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Summary.—A simple method is described for calculating the pressure distribution on the surface of a thick two-
dimensional aerofoil section, at any incidence, in incompressible potential flow. The method has been proposed by
F. Riegels and H. Wittich, Refs. 1 and 2. It is particularly suitable for practical applications, since knowledge of the
section ordinates only is required. This paper gives a complete derivation of the theory including a detailed discussion
of the approximations made and their effect on the accuracy of the results. The pressure distributions calculated
by the present method are identical with the exact values for aerofoils of elliptic cross-section, and the numerical values
for Joukowsky aerofoils agree well with the exact solutions. Calculations for a typical practical aerofoil show good
agreement with the results from S. Goldstein’s method, approximation III, Refs. 3 and 4.

The method is extended to sheared wings of infinite span and to the centre-section of swept wings, using the solution
for zero lift from Ref. 16 and the solution for the thin wing with lift from Refs. 10 and 17.
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1. Imtroduction.—The calculation of the pressure distribution over the surface of an aerofoil
in inviscid flow is one of the classic problems of fluid motion theory. It has regained importance
in the design of swept-wing aircraft. A large number of calculation methods have been devised
for two-dimensional aerofoils, and it is now possible to choose a method which is suitable for
practical application and which is not likely to be superseded in the near future. Such a method
must reduce the computational work involved to a few hours, so that the method should involve
only the ordinates of the given aerofoil section. Experience has shown that the possibility of
ever being able to provide a single series of aerofoil sections suitable for all purposes must be
ruled out, at least for swept wings. Secondly, such a method must not make exclusive use of
the method of conformal transformation because it must also be applicable to cases with essen-
tially three-dimensional flow. Therefore the method of singularities should be used since it can
be readily extended to three-dimensional flow, and the terms involved are open to some physical
interpretation. This latter property is particularly helpful when approximate solutions including
higher order terms must be found in those cases which have a complicated flow pattern ;
experience has shown that the restriction to linearised theory in such cases does not often lead
to adequate results.

The calculation method which provides the basis of the present paper is that of F. Riegels
and H. Wittich** (1942, 1948), which is closely related to those of S. Goldstein®* (1942, 1948)
and B. Thwaites and E. J. Watson*® (1945). The method for the two-dimensional unswept
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aerofoil is explained in sections 2 and 3. Conformal transformations are used only in deriving
the methods for determining the distributions of singularities, from which the velocity distri-
butions are calculated, and secondly, in determining a few exact solutions to check the accuracy
of the method. By discussing the necessary assumptions and giving an estimate of the errors
in the resulting velocity distributions, it is shown that the present method is suitable for practical
application. ‘

The method is then applied to the case of the sheared wing of infinite span in section 4 and to
the centre section of swept wings of large span in section 5, both with and without lift. These
cases may serve as the basis of a later extension of the method to wings of any given plan-form.

A numerical method to determine the occurring integrals as sums of products of the given
section ordinates and fixed coefficients, and the evaluation of these coefficients, is explained
in section 6. The calculation procedure is illustrated by a worked example in section 7.

The aim of sections 2 and 3 is to provide a complete derivation of the theory. Sections 4, 5
and 7 provide most of the details needed by the reader who is only interested in the application
itself.

The investigation is restricted to wings with symmetrical aerofoil sections in incompressible

flow. The question of what aerofoil shapes and pressure distributions may be desirable is not
considered.

2. The Two-dimensional Aerofoil at Zero Lift—2.1. General Relations.—The aim of this and
the following section is to calculate the pressure distribution on the surface of an unswept wing
of infinite span. The flow around the aerofoil at incidence is here determined as the sum of two
flows obtained by resolving the main stream into components parallel and normal to the chord-line.
The aerofoil in a flow parallel to the chordline is treated in this section and the aerofoil in a flow
normal to the chord-line is dealt with in section 3.

In any plane normal to the leading edge of the wing a system of rectangular co-ordinates
%, 2 is used where the x-axis is along the chord with x = 0 at the leading edge (see Fig. 1). The

co-ordinates are made non-dimensional by reference to the wing chord, ¢. The shape of the
aerofoil is assumed to be known :

z = z(x), O0<x <1 .. . . .. .. .. .. (2-1)

The wing is placed in a uniform stream of velocity V,, so that the velocity vector lies in the
%, z-plane and is inclined at an angle « to the chord-line. The velocity ¥, of the main stream is
resolved into its components parallel and normal to the chord-line :

V= Vycosa .. .. . .. . . .. .. (2-2)
Vo= V,sin a. .. .. .. . .. .. .. . (2-3)

First we deal with the aerofoil in the uniform stream V,,. This is the same problem as the
aerofoil at zero lift, since we consider wings of symmetrical section shape only. The task is to
determine a flow for which the given aerofoil section is a streamline, .., a flow for which the
velocity component normal to the surface is zero. This is achieved by determining a distribution
of singularities at the surface of the aerofoil which produces a velocity distribution at the surface
whose normal component cancels the normal velocity component of the uniform stream V,,.

At the surface of the aerofoil z(x), the uniform stream V,, has tangential and normal
components :

Vx()
Vtozv{1+(dz/dx)2} O o)
o Vo(dzldx)
V’w__\/{l—l—(dz/dx)z}"' e (2)




To determine the required distribution of singularities we make use of the method of conformal
transformation. This is done only as an intermediate means of deriving a relation between the
velocity distribution at the aerofoil surface and the section shape. It will be shown that by
introducing an approximation into this relation it is possible to determine the velocity distri-
bution without actually performing the conformal transformation.

We introduce the complex variable ¢ :
: E=x+ 12
and transform the (-plane conformally into a {* (= x* 4 7z*)-plane so that the part of the
{-plane outside the contour z(x) is transformed into the ¢*-plane outside a slit along the x*-axis.
The determination of a singularity distribution in the ¢-plane which produces a velocity distri-
bution cancelling the normal velocity V,, at the aerofoil surface is equivalent to the problem of
determining a singularity distribution in the {*-plane which cancels the normal velocity com-
ponent V,* at the slit.

It is known from the theory of conformal transformations that corresponding velocity com-
ponents are related by the mapping ratio |d¢/d¢*| :

at
IanW = VnO LE . (2_6)
The values of V. at corresponding points on the upper and lower surface of the sht are equal but
of opposite sign. Such velocities can be cancelled by a source distribution at the slit. A con-
tinuous distribution of infinite source lines normal to the x, z-plane produces a velocity field
which is continuous everywhere except at the position of the sources. There the velocity com-
ponent normal to the sources jumps by an amount proportional to the local strength ¢ of the

sources.
The required distribution of singularities is thus a source distribution, at the slit, of strength

g(x*) = — 2V *. . .. .. .. (2-7)
At the slit this source distribution produces the tangentlal Veloc1ty
AV * (x%) = L _gt") ax* .. . . . 7 (2-8)
; ol e . . . .. . ..

which corresponds to the tangential velocity 4V, at the surface of the aerofoil in the original
{-plane :

%

AV, = AV*. ‘% . (2-9)
At the surface of the aerofoil the mapping ratio is :

ar|_ds _ds dx
dc*|  dx* dx dx*

where s denotes the length of arc along the aerofoﬂ surface. Hence,
e 2 ‘ ’ .
dC’“ = /{1 + (dz/dx)*} - d* o . .. .. .. - (2-10)

‘From equations (2-5) to (2-10) we obtain the additional Velocity which the singularities produce

at the aerofoil :
< dzjdx >
V{1 + (dz]dx)*} )

:V{f x*/jj/dx ' OJ< ) P v

Vo 1J(x—x)/(x* #¥) dz  dx' L e

dx*’
#l, %(x) — 5%

dé*

AV (x) =

— V{1l + (da)dx)} = (dx]dx¥),  dx'x — «



Thus the total velocity at the surface of the aerofoil in the uniform stream Viis:
Vik,2) =V, + 4V,

Va 1 (" (v —2)(w* — %*) dz aw’
— V{1 + (dzfdxy) [l T J (dx)dx®),  dx'x — x] o (219

For an exact determination of the integral in this equation, the relation between x* and »
1s needed. i.e., the transformation would have to be carried out. However, the function

T(x,x')2(”_?626//2‘;;”*'), e (23

which gives the ratio between the distances of the pivotal point x and the variable point x’
in the original plane (¥ — #’), and in the transformed plane (x*— x*), related to the local
mapping ratio (dx/dx*) at the pivotal point does not differ much from unity. T'(x, #') is equal
unity for #" = x and we shall see in section 2.2 that the difference T(¥, ') — 1 is of the order of
the thickness/chord ratio #/c. Since T'(x, ') occurs only in the term which itself is of order

t/e, an approximation for the velocity V(x, z) which is correct to at least the first order in tc
may be obtained by putting

T(%,4) = 1. R 15 1)

We shall discuss the accuracy of this approximation and its effect on the velocity distribution
in detail in section 2.2.

With approximation (2-14) the velocity distribution (2-12) becomes :

Vo 1" dz aw
V(x’z):\/{l—l—(dz/dx)z} [1+;J0%m:] .. . .o . (2—15)

This formula gives the required relation by which the velocity distribution may be determined

from the given profile shape without performing the conformal transformation. A numerical
method of calculating the integral '

1
1 dz dx’
S(“(x):;J Eg‘,x_x,.. o . . . . - (2—16)
0

for fixed points x, as sums of products of the ordinates z at the fixed points and certain coefficients
which are independent of the section shape, is described in section 6.

Before we investigate the implications of approximation (2-14), let us discuss the result in
equation (2-15) in view of our aim to extend the method from the two-dimensional aerofoil
to three-dimensional problems. Equations (2-12) and (2-15) are obtained from a source distri-
bution along the slit in the transformed plane. This corresponds to a source distribution on the
surface of the aerofoil in the original plane. For three-dimensional problems, the use of such
surface distributions is generally out of the question since they require very complicated calcula-
tions. Since the calculations are considerably simpler when the source distributions are put on

the chord-line, we interpret equation (2-15) in the following discussion as the result of a source
distribution on the chord-line.

The condition that the aerofoil surface is a streamline, s.e., that the total velocity component
normal to the surface is zero, can be written in the form :

ég - v,(%, 2)
dx_on—l—vx(%,z). N N B B . H (2_17)




In linear theory this condition is approximated by :
dz  wu(x,0) ‘

BT e e (28

which is equivalent to the following assumptions :
(i) the velocity increment v, is small compared with V,, ;

(ii) the velocity v,(x, 2) in the z-direction at the surface can be represented approximately
by the velocity v,(x, 0) in the z-direction on the chord-line.

This latter approximation considerably simplifies the problem of determining a source distri-
bution which gives the required distribution of velocity v,. With a source distribution on the
chord-line, the whole source distribution contributes to the velocity v, at a point on the surface,
but the v,-velocity on the chordline is only dependent on the local source strength.

The required source distribution is :
dz
“dx’

1.¢., the source strength is proportional to the local slope of the aerofoil contour.

g(x) =2V, (2-19)

The source distribution of the linear theory, as given by equation (2-19), satisfies the condition
IRCEEY L 220
0

which is necessary to obtain a stagnation streamline which closes behind the source distribution,
thus forming an aerofoil profile.

