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Summary.—A method of calculating stability derivatives for wings oscillating at low frequencies is developed from
the modified vortex-lattice method outlined in R. & M. 24701, Derivatives are obtained for the following wings describing
plunging (vertical translational) and pitching oscillations : ‘

(i) Delta wings of aspect ratio 4, = 1-2, 2 and 3 with a taper ratio 1/7.
(ii) Arrowhead wing of aspect ratio 1-32 with a taper ratio 7/18 and angle of sweep of 63-4 deg at quarter chord.
(iii) Circular plate.

Comparison is made with measured values of the derivatives for the delta wing of aspect ratio 1-2 and the arrowhead
wing oscillating in incompressible flow. Satisfactory agreement is obtained with experiment, and also with values
calculated by the Multhopp-Garner method®. :

For the delta wing A4, = 3, derivatives are also obtained for particular (small) values of the mean frequency parameter
w,. These results were calculated by using the w,,—>0 solution, which is accurate to first order in frequency, with a
correction to allow for the oscillatory wake.- Comparison with values from Ref. 2, in which all frequency effects are
taken into account, indicates that the present method is adequate for small values of w,.

The theory of Ref. 8 for wings oscillating in compressible flow is applied to the delta wing 4, = 3, and the stability
derivatives for pitching oscillations are calculated for M = 0-745 and 0-917. The values of — m, are compared with
. values estimated by the Multhopp-Garner method and -with high-speed experimental results, for two positions of the
axis of oscillation. = For the front axis, the estimated values of — 4 are in agreement but are higher than the experi-
mental results. For the rear axis, the Multhopp-Garner values are closer to experiment than the values obtained by
the vortex-lattice method, and only differ appreciably from the measured values at the higher Mach numbers. It is
thought that the accuracy of the vortex-lattice results would be improved by taking more collocation points in the

solution.

1. Introduction.—A method is developed from the theory of Ref. 1, by the use of a modification
suggested by W. P. Jones, and it is applied in this note to the calculation of stability derivatives
for wings of various plan-form. The method of Ref. 1 is satisfactory for values of the frequency
parameter o, in the flutter range’, but it does not appear to be suitable for lower values of o,
since it gives infinite limiting values for /, and — m, for a finite wing as »,,— 0. This difficulty
is avoided if the lift distribution is assumed to be a combination of simple functions, such that
the corresponding doublet distributions are expressible as polynomials in ®,. The doublet
distribution over the wing and wake is then interpreted so that the main contribution to the

* Published with permission of the Director, National Physical Laboratory.
The oscillatory tables referred to in section 3.3 of this report will be published as R. & M. 29561°,
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downwash is obtained generally in terms of w,, with a correction to the downwash to. allow for
the effect of the oscillatory wake. The Falkner lattice scheme®is used forthe downwash calculation
and this reduces the latter to a simple routine which avoids the use of complex numbers. The
solution for w, — 0 is limited to first-order terms in frequency, and the present calculations for
particular (small) values of w,, are based on this solution, with a correction to allow for the higher
order frequency effects due to the oscillatory wake. The method is extended in Ref. 2 to take into
account all frequency effects, and this can be used as an alternative to the method of Ref. 1 for
values of w,, in the flutter range.

The results given in this note are based on 21 x 6 lattice solutions. The use of 6 chordwise
vortices on a highly swept low-aspect-ratio wing may appear to be an inadequate representation
of the chordwise loading, especially when the solutions are required for the calculation of pitching-
moment derivatives. However, in Ref. 7, this lattice is used to calculate the lift on delta wings
of aspect ratio 1-0 to 2-5, and it gives results which agree well with the experimental values.
The present results for incompressible flow are also in satisfactory agreement with the measured
values and the Multhopp-Garner values, so that the 21 X 6 lattice does seem to give reasonable
accuracy for swept wings of low aspect ratio. Solutions based on a finer lattice would give
further information on accuracy, but for oscillatory.problems the calculation would be rather
laborious. Lo

The stability and flutter derivatives for compressible flow can be calculated, as suggested in
Ref. 3, by relating the oscillatory motion of a wing in subsonic flow to that of a wing of reduced
plan-form in incompressible flow. The present incompressible solutions for the delta wings
A, = 2and 1-2 are used, in conjunction with the transformation formulae given in section 5.2,
to calculate the stability derivatives of the delta wing 4, =3 at M — 0-745 and 0-917. The
values of the derivative — s, are plotted in Fig. 6 and, for comparison, the values of — s,
obtained in recent tests at the N.P.L. and the results given by the Multhopp-Garner method*
are also plotted. It should be noted that the agreement between the vortex-lattice and the
Multhopp-Garner. values, for the incompressible flow solutions for the delta wings A, = 1-2and-2,"
is quite good. The discrepancy in the compressible flow results for — m, seems to occur because
relatively small numbers in the incompressible solution are multiplied by p~° as can be seen in
equation (27). The effect of the =% terms is to magnify inaccuracies occurring in the incom-
pressible solution and so it is apparent that a véry-reliable method is required for the latter
solution. The difference between the theoretical and experimental values may be partly due to
the effects of thickness and boundary layer which are not allowed for in the theories, and partly
due to wind-tunnel interference effects. ' ‘

