~ from equation (4) which holds only for two-dimensional wings without kinks in the 
vortex lines. We therefore need a new downwash equation to determine v~0 at the centre of a 
swept wing of infinite aspect ratio, to replace equation (4). This problem has first been treated 
in Ref. 44 and again in Ref. 3, and it will be further discussed in section 3.2 below because of its 
f .undamental importance, 
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In linearised theory, the effective incidence 0~(~) at any spanwise station ~ is still proportional 
to the local lift coefficient C~(~) at that  station so that  CL(~) = a(~)ct~(~), where a (~ ) i s  tile 
' sectional lift slope ' at that  station. The boundary condition, c~0 = m -- g~, can then be written 
in the form of equation (15), i.e., the loading equation is of the same type as Prandtl 's  original 
equation for both straight and swept wings of any aspect ratio. 

Values for the sectional lift slope, a and for the downwash factor ~o, must now be found. 
Both will depend not only on the aspect ratio, as for straight wings, but also on the angle of 
sweep, 9 ; a also depends on the spanwise co-ordinate 7. It  is convenient to relate bo th  these 
parameters to tile chordwise vortex distribution y,(x) which in turn is related to the chordwise 
load distribution ~Cp(x). ~Cp(x) from equation (11) is still a suitable function because it is 
valid in both the limiting cases. 

I t  will be seen that  both a and a depend on the value of the parameter n in equation (11). 
a can be related to n if the downwash equation for the spanwise vortices is known (see section 3.2). 

~ 2~¢ in the limiting cases, and this relation is assumed to hold everywhere. The main physical 
condition that  the downwash from the chordwise and trailing vortices increases as the chordwise 
loading moves forward, and vice versa, is thus fulfilled automatically. The problem now reduces 
to that  of finding tile value of n, which will depend on the aspect ratio of tile wing, on the angle 
of sweep, and,on the spanwise co-ordinate. With ~ known, values for a and co can be found 
and subsequently the spanwise load distribution from equation (16) and the chordwise load 
distribution from equation (11). 

3.2. The Downwash on Ehe Centre-lim.--As explained above, the determination of the downwash 
induced by tile spanwise vortices and the subsequent solution of this downwash equation are 
the only new problems of importance that  occur on swept wings. Although tile downwash equa- 
tion and its solution have previously been derived in Refs. 44 and 3, some further discussion 
may be justified in order to explain the nature of the approximations made, so that  i t  can be 
more readily compared with other methods (Ref. 45). 

3.2.1. The vortex system.--The characteristics of the vortex system in the central region of a 
swept wing can be seen by considering the simple case of a wing of constant chord and infinite 
aspect ratio as shown in Fig. 18. For a flat wing at incidence, the vorticity vector will be parallel 
to the leading edge at any point on the wing chord if the distance from the centre-line is large: 
There is thus no chordwise vortex component on this ' sheared p a r t '  of the wing. When the 
centre is approached, the vorticity vector curves round and is assumed to cross the centre-line 
at right-angles. Since the local lift coefficient at the centre is not necessarily the same as that  
on  the shearedpar t  of the wing, some of the vortex lines may leave the wing surface and continue 
as trailing vortices in the wake. The curvature of the vortex lines on the wing surface means 
the formation of chordwise vortices. These increase in strength as the centre is approached; 
they change sign discontinuously at any point on the centre-line except at the trailing edge 
(see Fig. 18), unlike the trailing vortices which also change sign but  go continuously through zero 
at y = 0. This discontinuity causes the velocity v, induced by the chordwise vortices to tend 
logarithmical!y to infinity*' as y - +  0. The spanwise vortices, on the other hand, change their 
direction discontinuously by the angle 29. This produces another logarithmically infinite 
ve loci ty i  at y = 0, as has been shown in Ref. 3, which cancels exactly the infinity from the 
chordwise vortices. This is, of course, only another way of stating tha t  the actual, curved, vortex 
lines are continuous. For the present purpose, we shall have to consider the kinked spanwise 
vortices alone. 

* I t  may be remembered that two isolated vortex lines of infinite length, parallel to each other and of opposite direction, 
cancel each other if their respective strengths remain constant when they approach each other ; but produce a doublet 
if their strength increases with the inverse of their distance. In the present case, however, such vortex lines are distri- 
buted over a surface, and an infinite velocity is produced even though the vortex strength at the discontinuity remains 
finite. 

I t  may be noted that the same infinity occurs when the kinked vortex lines are considered as the limits of hyper- 
bolae, in which case the direction of the vorticity vector would not change discontinuously at the centre-line but would 
be defined as normal to the centre-lihe. 
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Mathematically, these considerations can be of some consequence. In an ordinary lifting- 
surface theory, the determination of the downwash leads to a double integral over the wing 
surface and the wake, containing the unknown vortex distribution in the integrand. This integral 
is usually reduced, by an integration, to a single integral with respect to one of the co-ordinates 
to make an approximate solution possible. Such an integration in steps is permissible where a 
curvilinear system of co-ordinates is used with one variable measured along the actual vortex 
lines (the shape of which is, however, unknown). An integration in steps using, for instance, the 
co-ordinates x a n d  y/cos 9 is not permissible because of the discontinuity of the vortex com- 
ponents in these directions. 

3.2.2. The downwash on the surface of q thick aerofoil with uniform load along the span.--  
A chordwise distribution ~(x) of straight vortex lines of infinite length in the plane z-----0, 
kinked at y ---- 0 and swept by an angle of 9, produces a logarithmically infinite downwash at 
0 ~< x ~< 1 ; y = 0 ~; z = 0, as shown in Refs. 3 and 44. This implies that  the ' wing surface,' 
obtained by integrating vJVo, is not in the plane z ----- 0 but is cambered and twisted, with a 
vertical tangent at y ---- 0. Such a wing cannot be treated by linearised theory where the vortex 
distribution is placed in the plane z ---- 0, and the above result has therefore no physical meaning. 
Theprob lem could be treated by successive approximations, i.e., by putting the vortex distri- 
bution on the curved surface thus obtained, recalculating the downwash, and so forth. This is 
necessarily a cumbersome process, and convergence is not assured if the distribution at z = 0 
is taken as the first approximation. 

It  is much simpler to calculate the downwash which is induced on the surface of a wing of 
non-zero thickness by a vortex distribution situated in the plane z ---- 0. This is, after all, the 
case of practical interest, and singularities cannot occur if the vortex distribution is inside the 
aerofoil contour. This has been done in Refs. 3 and 44, and it was found that the downwash at 
the centre section could be approximated by 

v.o " 1 dx' 
Vo -- 2~V0 ~'.(x') x -- x ~ + ~ tan ~),~(x) . . . . . . . . .  (45) 

0 

According to our hypothesis, this relation can also be applied to wings with non-uniform spanwise 
loading. For a flat wing, such that v.0 = const = ~oVo, equation (45) has the solution 

~ , (x )  = 2~o0 V0 c o s  ~ x . . . . . . . . . . . . .  (46) 

where 

(47) 

Equation (45) was also used for 7~-distributions which differ from that  and which are associated 
with cambered wings, see Ref. 4. 