The source distribution of equation (2-19) also satisfies the condition that the total drag force
D acting on the whole source distribution is zero. According to a theorem of A. Betz’ (1932)
about the tangential force acting on a source (which corresponds to the Kutta-Joukowsky
theorem for the normal force acting on a vortex) the drag coefficient is :

Cp— 2 JlV"(’“M(”'>dx'. O (1)

TRVt | Ve Ve
With the approximation (i) made above : v, & Vo, i€, V, = V,, it follows :
Cp =0,
Linear theory also makes a third assumption :

(iii) the total velocity V(x, z) at the surface is represented approximately by the total V,
velocity on the chord-line.

At the chord-line, the source distribution of equation (2-19) produces a velocity v,, along the
chord, given by

1

V. dz dx’

vx(x,()):n“de,x_x,‘ R 20
0

The total velocity along the chord, V,, at the chord-line, which from linear theory is also the
total velocity at the surface, is thus:

nmm=mp+1jﬁ MJ

w | dx'x — X
0

= Vo [1 + SO, N 02



A comparison of equations (2-15) and (2-23) gives the relation

V.(x, 0)
Viz, 2) = . . .. .. .. .. .. .. 2-24
=T+ @y g 24
We will see in section 2.2, from calculated examples, how much the velocity distribution given
by linear theory is improved on multiplying by the factor 1/4/ {1 + (dz/dx)*}. The factor is
important in the stagnation region, where the approximation (i) in equation (2-18) does not hold.
Later the relation (2-24) between the velocity on the chord-line and the velocity at the surface
will also be used as an approximation for the filow normal to the chord-line of the aerofoil and in

the three-dimensional case. It can be interpreted by making use of the fact that the circulation
around a distribution of singularities is independent of the path taken: | - ' :

Z’:ng(x,z)ds=3§Vx(x,O)dx. e (2~25)

In the present case I' = 0. Equation (2-24) now means that a corresponding relation is assumed
to hold locally :

Vig,2)ds =V, 00 dz. .. .. .. .. .. .. .. .. (222)

2.2. Examples and discussion of the Accuracy of the Method.—In deriving equation (2-15), the
approximation of equation (2-14) was assumed to be admissible. Weé shall now check the validity
of this assumption for several aerofoil shapes and determine the error in the velocity distribution
resulting from this approximation by comparison with exact results. For this purpose we have
actually to perform the conformal transformation. We choose the two cases of.aerofoils of
elliptic cross-section and Joukowsky aerofoils since for these the transformation into the slit
is given by simple formulae. The ellipse and the Joukowsky profile are rather extreme cases,
between which lie most practical aerofoil shapes. The usual type of aerofoil has its maximum
thickness between 0-25¢ (Joukowsky profile) and 0-5¢ (ellipse) and has a finite trailing-edge
anglef smaller than =/2, whilst Joukowsky profile and ellipse give the two extreme values of

0 and z/2. The modern type aerofoils are usually of nearly elliptical shape at the nose and up to
the maximum thickness. :

We begin with the elliptic aerofoil. The ellipse with axes ¢ = 1 and #/¢, and centre at the

origin of the co-ordinate system in the ¢-plane, is transformed into a circle of radius # in the
¢{;-plane by the transformation

RZ

(=0+— .. . . .. .. .. . LTT(2-27)
(s
_ 2
e g = VAL (60}
_ L+ (o)
r=— -
The circle is then transformed into a slit in the ¢*-plane by the transformation
2
0F =gy O .
0y :

} For sections with finite trailing-edge angle < #/2 the source distribution q(x) of equation (2-19) has a finite strength
at the trailing edge, which leads to a logarithmic infinity there of the integral SW(x), equation (2-16). This gives a
velocity distribution with a logarithmic infinity at the trailing edge, whilst the exact value from.potential theory is
zero. Since the singularity is only logarithmic, its effect is negligible except for the very neighbourhood of the trailing
edge where the flow conditions are considerably affected by the viscosity of the air anyhow.

We shall see later that, with the interpolation formula equation (6—4) used in the numerical method of section 6,

profiles with a sharp trailing edge are replaced by profiles with a rounded trailing edge of very small radius of curvature,
thus removing the singularity.
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The circle in the ¢,-plane has the equation !
Ly =re?. . . . - . o . . oo (2-29)

Thus the real co-ordinates &, & = 7 cos &, and &* for corresponding points on the ellipse, the
circle and the slit are given by the relationst :

§:<7’—|—R‘;—>C0519=%C0819 .. - . . .. .. (2-30)
g% = 27 cos ¢ :l——%—(tﬂcosﬁ. .- . .. . .o (2-81)

This gives the relation
1

Hence,
| (6 — &)/(e* — &%)
(A& [de);
and therefore the approximation (2-14) is strictly true for the whole interval of integration, and

for every pivotal point x. Thus equation (2-15) gives the exact velocity distribution for the
aerofoils of elliptic cross-section of any thickness/chord ratio.

T(x,x') = =1

This result also means that the three approximations made of linear theory, described at
the end of section 2.1, are fully corrected in the case of the ellipse by multiplying V,(x, 0) by the

factor 1/4/{1 + (dz/dx)*}, as in equation (2-24).

It will prove useful later to know the explicit formula for the velocity distribution along the
ellipse. Using the angle ¢ as defined by equation (2-19), the co-ordinates for the ellipse are,
from equation (2-27) :

1 &
= % (2-33)
Lt
z:-z—gsmﬁ. . . . . .. . . o (2-34)
The integral S®(x), equation (2-16), can be calculated explicitly. It is:
1 7
1| dz dx 2| dz as’
Wfy) — = | 22 % _ &) &2 o 000
S (x)_nJde’xmx’ nLdﬁ"cosﬁ’—cosﬁ
1 cos & dd’
¢ = | cos " — cos &
4
= (2-85)
using the well-known relation (see, e.g., H. Glauert® (1948), p. 93) :
" cos wd’ , sin nd
Lcosﬁ’—cosﬁdﬁuﬁ'sinﬁ' .- TR .. (2-36)

7 1 The xz-co-ordinate and the &-co-ordinate differ by an additive constant,
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Equation (2-35), together with equation (2-23), means that in linear theory the velocity distri-
bution along the surface of an ellipse is constant and equal to V,4(1 4+ #/c). The exact value is,
from equation (2-15) :

Vx()

Let us now consider the Joukowsky profile. The transformation
RZ
=10 +=— .. .. .. .. .. .. .. . .. (2-88)
"
transforms the profile into a circle of radius » with the centre at ¢{; = — (» — R) and the trans-
formation
7,2
* = —R) + 2-39

transforms the circle into a slit. The difference » — R is related to the thickness/chord ratio.
We introduce the parameter ¢ by :

r=(1+ ¢)R. . . . o .. . . .. (2-40)
It will be shown later that in linear theory :
4 ¢
8:3—,\_/”:—35. .« . .. . .. . . .. (2*4‘1)

The relation between the real co-ordinates & and &* of corresponding points along the aerofoil
and the slit can be obtained from equations (2-38) to (2-40)t. We have :

£% = 9(¢, Ly — R) O L.
R, :
«§— ‘El +7,2 o (El + y — R)2 + 512 (2—43>
Fé:ek- R?
:_E '—(V——R):I !:1+72+(7—R)2—(7’—R)§*J
g [ 1 -
18 1. _ L (244
R 2R 1—}*28—1—282—‘6%
g%
with — 214 ¢) < 5 < 2(L +¢) Ce e (245)
' 2&? &
—2<1+1+26><z§<2' e (248

Using equation (2-44) the function 7'(x, #") can be calculated numerically. This has been done
for profiles of 10 per cent and 20 per cent thickness/chord ratio. The results are plotted in Fig. 2.
An approximate formula for T'(x, x’) can be obtained by expressing &/R from equation (2-44)
as a power series of ¢ and neglecting high order terms :

d £#
CE—I_E_*—SE

T The &-co-ordinates used here differ from the x-co-ordinates used otherwise in this mote by additive constants.
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we get
. (¢/R — &'|R)[(¢*|R — £*'[R)
(AE[AE*) e

T(x, &) =T(& &) =

g _efE
- 2\ R R/}’

Finally, in #-co-ordinates referred to the chord :

T(x, &) =1 — 2e(x* — x*') .. . .. . . . oo (2-47)
using the relation
82
c=4R<1—|—1_}_28> . .. ce e . . .. (2-48)

between the chord ¢ of the aerofoil and the radius R, which follows from equation (2-46)
‘Equation (2-47) gives approximations for the lower and upper limits between which T(x, %)
varies : '

1 —2e < T(x, %) <14 2.

Fig. 2 and equation (2-47) show that the maximum error made in the integrand of equation
(2-12) when using the approximation 7(x, ") = 1 is proportional to ¢/c. At the pivotal point
the approximation is correct and the difference |T'(x, ') — 1| becomes greater the further the
varying point moves away from the pivotal point. This means that the contribution of the
sources and sinks further away from the pivotal point is less accurately taken into account
than the effect of the nearby sources. It will be shown later that the integral S™(x), equation
(2-16), is of the order ¢/c (see equation (2-35) for elliptic aerofoils). The difference between the
velocities calculated by the exact equation (2-12), and the approximation (2-15), is therefore
of higher order than #/c.

In the following, we shall see that the error in the velocity distribution due to the approxima-
tion T'(x, #') = 1 is considerably less than the error in the local values of the integrand. To
determine the error in the velocity distribution we calculate the exact velocity distribution
from the conformal transformation and compare it with the velocity distribution as given by
equation (2-15). The latter is calculated by the numerical method to be described in section 6.

For the present purpose we do not determine the velocity distribution at the aerofoil by means
of a source-sink distribution as in section 2, but directly from the transformation. Since the total
velocity along the slit is equal to 7, the velocity at the aerofoil is :

ac*
V - VxO dC .
The mapping ratio is given by the transformation, equations (2-38) and (2-39) :
dC*/dg,|
V=",
*\dcjdey]
2
’1 NG = R)?
= VB (2-49)
R
The circle in the ¢,-plane which corresponds to the aerofoil has the equation
& =R, .. . .. . . . ‘e . .. (2-50)



with » o
R, = R[4/{1 + 2¢ + (e cos 9,)2% —ecosd,]. .. o . .. (2-51)

From equations (2-40), (2-49) and (2-50), we obtain for the exact velocity distribution :

<&>2 1 sin &
R/ 1 !
V=V e

e [T}

Eqﬁa'tions' (2-43), (2-48) and (2-50) give the relation between the chordwise position & on the
aerofoil and the angle ¥, :

£ 142 R 1 ; o )
T 2 I:EI—FRI/R]COS'ﬁl. . .. .. .. .. (2-53)

(2-52)

¢ 41+ 2 + &)

 When calculating the approximate velocity distribution from equation (2-15), we need the
section ordinates. These are known from the transformation. Equations (2-38), (2-48) and
(2-50) give : '

-

e w2 R
c‘4<1+28+82>[R‘“RI/R}SM“ e (25

- For the rather extreme case of a 20 per cent thick Joukowsky aerofoil, the exact velocity
distribution has been calculated numerically using equations (2-51) to (2-53). The results are
given in column (a) of Table 1. The value &= 0-1833 was determined from equation (2-54).
The values of #, were chosen so as to give the x/c-values used in the numerical method of section 6.
for N = 16. Table 1 also gives in column (b) the results of the approximate method, equation
(2-15). The agreement is very good. This comparison shows that the error made in the approxi-
mation T'(x, ") = 1 (see Fig. 2) does not involve any serious error in the velocity distribution.