LIST OF SYMBOLS

V Velocity of flow
x = R(y)——fcosﬁ 1 o :
, 2 Definitions of chordwise parameters 6 and & where
o c - R(y) is the mid-chord line :
%, Trailing-edge co-ordinate”
¥ = sy, definition of spanwise co-ordinate
B () - Local ehord :

e Root chord

Cpy Mean chord




s Semi-span
S Area of wing .
4, Aspect ratio = 4s*/S
P|2n | Frequency
w 20" = pc[V, local frequency pararheter
@, pc,/V, mean frequency parameter
' K e Doublet distribution (discontinuity in velocity pbtential)
I e? Bound vorticity . |
E e? Free vorticity
W e# Induced downward velocity
z" ettt Normal downward displacement
| ‘]"0 : 2 cot—;—
I, 96 -+ cot_—; + sw'[sin § + % sin 26]
r, — 2 sin + it {Sin%TQ — Sin%%:;;—w]
when # > 2
K, = Kf0)+io K0) +0@)  0<6<a=
Ky(n) . exp{— ip(x — x)/V} %>
K, Q [sin & + % sin 26]
X, % [sin%%‘jt?e B éin%?l_lﬁ] whenn > 2 -

Definition of Derivatives for Translational and Pitching Oscillations

. (i) Delta and arrowhead wings :

Lift

= (I, + 1w,z + (L + zwml)

pVES et -
Pitching moment
pV*Sc,, e
where o,, = pc¢,/V, and ¢,z and oare the amphtudes of the translatmnal and angular displace-
ments of the oscillation, 4 AT C

= (m, + t0,m;)z - (m + to,m;) o
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(ii) Circular plate :
Lift : .
P VS eitt = (L + o)z + (I, + 10,0;)

Pitching Moment . }
- pV§51’ it — (mz + zco,m;)z -+ (ma + zwrma')a

where w, = pr[V and r = radius of circle, and where 7z and « are the amplitudes of the transla-
tional and angular displacements of the oscillation. : :

(i1i) Transformation formulae :

If the definitions 'above are for a reference axis OY, as shown in Fig. 1, then the derivatives
referred to an axis at a distance 4'c,, (or 4’7 in the case of the circular plate) back from 0V,
- are obtained by the usual transformation formulae

I, =1,
Io=la— R,
—m, = — m, — W',
— = — m, — W', —m,) + W, etc.

2. Theory—In the general linearized theory given in Refs. 1 and 8 for a thin wing describing
simple harmonic oscillations of small amplitude in incompressible inviscid flow, it is shown that
the discontinuity in the velocity potential can be represented by a doublet distribution K e#*
over the wing and wake, where K e is related to the bound vorticity I' e and the free vorticity
E €* by the equations

. oK
I' = —
V wK TV P (1)
VE = — ipK

where the time exponential terms are omitted for convenience. Since I' is a function of the
chordwise parameter 8, the doublet distribution over the wing can be expressed as

£
K(wing) = K(8) — ge—fw'f rewtge —1<&<1
—1
where £ = — cos 9. .. e .. .. .. .. (2)
~Also I = 0 in the wake, hence the doublet disﬁribution over the wake is
K(wake) = K(m) e~ £>1. 4
= K(n) e~#a—5)/V X =%, .. .. .. .. .. .. (8)

The downwash W e# induced at a point (#1, y1) on the wing, by the distribution K e# over
the wing and wake is known to be '

Aa W — ‘Kiz 1 dx d | ‘ 4
7T = 8212 y xay .. .. .. .. . .. .. _ ()

where 7* = (¥ — %) + (y — 3,)® + z2and z,— 0. Then W has to satisfy the tangential flow
condition, which for simple harmonic oscillations is

.y 0z’

where 2’ €* is the normal downward displacement of the point (xy, y,) at time #. The problem
is to find a distribution K which will satisfy equations (4) and (5).
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2.1. Ttis assumed that the bound vorticity over the finite wing can be represented by
I =VZirC,A4, -. . - . . . . . (6)

where C,,, are arbitrary coefficients. In Ref. 1, the chordwise distribution I is defined in terms
of the lift function C(w’). The latter tends to [1 + 0’(y + log, $»’)] as ' — 0, so that infinite
limiting values are obtained for the derivatives /; and — m,;. This difficulty is avoided in the
present method by assuming

' I'y=2cot}6. . . : : . .. (7)
The I, distributions, #» > 1, are the same as in’ Ref 1 and are deﬁned in the list of symbols.
The spanwise f.unctlon Am is defined as
' cd,, = sT,, = sp” ' /(1 — 7n? . .. .. . . (8)
where m takes odd or even values according as symmetrical or antlsymmetmcal motion of the
wing is considered.

The corresponding distribution K over the wing and wake is then
K =V2:K,C, A, .. .. . . . 9)

where K, corresponds to the chordwise d1str1but10n r,. Con51der the dlstnbutlon K,(0) over
the wing defined by equations (2) and (7). Since the present method is to be used only for small
values of the frequency parameter o = 20/, it is permissible to expand (2) with respect to »’
and obtain K,(6) in the form

K(wing) = K,(0) = K,(0) + t0'K,(6) + Oe?) |
where K,(8) = c[0 - sin 0] ' B (10)
] sin 29 N -
K,,()—o[ i no 4 —{—Bcosﬁ]

Then, by (3), the distribution K, over the wing and wake can be regarded as the sum of two
distributions K," and K,”" such that

K, = K,(8) over the wing 0<i<n=
K,(=) over the wake x > %,
Ko(n) [e= %)V _ 1]
over the wake % = %,

It follows, by (10), that distributions K./, K,” and K,’, K," can be similarly defined in terms of
K and K. It should be noted that there is, in general, a spanwise variation in the local parameter
o' in equation (10), and. this is allowed for in the calculation by writing

=< > WA L 1®)

The distributions K, for # > 1, are the same as in Ref. 1 and are defined in the List of Symbols.
They are independent of the frequency and zero in the wake.