Equation (45) cannot easily be verified analytically, and numerical examples have been given 
in Refs. 3 and 44 for several vortex distribution and aerofoil shapes of different thickness/chord 
ratios to justify it. Since equation (45) forms the basis for t he  present work on swept wings, 
some further numerical examples may be given here. 

Assuming a certain distribution ~(x), the downwash induced by it at y = 0 was first calculated 
from the Biot-Savart law at the surface of an aerofoil of non-zero thickness. The downwash 
at the chord-line of the section was then obtained in the usual way by means of a correction term 
which takes account of the difference between the downwash at the chord-line and that  at the 
surface. This term is small ; it was taken from the theoryof  the two-dimensional straight aerofoil 
(see, e.g., Ref. 10, equation (6)). The result of this calculation is called ' exact ' in the examples 
given in Figs. 19 to 2 1 .  The downwash was then calculated again from equation (45) for the 
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same vortex distribution yx(x), and the result plotted as ' approximation.'  ~ = 45 deg was taken 
in all the examples. Fig. 19 shows the results for a constant chordwise load distribution 
yx(x) 2V0, which gives a cambered section on a two-dimensional wing and on the sheared part  
of a swept wing. According to equation (45), the downwash at the centre should be the same as 
tha t  at the sheared part except for a constant shift by tile amount 

1 
2~V0 ~ tan ~y~(x) ---- 1 

in the present example. Comparison with the ' e x a c t '  calculation shows that  this is a good 
approximation. 

A useful indication of the accuracy of equation (45) can be obtained by calculating the actual 
shape of the chord-line of the aerofoil which is associated with a given chordwise vortex distri- 
bution. This shape is obtained by integration : 

z(x)-= jlvzo(X) dx+const . .  . (48) 
V 

0 . . . . . . . . .  " " " . 

I t  is usually cambered and twisted compared with the ' basic ' shape obtained at the sheared part  
of the wing, as explained in detail in Ref. 4. The integration has been performed for the constant 
chordwise load distribution and also for the flat-plate distribution and the circular-arc distri- 
bution. The results in Figs. 20 and 9.1 show that  the approximation from equation (45) is very 
satisfactory, considering the magnitude of the ' centre effect '. I t  may be concluded that  equa- 
tion (45) is a good approximation for the actual downwash induced by any" chordwise 
distribution of spanwise vortices of constant, or nearly constant, strength along tile span, at all 
points along the centre line chord. This method of checking the accuracy of the method of 
calculation (by comparing the shape of the real wing with that  which the assumed vortex 
distribution does in fact represent) is more severe than merely comparing the final resulting span 
!oadings. 

3.2.3. Experime~#al Verificatio~.--The simplest and most direct experimental check on the 
accuracy of equation (45) is t o  calculate the downwash for a given vortex distribution from 
equation (45) and subsequently the shape of the aerofoil from equation (48) and test this aerofoil. 
This has been done for the flat-plate distribution, equation (2), which giyes a symmetrical aerofoil 
section on the sheared part  of the wing and a cambered and twisted section at the centre*, 
like that  in Fig. 21. The measured chordwise load distribution should then be the same at the 
centre as at the sheared part  of the wing, at the design CL. This was borne out by  the experiment. 
(see wing C in Ref. 46.) 

Another experimental proof of the reliability of equation (45) can be obtained by considering 
the normal and tangential forces at the centre-section. Experimental values of C~ and CN" 
from various spanwise stations on a 45-deg swept-back wing are plotted in Fig. 22. There is still. 
a linear relation between Cr and CN 2, and at the sheared p a r t o f  ttie Wing (y/c about 1) the 
experimental points clearly obey a relation Cr ---- --CN"/a (where a ---- a0 cos 9), as was found 
on straight wings. As the centre of the wing is approached, an increase of Cr at CN = 0 is found. 
This is due to the distortion of the pressure distribution on the surface of the thick aerofoil at 
zero lift, which has been discussed in detail in Ref. 47. There is ,  however, another effect at non- 
zero lift, which appears as a rapid decrease of the slope of the Cr vs. CN 2 curves as y--+ 0. At 
y ---- 0, Cr is practically independent-~ of CN. This behaviour can be explained if a downwash 
equation of the type of equation (45) holds, as will be shown presently. 

* The shape of this section is given in Refs. 4 and 46. 

t That  C:. is not exactly constant will he due to the effect of the boundary layer which reduces the lift increment 
mainly at tile rear part  of the centre-section and thus reduces C~. 
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At the  centre-section, the tangent ia l  force can be obta ined from the Kut ta - Joukowski  theorem : 

Y Cr = -- 2 v,* y,(x') dx'  (49) 
o Vo Vo . . . . . . . . . . . . . . .  

vz* is defined as the  principal value of the downwash integral, tha t  is as the resul tant  downwash 
i nduced  at  the  point  x = x' by  all the  vortices except the  one passing through x = x', the  
contr ibut ion which the  ' vor tex e lement  ' at the point  x = x' itself might  make  being excepted. 
No vor tex  e lement  contr ibutes to the  downwash at its own position if the  downwash equat ion is 
of the  type 

Vo - 2,~Vo r,(x',y') /(~,x',y') ax' & '  . . . . . . . . .  (so)  
,o 0 

Thus, 

VZ 0 Vz ¢~ CL 

Vo Vo - -  ~ o  - -  a 

for an uncambered  aerofoil at  incidence ~, o. 

c ~  = - 2 -  - G o  d ~ ' =  - - - - ~  - - ~ - - - ~  . . . . . . . .  (S2) 

This explains the results found at the sheared part  of the  wing ; but  it is obviously not  t rue for 
the  centre-section, as can be seen from Fig. 22, unless a is infinite, which it is not, as will be shown 
later. Therefore, the downwash equat ion at the centre-section cannot  be of the type of equat ion 
(50). If however, the downwash is given by  an equat ion of the  type 

. . . . . . . . . . . . . .  (sl) 

Insert ing this value of v~ * into equat ion (49), we find 

, o  ,{f.i } V0 --  2~Vo y . ( x ' , y ' ) f ( x , x ' , y ' )  dx',  dy'  + ~(9,Y) 7.(x) . . . . .  (53) 
t/  0 ~ 0 

value of the  downwash integral  is 

V.o o ~,~(.,) C~ o r . (x)  

Vo 2= Vo a 2~ Vo ' 
(54) 

then  the  principal 

Vz @ 

go 

and equat ion (49) gives 

Cr=--2C fla 
T = \ - 9 7 o  / g * '  . . . . . . . . . . . .  (ss) 

The correction te rm is always positive, for ~ > 0 (i.e., for 9 > 0), and thus the thrust  is reduced. 
Wi th  the  y,(x) distr ibution from equat ion (46), 

\ - - 9 7 /  dx' = 4 c o s '  ~O~,o ~ x '  dx' 

1 CN 2 4Jrno 
t a n ~  a a 
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With  a = ~ tan 9 from equat ion (45), this gives for the  tangent ial  force from equat ion (55), 

Cr = -- CN__~ ( '1-  4~no'~- 0 
- -  ~ . . . .  . . • o . . (56) 

a k a )  ~ ° ' 

since a = 4~no, from Ref. 3. This shows tha t  a downwash equat ion of the type of equat ion (45) 
is needed to explain the str iking behaviour  of the  tangent ia l  force, which can be observed at 
the  centre-section of any swept wing. 