Similar- good agreement between the approximate velocity distribution calculated by the
methods of conformal transformation (using the approximation III of S. Goldstein® (1942) and
the velocity distribution calculated from equation (2-15) has been obtained for the 10 per cent
thick RAE aerofoil sections 100 to 104 (see R. C. Pankhurst and H. B. Squire® (1950)). An
example is shown in Fig. 3. These results prove that no further refinement of the present method
is necessary.

To allow a further judgment of the accuracy of the present method, it is desirable to have
another illustration of the effect of second-order terms in #/c on the velocity distribution. The
Joukowsky profile gives a simple example for this. There are several possibilities of neglecting
higher order terms, e.g., in approximating the section shape, or in calculating the velocity
distribution for the exact or the approximate section shape.

In obtaining the profile shape of the Joukowsky profile from the conformal transformation,
second-order terms in ¢ are often neglected. This leads to a profile that is different from the
exact one given by equations (2-51), (2-53) and (2-54). The approximate shape is :

R, =R[l1+¢—ecosd] .. .. .. . .. (2-55)
é:. 1 . . B V A b

E:§cosﬁl.. . .. .. .. .. . . .. (2-56)
C—fe(l—cosa)snd. . ... L .. (257)
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The thickness ¢ of the approximate profile can be determined by differentiating equation (2-57)
with respect to #,. z(¢#,) has its maximum value for ¢, = 120 deg. Inserting this value into

equation (2-57) we obtain
gyt B3,

¢ o |
i.e., equation (2-41). For the 20 per cent thick Joukowsky profile, equation (2-41) gives
¢ = (- 1538, whilst the exact value from equation (2-54) is 0-1833. - o

J

The velocity distribution for the approximate section shape of equation (2-56) and (2-57)
is from linear theory, equation (2-23) : :

. o V - Vx()[l + e — 28 COS ﬂl] .. .. . ' “ . e - (2"'58)
since
1
1| dz d¢& sin 249, :
Wig) — = | 22 — ettt -
S(E)_—njods’g—&’. a<1, sinﬁ1> .. .. .. .. .. (2-59)

using equation (2-36). The same result is obtained when all higher order terms in e are neglected
in equation (2-52) for the exact velocity distribution. The velocity distribution of the linear
theory calculated from equation (2-58) for the 20 per cent thick Joukowsky profile is also given
in Table 1, column (c). Itis calculated for the s-value resulting from linear theory. A comparison
with the exact values in column (a) shows that the higher order terms have a considerable effect
near the nose. , .

- Multiplying the velocity from equation (2-58) by the factor 1/4/{1 + (dz/dx)*}, we obtain
for the approximate section shape, the velocity distribution corresponding to equation (2-15) :
(1 + &) sin ¥, — & sin 28, . ‘ (2—6(jj
7 4/ {sin®* ¥, + &*(cos 28; — cos 4,)*}
Calculated values are given in column (4) of Table 1. A comparison of columns (¢) and (d) shows

the effect of the correction factor 1/4/{1 -+ (dz/dx)*}. The difference between column (b) and ()
is due to the difference between the exact and the approximate section shapes. :

V="V,

Another approximation for the velocity distribution is obtained by retaining the terms of
the lowest order in ¢ in the numerator and denominator of the formula for the exact velocity
distribution, equation (2-52) : .

(1 4 &) sin ¥, — ¢ sin 29, '
v/ {sin®* ¢, + &*(1 — cos #,)}
Equation (2-61) leads, of course, to two different values for the velocity distribution depending
on which value of & is used.

V= on (2—61)

The & value of the approximate section shape, equation (2-41), gives the values of column (e),
the exact & those of column ( f). The results obtained from equation (2-61) show much larger
variations from the exact values of column (@) than do the approximate values of column (b)
calculated by the present method. This confirms that equation (2-15) gives an approximation
for the velocity distribution at the surface of a symmetrical aerofoil at zero lift which takes the
higher order terms well into account.

8. The Two-dimensional Aerofoil at Incidence—3.1. General Relations.—As the next step
towards our aim of calculating the velocity distribution on the surface of a two-dimensional wing
at any given incidence we consider the aerofoil in a uniform stream V,, normal to the chordline.

. First we recapitulate the theory of the thin aerofoil, ¢.c., the flat plate, which is an obstacle
in the flow V,, but not in the flow V,. In the following we require the velocity field in the
neighbourhood of the plate-as well as along it. This is easily determined by means of the complex
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potential function for the flow around the plate. To obtain the potential function we transform
the plate — § < ¢ < } in the ¢-plane into a circle in the ¢,-plane :

RZ

C:Cl—l—C~, R=% .. . . . .. .. . (3-1)
1
and the circle into a vertical slit in the ¢,-plane :
R? '
=101 ——. (3-2)
&1
Combining equations (3-1) and (3-2) :
L= — 4R =P~ 1. ... (3-3)

The uniform stream, in the ¢,-plane, which is not disturbed by the vertical plate, has the complex
potential function :

F(L) =¢ +ip = — 1V i, .. . (3-4)
It follows from equations (8-3) and (3-4) that the function
i) = — aVa(2* — 2 (3-5)

represents one possible flow around the horizontal plate. The velocity field of this flow is given
by the relation :

aFy({) ¢ )
dc VI(E*— 1)
The velocity is infinite at both ends of the plate. Physical reasons do not allow an infinite velocity

at the trailing edge in viscous flow. To represent the limiting case of vanishing viscosity, we

require a flow pattern which fulfils the Kutta-Joukowsky condition of smooth outflow at the
trailing edge. ’

A flow with finite velocity at the trailing edge, ¢ = 1, is obtained by adding a flow with circula-
tion around the plate, for which the plate is a streamline. Such a flow is obtained from the
flow around the circle and the transformation of the circle into the plate, equation (3-1) :

I
F2:’Z/§7;

— Vé]_ - 1;V21 = - ?:VZU

In ¢,

. I
=i In [H+ V(= D} - . .. .. .. .. (3-8)
The potential for the general flow around the plate is then

. I
F=F+Fo=—V/( =31 +i5-In {7 + V(& ~ D]
and the velocity field is given by :

o A 1
Z—? =Vi— iV, = — iV, ch_ DT E T (3-7)
The velocity is zero at ¢ = § if
r Vg
% 2
so that

1_
Vg—in:iVZON/{i_,ﬁg} O -
2

At the plate the velocity in the usual co-ordinate system is :

V:ivzw/{l‘x"‘} T S

the positive sign holds for the upper surface and the negative sign for the lower surface.
12




The velocity component normal to the plate is zero, since the plate is a streamline. The
tangential velocity is of opposite sign on upper and lower surface. Such a flow pattern can be
represented by a distribution of vortices (.e., infinite vortex lines normal to the x-z plane) at the
position of the plate, the strength y of which is equal to the jump in the tangential velocity
when going from the upper surface to the lower surface. :

y(*) = Vis — Vis . . . (3-10)

The flow around the plate is thus equal to the flow obtained by superposing a vortex distri-
bution at the plate, of strength

y(x)=2VZOJ{1;x}.. U 7 S 0

on the uniform stream V. This vortex distribution produces a v,-component at the plate
1
1 N ax ‘
v,,(x,O):—%J‘y(x) .. . . .. . . o (3-12)

x — %
0

which for y(x) of equation (3-11) is constant along the plate, and equal to — V.

We will now deal with the flow around a thick aerofoil. Again, our aim is to represent the
aerofoil by a distribution of singularities which produces at the surface of the aerofoil a normal
velocity distribution cancelling the normal velocity component of the uniform stream V..
To determine the required singularities we might again try to use the conformal transformation
of the {-plane into the ¢{*-plane, which transforms the aerofoil contour into a slit. It will be
shown in section 3.2 that the velocity component V,,* normal to the slit, which corresponds to
the normal component V,, of the uniform stream ¥V, in the ¢-plane, is, for a general aerofoil,
not constant along the slit. This means that we cannot use the vortex distribution y(x) of the
flat plate, given in equation (3-11). Furthermore, a vortex distribution along the slit corresponds
to a vortex distribution on the surface of the thick aerofoil. To allow a simple extension of the
method for the two-dimensional aerofoil to three-dimensional problems, we wish to represent
the aerofoil by singularities on the chord-line.

We shall determine the vortex distribution which represents the thick aerofoil as the distri-
bution (3-11) for the flat plate and an additive term 4y(x) which depends on the section shape.
We start, therefore, with the vortex distribution of equation (3-11) on the chord-line and
calculate the velocity induced by it on the surface of the thick aerofoil. We obtain an approxi-
mation for the velocity field in the neighbourhood of the chord-line by expanding the right-hand
side of equation (3-8) into a power series with respect to z and neglecting all higher order terms :

o Ry
Ve @Vz'—inﬂ/\/{ ('%‘I‘f)z_[“zz}

=17V &/{%“f}ﬂ'v 2 3 : (3-13)
20 %—f— ZO(%—*—E)'\/(;}:—SZ) .« .. ..

In the usual co-ordinate system the total V -velocity is :

Vilto2) = Vo b 0, 2) = Vo g ’(21 —5 (3-14)
Equation (3-13) implies that for the vortex distribution of the flat plate the approximation
vx(x,z)———vx(x,O):i?% .. . . . ce .o (3-15)
is correct, if we consider only linear terms in z. (This relation corresponds to the approximation
v(%, 2) = v,(x, 0) = + &296)
for source distributions.)
13



The condition that the aerofoil surface is a streamline can be written in the form (aS- in
equation (2-17)) : '

dz V%, 2)
dx  vx, )

Using the approximation (3-15) for any vortex distribution this condition can be ’Lppl’OXl—
mated by : : ‘

(3-16)

A comparison of the required V. -velocity, equation (3-16), with the V,-velocity produced
by the vortex distribution of the flat plate, equation (3-14), shows that we need a correction
Ay (x) to the vortex distribution (3-11) :

_2VM/{ }J_rAy(x), S 31

which produces the additional velocity component 4v,, where

y{x) dz 2 '
Av,(x, 2) 27%—1/20%\/{(1_(1_296)2}. .. . ce .'(3—18.)