The downwash W induced by the K distribution (9), is obtained from integral (4) in the form
W = V]V (WO)n —I_ W(]m”)cﬂm _I— 2 2 ancnm:l ' .- .. . ' (13)

n=1 1m

' : R S5

where W,,,’', W, ,-and W, are the normal induced velocities due-to the doublet distributions
Ky4,, K'4, and K, 4, respectlvely Furthermore, by (10) and (12), the downwash W,,’ will
be in the form .

Wﬂml Wam + zmebm + 0( @By ) ) .. . . (14)
where ‘W', W, ...., the downwash corresponding to the doublet d15tr1but1ons K/'A4,,
KA f(n]) .- oot , are independent of the frequency.
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3. The Calculation of the Downwash.—Since W,,',' W,, . . .. are integrals of the simple type
such as occur in steady-motion

problems, they can be evaluated approximately by the ordinary
vortex-lattice method. The downwash W,,"’, induced by the doublet distribution K,,''A, over
the wake, is evaluated for the general case w,,—> 0 as shown in section 3.2, or for a particular value.
of »,, by the modified vortex-lattice method as indicated in section 3.3. The downwash W,,, for

n = 1, 1s also independent of the frequency and is calculated by the ordinary lattice method. .

3.1. The Falkner vortex-lattice method is described in detail in Ref. 6. A steady doublet
distribution K(6).4,,(3), to which corresponds a vorticity distribution 2K(6)/9x.4,,(1), is replaced
by a lattice of rectangular vortices each of width 2s,, and strength ¢L(k).A,.(n.) = sL(k).T,,(n,)
as shown in Fig. 1. The chordwise factors cL(k) are chosen on the usual two-dimensional
basis, to give the same downwash at selected points on the chord, as the continuous distribution*

cK(6). The total downwash W,, at a collocation point (¥1, 91) is then obtained, by summation,
by using the downwash factors given in Ref. 9 for a rectang o

ular vortex of unit strength.

The results given in this note are based on a 21 x 6 lattice with 6 collocation points placed
on the  and 5/6 chord, at the spanwise positions n = 0-2, 0-6 and 0-8. It is usual, in applying
this lattice, to use fewer chordwise vortices when the spanwise parametert Y > 10.; for
example, with a steady doublet distribution K = Ve(6 + sin 0), that is a vorticity distribution
9K [ox = 2V cot 46, the lattice is reduced to one vortex at the quarter-chord position. It is
thought that the accuracy of solutions for low aspect-ratio wings may.be improved by taking
two chordwise vortices at one-quarter and three-quarter chord position, when Y > 10, for all the
K, distributions considered. In the case of the delta wing A, = 3, this modification decreases
the lift-slope coefficient from 3-13 to 3-08 which agrees better with the value of 3-05 given by
the Multhopp-Garner (2 chordwise, m = 15 solution) and the experimental value of 3-05.

The chordwise factors L,/ (k), L, (k) and L,(k) corresponding to the two-dimensional doublet
distributions K,’, K,” and K,, are givenin Table 1for 2 =1, 2. ... 6 with the lattice positions at
1/12,3/12....11/12 chord, and for k=1, 2 with the lattice at one-quarter and three-quarter chord..

3.2. If a solution is required for w,,— 0, the calculation can be kept quite general throughout

by considering only first order terms in o,, and by evaluating W,,” numerically from equation
(15) given below. ‘ :

Since the point (x;, y,)

is outside the range of integration, the integral W, obtained from (4),
reduces to )

4aW,,'" = ~j J Ii[’;ﬁflmdx ay-

1
%

where = (x — 9&1)2 + (v — w)? énd'KO” is defined by (10) and (11). If the exponential term
is expanded and only first-order terms in p are retained, it may be shown that

,,___1* ’ w.£ Ku(n)Am(x_xt) .
WOm - 476 JA_j ? V . dx dy

# 713
e [0 " — X X — % ‘
=tw, — Tm 3 - 3 dx d’}?
4ch 1 %, 1’1 71
1 -
. st — 17— (% — x
= tw,, T Tm [“—; ( L P l)J d77
4cm J 1 . (y - yl)

* The two-dimensional downwash correspohding to the distribution ¢k’ is
Wy =W, +io'W,” + O
where W, =1, W," == cos 8 + log, 2|1 + cos 8|

T Y is the spanwise distance from the centre

-line of a rectangular vortex to the collocation point (%, ¥,), in terms of
the semi-vortex width s,. S ‘ : C g
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where T, = 7" 4/(1 — %) and 72 = (%, — %,)* + (y — y,)%, and where, in general, % is a
function of the spanwise parameter . The integral may be written as

' . S i nm—-l \/(1 . nZ) N o .- - . "/’, - N
W, = i, i S O
’ " 4Cm J—-l € + \/6 —|" (7] — 771)2 g T L ) ( )

where e:(”——1>. : A S ’
S o ) S . ) i

The total downwash W at a point (x,, 7,) is then given by equations (13)—(15), where for the
w,,— 0 solution, only first-order terms in w,, are retained. When W 1s known' at a sufficient
number of collocation points, the arbitrary coefficients C,,, are determined so that W satisfies-
equation (5) at each point. The downwash equations can be written in matrix notation as '

[4 + i0,B]{C} = {k} e e
where the elements A and B of the matrix are real and independent of w,; [4] is the matrix
corresponding to the w, = 0 solution and the column matrix = 7 .. .~ &7

{C} = {CDI? Cll: C21 e CO'm) ‘Clm_) sz e e . }.,‘ o - i -.._ L
The column matrix on the right-hand side of (16) is" : - ‘ o
gy = [Py Wy Wiagy ]
with the values W[V thained from eq_uation (5).