These results imply  tha t  there is really a local drag force at the centre-section of a swept-back 
wing (and a thrust  force at the centre of a swept-forward wing), which is induced by  the spanwise 
vortices. Its magni tude  is Cv = CN~/a), since Cv = 0 implies Cr = -- C~/~ (see section 2.2) 
and Fig. 2). This consti tutes a characteristic difference between the centre of a swept wing and 
straight  or sheared wings where no such drag forces occur. In  fact, c~e has been in terpre ted  
there as giving the direction in which the resul tant  air force has no component  ; this is no longer 
true near the centre and tips of swep twings  (see also section 3.7) below. 

3.3. Downwash and Chordwise Loading at any Spanwise Station on Wings of Infinite Aspect 
Ratio.--The downwash equat ion (45) can be generalised to be applicable to any spanwise s tat ion 
y (which is measured in terms of the local chord) by  put t ing  : - -  

V o  - 2 Vo x - x '  y , ( x )  . . . . . . . . .  (57) 

This includes the special case of the centre-line if ~ = ~ tan 9 for y = 0 ; and the two-dimensional  
s traight  or sheared wing if ~ = 0 for y = ~o. (see equat ion (3).) ~ is independent  of x at the centre 
and at the sheared part  of the wing ;  it is now assumed to be independent  of x everywhere.  
How ~ depends o n  9 and y will be de te rmined  later. 

A solution of equat ion (57) for the case v~o/Vo ---- ~0 ---- const is again a function of the  type 

Insert ing this into equat ion (57), we find 

C ~ ~ _ ~ ( ~ o , y ) l ( 1 - -  
~ 0 - - 2 ~ - V ~ { s i n ; n  ° [ ~ c o t  no ~ -  x X)'~°}. 

This gives first 

( %  y )  = c o t  . . . .  . . . . . . . . . . . . .  ( 5 8 )  

to make  the r ight -hand side independent  of x. Then 
( 

C = 2~e0 V0 sin ~no, 

so tha t  the final solution becomes 

/1 --  X)~0 
7~(x) ---- 2C~oVo sin ~no ~ j . . . . . . . . . . . . .  (59) 

\ X 

This includes the solution ~ (46) for the  centre-line, y = 0, where 

I t  also includes the  flat-plate distr ibution for the  sheared wing, y = oo, where 

no = 1 and sin =n0 = 1. 
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Thus in general no can be written as 

n o  = 1 1 - ; , . . . . . . . . . . . . . .  ( 6 0 )  

w h e r e ~ i s a f u n c t i o n o f y w i t h ~ -  l a t y - - - - 0 a n d ~ - - - - 0 a t y - - - - o o .  

The interpolation function ~(y) is related to the shift of the aerodynamic centre due to the 
centre effect 

1"__ ~l,(.y) ~9 . . . . . .  , (6])  
A X a e  ~ X ~ c  ~ - -  . . . . . .  

. . . .  2 ~  

by equations (12) and (60). ~(y) need not be determined very accurately since, by  equation (61) 
with ~ ~ :r/2 (the extreme case), a certain error in ~(y) can lead only to a quarter of that  error 
in x~.~.. In the practical range of sweep angles, an error of 5 per cent in ~ (y) (which is the difference 
between the two estimates in Fig. 23) results in an error of about ½ per cent in the position of 
the aerodynamic centre. Since we are dealing with a physical problem, the locus of the aero- 
dynamic centre along the wing span can be expected to be a continuous line which crosses the 
centre-line of the wing at right-angles. For a flat wing of infinite span, this locus can reasonably 
be approximated b y a  hyperbola with the quarter-chord lines of the two wing halves as asymptotes, 
see Fig. 23. The function ~(y) is then, by equation (61), ( ) 2 )  

~(y)---- 1 + 2 ~ t a n 9  tan y -- 2z y ,  • . . . . . . .  (62) 
~c 

y being measured in terms of the wing chord. Since the term tan ~/~ does not vary very much 
with sweep, equation (62) may be simplified into 

a(y) = V/{1 + (2=y) 2} -- 2~y . . . . . . . . . .  . .. (63) 
This relation will be sufficiently accurate in most practical cases, and only for very highly swept 
wings need the complete relation (62) be used, in which a depends also on 9. 

An alternative relation for a(y) can be obtained by assuming the aerodynamic centre positions 
to lie on the envelope of a series of inter sections as shown in Fig. 23, in which case the aero- 
dynamic centre locus runs tangentially into the quarter-chord line at a given finite distance y. 
Taking this distance as y = 1 gives 

~(y) = 1.40 + 1.33y -- ~/(0.16 + 7 . 3 0 y ) .  . . . . . . . . .  (64) 
This relation has been used in Ref. 3, Fig. 1. Both relations (63) and (64) are plotted in Fig. 23, 
and it can be seen that  the difference between them is very small and of no practical significance, 
although they have been derived from extremely different assumptions. These relations are 
supported by experimental data (further results from tests are shown in Ref. 3, Fig. 1). W i t h  
the function ~(y) known, no can be determined from equation (60), and subsequently the chord- 
wise vortex distribution from equation (59), and the value of z in equation (57) from equation (58). 

The vortex distribution ~,~(x) is not the same as the chordwise load distribution A C/x), 
except in special cases where the vortex lines are normal to the main stream ; e.g., at the centre, 
y = 0, where 

C a ( x )  = - 2 7,(x) 
Vo 

a s o n  a straight wing, equation (2). 

v (x) 
A C a ( x ) = - - 2 c o s ~  V0 ' 

and in general 

ACp(x) = - -  2cos~v V0 ' 

On the sheared part of the wing, 

. . . . . . . . . . . .  ( 6 5 )  
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where 9, is the direction of the vorticity vector (not that  of its component 7,(x) which is 9 except 
at the centre-line), as explained in detail in Ref. 4. 9v = 0 at all points on the centre-line ; 
9, = 9 at all points along the chord of a section on the sheared part of the wing. But at inter- 
mediate spanwise stations 9v may depend on x. I t  is, however, not necessary to know very 
accurately how % varies between 0 and 9, since again only second-order terms are involved. 
Therefore, any possible variation of 9~ with x may be ignored and 9~ may be replaced by a mean 
value across the chord. 9~ could then be taken as the sweep of the aerodynamic centre-line 
which was assumed to be a hyperbola .  Hence, 

( Y 
1 + 2= tan 9 y 

1 + (2=y) ~ . .  (66) COS~ 9v ~--- 
- r x _  

( ' ) 2 - - 1  + (1 + tan~ 9)(2=y) 2 
1 + (1 + t a n  29) 2= t a n g y  

9 

y being measured in terms of the wing chord. For practical purposes, it is usually sufficiently 
accurate to replace equation (66) by  the simpler relation 

cos 9 cos 9 (67) 
~ - - -  , o o . . . .  • • o • o o o . 

cos % cos 29 sin =n0 

as suggested in Ref. 4. The general expression for the chordwise loading at any spanwise station 
of a swept wing of infinite aspect ratio is then, using equations (59), (65) and (67), 

( , 7  ° . . . . . .  A C,(x) = -- 4~o cos ~ x . . . . . .  