It is, of course, again desirable to take for 4y(x) a vortex distribution on the chord-line. With
Ay (x) belng only a correction term, some further approximations in equation (3-18) are per—
missible. First, we make the a,pprOleatmn

Av,(x, z) = Av,(x, 0),

t.e., we determine a vortex distribution 4y (x) which produces the required Av,-velocity on the
chord-line. Secondly, we make the approximation

=

since Ay (x) is small compared with the basic term 2V,4/{(1 — x)/x}. We will see 1ater that the
ratio between the two terms is of the order #/c. We obtain thus from equations (3-12) and
(3-18) for 4y(x) the equation :

1 [ ax’
N A%
-5 L Ay (x") ;= du,(x, 0)

X — X
— v, A\\/{l"x} x 1__%@__2;7> (3-19)

To solve this equation we treat the general problem of determining a vortex distribution
along a flat plate which produces a velocity distribution with given components normal to the
plate. For this purpose we transform the slit — 4 < & < { in the (-plane into a circle in the
¢,-plane by equation (3-1), and make use of the fact that in potential flow with given normal
velocity v, at the circle, the tangential velocity v is determined by the Poisson integral :

27
o) = — 1 v, cot Y = v, + const. .. . . .o (3-20)
2n . 2 7
The normal velocity v, in the ¢,-plane is determined by the 4wv, velocity in the ¢-plane :
o =du |l = 2sing, Ao, . L. ... (321
dil : .
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where | L= 1e . . . . ce e .o (322
represents the circle. From the relations

i,
ac

2, ®
2 sin 9,

A'UE —_— ‘Ut(l)

and ’
it follows that

I3

2
1 1 , & —9, © const
Ay = — - Ao, sin 9, cot a9, — = .
Y T s oy J O ! 2 Y sind,

Since

9, —#, _sin 9, 4 sin &
2 7 cos®, — cos &,

cot

we obtain, for symmetrical aerofoils for which Av,(#,) = Av,(?ax — By :

2 1 " . sin 9, d&,’ const
Ay == Av, sin 8, — = .
4 JO F ' cos®, — cosd, sind,

The angle ¢, can be replaced by the chordwise co-ordinate £. From equations (3-1) and (3-22) :
& =% cos
so that
a¢’' const

9 g +# N
A= V= (25)2}J-_ A VU= B e T = ey

¥

We are again only interested in a flow with finite velocity at the trailing edge, which means
4y(¢ = §) = 0. This condition determines the value of the constant. Thus

_2_ 1
- @2

which can be written as

r+1

Ay Av, (&) 4/{1 — (2&")*} {5 _1_ £ _1_ E'} as’
-3

f+d ‘

2 1 1—2¢ a¢
Ay =2 = Ao (& 9z7\2 xes
EEERVIECEDY WOV = e e

2 J[1—2 HM e L2 e’
B 14 2¢ i ? 1 —28f¢&—¢&"
The vortex distribution which produces a given 4w, is therefore given by the equation :

Ay(x):%‘/\/{lz}J:sz(x')&/{lix,}xoﬁc,x, L (323

in the usual co-ordinate system. Thus the additional vortex distribution is, from equatioﬁs
(8-19) and (3-23) :

o2 [1=x\[ [ %2 (') dx’ | |
Ay(x) = Vzon/\/{ p }J [dx’ i 2x’)2] e RS .o (3-24)

0
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So that the total vortex distribution which represents a thick aerofoil is :

R [EE VRS PR S R

From the known vortex distribution we determine the velocity at the surface of the thick
aerofoil by using the approximate relation (2-24) or (2-26) between the velocity on the chord-line
and the velocity on the surface. The total velocity on the chord-line is :

Vix, 0) = + fy(x) .
Hence, the Velocity on the aerofoil, in a uniform stream V,, normal to its chord-line, is :

VD) = e i }\/{ }{ 4! Mﬂ%_l_?f(x_')zx,)z}xd_x;,}. . (3-29)

The accuracy of this approximate solution is discussed in section 3.2.

Having calculated the velocity distributions along the aerofoil produced by uniform streams
parallel and normal to the chord-line, we can now determine the total velocity on the surface,
of a symmetrical aerofoil in a uniform stream V, inclined at an angle « to the chord-line. Since
the velocity componénts of the main flow parallel and normal to the chord-line are

Vi=TV,cosa
Vz[) == VO Sll’l o
we obtain by combining the results of equations (2-15) and (3-26) :

v, “dr o dw
e s = +<azz/dx>2}l°os “ll T l &% — xl

Lsina /\/ {1 ; x}[l + ilo [j;' 1= ?f(x_l) 2x’)2] X d_xxl} (3”2%)

The positive sign holds for the upper surface, the negative sign for the lower surface.

For convenience, we use the notation of equation (2-16)

1
S(l)(x) — EJV dZ, dx
7

de % —x’
and
S‘zl(x):jll—i, .. .. .. .. e .. .. .o (3-28)
1
1 dz 22(x") ax’
@ (y) — = £ .
S (x)_nﬂ{dx, 1_(1_296,)2}%__%,. .. .. .. o (3-29)

The equation for the velocity distribution then reads :

Vin s cos a[1 + SW(x)] 4= sin oc/\/{l —

Vo VAL + S}
16

Lot + 5ot
. (3-30)




A method for calculating the functions S®(x), S®(x) and S®(x) numerically at certain fixed
points x, along the chord, when the ordinates of the aerofoil section at the fixed points x, are
given, is described in section 8. The functions are approximated by sums of products of the
ordinates and certain. coefficients, which are independent of the section shape :

N—

Sm) =3 5,0 2, Y . ) )
p=1
N—1

S9) =2 5,7 5, O ¢ X 3)
Nt @

S%@:E%ﬁ%+m@J— P - B
u=1 . 2c

where p is the radius of curvature at the leading edge. The coefficients s,", Sw, S, are
determined in section 6 and calculated values are given in Tables 3 to 12. In most cases it is
advisable to use Tables 7 to 9, taking 16 points along the chord.

Using Bernoulli’s equation for incompressible flow the pressure coefficient along the surface
of a two-dimensional aerofoil at incidence « 1s :

_p=p__ (VY
G="gve =1 T\

1 —x

{cos a[1 + SW(x)] & sin oc/\/{ . }[1 + SH(x)]}?
I+ [SPWP ‘

At high incidence the pressure distribution on the upper surface has a high suction peak
near the nose of the aerofoil and changes rapidly along the chord. In this case it is advisable,
for practical calculations, to write equation (3-34) in the following form :

{cos a[1 4+ S™(x)] /% £ sin « A/ (1 — x)[1 4 S®x)]}*
| ‘ RN ... (3-35)
x+%<dv%>

The chordwise load distribution, 4.e., the difference between the pressure coefficients on the
upper and lower surface of the aerofoil is, from equation (3-34) :

AC? = CpUs — LpLs

. 1 — 2|1 + SO()[1 + S° |
= — 4 cos asin OC/\/{ . x}[ 1 _}(_X)[}‘Sg(z)(x)]z (x)] . . .. (3—36)

&) ®) ,
The factor [1+ f _éx%[(i) (;g]f ()] gives the correction to the flat-plate distribution due to
the non-zero thickness of the aerofoil. The term [1 + S®(x)] takes into account the fact
that the vortices are put into a flow with the velocity V,[1 -+ S®(x)], instead of V, as for
‘the thin wing. The term [1 4+ S®(x)] takes into account the fact that the vortex distribution

(3-34)

=1 —

Cp=1—

for the thick wing differs from that for the thin wing. The term ﬁm is the usual

correction term to allow for the difference between the velocities at the chord-line and on the
surface. The first two terms increase the load over the forward part of the aerofoil and decrease
it over the rear part. The third term reduces the infinite suction at the leading edge of the

thin wing to finite values.
' ' 17
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From the load distribution, the coefficients of the normal force and the pitching moment can
be obtained by integration :

CN:MJ'lAcpdx=~2JIAcp\/xd\/x.. L (337

0 0

C,,,zfllej,(x—O-ZS)dx:ZJlACp(x——OQS)\/xd\/x. S
0 J 0

The lift coefficient and the drag coefficient are related to the coefficients of normal force and
tangential force by the equations :

CL: CN COS & — C'I*SinO’. . . . . . . . (3*‘39)
Cp=Cysina+ Crcosao. .. . . . . .o (3-40)
Since the drag in potential flow is zero,
Le., Cp, =0, . . . . e . .. Lo (3-41)
we have :
Cr=—tan aCy .. . .. .. . .- . oo (342
CN .
CL—_cosoc" . . . . . . .. .. .. (3-43)

3.2. Examples and Discussion of the Accuracy of the Method.—To check the validity of the
approximations made in deriving equation (3-26) for the velocity distribution along the aerofoil
in a uniform stream normal to its chord-line, we again calculate the exact distributions for

aerofoils of elliptic cross-section and for Joukowsky profiles, and compare them with the
approximate results. :

The exact velocity distribution can be determined from the velocity distribution of the flat
plate, equation (3-8), using the transformations given in equations (2-27) and (2-28) which

transform the flat plate in the {*-plane into an ellipse in the ¢-plane. To the velocity distribution
of the flat plate

Via*, 0) = + V.o /\/{-—*Cﬁ = j}

corresponds the velocity along the ellipse :
ac*

_ oy [et2 — EF| jac*
Vix, z) j:TzoN/{cﬁe/2+§¥} ik

‘Thus, using equations (2-10) and (2-32), we obtain, for the exact velocity along the surface of
elliptical aerofoils in a flow normal to the chord the equation :

o 1l —x 1+ ¢
V(x,z)—j:Vzo/%/{ p }\/{1+(dz/dx)2}' . . .o (3-45)

To determine the approximate distribution from equation (3-26), we calculate the term

5¥(x), equation (3-29). Tt follows from equations (2-16), (2-33), (2-34), (2-35), (2-36), (3-29),
that :

(3-44)

2" 2(x") dx’
®(x) = SW(y) _ 2
SP(x) = SU(x) nLl—(l—Zx’)zx~x’

:zf/c—l.éj as
7w C

cos 9 — cos 9’
Q

= e C e L (348
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This means that equation (3-26) gives the velocity distribution of equation (3-45). In the case
of elliptic aerofoils equation (3-26) is therefore exact. It has already been shown in section 2.2
that equation (2-15) gives the exact velocity distribution for a flow parallel to the chord. These
two results mean that equations (3-27) or (3-30) give the exact distribution for elliptical aerofoils
at any incidence «.

The pressure coefficient for aerofoils of elliptical cross-section at any incidence « to the uniform
stream V, is therefore :

Lo 1 —x\]"

. 1 Zz2cosocI51noc < .

b —< +C> . @ 2
| | +(%) ,
oz
54 COS & = SIn «

¢ x

=1—<1+5> .