3.8. If a solution is ‘requi“red for a partibular value of ., fre(iuéncy»éffécts higher than. first.

order may also be allowed for in the calculation of W,,”, by using the modified lattice scheme of
Ref. 1. The continuous doublet distribution K, 4,, is defined by equations (10) to (12) a

ALK {m) 0, Kofn)f([n]) + Ol — 1. 000

This is replaced by doublet strips of width 2s,-and strength proportional to sife PeT = 1
extending from x = %, to x = . The downwash W,,,"” is calculated by summation by using the
tables of Ref. 10, which give the downwash due to a doublet strip of strength s, e7#¥ ¥ oscillating
at a frequency p/2x, together with the tables of Ref. 9. ‘ S

i

_ The total downwash W at a point (x;, ¥,) is then obtained from equations (13) and (14) for
the particular value o,. In this case, the set of downwash equations can be solved directly’ or
by the approximate method suggested in’ section 4.1 if the value of w,, is small. = The equations
in matrix notation are S -

A+ @FaN{Cr=43B . | (17)
where A, a and b are real, and the column matrices {C} and {h} are as defined above for-
equation (16). : .

4. Solutz’m‘df Equations.—The equations for the w,,— 0 solution are given by (16), and in this,
case the values of {A} are obtained from equation (5) in the form S s

By =W +iw Y. . o e e (8

Let = {C}={C+10,C"} . D -

so that equation (16) becomes - Coe : o

R A+ i BIC 1 50,0 = (K Fiwy. ..o L9y
7. :
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Then if terms O(w,,*) are neglected
[AC} = {#}
[B]{C’} + [A]{C”} — {h”}
and hence the solution is .
{C) = [A1 {7} | } | (20)
{0} = [A)7 {#"} — [A][B] [4]7* {W'} |
where {C} = {C’ + 40, ("} and [A]~* is the inverse matrix of [A4]. o
4.1. The equations for a particular value of w,, are given by (17). For small values of ®,,

a and b are small compared with A and the following approximate solution is suggested which

avoids the solution of complex simultaneous equations and reduces the amount of computing
when several values of w,, are considered.

Let C, be a first approximation to C, such that _ ‘
[A{C.Yy=<{r}. .. - . .. . . . . . (21)

Let C, = C, + ¢ be a second approximation to C, where ¢ is assumed small compared with C,,
so that the term [a 4 /b]{¢} can be neglected. Then, substituting in equation (17)

[AHC} + [a + B){Ci} + [A){e} = {A}
[AKe} = — [a + ib] [A]7* {A}.
1C} = {C + e} = [A]7{h} — [A]7 [a + i8] [A]*{h} . - (22)

This process can be continued if C, is not a sufficiently accurate solution.

3

and, by (21) -

Hence

5. Application of the Method.—5.1. Incompressible Flow.—The method is used to calculate
the aerodynamic coefficients of the following wings, which are describing plunging (vertical
translational) and pitching oscillations for @, — 0.

(i) Delta wings of aspect ratio 4, = 1-2, 2 and 3, with a taper ratio 1/7. Values of the
derivatives for the axis position at 0-556¢, are given in Table 2(a) and values of the
derivative — s, are tabulated in Table 2(B) for various axis positions. The latter
results are plotted in Figs. 2 and 8.

(ii) Arrowhead wing of aspect ratio 1-32, with a taper ratio 7/18, and angle of sweep of 63- 4 deg
at quarter-chord. Derivatives are given in Table 3 and the variation of — m; with
axis position is shown in Fig. 4. ‘

(iii) Circular plate, aspect ratio 4/z. Derivatives are given in Table 4 and the variation of
: — m; with axis position is shown in Fig. 5.

For the delta wing A, = 3, derivatives are also obtained for w, = 0-13 and 0-26. The values
are given in Table 2 and Fig. 2. :

The results are based on solutions in which the general distributions I" and K, defined by
(6) and (9) were limited to the chordwise terms # = 0 and 1, with the K,(0) distribution limited
to first-order terms in w,, and the spanwise terms m = 1, 3 and 5. For o,,— 0, all terms
O(w,’) were neglected throughout the solution and the downwash values were calculated by
the modified vortex-lattice method described in section 3; the downwash values W, — [4 +iw,B]

wn

are tabulated in Tables 5a to 5D for the wings (i) and (i) and the values W,, = [4 + iw,B]
are given in Table 6 for wing (iii). The solutions for the particular (small) values of w,, considered
in this note were also based on the first-order method, but higher order frequency effects due to

the oscillatory wake were allowed for in the calculatipn of W,,"”. The unknown coefficients
8
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C,, were determined by solving the simultaneous equations obtained from (5) and (18). For
plunging and pitching oscillations the displacement 2z’ e? is defined as follows :

2 = ¢,z -+ xo for wings (i) and (ii)
where ¢,z and o are the amplitudes of the translational and angular displacements :
2" = vz + x«for the circular plate
where 7 = radius, #z and « are the amplitudes of the translational and angular displacements.
When the coefficients C,, have been determined, the lift distribution p¥ T defined by (6) is

integrated to give the total lift and the pitching moment for the axis OY. The aerodynamic
derivatives are then computed according to the definitions given in the List of Symbols.