An alternative derivation of equation (67) to that  given in Ref. 4 can be obtained as follows : 
Equation (68) is known to apply both at the sheared wing and at the centre-section. The only 
difference between the chordwise loadings at the two places is tha t  no has a different value at 
each, namely no ---- { at the sheared wing and no ---- ½(1 --9/½=) at the centre-section. We now 
proceed on' the assumption tha t  equation (68) applies at all stations between the centre and the 
sheared part  and tha t  only no depends on the spanwise co-ordinate y .  If this were not so, there 
would have to be another function of y in the expression for A Cp, which would be uni ty  at the 
centre and sheared part  but would have other values in between. This is unlikely. Applying 
equation (65) in which % is the mean sweep over the chord of the Vorticity vector, and which 
follows immediately from the Kutta-Joukowsky theorem, we find 

Y~(x) 20C~o c°s~ (1  -- x )  ~° 
V0 COS 9~ X 

at any intermediate station. Inserting this function into the generaldownwash equation (57), 
with ~ from equation (58), 

V,o = 1 cos ~ sin~no Vo O % o ~  - - ~ o - -  = c o t = n  o _1 - - X  
= cos % an~no x 

which gives 
c o s  ~o 

c o s  ~ - -  s i n  ~ o  

as before. 

3.4. Determination of the Sectional Lift  S lope . - -By  equation (5), the local lift coefficient, CL(~), 
at any spanwise station ~ ~ 2yc/b is obtained by integrating ~ C/x)  over the chord. For the 
chordwise ]oading given by equation (68), 

f) ;( ;o l - -  x =no 
CL : --  C/x)  dx : 4~0 cos 9 x dx : 4~0 cos 9 sin =no " 

0 

26 



The sectional lift slope at any  spanwise s tat ion on a swept wing of infinite aspect ratio is then  

CL 4:¢no cos 
m 

• ~e0 sin =no 
giving 

(X'e 0 

for the centre-section, y = 0 ; and 

Cr _ 2~ cos ~ . .  
(ZeO 

. . . . . . . . . .  (69) 

. . . . . . . . . .  (70) 

. . . . . . . .  ( 7 2 )  

for the sheared wing, using equat ion  (60) for the values of n0. These relations have already been 
derived in Ref. 3. Rep.lacing c~0 in equat ion (68) by  CL from equat ion (69), we find for the 
chordwise loading 

ACp(x) = -- sin =n~° cr ( l - -  x )  " ° = n o  x , . . . . . .  . . . . . .  (72) 

and for the chordwise vor tex dis tr ibut ion 

7~(x) sinPm% C L (  1 -  x )  "° (73) 
- -  ~ • ° . ° ° . . ° . ° ° . 

Vo 2=•o  c o s  9 ~ x 

by  equa t ion  (59). 

The chordwise loading on a swept wing of infinite aspect ratio from equation (72) is of tile same 
type  as the chordwise loading on a s traight  wing of any  aspect ratio, which is given by  equat ion  
(11). We assume, therefore, t ha t  the chordwise loading on a swept wing of any  aspect ratio is 
also of the  same type : 

A@(X) sin ~n CL ( 1 -  x ) "  (74) 
, • • . . . . . . . ° ° . 

~ 4  X 

where n will depend on the aspect ratio of the wing and on ~o and y. n ---- no for A --+ oo. The 
generalised vor tex dis tr ibut ion is then, by  equations (65) and (67), 

\ 

- 7 . . . . . .  /7'/ V0 2~n cos ~o x . . . . . . .  

We can now determine the effective incidence, ~,, which is induced by  the spanwise vortices 
on a swept wing of any  aspect ratio on the basis of our general hypothes i s -by  inserting V,o/Vo 
from equat ion (57) into equat ion (44), With y~(x) from equat ion (75) as tile chordwise distr ibution.  

This gives 

CL sin =n0 sin ~n ~ cot un -- = cot =n dx 
c~, --  2= 2~n cos~o in-~n x 

so tha t  

sin~n0 ( } 
= CL 4~nn c~-s9 1 --  ~n(cot ~n -- cot =no) , 

CL cos q~ 2n 
a - -  - -  2 u  - -  

~ ,  sin ~n0 1 --  ~n(cot ~n --  cot ~no) ' 

(76) 
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or, replacing the two-dimensional lift slope by ao, 

cos ~o 2n 
a = ao . . . . . . . . . .  (77) 

sin ~no 1 -- ~n(cot =n -- cot ~no) 

This relation inciudes as special cases all the expressions for the sectional lift slope previously 
derived. For instance, for a straight wing, no = { by equation (60), which leads to equation (13). 
Again, for a swept wing of infinite aspect ratio, n = no, which leads to equation (69). For the 
sheared part of a swept wing of finite aspect ratio, no = { again, so that  the sectional lift slope 
there is 

2ns cos ~ 
. . . . . . . . . . . . . .  (7s) 

as  = a0 1 - -  ~ n  s c O t c h e s '  

where ns denotes the corresponding value of n, which will be determined later. 

The change of the sectional lift slope due  to the effects of aspect ratio, sweep, and spanwise 
position may be regarded as a change of the effective incidence which is needed to produce a 
certain lift at that  aerofoil section. Whereas, for a straight twordimensional aerofoil in inviscid 
flow, an incidence c~,p = CL/2~ produces the lift coefficient CL, a different incidence, e~ = CJa  
is needed in the general case. The ratio between the two is 

~ep (~ _ cos~o 2 n  

~e - -  sin ~n0 1 -- ~n(cot ~n -- cot ~no) ' . . . . . . . .  (79) 

by equation (77). This relation must be used if the pressure distribution on the surface of an 
aerofoil of non-zero thickness is calculated by means of a method which is basically derived for 
two-dimensional straight aerofoils, such as the method in Ref. 10. All incidences occurring in 
such methods are really values ~ and they must be replaced by ~,~ = (~ -- cq)O. 

3.5. The Spanwise Load Distribution.--As explained in section 3.1, the span loading equation 
for a swept wing is the same as that  for a straight wing, namely equation (15). The two main 
differences are:  that  the sectional lift slope on a swept wing depends not only on the aspect 
ratio but also on the angle of sweep ancL on the spanwise co-ordinate ; and that  the value of 
tile parameter n is affected by sweep. In general, the changes due to sweep do not affect the 
calculation procedure, and Multhopp's method" can be applied, equation (16). In determining 
the sectional lift slope a, the wing tips are assumed to behave like the centre of a wing of opposite 
sweep, as explained in Ref. 3. 