() T

(3-47)

The chordwise load distribution is

2
4 cos «sin oc(l 4+ E)

ACP:_;GY Th N/C;x) S

1 — (1 — 2%

To obtain the lift coefficient we integrate the load distribution :

1 . 2
CN:J —ACde-——élcosasino:(l—}—é) ]

0

' 1 —x ¥ —
/ :f\/ ()i s

The integral J can be written in the form

with

: - 1 - -2 (
J=1“11(T/07J”\/<1_x_> 1+i\/{1(t/c><t/c)2}1x_%[1+ﬁfa}].
1 )
B ax .
x—%[l_\/—{f:l(tTZ}] ]

19



Using the relations

e e e

fora< Qora>1
we obtain

and finally,
Cy = 2=(1 4 ¢/c) cos asin o
Cr = 2n(1 4 #/c) sin « . .. . . . . N )

The last relation states that, for the same incidence, a greater lift is acting on the thick aerofoil
than on the thin one. The same is true for ordinary aerofoils with sharp trailing edge. For these
the correction factor to the lift of the thin aerofoil can be approximated by 1 + 0-8 ¢/c:

Co = 2(1 + 0-8¢/c) sin « . C e (3-50)

To make a comparison between the exact velocity distribution and’ the approximation of
equation (3-26), for the Joukowsky profile, we first determine the exact distribution again using
equation- (3-44). The mapping ratio |d¢*/dz| has been determined from the transformations
(2-38) aﬁd (2-39) in equations (2-49) to (2-52). It follows from equations (2-40), (2-42), (2-45),
(2-50) that

R,
C*/2_§*~1+8~<§005ﬁ‘1+8)
*0 * :
A 1—}—s+<%,cosﬂ—l~e>

The exact velocity distribution along the Joukowsky profile in a uniform stream normal to its
chord-line is therefore ; -

( 1—&(:05191 ) 2, 2—1—85inv9l
V="V, /j 1 '28R&COM L <R> IJ(FRI/R)LI_ —~. .. (3-51)
Jo Lo | Jaro [SEET]

Some values calculated for the 20 per cent thick aerofoil are given in column (@) of Table 2.

Values for the approximate velocity distribution of the present method, equation (3-26),
have been calculated by the numerical method of section 6, using the ordinates of the exact
section shape given by equations (2-53) and (2-54). The comparison of the approximate values
in column () with the exact values in column (a) shows good agreement, especially in the front

part of the aerofoil. This implies that equations (3-34) and (3-35) give a good approximation
to the suction peak.

Similar agreement is obtained for the 10 per cent thick sections RAE 100 to 104 between the
results of the present method, equation (3-36), and the approximation IIT of the method by
S. Goldstein, based on conformal transformation (see R. C. Pankhurst and H, B. Squire ° (1950)).
This 1s illustrated by an example given in Fig. 3. , ) ‘
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To show again the effect of higher order terms in #/c, for the example of the Joukowsky
profile, the results of some further approximations, corresponding to those of section 2.2, are
-given in Table 2. We consider first the approximate section shape, equatlons (2-56), (2-57).
The integral S®(x), equation (3-29), is :

+3
2(‘

P El dé:l
S =SUw =2 1z ((22'/@2 £— &
J -4

iz

g 1 — cos 9,
= SW(y) — = L 4o,
(%) m | cos® —cosd =~ "
J o
sin 24,
= ———— .. .. .. .. . .. .. .. -52
8smz?1 (35)

using equations (2-36) and (2-59). The approximation to the velocity distribution V[V, which

corresponds to approximation (2-60) for V|V ,,, is thus by equations (2-56) and (3-26) :
sin 9, — e sin 24,

2 4/{sin®#; + &*(cos 28, — cos¥,)*}

Some values calculated from equation (3-53) are given in column (4) of Table 2. The differences

between the values in columns () and (d) are only due to the difference between exact and
approximate section shape, since both are based on equation (3-26).

V=", tan (3-53)

To show the total effect of the non-zero thickness, the velocity distribution of the thin wing,
equation (3-9), is also given in Table 2, column (¢). This distribution is again the result from
linear theory for the thick wing.

The approximate velocity distribution, corresponding to equation (2-61), is obtained by
retaining only the terms of lowest order in ¢ in numerator and denominator of the formula for
the exact distribution, equatlon (3-51) :

sin ¥, — & sin 24,

" a/{sin®@, + &*(1 — cos )}’
Velocity distributions have been calculated from equation (3-54) for the e-value of the approxi-
mate section shape, equation (2-41), and for the exact «. They are given in columns (¢) and
(f) of Table 8. A comparison of the results in columns (¢) and (f) with the exact values in
column (a) shows generally greater differences than between columns (b) and (). This means
that the approximate solution of the present method, equation (3-26), takes the higher order
terms well into account. _

19"
V=", tan

(3-54)

To illustrate the accuracy of the present method, it may be of interest to compare it with a
further approximation for the. flow around the aerofoil in the uniform stream V,. The aerofoil
in the ¢-plane is transformed into a slit in the (*-plane, and at the slit an approximate vortex
distribution is determined which cancels the normal velocity component resulting from the
uniform stream V.

The uniform stream V,, has tangential and normal velocity components at the aerofoil :
dz/dx
V{1 + (dz/dx)"}
1
Vo T+ (@i

VtO == VzO (3—55)

Vno == (3—56)

21



The corresponding nornial component at the slit in the ¢*-plane is, with equation (2-10) :

. dc
Vn(]% = VnD d—;fx_

; |
_Vzodx R £ . )

V.o* is exactly constant along the slit only for the elliptical aerofoil.

A vortex distribution which produces the V,* distribution given by equation (3-57) could be

determined by equation (3-23). To obtain a simple solution, let us approximate the varying
V.o* distribution for the general aerofoil by a constant :

,lozz(,(d”) L. . (358

where %, is any point along the chord, 0 < xo < 1. The vortex distribution of the flat plate,
equation (3-11),

p* =2V, > /\/{1 "*7:/"‘*}

cancels the velocity V,,* = dx/dx » Lt produces at the slit the tangential velocity
CAVE =
This corresponds to a tangential velocity at the aerofoil :
ac*
A Vt == A V;*'TC

B (dx*dx), 1 et
= 0+ @y P >xx/{ ok }

which with the same approxnnatlon as in equatlon (3-58) becomes

= )

- The total velocity is
Vt = Vy + 4 V,

:\/{1_szz/dx2}[i'/\/{lﬁﬁ}+%}... L (3-59)

For aerofoils with finite radius at the trailing edge this velocity is not zero there. To obtain
such a velocity distribution, we add a flow with circulation around the slit in the ¢*-plane.
From equations (3-6) and (3 -7)

1
V) V(L= 276
d*|dx 1
V{1 + (dzfdx)} A/ (x%[c*) A/ (1 — x¥[c¥) "

T To illustrate the accuracy of this approximation the following limits are given. For the 10 per cent thick Joukowsky
profile :
dx

0-81 < — 1-08
<d <

A4V, * = const

and

4V,; = const

and for the 20 per cent thick profile :

070<§£<1 18
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With the above approximations :
1

1 o
AV,, = const ; ) 3-60
= oSt @l v v/ — %) (3-60)
Finite velocity at the trailing edge is obtained, if
const =— V', ﬁi—z—\/(l—x)> . e .. . .. .. (3-61)
dx 1

Adding the additional velocity 4V, to the velocity given by equation (3-59) gives the total
velocity for the elliptical aerofoil :

V=" \/{1;1@/@6)2} [i »\/ {L}C} + g*\/ .{1 x H :

This is the same result as in equation (3-45), as was to be expected since the approximations
made are correct for the elliptical aerofoil. In the general case, the approximation for the velocity
distribution reads :

1 1 —x dz dz 1 .
Vi=Vo U T (@ldn) [i ,\/ { x } T @Y =9)  eyi— x)] (3-62)

For the approximate section shape of the Joukowsky aerofoil, equations (2-56), (2-57), the
velocity distribution reads : )

& sind; — e(sin 9, 4 sin 2¢,)
2" 4/{sin®¥, + &*(cos 20, — cos )’}

The last column in Table 2 gives the velocity distribution for the 20 per cent thick Joukowsky
profile, calculated by equation (3-63). The comparison of columns (4) and (g), which both use
the approximate section shape, with the exact values in column (a) shows that equation (3-62)
gives in this case a rather poor approximation.

Since the determination of the terms SW(x), S®(x) and S®(x) by equations (3-31), (3-32)
and (3-33) is easy and quick, we can conclude from the above discussions that the present
method, 7.e., equation (3-30), is accurate enough, as well as simple, to recommend itself for
practical application.

V = V,tan (3-63)

4. The Sheared Wing of Infinite Span.—In this section we extend the above results for the
straight two-dimensional wing to the sheared wing of infinite span by adding a flow parallel to
the leading edge of the wing.-

The leading edge of a wing of infinite span is sheared by an angle ¢ in the direction of the
main stream. In addition to the usual co-ordinate system x, y, z, where the x, z-plane is parallel
to the main stream, we introduce a rectangular system &, 7, z, see Fig. 4, where the £-axis is normal
to the leading edge of the wing and the n-axis parallel to it. The relation between the two
systems is :

§=xcosp — ysing
} . (4-1)
n = xsing + ycosg

To determine the flow around the sheared wing, we split the velocity V, of the main stream
into its components along the £, %, z axes :

Vi = Vocosacosp )

| ,
Vo = Vycos asing lr, - .. .. - .. .. . (4-2)

Vzg - Vﬂ SiIl ¢4
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consider the aerofoil in the three uniform streams Vi, V,, and Vo separately, and finally add -
the resulting velocities.

The sheared wing is a stream surface of the uniform stream V,,, so that no velocity 1ncrements
v, are produced. :

There remain the flow components V,, and V,,. The velocity distribution at the surface of the
aerofoil in these uniform streams is the same as in a two-dimensional flow around the wing normal
to its leading edge, ¢.c., a plane n =const., and can thus be calculated from equations (2-15)
and (3-26) by replacmg % by & and 1nsert1ng Ve and V,, from equation (4-2). When applying
equations (2-15) and (3-26), the ordinates z are to be measured in terms of the wing chord normal
to the leading edge which is smaller by the factor cos ¢ than the wing chord ¢ measured along
wing. The effective thickness/chord ratio is thus increased to (¢/c)/cos .

The sheared wing in the uniform stream V, can be represented by a distribution of source
lines parallel to the leading edge of strength

az
g(£) = 2V, cosp T

This is equal to
a
g(x) = 2V, d—i .

“Thus the source distribution is the same as for an unswept wing of the same section shape z(x)
along wind, equation (2-19). This is a consequence of the fact that for any continuous source
distribution in a plane the normal velocity component at the plane depends only on the 1ocal

source strength, v, (z = 0) = + ¢/2.

The sheared flat plate at incidence can be represented by the same vortex distribution as the
unswept plate, equation (3-11). The additional vortex distribution 4y, equation (8-24), which"
takes'account of the finite thickness is increased by the factor 1/cos ¢.

These considerations give for the total velocity component in the plane n = 0.

S®(x) . 1= x| [1L 4 SOx)
Vialnd) COS o COS p [1 + COS(J - sin OLN/{ . }[ o5

o P ED

) cos a[cosg + SU(x)] 4 sin OL&%/{I ; }[1 + iz)s(z)J (4-3)

T ()

where S®(x), S®(x) and S®(x) are determined by equations (2-16), (3-28) and (3-29) and the
section shape z(x) in a plane parallel to the wind direction. They can be calculated from equations
(3-31), (3-32) and (3-33).