5.2. Compressible Flow.—In Ref. 3, W. P. Jones has shown that stability and flutter derivatives
for a finite wing oscillating in compressible flow, can be estimated by considering a wing of
related plan-form in incompressible flow. If the original wing of aspect ratio 4 at Mach number
M = 4/(1'— 7, is describing simple harmonic oscillations at a frequency $/2=, then a solution
for stability derivatives, to first-order accuracy in frequency, can be obtained by calculating the

incompressible flow solution of a wing of reduced aspect ratio 4, = g4 (reduced laterally by
the factor ), with a changed mode of oscillation and a frequency P2 = p[2np?.

If I, %, w refer to the lift, circulation and downwash of the original wing A, then
] = pVI exp{i(d, X + @,T)}
k= K exp{i(%,X + @,T)} . .. .. .. .. (23)
w = W exp{i(4,X + &,T)} '

where I', K, W are the distributions defined in section 2 for the reduced wing 4, at M = 0,
oscillating at a mean frequency parameter value o, = pc,/V — 0, and where

z __ p2
E)m : p;n 3 A’ﬂ = <% d’ﬂl

&, =pt, X =xfc,.

For plunging and pitching oscillations of amplitude ¢,z and «, the tangential flow condition for
the original wing 4 is '

w = V[ia,(z + Xa) + o] &' . .. . (24)
Hence, by (23), the flow condition for the reduced wing 4, is
- %U exp{— ¢(,,X + &,1)} V
V.. —iA X
:E[zwm(z—}—Xoc)ﬁ—oc]e wx L .. .. .. .. .. (25)

It is shown in Ref. 7 that to first-order accuracy in frequency

. 52
4aW = J J K o <%> dx dy, where integration is over wing 4, and wake.
1
z—>0

Thus the downwash W at a point (X,; Y;) on the reduced wing 4, in incompressible flow, may be
calculated by the method for w,,— 0 outlined in section 3. The set of downwash equations may
be expressed in matrix notation as

[A—{—z;o,,,B]{C}:{—VZ—(—T/’L—Q} L =
where w,, = @,/
9



The column mattix {C} = {Cyi, Cu, Coi ... Copm Cis Cam - . . . ., where the C,,’s are the arbitrary
coefficients assumed in the I distribution. The column matrix {W(X;,, Y,)]V} deniotes the values
of W|V at collocation points (X, Y;) as given by equation (25). If these values are expanded in
terms of @,, and only terms of first order are retained, then equations (26) can be solved by the
method given in section 4. The coefficients {C} for plunging and pitching oscillations are obtained
in the form : Co

A{Cy ={C" +in,C"} e e @)
where {C"} = a: 213- (A1 {1} .
ey == g 13 — o (A5 o x)
— . A1 [B] (4] {1}

and [A]" is the inverse matrix of [A].
The amplitude of"thellift distribution for the original wing 4 is, by (28) and (6), '
' = Zg—i‘%T =pV 22T, C,,,,,Am] et L, .. .. . .. (28)

nom

where cd,, = sT,, = sp" ' 4/(1 — 5?), |
semi-span of wing 4, = s = 5 and § = semi-span of wing 4. - 7
The stability derivatives for the original wing at Mach number M, are then obtained by integra-

tion, only terms of first order in frequency being refained. |

In the :present report the incompressible flow solutions for the delta wings 4, = 1-2 and 2
were used to calculate the stability derivatives for pitching oscillations of the deltd wing 4 = 3
at M = 0-745 and 0-917. The values are tabulated in Table 7, and the derivative — Wy 1S
plotted against M in Fig. 6. S :

6. Results Quoted for Comparison.—Low-speed tests on the delta wing A, = 1-2 have recently
been made at the N.P.L. for axis positions at 0-431¢, and 0-556¢, (Ref. 11). Values of the pitching
derivatives are given in Table 2 for the 0-556¢, axis and values of — m; are plotted in Fig. 2
for both axis positions. The results quoted are for zero mean incidence and the tests show no
amplitude effects. The derivatives were measured for frequency parameter values w, = 0-08
to 0-60 and were approximately constant over this range. o

Tests on the arrowhead wing of aspect ratio 1-32 have recently been made at the N.P.L.
Measurements for zero mean incidence, made by Scruton, Woodgate and Alexander®, indicate
that the damping derivative — m,; for an axis at 0-738¢, = 1-063c,, decreases approximately
linearly from 0-196 to 0-135 for the range 0-027 < w,, < 0-2 and has a nearly constant value
0-135 for the range 0-2 < o, < 0-6. The value — m; = 0-21 which is plotted in Fig. 4, was
obtained by extrapolating these results to w,, = 0. o :

Values of — #m;, for the delta wing 4 = 3, have recently been measured by Bratt in a high-
speed wind tunnel at the N.P.L.; the results given in Figs. 2 and 3 are for M/ = 0-4 and those
plotted in: Fig. 6 are for the subsonic flow range 0-4 < M < 0-9. The values quoted for the
two axis positions 0-431c, and 0-556¢, are for a mean frequency parameter value w,, = 0-07
and zero mean incidence.

. The Multhopp subsonic lifting-surface theory for steady motion is extended, in Ref. 4, to deal
with harmonic oscillations of low frequency. Values of — m; calculated by this method for the
delta wing 4, = 3, the arrowhead wing 1-32 and the circular plate in incompressible flow, are
plotted in Figs. 3 to 5. The effect of compressibility .on the derivatives of the delta wing 4 = 3,
is also estimated in Ref. 4 and the values of — m; are plotted against Mach number in Fig. 6.
These results were obtained from solutions based on 2 chordwise and 7 spanwise terms.
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7. Concluding Remarks.—A comparison of the vortex-lattice results and experimental values
indicates that the present method is satisfactory for the calculation of stability derivatives for
incompressible flow. Solutions based on a 21 x 6 lattice with 6 collocation points give reasonable
accuracy even for wings of very low aspect ratio. The wings are assumed to be rigid in the
present calculations, but the effects of distortion could readily be taken into account ; the method
of Ref. 1 has been applied to the case of a delta wing oscillating in elastic modes in Ref. 12.