The downwash factor co in equation (16) is still assumed to be equal to 2n, but it is assumed that  
o)/n does not vary along the span, as n does. It  is therefore proposed to use a mean value of n 
here. The value, ns, at the sheared part of the wing is suitable for the present purpose, so that  
o) = 2ns. Relations for n and ns will be derived in section 3.6. The ' sheared part ' of the wing 
Call be defined more precisely here as that  part of the span where X = 0. There is always at 
least one station where ~ = 0, even if the aspect ratio is so small that  centre and tip effects 
overlap. 

For swept wings of large aspect ratio, n -~  no, and the method reduces to that  given in Ref. 3, 
which may be regarded as the equivalent of Prandtl 's aerofoil theory in the case of a swept wing. 
For swept wings of very small aspect ratio, the plan-form term 

9, A 
ac a.c/5 

in  equation (15) is small compared with ~ and can be ignored in the limit A --+ 0. Thus the 
considerations of section 2.2 apply again. Inpar t icular ,  the span loading becomes elliptic, 
equation (19), and the overall lift coefficient is CL/o~ = ~A/2,  by equation (20), for swept wings 
also. These results agree with those of R. T. JonesE 
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To obtain elliptic span loading with wings of moderate or large aspect ratios, a certain plan-form 
is required, where the chord does not decrease elliptically towards the tips, as explained in Ref. 3. 
However, the overall lift coefficient of wings with elliptic span loading can still be obtained from 
equation (21) if a is replaced by the value, as, at the sheared part of the wing: Thus, 

CL 1 2aons cos 
- -  . . . , ° , 

o: --  1 a) - -  4aons 2 cos ~ ' (80) 
- -  + 1 - -  ~ns cot ~zns + 

• a s  ~ A .  ~ A  

put~cing o~ = 2ns. This relation differs from equation (21) in tha t  the two-dimensional lift slope 
a0 is replaced by ao cos ~0 (or 2= cos ~0), i.e., by the sectional lift slope of the infinite sheared wing. 
We may, therefore, extend Helmbold~s formula (29) in the same manner, although its derivation 
is even less justifiable for swept wings. This gives 

C L  a 0 C O S  

- -  = , . . . . . . . . . .  ( 8 1 )  ,/{ 1 + \  ~A / J +  =A 

which has already been suggested by F. W. Diederich al who has shown that  reasonable estimates 
can be obtained, in particular for delta wings of small aspect ratio. This can be expected also 
from the considerations in Ref. 3 where it was shown that  swept-back wings must be highly 
tapered in order to give elliptic span loading. For delta wings with pointed tips and straight 
trailing edge, 

A 
cos q0 = cos ~0c,~ -- V'(4 + A 2) ' 

so tha t  
C L a0A 

0~ 4+ A~+ q_ao 
arc 

by equation (81). This relation is confirmed by  experiments (see e.g., Ref. 20) for such wings,  
up to an aspect ratio of about 2.5. 

3.6. Determination of the Parameter  n . - - A  general relation for the parameter n is derived b y  
considering the values  it must have in the extreme cases of very low a n d  of very high aspect 
ratio, as was clone in section 2.2 for straight wings. We know already that  n approaches the 
value no from equation (60) for swept wings of very large aspect ratio. At low aspect ratios, 
where the span loading tends to be elliptical, equation (80) can be Used for the overall lift 
coefficient which must be equal to =A/2. Thus 

~A 4~ns cos 
2 8n}" cos 9 

1 --  :~ns Cot ~ns q- A 

for a0 = 2~. This gives 

u s e  l~//Q8 A ) = -- -+1  as A 2 + 0  . . . . . . . .  (82) 
• C O S  q9 ' 

if ~ = const. The sectional lift slope is then, by equation (78), 

= - + 0  as A - + 0  . . . . . . . .  (83) as 2~ cos ~ 2 cos ~ 
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and the effective incidence 

- -  - + 0  as  A - + 0  . . . . . . . . . . .  (84)  
c~ cos~ 

These relations correspor, d to equations (22), (23) and (24) for the case of unswept wings. They 
are again consistent with R,, T. Jones's results. The only change due to sweep is that  the aspect 
ratio A is replaced by A/cos ~0 i~ all three relations• 

On this basis, equation (25) for n. may be generalised to 

ns = 1 -- 1 (85) . . . . . . . . • * 

2{1  + (a°  c ° s ~ ) ~ }  1 / 4 z ~ A  

The main consequence of the term A/cos 9 is that small aspect, ratio effects become important  
only at smaller values of A on swept wings than on straight wings. Wlaereas Prandtl 's classical 
aerofoil theory fails for straight wings of aspect ratios below about 6, the. '  large aspect ratio 
theory ' of Ref. 3 holds down to aspect ratios of about 3 in the normal sweep range, 

The results so far obtained apply to wings of varying aspect ratio but with constant ang}e.ot~ 
sweep. In reality, the effective sweep begins to differ from the geometric sweep when the aspect 
ratio of the wing becomes very small. This can be explained as follows: On a wing of large 
aspect ratio, a large part of the span can be considered as having the properties of an infinite 
sheared wing, the sweep of the spanwise vortices being the same as the geometric sweep. Dis- 
tortions occur only near the centre and near the tips, the vortex lines curving back towards the 
rear of the section near the centre, and curving forward towards the leading edge near the tips. 
If t h e  aspect ratio of the wing is reduced, the centre and tip distortions will gradually merge. 
As a consequence, the aerodynamic centre line, and thus the angle of sweep of the vorticity 
vector, 9~, will never attain the full geometric sweep if the aspect ratio is small, % being zero 
at the centre and at the tips anyway. This means that  an ' effective angle of sweep,' 9,, should 
be introduced which becomes gradually smaller than the geometric angle of sweep, 9c/~, as 
the aspect ratio is reduced% Very little is known about this effect and only suggestions can be 
made at this stage. A reasonable approximation is 

. . . . .  (86) 

which has been derived by an iteration process. The sweep of the straight line joining the aero- 
dynamic centre positions at the centre and the tips on untapered wings was determined first ; 
new aerodynamic centre positions were then calculated, using the new, reduced, sweep, and 
the sweep of the straight line joining these obtairied ; and so on. For very small aspect ratios, 

~ = ~ 2 ~os ~o 0 as A --+ 0 . . . . . . . . . . .  (87) 

It is proposed to use the effective sweep from equation (86) instead of the geometric sweep of 
the mid-chord line in all relations wherever ~0 occurs. 

With the effective sweep tending to zero as A --+ 0, the limiting relation (82) for ns is still 
fulfilled if  equation (85) is replaced by 

1 (88) - -  . , . . • • • ° 

{ ~/,s 1 (go COS ~ 4(~ + I~ll~) 
2 1 + \  =A 

* The introduction of an effective angle of sweep does not imply, however, that there can no longer be a station which 
behaves like a ' sheared ' wing. There is always a station, near mid-semispan, where ~ = 0 and n = ns. 
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The condit ion n s - ~  no = ½ for large aspect ratios is also fulfilled. The change of the exponent  
from ¼ to 

1 

4(1 ,4-i~o1/~),  

where denotes the  modulus  of % appears desirable from practical experience and is thus  
empirical. The change has only a small effect. Fur ther  work is needed to settle this po in t  
satisfactorily. 