The total velocity is given by adding the velocity components Vy—oand V,:
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The velocity component in the spanwise direction v,, which is needed for instance when
calculating the shape of a streamniline, is given by :

1 .
%:sinqa [Vi"/:"—cosoccoswj. .. .. . . .. .. .. (4-5)

The pressure coefficient in incompressible flow is from equation (4-4) :
N\
o-1-()

= 1 — cos® asin®*¢ —

i )
' : .. (48

@ () \2
(2
cos @
and the chordwise loading :

ljl i 5<1)<x)J[ 5(3)(@}

. 1] —x cos @ cos ¢

AC, = — 4 cos oSN & COS /\/{ p } ST R . .. (4-7)
b <cos<p>

Integration of this distribution, equations (3-87) and’ (83—43), gives the lift coefficient.

As an example we quote the pressure distribution on a sheared wing of elliptic cross-section,

(see equation (3—47)) : |
{1 + le J {COSO(COS(p:};Sinoc/\/<1_x>}
Cos @ . x

C, =1 — cos® asin*¢ — 4-8
» cos” o sin” g L n 5 1 — 20 (4-8)
cosp/) 1 — (1 — 2x)?
This gives the lift coefficient : .
te ) |
CL-—Zn(l—l—COSqD sin « cOS g . .. .. . .. .. .. .. (4-9)

The above relations show that, for wings of constant thickness/chord ratio /¢ along wind, the
thickness corrections become larger with increasing angle of sweep. This implies that the greater
the angle of sweep the more important it is to take the higher order terms in £/c into account.
For this reason, we have investigated the accuracy of the present method, in sections 2.2 and 3.2,
using the rather thick Joukowsky aerofoil with #/c = 0-2 as an example.

When deriving a formula for the pressure coefficient of a sheared wing by first determining
the linear order terms for the sheared wing and then applying a second-order correction, like
equation (2-24), some doubt may arise as to whether the correction reads

1

1
VAL L (dzjan > L (Bl
cos ¢
This question is solved in favour of the second alternative by the above derivation since this

gives the exact answer for the aerofoil of elliptic cross-section.
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Since no exact solutions exist for the three-dimensional flow. around swept wings, the accuracy
of approximate solutions must be determined by comparison with experimental results. Part of
the differences which occur are, however, due to the viscosity of the air which is neglected in
the present calculations. To show the magnitude of such effects it is desirable to have a com-
parison between calculated and measured pressure distributions on a sheared wing, for in this
two-dimensional case we know that the present method gives sufficiently accurate results.

It is difficult to study a sheared wing of infinite aspect ratio in practice, since a sheared wing
spanning a wind tunnel represents the conditions on a zig-zag wing, with the tunnel walls acting
as reflection plates. The flow conditions existing near mid-semispan on a swept wing of finite
aspect ratio are, however, similar to those on a sheared wing of infinite span, provided the aspect
ratio is not smaller than about 4. Then the station considered is not affected by the distributions
of the flow near the centre and the tips. The incidence, «, to be used in calculating the pressure
distribution is the effective incidence, o, which differs from the given geometrical incidence,
%, by the induced angle of incidence, «;, produced by the trailing vortices :

o= = oy — & . .. . .. . .. . . .o (4-10)

a; has to be obtained from a calculation of the spanwise load distribution of the wing. In the
following comparisons between theoretical and experimental results, the induced incidence
has been calculated by the method of D. Kiichemann® (1953). This method excludes wings of
very small aspect ratio ; but it is only on wings unaffected by small aspect ratio effects that
conditions exist which are similar to those on an infinite sheared wing, as discussed here.

Fig. 6 shows the chordwise load distribution measured near mid-semispan on a 45-deg swept-
back wing of aspect ratio 5 (from Ref. 11), together with the calculated distribution. The
calculation is made for inviscid flow. The comparison shows the effect of the boundary layer,
present in the real flow, which is to reduce the circulation around the wing. The viscosity effect
already exists for o— 0, and increases with increasing incidence. The shape of the chordwise
load distribution is also altered by the boundary layer, the more so the higher the incidence.
Methods for calculating the pressure distributions on two-dimensional wings in viscous flow,
when the growth of the boundary layer is known, have been described by J. H. Preston'® (1949)
D. Spence® (1952), G. G. Brebner and J. A. Bagley™ (1952). A good approximation for small
incidence can be obtained by ignoring the alteration of the shape of the chordwise load distri-
bution and calculating the pressure distribution for a reduced effective incidence. The latter
can be found from a calculated spanwise load distribution which uses the lift slope C,/«, of
viscous flow for infinite aspect ratio. For the quoted example : C ja, = 5-00 ; inviscid flow :
Crla, = 387 ; viscous flow, R = 1-7 x 10°: Crla, = 3-63.

A second example is given in Fig. 8, with experimental results from Ref. 15. In this case the
wing is tapered. Ref. 16, which deals with the calculations of the pressure distribution on swept
wings at zero lift, contains a discussion of how the three-dimensional flow around a tapered
wing can be approximated by a series of ‘ local two-dimensional flows ’. In this approximation
the pressure distribution at a station free from centre and tip interference is calculated from
the formulae for the sheared wing of constant chord by taking for each point along the chord its
local geometric sweep ¢(x), ¢.c., the sweep of lines jolning points of constant percentage chord
(“ local sweep ).

In Fig. 8, two calculated curves are given for the load distribution on the thick wing. In one
calculation the local angle of sweep p(x) was used. The other calculation was made with a
constant ¢ along the chord, .e., the angle of sweep at mid chord, ¢,;,. The two different chordwise
load distributions give different values of C L. (3-87 for ¢ = ¢(x), 4-12 for ¢ = ®.2) and con-
sequently different values of C;/a, (2:79 for ¢ = p(x), 2-91 for ¢ — ®e2).  Since the experimental
results are also affected by the viscosity of the air, it is not possible to conclude from this testt

T 1t is difficult to isolate the taper effect from experimental results on more highly tapered wings since these are
wings of small aspect ratio and it is known that, with straight constant-chord wings of small aspect ratio, the chordwise
load distribution differs from the two-dimensional distribution.
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whether to use the local p(x) or the constant ¢, To show that the effect of this uncertainty
is not large compared with the effect of the finite thickness, the load distributions of thin wings
are also plotted in Figs. 6 and 8.

5. The Centre-section of a Swept Wing.—To solve the problem of calculating the pressure
distribution at any station of a swept wing, a further basic problem is the determination of the
pressure distribution at the centre section of a swept wing of infinite aspect ratio.

The solution for zero lift has been dealt with in detail in Ref. 16. The problem was solved by
replacing the wing by a distribution of kinked source lines. The strength of the source distri-
bution is, in linear theory, again given by equation (2-19), since the v,-velocity on the chord-line
produced by a continuous distribution of kinked source lines is still equal to ¢/2. This implies
that in linear theory the problem is a ‘ quasi two-dimensional * one, since for wings of constant
section shape the source strength does not vary on lines parallel to the leading edge.

It was shown that the source distribution produces a velocity component, v,, at the chord-line
of the centre-section which differs from that on the sheared wing, cosg. S®(x), by an additive
term dependent on the local source strength : _ :

nuxz2=0) _ Wiy q(x)
o = cos .5 (%) — flp) COS(}OZVD
= cos .SU(x) — f(p)cose az
. ' dx
— c05¢.SW(x) — flp) co8 .S (x) R (35 )
with |
Flo) = L LEsme SO £ )

7 1 —sing’
The spanwise velocity component v, is zero by reasons of symmetry.

To obtain the velocity distribution on the surface the correction factor of the straight wing,
equation (2-24), is again applied :

Vix,z) 14 cose.SW(x) — flp) cose.S®(x)
Vo VAL A+ (SO)

o1 {1 + cos@.SY(x) — flp) cos p.SP(x)}?
"= [+ (S0 '

This gives only an approximate result, but the comparison with experimental results, given
in Ref. 16, shows sufficient agreement for practical purposes. There are no exact solutions
available to determine the accuracy of the method, nor are there known any better approxi-
mations which might be obtained by calculating the velocity components at the surface which
are produced by a source distribution of constant strength along lines parallel to the leading edge.
The exact solution demands source distributions of varying strength along these lines.

(5-3)

and

(5-4)

The infinite source strength at the leading edge, which results from the assumptions of linear
theory, leads to a pressure coefficient at the leading edge different from 1. An approximate
formula, giving the correct stagnation pressure at x = 0, is :

1 o S®(x) 2
+ cosp.SU(x) — f(p) cose V{l -+ (5(2)(95))2}}
C,=1— 1 4 (S@(x))® o S
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The difference between the formulae (5-4) and (5-5) is important only within the first few per
cent of the chord. This is illustrated mn Fig. 5, where the pressure distributions calculated from

the two equations for 12 per cent thick wings with 45-deg sweepback are plotted, together with
experimental results.

Measurements of the pressure coefficient on swept wings at incidence have shown that the
shape of the chordwise load distribution at the centre-section differs from that of the distribution .
further outboard. It has been explained in Refs. 10 and 17 that this is due to the fact that the
v-velocity produced by a distribution y(x) of kinked vortex lines of infinite length and constant
strength along the span is no longer given by equation (3-12) but by the relation :

v,(%, 2) = — 2—17;{J y(x) xo_iflx, + a.y(x)} . .. .. .. .. (5-6)

The term o can be approximated with sufficient accuracy for all points along the centre-line
by the constant

o= mtang . . e .. .. .. . . (5-7)

The term — ZLG'y(x) corresponds to the term — f(p) cosg¢ Q%Qin equation (5-1) for the
7T .

v,-velocity induced by a distribution of kinked source lines of infinite length.

A solution of equation (5-6) which gives the constant v,-velocity
v,= V, = Vysin a
along the chord, is the vortex distribution
I — 2V

x

n=%<1—£%>. i, ..‘ e L 59

As stated in Ref. 10, the vortex distribution of equation (5-8) can also be used for the centre-
section of ordinary swept wings with non-uniform loading for which y(x) varies along the span.
The vortex distribution of equation (5-8) must now replace the distribution of equation (3-11)
for the unswept flat plate. '

y(#) = 2V, sin acos (p< (5-8)

with

Our aim is to find a vortex distribution corresponding to equation (3-25) which also takes into
account the thickness of the aerofoil. It is impossible to determine analytically a correction to
the vortex distribution of equation (5-8) similar to the 4y(x) of equation (3-24) for the straight
wing. Equations (5-6) and (5-7) have not yet been verified analytically for the thin wing,
but only numerically for wings of finite thickness, by caleulating the downwash which a vortex
distribution at z = 0 produces at the surface of thick aerofoils. These calculations lead to
o-values in equation (5-6) which vary slightly along the chord and with the thickness/chord

ratio, and the shape of the aerofoil. These variations have been ignored in equations (5-7)
and (5-8).