For compressible flow, the present solutions give values of — m; for the delta wing 4 = 3,
which are not in such good agreement with the measured values. This indicates that a very
reliable method is required for the equivalent wing in incompressible flow. It is possible that
the accuracy of the vortex-lattice solutions would be improved by taking more collocation

points in the calculation,
based on a finer lattice.

and further information on accuracy might also be provided by solutions
The difference between theory and experiment may also be partly due

to the effects of thickness, boundary layer and wind-tunnel interference, since these are not
allowed for in the calculation.

Acknowledgme%t.eThe numerical results given in this report were calculated by Mrs. S. D.

Burney of the Aerodynamics Division.
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Chordwise Factors of the Rectangular Vortices

TABLE 1 .

Representing the Doublet Distributions K., K and K,

Position
k L!(k) L(k) Ly(k) of vortex,
on chord
1 045127 —0-1143% 0-17097 1/12
2 0-2051x —0-20257 0-0114m 3/12
3 0-1367x —0-2537x —0-0358~ 5/12
4 0-0976x —0-28957 —0-0553~ 7/12
5 0-0684x —0-3149x —0-0570x 9/12
6 0-0410= —0-3251n —0-0342x 11/12

When the spanwise parameter Y > 10, the 6-step lattice is replaced by a 2-step
lattice with the following factors:

, , Position
k L,(k) Ly(k) L,(k) of vortex,
on chord
0-750x —0-5767x 0-125x 1/4
2 0-2507 —0-9233x —0-1257 3/4
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TABLES 2A and 2B

Aerodynamic Derivatives for a F mm'ly of Delta
Wings of Taper Ratio 1[7

A Derivatives for axis position he, = 0-556¢,

Ar Wy, lz lz la l(;. - mz — M, — Wg - m(;
12 | —0 0 0-815 0-815 0-778 0 —0-008 |—0-008 0-268
. 0:-06

Experiment to 0-6 0-850 | 0-867 0-008 | 0-265

2 —0 0 1-191 1-191 0-940 0 —0-043 |—0-043 0-313

3 -0 0 1-539 1-539 0-926 0 —0-083 |—0-083 0-346

0-13 (—0-008 1-533 1-537 0-970 {—0-002 [—0-085 |[—0-087 0-341

0-26 |—0-015 1-521 1-531 1.021 |—0-009 |—0-090 |—0-096 0-340

From Ref, 2% 0-26 |—0-017 1-490 1-499 1-030 |—0-008 [—0-082 |—0-088 0-342

* The method of Ref. 2 takes into account all frequency effects.
B Variation of the pitching-moment damping coefficient — m, with
axis position
Axis position A, =1-2 A, =2 A, =3

h o Wy —>0 wp —>0 w,, —> 0 —0-13 —0-26
-0 —0-750 1-789 2-313 2-623 2-654 2-685
0-1 —0-575 1-401 1-787 1-998 2-023 2:051
0-2 —0-400 1-064 1-334 1-468 1-487 1-510
0-3 —0-225 0-777 0-954 1-032 1-045 1-062
0-4 —0-050 0-539 0-646 0-691 0-697 0-707
0-5 0-125 0-352 0-412 0-443 0:442 0-446
0-6 0-300 0-214 0-251 0-290 0-281 0-277
0-7 0-475 0-126 0-163 0-231 0-215 0-202
0-8 0-650 0-088 0-147 0-267 0-242 0-220
0-9 0-825 0-100 0-205 0-397 0-363 0-330
1-0 - 1-000 0-162 0-335 0-621 0-578 0-534

A4, = Aspect ratio. k¢, = Distance back from apex. A'c, = Distance back from leading edge at mean chord,
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TABLES 34 and 3B

Aerodynamic Derivatives for w,,—> 0, for the Arvowhead
Wing of Aspect Ratio 1-32

A Derivatives fov axis through wing apex B Variation of — wm; with the axis position He,
lz = O ' ’ . . . ’ .
1= 0833, | ¥ IR SR .
.1, =0-833 . ‘
I, = 1-491 0 1-653 1-2 0-110
“ =0 0-2 1-230 1-4 0-085
= 0-4 0-872 1-6 0-128
— ;= 0-795 0-6 0-582 . 1-8 0-237
— e = 0-795 0-8 0-358 . 2-0. 0-413
— o — 1-653 1-0: 0-200 2-1 0-525

W Distance back from apex
- Mean chord ¢,,

‘TABLES 4a and 4B

nAabd‘yndWﬁc Dreyi'vc-zﬁves-for w, —> O, fvorn the Ciyvcular Plate

A Derivatives for mid-chord axis position B Variation of — m; with the position I’y
lz =0 ; . i .
l; = 0-891 h — ho — Mg
lo == 0-891
ly—1-198 0 1-904 1-2 0-168
Cm—o. 0-2 1-437 1-4 0-128
AR 0-4 1-040 1-6 0-160
— m; = —0-462 0-6 0-715 1-8 0-262
— Mg = —0-462 0-8 0-462 2-0 0-436
— = 0-279 1-0 - 0-279