Wi th  ns being known, the  value of the downwash factor co can be determined.  Since co = 2ns. 
1 

2 1 . . . . . . . . . .  ( 8 9 )  

For large aspect ratios, co > i as A --+ ~ ; for small aspect ratios, 

co----2 2 c o s 9  - + 2  as A - + 0  . . . . . . . .  (90) 

by  equat ion (82). 

We still have to find a general expression for the value of n at any spanwise s tat ion on a swept  
wing. We take the spanwise variat ion of n for  any aspect ratio as being the same as obta ined  by 
the  superposition of wings of large aspect ratio, which is given by  equat ion  (60) ; and we take the  
.variation with aspect ratio for any spanwise stat ion as being the  same as tha t  for the sheared 
par t  of the wing, which is given by  equat ion (88). This leads to 

~0 
1 + z(y) ~/2 

n = 1 --  ~ 1 , • . . . . . . . . .  (91) 
2 { l + ( a ° c o s ~ )  } 4 ( 1 + . . 1 ½ = ' = A  

which contains all the  relations for n deduced so far as special cases. 2(y) is the  interpolat ion 
function which was discussed in section 3.3. The magni tude  of ~(y) can be de te rmined  from 
equat ions (63) or (64) or from Fig. 1 in Ref. 3. 3' is to be measured in terms of the local chord 
ei ther from the  centre-line of the  wing y = Yc  (for the  centre region), or from the  tips, y ---- YT 
(for the tip regions). 2(y) is negat ive in the tip regions, because the tip behaves ' l ike the centre of 
a wing of opposite sweep, see Ref. 3. 2 = + 1 at  the  centre ; ;~ = --  1 at the tips ; 2 ---- 0 on the  
sheared part  of the  wing. At  inte?rmediate stations, 

3,(y) = 2(Yc) + 2(Yr) = 2c + 2r . . . . . . . . . . . . .  (92) 

This relation may  be in terpre ted  in physical . terms as being only another  s t a tement  of t h e  
general hypothesis  used throughout .  The conditions at any spanwise stat ion are obta ined f rom 
the  superposit ion of three terms : 

(i) A basic term which does not  include centre and tip effects, i.e., with 2 = 0. This is essential ly 
the  same as tha t  for an unswept  wing of the same aspect ratio except for a change of the  two- 
dimensional  lift slope from a0 to a0 cos 9. 

(ii) An addit ional  te rm which takes account of the  centre effect. This is obta ined from a 
fictitious un tapered  wing which has the same sweep and chord as the  section considered, wi th  
the  central  kink at the same position as on the real wing ; i.e., the  kink is at  a given distance 
yc/c from the  s tat ion considered. 

(iii) A th i rd  t e rm which takes account of the  tip effect. This is obta ined from another  fictitious 
un tapered  wing, of infinite semi-span, which has the  same sweep and chord as the stat ion 
considered and wi th  its tip at the  same position as on the real wing;  i.e., the tip is at a given 
distance yr/c from the  stat ion considered. 
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Centre and tip effects will overlap if the aspect ratio is small enough with the twofold effect 
that  the effective sweep is reduced and the centre and tip effects reduce each other as compared 
with those on a wing of large aspect ratio where they do not merge. 

The general calculation procedure can now be described as follows: For a given wing, the 
values of A, ~o/~, and a0 are known. The effective sweep, ~e, is then determined from equation 
(86) and its value inserted into equation (91) to find ~¢ .at any spanwise station, where ~(y) is 
obtained from equations (92) and (63) or (64). With n known, values of the sectional lift slope 
are found from equation (77) and the downwash factor from equation (89). The spanwise loading 
is then determined by solving equation (16), and subsequently the chordwise loading at any 
spanwise station is found from equation (74). The chordwise position of the aerodynamic centre 
at any spanwise position is given by equation (12). 

3.7. Drag . - -The  induced, drag of swept wings can be calculated in the same way as has been 
explained in section 2.5. In particular, the minimum induced drag is given by the well-known 
relation (36) for wings with elliptic span loading, whether the wing is swept or not. However, 
the wing plan form which gives minimum induced drag is not elliptic if the wing is swept ~. This 
implies that  a swept-back wing can have the same induced drag as a wing of the same aspect 
ratio swept forward by the same amount (' reversibility theorem,' see, e.g., Refs. 49, 50) ; but 
their plan forms must be different to achieve this : the swept-back wing must be highly tapered, 
whereas the swept-forward wing must have little or no taper, or possibly inverse taper, depending 
on the amount of sweep. 

The main effect of sweep is to produce local drag forces in the centre region of swept-back 
wings and thrust  forces near their tips, as has been described in Ref. 51. These forces cancel 
each other on the wing as a whole, but their local values may be very high. The thrust  forces 
near the tips usually cause increased leading-edge suctions peaks and are, therefore, responsible 
for the unpleasant stalling characteristics of swept-back wings and also for the premature 
occurrence of shock-waves at high Mach numbers. 

The local drag force at a spanwise station ~ can be written as 
Cv(~) = C1),(,7) -/. CLot, + Cr + CD~ . . . . . . . . . . . .  (93) 

CD~ is the local induced drag which is obtained from the relation 

Ca, (rl) = CL(r~)C~,o(~) -= 1 CL(~) ~(~) . . . . . . . .  (94) ' 

using equat ions (9) and (37). CLc~, can be replaced by  CL2/a. CDF measures the fo rm drag and 
skin friction, i.e., the viscosity effects. Cr is the tangential  force coefficient which has been 
discussed in section 3.2.3. Normally, i.e., on straight wings and outside the influence of centre 
and tip on swept Wings, Cr = -- CLc~. In tha t  case, the drag at any sp anwise station consists 
of induced drag Cw and skin friction and form drag CDF. However, Cr = 0 at the centre- 
section by equation (56), so that  a drag force, CL~/a, remains there and a corresponding thrust  
force, -- CL2/a, at the tips. 

The tangential  force at any spanwise station can be determined from the Kutta-Joukowski  
theorem as : 

C ~  = - 2 c o s  ~o(x') v~ ~(x  ) dx' . . . . . . . . . .  ( 9 5 )  
Vo Vo 

,) o 

which is the generalisation of equation (49) for the special case ~0, = 0. This integral cannot 
easily be evaluated because the sweep, ~0,, of the vorticity vector cannot be assumed independent 
of x for this purpose where quadratic terms are concerned. Experimental  evidence suggests tha t  

Cr = - -  CL~ (1 - -  ~(f l)) ,  . . . . . . . . . . . . . .  (96) 
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at least for wings of large aspect ratio. An example is given in Fig. 22. Equation (96) gives 
Cr = 0 at y = 0, in accordance with equation (56) ; and Cr = -- Cz.~/a for two-dimensional 
wings, in accordance with equation (8). Combining equations (93) and (96), we obtain 

CL~(rJ) (97) = + + . . . . . . . . . . . .  

as the final expression for the local drag coefficients. 