Tentatively, therefore, we use the factor (1 4- S®(x)) of the two-dimensional wing to multiply
the y(«) of equation (5-8) : ' '

— X

#{(p)
x,) (L+S9@), .. .. .. .. (5-10)

in analogy to the procedure for the infinite sheared wing.
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Finally, applying the correction factor of equation (2-24) to the velocity at the chord-line,
we obtain the pressure coefficient at the centre-section of a swept wing at incidence :

cos o{l + cosp.S(x) — flp) cose v+ = (g)’(x))z}]

1 — % (@)
- sin « cos ¢ ( ) (1 + S®(x))
=1- [+ (S &-11)
and for the load distribution :
: A [ — s\
ACP:—4cosasinoccos<p< o > X
[1 + cos:;u.S(”(x) —f((P) éOng 5(2)(5\5) :l [1 + 5(3)(96)]
V{1 + (S®(x))*}

X (5-12)

I+ (S

The coefficients of the normal force and the pitching moment, Cy and C,,, can be determined
from the load distribution by integration (see equations (3-37) and (3-38)).

The relations (3—42) and (3-43) between C;, Cy and C, no longer hold, since equation (3-41)
is no longer true. Cy can be determined by integrating the pressure distribution :

Cr= G0, d(2(%)). .. oo e e e (513

By equation (3-40) a finite drag coefficient in 1nv1sc:1d flow 1s obtained for the centre-section.

When calculating the pressure coefficient near the leading edge, equation (5- 11) can be written
in a form similar to equation (3-35) :

dz 12

cosa| 1 + cosp.SP(x) — f(p) cosg N/{ <
- i 279}

{g)
+ sin ocCOStP(l;ZC) 2/%(1 + S®(x)) :
6 =1L ! (5-14)

s <Wx>

For positive angles of sweep, #(p) < 0-5 by equation (5-9), and thus

]j.m 1 —x #(p)

>0 v ’\/x:O
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which means C,(x == 0) = 1 for all values of «. This is not true in reality. Approximation (5-11)
may be improved by replacing the term

1 — o\ SN
=Y (s
3 PY
dZ 27105 CZZ 271 5(ep)
(3] (3]

which is a minor correction, except in the very neighbourhood of the leading edge. Thus the

final formula for the calculation of the pressure distribution at the centre-section of a swept wing
reads : ' :

| 1 + cosg. S(l)(x) 5(2)(x)
Cr=1- { o “[V{l + (5% I COWWJ

. 1 —2\" 14 S¥x) ?
+- sin occosaa< p > r (S“’"(x))ﬂ"("’)} . .. . .o (5-15)

To assess the accuracy of the approximations made in the above formulae, we compare
calculated values with experimental results. Fig. 10 shows that the measured pressure coefficients
at the leading edge (v = 0) agree sufficiently well with the values calculated from equation (5-15)

Fig. 7 gives a comparison of the measured and the calculated chordwise load distribution at
the centre-section of a 45-deg swept-back wing of constant chord. In the calculations, equation
(5-15) was used near the leading edge and equation (5-12) away from the leading edge. The
relation between the geometric incidence , and the effective incidence «,, which has to be used
in the above formulae, was again determined from the spanwise load distributions calculated
by the method of Ref. 10. The calculation given in Fig. 7 is made for inviscid flow. The com-
parison in Fig. 7 shows that the shape of the measured load distribution is well approximated
by the calculated curve. However, the boundary layer of the viscous flow reduces the circulation,
as was the case for the section near mid-semispan (see Fig. 6). The experiments show, in contrast
to the conditions near mid-semispan, that the boundary-layer effect at the centre-section is
almost independent of the incidence. If a reduced effective incidence is used in the calculation
to take account of viscosity, the agreement between the calculated and the experimental load
distribution is good. From this we conclude that, for wings of moderate thickness and sweep,
it is not necessary to improve the thickness correction to the vortex distribution of equation
(5-8). The difference in the final results between using the factor (14 S®(x)) or (1 4 S®(x)/cos )
in equation (5-10), is too small to decide which term is to be preferred. :

The load distributions for the thin wing are also plotted in Figs. 6 and 7. It will be seen from
the figures that the thickness effect is less at the centre than at the sheared part. This was to be
expected, since in the calculations the effective thickness/chord ratio is t/c at the centre, but

(f/c)[cos ¢ at the sheared part; which implies that errors in the thickness correction are less
important at the centre. '

The load distribution at the centre of a highly swept wing is shown in Fig. 9, this wing however
being tapered. Plan-form taper has two effects at the centre-section : (i) the local sweep varies
along the chord, (ii) the absolute thickness decreases when moving away from the centre. It has
been discussed in Ref. 16 that the decreasing thickness brings a reduction of the velocity at the
centre-section at zero lift. In the present case, this reduction is of the order of 10 per cent of the
velocity increment, 4.e., 1 per cent of the total velocity, which means that it may be ignored
when calculating the chordwise load distribution. To take account of the varying sweep, two
curves are shown for the load distribution, as in Fig. 8, one calculated with the local @(x) and
one with constant ¢ = ¢,,. The exponent » is in both calculations equal to (1 — @,/s/3n).

2
‘The comparison with the experimental results in Fig. 9 does not show conclusively whether ¢ (x)
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or @, gives the better agreement. This implies that we cannot decide from this test whether
to take the factor (1 4 S®(x)) or (1 + S®(x)/cosp) in equations (5-10) and (5-11). It must be
pointed out, however, that the differences between the various methods themselves, and between
calculation and experiment, are small compared with the differences between the distributions at
the centre and near mid-semispan. We can, therefore, conclude that the present method provides
sufficiently accurate results for most practical purposes.

8. Numerical Method.—The calculation of the pressure distribution on a two-dimensional
aerofoil by equation (3-34), on a sheared wing by equation (4-6), and at the centre-section of
a swept wing by equation (5-4) for any given section shape, requires the calculation of the three
functions S®(x), S®(x), S®(x). In this section a method is described for approximating these
functions, at certain fixed points #, along the chord, by sums of products of the section ordinates
at the points x, and certain coefficients, which can be determined once for all ; (see equations
(3-31), (3-32) and (3-33)). These coefficients will be calculated below.

The section shape is represehted approximately by an interpolation function similar to the
function introduced by H. Multhopp® (1938) for the spanwise load distribution. Let

cos® = 2x — 1. .. . .. . . . .. . (6-1)
The ordinates of the aerofoil are assumed to be known at the fixed points
. 25,4
%, = x(9,) Wlthﬁﬂsﬁ .. .. .. .- . (6-2)

where p is any integer 1 < 4 < N — 1, and N is an arbitrary even number. The position of
the pivotal points %, is given in Table 3 for N = 8, 16, 32. N = 16 has been used for the calculated
examples in Tables 1 and 2 and Figs. 3 to 10.

An interpolation function which has the values z, at the points x, is

" 92 N-1 N-1 | . :
2(9) = N ”2=1 %, % sin Ad,sinid. .. . .. . .. .. (6-4)
From this approximation it follows that :
de 2 dz
dx  sind dd
'S' 2, 'S asina9, cos Ao
_Nsinﬁ,zlz“ Z Asinid,cosid. .. .. . o .. (6-9)
Since
1 T
1 dz  dx’ 2 dz as’
S(l) _— = — ‘ .. . .. —
() 7 L ax' x, — x'  =n Jo doé’ cos®’ — cos9, (6-6)

by equation (2-16), we obtain, for the coefficients s, in equation (3-31), the relation :

dao’
cosd’ — cos ¥,

3T

s, M —iNila in A9 29
wo TN i S P cos

0

using relation (2-36)

5,0 = 4 S' 7 sin 49, sin 49
w = Neind, 2 sin A4, sin 14,
2 S ireos Al 'ﬁ

= Nemd, 3 [cos A(#, — ¥,) — cos A(&, + 9,)]. . ‘e .. (6-7)
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(N — 1)cos N9 — Ncos (N — 1)9 + 1

N-—-1
Also 3 Acosid =
A=1

Slcos & — 1) S . . .. (6-8)
This relationis true for N = 2 and can be proved by induction from N — 2to N — 1. Now since
sin N(#, + 9,) =sin N®, — 9,) =0 .. .. . (6-9)
cos N(#, + 9,) = cos N(#, — 8,) = (— 1)~ ... (6-10)

it follows from equations (6-7) to (6-10), that

sz(— e — 1 1 B 1
“ Nsin#, |1 —cos(® —®) 1—cos(d,+ 9,)

(— 7 —1 2sin ¥,
N [1 — cos (9, — 9,)][1 — cos (&, + 8,)]

_ =11 2sin 9,
= N (cos &, — cos 9,)%" . .. . o .. (6-11)

For x4 = v, from equation (6-7)

o = 2 IS S cosa(20)
¥ Nsin#, | i< i1 , ”

1 1 — cos 28,
:sinﬁv {N_— 1 " cos 29, — 1}
N

sin#,

The coefficients sl;y‘l) have been calculated from equations (6-11) and (6-12) for N = 8, 16 and 32,
and are given in Tables 4, 7 and 10.

(6-12)

For high lift the pressure distribution over an aerofoil has its peak very close to the leading
edge and is changing rapidly along the chord, so that the pressure coefficient is needed at points
other than the fixed x, in that region, (see Table 3). The function S®(x) is a continuous function

of x, which can be determmed graphically at any x-value from its value at the fixed x,, if it is
also known at x = 0.

The pivotal points ¥ = 0 and x = 1, ¢.e., » = N and » = 0 are not included in equation (3-31)
since for aerofoils with a rounded nose,

1
SW(x = 0) = lim J Az _dx

—s0 | dx' x — &
[¢]

1
dz dx'
7+— J\ dx/ _ x/
0
In determining S®(x = 0) we make use of the fact that, for aerofoils with elliptic cross-section,
S®(x) is known along the whole chord ; (see equation (2—35))

S®(x :‘f“‘l’“ A\/< > .. . . . .. .. (6-13)




where g is the nose radius. We subtract from the aerofoil. ordinates those of the elliptic aerofoil
-with the same nose radius :

Azzz(x)—/\/<2%>\/(x—'x"). L (814)

With conventional aerofoil sections we can assume that 4z has no term which varies linearly

with . Then:
. ldAz dx’ ' dAz dx'
llm 4 ! - -—lﬂ 4
30 odx p— odx —x
N—-1
= 3 s 4z,
p=1
with

5,0 — (—1)*—1 2sind,
g N (1 + cos #,)°

from equation (6-11). For the ellipse

(6-15)

Zyy = %% sin ¢,
N—1 tv=t (— 1) —1 sin? &
Wy, @
,,2—_:‘1.5“1" o = ,El N (1 4 cos #,)?
t,
=AW -1

Since
[} N—1 N—1
SW(x = 0) = 25 )4+ 3 sa™z,— T s,
[ p=1 n=1
we obtain finally,

sm(x:())zzv&/@%>+Esmwzp. ... (618

The term S®(x), which is equal to the slope of the profile surface dz/dx, can of course, be
determined graphically from a plotting of z against #, but it can also be determined numerically
at the points %,. From equation (6-5) we obtain a relation for the coefficients s, in equation

(3-32) :

60— _ 51 inas, cos i
a N sin 8, =1 # g
.2 N-1 )
= — oy | 2 M A, + 0) FsinA@, =)l (517)
Now
w1 (N —1)sinNo — Nsin (N — 1)
Z Asmhd = 2(cos? — 1) : (6-18)
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This relation is true for N = 2 and can be proved by induction from N — 2 to N — 1. Using
equation (6-9) it follows from equations (6-17) and (6-18) that :

® __ (= 1)~ _ sin(9, + 4,) sin (9, — ¥,)
sind, |1 —cos(®, +4,)  1— cos(d, —4,

(= 1 8, - 9, 8, — 9,
= eng, (Ot g oot

w

. (— 1)*7sin g, :

= esd —emvl . e - o (619)

For u = », from equation (6-17) :

L S sin s
T Nsing, &~ SmA,

1 sin 28,
sin 4, 1 — cos 29,

2)
Sw( ) —

__cotd,
Csin®,

The coefficients s,,® calculated from equations (6-19) and (6-20) for N =8, 16 and 32, are
given in Tables 5, 8 and 11.