,  Distance back from axis OV
B o= -
‘ Radius »

N.B. For the circular plate, the derivatives are defined in terms of radius 7 and the frequency parémeter w, = prfV
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TABLE S

Values of the Downwash W, at C ollocatzon Povnts (£, 7),

4s o, -—>O Moztmx [WW = [A —}— zwm B]

A Delta wing, A, — 12, taper vatio 1/7

Values of A
wom
(&) ©1) (0, 3) (0, 5) (1, 1) T8y (1, 5)
© ,0-2 0108514 | —0.192082 | —0-097694 | -+0-376591 | —0-049566 | —O0-018831
© ,0-6) 1-869389 11.229127 | +0-323397 | +0-527714 | -+0-188470 | +0-020035
©-,0-8) 1-460079 12153558 | +1-600454 |. +0-647579 | -+0-475148 | +40-290190
(0-6,0-2) 1-858005 | —0-450832 | —0-204099 | —0-035192 | —0-035352 | —0-013248
(0-6, 0-6) 1-821870 11.042284 | 4-0-090942 | —0-034863 | —0-023507 | —0-032319
(0-6,0-8) 1-791262 +92-320668 | 4+1-622047 | —0-024056 | +0-004907 | —0-005391
Values of B
© ,0-2) —0-902452 | +0-037571 | +40-043006 0 0 0
0 ,0-6) 10-590266 | —0-337046 | —0-146324 0 0 0
© ,0-8) 11-189472 | —0-092964 | —0-226604 0 0 0
(0-6,0-2) —1-746289 | +0-208218 | 4-0-123541 0 0 0
(06, 0-6) 40105414 | —0-636394 | —0-186398 0 0 0
(0-6,0-8) 40822195 —0-538394 —0-537242 0 0 0
Matrix [4]~* = Inverse [A] -
= | —0-024799  +0-022579  +0-024209  40-443605 40060215 = --0-022560
10-180849  —0-264924  }0-113464  —0-959311  +1-181681 . —0-235201
—0-152872  +0-297337  —0-167934  --0-812630  —1-719792  40-912387
19.204322  +0-160846  —0-011079 ~ —2-147829  —0-380839  —0-137279
—7-604031  +7-100503 ~ —1-242028  +7-171827  —5-351964  +0-554261.
17-157274  —11-772407  +5-466740  —6-543621  +10-025678  —4-001210

* Values computed using a 21 X 6 lattice, see section 5.1.
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TABLE 5—continued

Values of the Downwash W, at Collocation Points (&, m),

as o, —>0: Matrix [W,,] = [4 + ‘0, B]

B Delta wing, A, = 2, taper vatio 1]7

+4-771559

16

+8-538777

Values of 4
(n, m)
{0, 1) (0, 3) 0, 5) (L1 (1, 3) (1, 5)
2-246360 —(-198365 —0-109259 -+0-491625 —0-039526 —0-017030
2:075138 -+1-276306 -+0-333906 -+-0-6873876 +4-0-247882 —+0-047694
1-841571 --2-347650 -+1-720971 —+0-789012 +0-572563 +0-360294
2058579 —0:418811 —0+193909 —0-073434 —0-033248 —0-010680
2:100124 41143870 +0-142683 —0-097033 —0-042369 —0-037870
2105804 +2-495959 +1-730210 —0-102412 —0-038766 —0-032003
Values of B
—0-577420 -+0-087529 --0-065797 0 0 0
-+-0-884008 —0-239310 —-0.- 098152 0 0 0
-+1-386536 —0-006636 , —0-172537 0 0 0
—1-541114 +-0-251686 ~+-0-145470 0 0 0
-+0-308518 —(0+ 576252 —0-156581 - 0 0 0
+1-008446 —0-464492 —0-494361 0 0 0
Matrix [A]~" = Inverse [A]
-+0-004305 -+0-031684 +0-012656 --0-382884 ~f—0 -031939 +-0-021845
+0-115475 —0- 173535 —+0-095157 —0-904595 +1-097641 —0-245764
—0-100315 -+0-169963 —0-095475 +4-0-770748 —1-585657 +0-850936
+1-735261 —0-009304 4-0-010876 —1-656416 —0-160768 —0-071822
—6-373714 -+6-373417 -—-1-414931 -6-006561 —4-988878 -+0-859485
+6-033481 49 +951018 —5-662248 —3-783405




TABLE 5—coutinued

Values of the Downwash W, at Collocation Points (£, n),
as w,— 0: Matrix [W,,] = [4A + to,, B]

¢ Delta wing, 4, = 3, taper vatio 1/7

17

Values of 4
(n, m)
(& n) (0, 1) (©, 3) (0, 5) (1, 1) (1, 3) (1, 3)
(0 ,0-2 2458756 —0-195188 | —0-115555 | -+0-645748 | —0-025716 | —0-013964
© ,06 2414351 +1-374274 | 40-365665 | +0-869258 | 10-324655 | +0-082044
0 ,0-8 2-330373 +2:610238 | 41-882558 | --1-003016 | --0-712047 | --0-456151
2330578 —0-386435 | —0-185827 | —0-126059 | —0-033164 | —0-009490
2484706 +1-280207 | --0-205682 | —0-180251 | —0-066988 | —0-044739
9-555151 +2:742383 | 4+1-889420 | —0-205678 | —0-099858 | —0-068765
Values of B
—0-103985 | +0-163728 | --0-098566 0 0 0
+1-324390 | —0-102120 | —0-032462 0 0 0
+1-749240 | +0-144602 | —0-080946 0 0 0
—1-216082 | +0-318155 | --0-177002 0 0 0
+0-618644 | —0-480253 | —0-108708 0 0 0
+1-300771 | —0-350863 | —0-427588 0 0 0
Matrix [A]"" = Inverse [4]
+0-028749  --0-030203  ++0-006559  +0-328850  -0-014627  -0-019822
+0-055675  —0-083183  40-061865  —0-843274  0-999144  —0-233840
—0-059792  -+0-058528  —0-023527  -+0-727855  —1-446895  -+0-766814
+1-363347  —0-090436  +0-021499  —1-282768  —0-033984  —0-042999
—5.266358  -+5-472015  -—1-338337  +4-938347  —4.498781 0920182
+5-029755 ~ —8-262751  -+3-943692  —4-746507  +7-167276 = —3-269687