3.8. Nou-lir~ear I,@ Effects.--The method for calculating the lift, as described so far, gives 
the lift at small incidences (i.e., in the limit as CL--> 0) because it is based on linear theory. 
Non-linear effects occur due to the presence of the tip vortex, even in an otherwise inviscid flow. 
There is no essential difference between the effects of the tip vortex on straight and swept wings, 
and the method explained in section 2.6 for assessing these effects can be applied again. The 
only change required concerns equations (38) and (39) which apply only to straight wings. Since 
these are based on Helmbold's relation (29), the corresponding relation (81) for swept wings may 
now be used, which gives 

1 q- ao cos ~o ao cos ~o 

a0 cos ~0 . . . . . . . .  (98) 

instead of equation (38), and 

. . . . . . . .  (99) 

( Y )  ao cOS ~o ao  c o s  ~o 

instead of equation (39). How the height of the tip vortex is affected by sweep is not yet known. 
Equation (43) was derived from experiments on an untapered 45-deg swept-back wing with 
curved leading edge. (see Ref. 41.) I t  appears that  there is no appreciable difference between 
straight and swept wings in this respect. 

1 

3.9. Examples.--A few calculated examples will be given to illustrate the magnitude of the 
small aspect ratio effects and to compare the results with those from experiments and from 
other calculation methods. 

Fig. 24 shows measured and calculated span loadings and centre of pressure positions for a 
series of untapered 45-deg swept-back wings of various aspect ratios, from Ref. 51. I t  was 
on these wings that  the limitations of the theory of Ref. 3 first became apparent. Comparing 
the new results (full lines) with those from Ref. 3 (dotted lines), we find that  small aspect ratio 
effects become noticeable on the wing of aspect ratio 3;  they are appreciable for the wing of 
aspect ratio 2. The results from the new method agree with the experimental results in the whole 
aspect ratio range tested, from 2 to oo. 

There is good agreement with the results of Multhopp's method ~7 and of Falkner's method 2~ 
for moderately tapered wings of about 45-deg sweepback in the aspect ratio range between 
2 and 4. In other cases, however, slight differences between the various theoretical results are 
found. Fig. 25 gives a typical example of how the results of the present theory compare with those 
of other theories in the case of a wing of fairly large aspect ratio, and Fig. 26 gives a similar 
typical comparison for a delta wing. On the whole, the present results agree best with Multhopp's 
method2L There is a slight tendency in lVfulthopp's method to give more pronounced centre 
and tip effects ; the deviation is greatest in the extreme cases of highly tapered wings, where 
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the centre region occupies a large part of the wing area ; and of wings of very large aspect ratio, 
where the lift changes occur mainly in the centre region and near the tips. This may be related 
to the fact that  Multhopp does not consider the given wing plan form but another wing which 
has been rounded off in the central region. In cases where experimental results are available, 
these appear to support the present theory (see, e.g., Figs. 24, 25). In most practical cases of 
wings of moderate taper and aspect ratio, however, Multhopp's method gives nearly the same 
answers as the present method. A similar, and usually stronger, tendency to emphasise the 
centre effect is found in the results of Falkner's method "3, Figs. 24, 25 and 26 ; and this tendency 
is stronger still in Weissinger's method "1, 5~ Fig. 25. This method is based on the three-quarter 
chord theorem, the application of which to swept wings is even less justifiable than the application 
to straight wings discussed in section 2.4. In the example given in Fig. 25, Weissinger's results 
differ from the experiment more than seems permissible. 

Measured and calculated span loadings for two highly tapered wings of small aspect ratio are 
compared in Fig. 27. The agreement is good. When the same wings were discussed in Ref. 3, 
it was recommended that  the distance Yr from the tip, measured in terms of the tip chord, should 
be used in calculating the interpolation function t(2 ) and the sectional lift slope. This was to 
allow (mistakenly) for what is really a low aspect ratio effect. It  is not now necessary, and 
agreement with the experimental results is obtained if the method is applied as explained above 
(calculation No. I). The results which are obtained by using the tip chord are also shown 
(calculation No. II) to illustrate the differences which arise from using either the local chord or 
the tip chord. In the latter case, there is no tip effect at all on a wing with pointed tip (wing 
A0 in Fig. 27) ; this is physically unsatisfactory since no thrust forces will occur to balance the 
drag in the central region. On a cropped delta wing (A2 in Fig. 27), a small tip effect exists, 
which fades out quickly and does not reach the centre. Using the local chord, however, to be 
consistent with our general hypothesis, there is a tip effect on each wing, which spreads over the  
whole wing right up to the centre-line. The actual differences in the final results are very small. 
On wing A0, the value of Z at the centre is reduced by 6 per cent--from 1.0 (calculation II) 
to 0.94 (calculation I ) - -bu t  there is no change in the position of the aerodynamic centre 
(x~.o./c = 0. 329 for calculation II and 0. 328 for calculation I at y ---- 0) ; the overall lift slope is 
increased by about 3 per cent. On wing A2, there is a reduction of 1 (0) by 15 per cent--from 1.0 
(calculation II) to 0.85 (calculation I) ; this changes the position of the aerodynamic centre by 
1 per cent from x~.c./c = 0-29 (calculation II) to 0.28 (calculation I) at y = 0- -and  the overall 
lift slope is increased by about 2 per cent. Experimental results are nearer to those of calculation I, 
as would be expected, and there is no need to revise the present theory in this respect ; particularly 
as ~ this question arises only in exceptional cases where high taper is combined with small 
aspect ratio. 

Figs. 28 and 29 show that  the chordwise loading too can be estimated with good accuracy by 
the present method. The magnitude of the small aspect ratio correction can also be seen (the 
curve marked ' without aspect ratio correction ' has been calculated by the method of Ref. 3). 
The calculated curves take account of the thickness of the aerofoil section ; the method of Ref. 10 
has been used. Fig. 29 illustrates how non-zero thickness and viscosity effects affect the ehordwise 
loading.. We begin with the loading of the thin wing in inviscid flow at an incidence which is 
equal to the given geometr{c incidence, curve (a) ; the effect of the streamwise vortices is then 
to reduce the incidence by the amount c~, which leads to curve (b) ; curve (c) is obtained by 
taking the thickness of the section (tic = 0.12) into account by means of the method of.Ref. 10 ; 
and, finally, the effect of viscosity is calculated from Preston's method ~ by using measured 
values of the displacement thickness of the boundary layer, as explained in Ref. 11, curve (d). 
This final result of the calculation agrees with the measured values. The example demonstrates 
tha t  the effects of aerofoil thickness and viscosity are quite distinct and cannot easily be confused 
as is sometimes supposed. Further, it may be noted that  the methods of Refs. 10 and 55 lead 
to reasonable results in spite of the fact that  both apply basically only to two-dimensional 
aerofoils bui are applied here to a section of a three-dimensional wing. This means that  even in 
these cases it is justifiable to apply our general hypothesis that  the properties of an aerofoil 
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section on a three-dimensional wing can be determined by assuming the section to be part  of 
a two-dimensional wing, even though the neighbouring sections may have different properties. 

4. EffeCts. of Compressibility.--4.1. The Method Using an Analogous Wing. The lift on 
wings at sub-critical 1Kach numbers can be conveniently calculated by applying the Prandtl- 
Glauert analogy in the form of the streamline analogy of Busemann 57 and Gothert 58. Refinements 
of the Prandtl-Glauert procedure differ by terms containing the pressure coefficient in incom- 
pressible flow, C,~, (see, e.g., Refs. 59 and 60.) Since we are considering thin wings at small 
incidences, C,~ will be small and, therefore, such refinements need not be taken into account 
when calculating the basic lift term from linear theory. 

According to the Prandtl-Glauert analogy, the velocity increment in the direction of the 
ma in  stream in compressible flow is 1//~" times the velocity increment in incompressible flow 
on an analogous wing obtained by reducing the lateral dimensio~ls of the given wing in the 
ratio/~ : 1. 

/~ ----- 1/(1 -- M02), where M0 is the flee-stream Mach number. 

Span, aspect ratio, and angle of sweep of the analogous wing (suffix a) are different from those 
of the given wing : " 

b~=$b; ~ o = ~ ;  

The incidence is also reduced : 

0~ a z flOC 

fl cos  9~ 
As = /~A ; COS ~ 1/(1 -- M0 ~ cos~" 9) ' (loo) 

. . . . .  . . . . . . . . .  . .  ( 1 0 1 )  

The values of the parameter n, of the downwash factor o~, a n d o f  the sectional lift slope a must 
be determined for the analogous wing plan form. The properties of the given wing in compressible 
flow are then obtained as follows-: 
coefficient is : 

CL~ CL 1 CL~ 1 - - - - ;  - -  • a =  a~  C ~ -  /~ ~ ~ ~,. ,  

and thus 

According to the rule for tile velocity increments, the lift 

. . . . . . . . . .  (102) 

CLC ~a 
~ ' -  2 b  - -  f l '  . . . . . . . .  . . . . . . . .  ( 1 0 3 )  

and 

- -  . . . ° . , ° ° ° 

0¢ 0¢~ 

Hence, for the overall lift coefficient, 

p + l  i + l  

(m4) 

. . . . . . . .  (dOS)  

3.5 

compressible flow is • 

1 sin nn~(v~) CL.(~) ( !  

by  equations (74) and (102). 

- -  x ) " , , ( " , O  (107) 
X 

Since the x-co-ordinate is not affected by the transformation into the analogous wing, the 
aerodynamic centre position found for any spanwise station on the analogous wing can be taken 
directly to be that  for the corresponding station on the  given wing : 

xao( ) x o( o) 1 - no( o) . . . . . .  ( l o 6 )  
C - -  C 2 ' . . . . . .  

b y  equation (12). Tile chordwise load distribution at any spanwise station of the given wing in 



4.2. Wings Near Sonic Speed.--For Mach numbers near unity, fl is very small and the plan-form 
term 

2bs 2 2 
asc --  as. e l iAs  --  flA as .  c/5 

in the span loading equation (15) of the analogous wing tends to zero*. This demonstrates the 
Close resemblance between wings near sonic speed and wings of small aspect ratio. If the above 
term, multiplied by ys/c~, can be ignored compared with 1, equation (15) reduces to 

+ d ( ' ° 5  C 1 

2--~ _ d~' ~ - - ~ '  

for a flat wing of any plan form. This corresponds exactly to equation (18), and the solution of 
equation (108) is 

~ s  %/(1  - -  ~s~) ,  o r  Y - -  %/(1  - -  ~) . . . . . . . . . .  ( 1 0 9 )  

by equation (104). This states that  a flat wing has an elliptic span loading near sonic speed, with 
the overall lift coefficient 

C L _ A  %/(1--r~ ~)d~ = A (110) 
- -  2 • - . . . , , . . . . .  

by equations (105) and (107). These are the same results as were obtained by R. T. Jones ~. 
A recent, more detailed, investigation of wings at sonic speed by K. W. Mangle# ~ has shown 
that  some wing plan forms give less lift than ~A/2, owing to the effect of a system of incipient 
shock-waves occurring at sonic speed. In reality, shock-waves caused by the thickness of the 
wing will usually occur below sonic speed ; these, and boundary-layer effects, will invalidate any 
method based on a linearised theory for thin wings at small lift in inviscid flow, and the theoretical 
lift will not be obtained. The calculation method can thus be applied only for Mach numbers 
below the critical. 

4.3. Approximate Rules for Estimation Purposes . - -To obtain an estimate for the variation of 
the overall lift coefficient with Mach number, we may use Helmbold's formula for elliptic span 
loading in its extended form, equation (81). With equations (101) and (102), we find 

CL ao cos  9 

' c ¢ - - J {  1 - - M ° ~ c ° s 2 ~ ° - { - ( a ° c ° s ~ )  ~ } ~ A  _[_ a0 cos~ . . . . . .  (111) 
a A  

This relation was first derived in a different way by H. Ludwieg 3° for straight wings. Equation 
(111) includes the special case of the sheared wing of infinite aspect ratio, where 

CL a0 cos 
- V ( 1  - M 0  c o s  . . . . . . . . . . . . . . . .  ( 1 1 2 )  

which also follows from equation (78) with n s s  = 1, which gives CLs/czs = ao cos ~% ; and from 
equations (100) and (102). Equation (112) is the well-known Prandtl-Glauert rule, which there- 
fore applies only to wings of infinite aspect ratio. Equation (111) does not give the correct limit 
for M0 -+  1 : 

Cr ~A 2 
-- 2 1 + %/(1 + }A~tan"v) ' • . . . . . . . . .  (113) 

which is equal to aA/2 only for 9 = 0. 

* a~ tends to zero like ~/(/~A). by equation (83), since the effective sweep of the analogous wing %, --> 0 a s  

A, ---- fiA ----> 0, by equation (86). 
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As an illustration, Fig. 30 shows measured and calculated overall lift values at various Mach 
numbers. I t  can be seen that  neither equation (111) nor equation (112) gives a sufficiently 
accurate estimate in these cases. I t  appears that  equation (iii) gives a reasonable estimate only 
for wings of small aspect ratio, in particular for straight wings, as shown in Ref. 30. For the 
wings in Fig. 30, good agreement is obtained only when the spanwise load distribution is 
calculated first from the present method and the overall lift coefficient obtained afterwards 
by integration (full lines). I t  may happen in such a calculation that  the lift at Mo < 1 is 
greater than the limit as M0--+ 1, equation (110), so that  this limit is approached from above. 
This development is usually cut short, however, by the occurrence of shock-waves before M0 = 1 
is reached. In the special cases of Fig. 30, such shock-waves occur before the steeper lift rise 
begins and the measured lift drops near M0 ---- 0.9. 

These examples indicate that  ' rules ' like equation (111) or (112) may give misleading results. 
The need for such rules, however, hardly exists any longer since the present method enables 
Lhe full aerodynamic properties of a given wing at a given Mach number to be quickly and reliably 
estimated. 
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FIG. 14a. 0~ Large (~ > 0~max). Flow separation at 
all four edges. 

• FIG. 14b. c~ moderate (c~ > ~s). Flow attached at leading edge. 
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edge and sides. 

FIGS. 14a, 14b and 14c. Sketch of possible flow patterns. 
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