TABLE 5—continued

Values of the Downwash W, at Collocation Points (&, m),

as w,,— 0. Matrix [W,,] = [4 + {o,, B]

D Arrowhead wing, A, = 1-32

18

Values of 4
(n, m)
0,1) 0, 3) 0, 5) (1, 1) (1,3) (1, 5)
2-455413 —0-094812 —0-072411 -+0-508700 —0-046908 —0-016548
1-709472 +1-246541 +0- 350006 +0-681309 +-0-207564 +0-019803
1-155726 +1-991932 - +1-493441 +0-697997 +0-470449 +0-274126
2177069 —0-347152 —0-160035 —0-142266 —0-059275 —0-017160°
1-880055 +1-131840 +0-152661 —0-071080 —0-085286 —0-074402
1-661872 -+2-304480 +1-627161 --0-042384 -+0-006498 —0-023228
Values of B
—0-618615 —0-002877 +0-031718 0 , 0 0
+0-840746 —0-326405 —0-149544 0 ‘ 0 0
+1-275811 —0-183516 —0-309744 0 - 0 0
—1-575591 +0-123108 -+0-090074 0 0 0
-+0-199694 —0-701210 —0-220355 0 0 0
+-0-878692 —0-740021 —0-709154 0 0 0
Matrix [A]~' = Inverse [A4]
—0-005644 -+0-085950 -+-0-020567 +0-397716 +0-001075 -+0-005702
+0-044716 —0-340813 +0-300989 —0-769294 +1-310483 —0-399569
+0-011434 --0-227656 —0-344788 +0-616710-  —1-698750 +1-102595
+1-631330 —0-052604 —0-049933 —1-601837 —0-188179 —0-010150
—6-176317 --7-181908 —1-858422 +6-123068 —5-281307 +0-983731
+-6-082440 —11-233294 -+-6-569049 —5-876145 +9-270489 —4-789940




TABLE 6

Circulay Plate : Values of the Downwash* W, at Collocation Points (§,4), as o, = pr[V —0.
Matrix (W,,] = [A + t0,B] '

Values of 4
(n, m)
(& n)
0, 1) (0, 3) (0, 5) (1, 1) (1,38) {1,5)
0 ,0-2) 1-588024 —0-392250 —0-182390 +0-399294 —0-049289 —0-022845
(0 ,0-6) 1-573808 +0-827948 -+0-045484 --0-394206 +0-183869 +4-0-024514
0 ,0-8) 1-581476 +1-912974 --1-315291 --0-394538 -4-0-394107 +0-268244
(O~é, 0-2) 1-729384 —0-524945 —0-244644 --0-006680 —0-018514 —{0-007363
(0-6, 0-6) : 1772298 4-0-927496 -+0-008054 —0-011469 +0-031570 -+0-006630
(O-é, 0-8) 1-839798 +2-225071 -+1-506252 —0-046641 +0-064554 --0-065947
Values of B
0 ,0-2 —0-683272 -+-0-333750 -+0-156084 - 0 0 0
{0 ,0-6) —0-272188 —0-462896 —0-062111 0 0 0
© ,0-8) | +0-234933 —0-663879 —0-569026 0 0 0
(O~é, 0-2) —1-771717 -+0:653911 -+0-308148 0 0 0
(06, 0-6) —1-113127 | —0-946461 | —0-080023 0 0 0
(0-6,0-8) —0-314434 | —1-440170 | —1-101193 0 0 0
Matrix [A]~* = Inverse [A]
= —0-014807 4-0-031298 —0-012862 +0-439196 -+0-050040 ~+-0-079559
1-0-234863 —0- 229869 -+0-023623 —1-021814 --1-132930 —0-157266
—0-235226 _+0-520231 ¢ —~0-236785 -+-0-889188 —1-926126 4-0-981190
4-2-222748 +0-109719 +0-180027 —1-947160 —0-134917 —{0-208900
—6-397469 +7-473457 —1-153862 +5-484107 —6- 134857 +-0-922633
+4-5-695743 —12-2837549 -+6-226831 —4-782236 +10-281807 —5+-209850

* Values of the downwash computed using a 21 X 6 lattice, see section 5.1 : # = radius of circle.
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TABLE 7

Effect of Compressibility on the Derivatives of the Delta Wing A = 3, for Pitching Oscillations

as @.,,— 0

M he, le lg — M, — g
0 0-4381¢, 1-539 1-262 0-253 0-604
0-745 1-786 1-014 0-326 0-847
0-917 2-036 0-066 0-425 1-129
0 0-556¢, 1-539 0-926 —0-083 0-346
0-745 1-786 0-623 —0-065 0-640
0-917 2:036 —0-379 —0-021 1-119

hey= Position of axis measured from apex
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