(6-20)

In calculating the pressure distribution at high incidence by equation (3-35) the derivative

of z with respect to 4/x, dz/dv/%, is needed. This term can be determined graphically from a
plotting of z against 4/x or by plotting :

<6—Z£Z\~/Z—x>xv:,2\/x,5v(2) O 2

taking into account the relation

(dﬁ)x:o:,\/(zg). L 622

The values of dz/d+/x determined by equation (6-21), or directly from plotting z(4/x), need
not fully agree since equation (6-5) is only an approximation. The magnitude of the difference
can be seen by comparing the exact nose radius with the radius of the approximate section
shape, equation (6-4). From equation (6-5) it follows that

dz az —2
<d\/x x=0 B %>19=n <Sin ﬁ 2\/x>x—)0

dz™\
:_2 %)ﬁzn

N1 . sind,
=2 E.l (= 1) 1+ cosﬁﬂz”'

(6-23)

Now
sin® @,
1 + cos @,

so that for the elliptic aerofoil, z = 4(¢/c) sin 9, (dzjdr/x),_ = tle, Which‘agrees with the exact
value, For the 20 per cent thick Joukowsky profile equation (6-23) gives dz/d+/x = 0-2991 whilst
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the exact value from equation (2-53), (2-54) is 0-2992. For the 10 per cent thick RAE 101
section the nose radius from equation (6-23) is ¢/c = 0-00760, whilst the figure given in Ref. 9
is ofc = 0-00783. These figures show that for aerofoil sections which have a shape similar to
an ellipse for the first few per cent of the chord, the interpolation formula (6-4) is adequate.

If there is an appreciable difference between the two values for the nose radius, one might
improve the interpolation formula (6-4) by adding the term (¢/N) sin N#1 :

2 N1 No1 . ¢ .
c2(9) = N /zl Z, X sinld,sinkd + 7 Sin N9 . .. .. . .. (6-24)
This interpolation function gives the required values at x, :
Z(ﬁ#) = 3
Thus
4z _ 200 S hsinad, cos i No . 2
%—Nuélzﬂ 2 Asinid, cos '+ ccosN& . .. .. . .. (6-25)
The constant ¢, can be chosen so that
sin ¢,
uw
< > )1~]—c0519”“+6‘

~/\/<2%> e (6928

The improved interpolation function (6-24) gives the same values for S®(x,) as equation (6-4),
since the additional term to S"(x) is by equations (6-6) and (6-25)

2 [ a9’ sin N9
o] = b T .
ASM(B) = — JocosNﬁ s d —cosh 2¢, sng . . .o (6-27)
which is zero for ® = #,. At the leading edge, ¥ = =, 4SW(x) = — 2Ng, i.e., N times the dif-

ference between the values of 2/ (20/c) for the given section and the 1nterpolat10n function,
which means S®(x = 0) is given by equation (6-16).

The amendment of the interpolation function z(#), given by equation (6-24), is a special case
of the amendment suggested by J. Weissinger® ( 1952) for calculating the spanwise load distri-
bution using the calculation method by H. Multhopp®.

The interpolation function equation (6—4) gives the correct ordinates at fixed points x,. It may
be desirable to calculate the function S®(x) from an interpolation function z(#) which has the
correct value z, at one further arbitrary point x,. Let an asterisk denote the values of z and S®.
obtained from equation (6-4). The new interpolation function is
2(9)

o = 200 nn . .. L (68

W) =0+ e

By equation (6-6),

S(l)(ﬁ) _ S<1)a:e(?9,> + Z(ﬁ'a) — Z7 (19'“) 2N sin N¥ .

sin N, sin &

(6-29)

+An additive term which does mnot alter the section éhape of equation (6-4) at the trailing edge is
(¢/N) sin N§.3(1 — cos®). To obtain the required nose radius the constant ¢is to be determined by equation (6-26).
The additive term alters the value of S®(x), slightly. It follows from equation (6-6) that the additional term to
- S@(w,)is:

AS®(x,) = — c,

This correction can usually be neglected since ¢,is generally small.
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Therefore, sin N9, = 0 by equation (6-2),
SW(D,) = SW#(g,)

i.e., the values of S®(x) at the points x, are not altered by using a further point for ‘deter-mining
the interpolation function. This is not so for points ¢ # ¢,. In particular,

2N
WG ) — S ) gk
SU(B) = SUHD) + [2(0) — 250 Sy
This relation can be written in the form :
SO(9,) = s, z—]—E S, 2, . . . . . . .. (6-30)
p=1 .
where
2N
W
Saa Yy (6-31)
m__—4 5 (N — ) sin A9, sin A9 | (6-32)
S’ = Nang, 21 u . e . . . ..
by equations (3-31), (6-4) and (6-7). It follows from equation (6-8) and.the relation
_cos (N — 1}¢ — cos N9 4 cosd — 1
E cos AP = 30 — cos 9) (6-33)
.that
2sin? :
W # 9 —
Sy Nicos 9, — cos 9] [cos N, cos N9, — 1]
4 sin 9, -
_—N[cosﬂﬂ—cosﬁa}'A’”’ . SR .. . . F6—34)
where
sinZ %‘ for x even
A/m =

ZNI a
2

If in particular 9, = {(2¢ + 1)/2N}=, ie., at a pivotal point of the system with 2N points taken
along the chord, then A o = % for all p and a, and the coefficients s,," by equatmn (6-34) agree
with those by equation (6-11) calculated for oN.

We have stated in section 2.2 that the interpolation function, equation (6-4), replaces the
given section by one with a finite radius g, at the trailing edge. We will now determine this
radius. We have

()~ ().

- sin?d,
—F—
1 —cosd, *

For the 10 per cent thick RAE 101 section, equation (6-35) gives gr/¢ = 0-000009, which means
there is no important difference between the given section and the approximation,
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Finally, we have to determine the coefficients s,,® and s,,® in' equation (3-33) for the functiort
S®(x,)t. From equations (2-16) and (3-29) :

1

27 z(x) ax'
(3) — Q) S

SO =SB0 — 2 Ll—(l—Zx’)zx—x’

2 " 29 s’
— SW - S - 36)-
SH) + nJusinﬁ’cosﬂ’—cosﬁ' o . o - (6-36)
To evaluate the integral we approximate to the value of z(#)/sin ¢ by an interpolation function.
The function
N-1 g, N-

—2—1@— = sin ¥ l:g > —= Ei sin Ad, sin MJ

sin & N u=1sin*#, i=
o isinNﬁl—cosﬁ
_A\/<20 N sing 5 .. .. .. .. (6-37)

has the required values at ¢ = 9, since sin (N#,) = 0. It also has the correct value at the
leading edge, ¥ = = :

EORNORNC

sin N9 1 — cos @ o
sin ¢ 2 o '

At the trailing edge, ¥ = 0, equation (6-37) gives z(#)/sin ¢ = 0, which is correct for aerofoils
with a sharp trailing edge.

since

By equations (6-36) and (6-37), we obtain, for the coefficients s, in equation (3-33), the
relation :

4 1 w-1 " sin 9’ 4o’
s, =5, W —= sin A9 sin A9’ i
" o T xN sin®*4, AE=1 "J cos ¥ — cos?d,

0

By means of equation (2-36) :

" sin®’ 49’ " cos (A — 1)9" — cos (A -+ 1)8’
a1 /
JD SIAYS 08 — cos 9, JO cos @' — cos 9, ai
__@msin (A — 1)8, —sin (2 4 1)d,
2 sin 9,
= —mcosid, . ., .. .. o .. .. s .. (6-38)
Thus :
o_sn_ 2 L1 G 1p cosio
S = S TN gin® 9, is1 u COS ATy
o 2 1 N 1 )
= 5" — % o ry p3 [sin A(#, + ¥,) + sin 4(8, — ,)] . .. (6-39)

+For aerofoils with finite radius of curvature g, at the trailing edge, a further term s5.1/(0r/2c) has to be added
in equation (3-33). Except for the elliptic aerofoil, such aerofoils are of little practical interest:
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Nt sin (N — 1) — sin N9 + sin ¢
— 6-40
Now 3 sinis T —— (6-40)
which may be proved by induction. Using equations (6-9), (6-10) and (6-40) we obtain :
S [ — s 1 __ 1 — (_ 1)#—1} sin (ﬁ# _l_ 7‘9») sin (ﬁu — 19")
"” ”” Nsin*®, |1 —cos(d,+9,) 1 —cos(d, — 9,
and hence
21— (=1 1
O =s,M 4 = : . 6-41
S = S T N  sind, cos ¥, — cos &, ( )
For 4 = », we obtain from equation (6-39)
2 1 Nzt
®—gw__ 2
W= g, S
_cw 2 . 1 sin [(N — 1)28,] + sin 29,
" N sin® 9, 2(1 — cos 249,)
=s,". .. .. .. . . .. . .. .. (6-42)
By equations (6-36) and (6-37), the coefficient sy, in equation (3-38) is :
s @ _ L “sin N9’ 1 — cosd’ g
Mo T AN , Sind’ cosd®’ — cosd,
1 [T2sin N9 —sin (N — 1)¢' — sin (N + 1)¢ s’ 6-43)
T 2N . sin ¢’ cos®’ — cos®,
Now
7, = "sin 40’ a9’
P ], sin®’ cosd — cosd
1 — cos A8,
Tente, for A even
9, — A
= o BB — 0515, for 2 odd .. .. .. .. (6-44)
sin® 4,
as can be proved by the relation
sin (A — 1),
Ji= Ji-e + 2m "’%ﬁﬁy—)

which follows from

sinA¢  sin (4 — 2)¢
sin® ~ sin®

+ 2cos (A — 1)8 .
Therefore, using the equations
Ji=0

J: = 2x
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N being an even number, equations (6-43) and (6-44) give
SN(a):(_l)v—l. 1 .
s N 1 4 cos#,

The coefficients s, have been calculated from equations (6-41), (6-42) and (6-45) for N =8,
16 and 32, and are given in Tables 6, 9 and 12.

(6-45)

continuous

Using these coefficients S®(x) can be calculated for the points x,. Since S®(x) is a
= 0) is known.

function, its values at points other than x, can be determined graphically if S®(x

In determining S®(x = 0) we apply the same procedure as in determining S”(x = 0). We
subtract from the given section ordinates those of an elliptic aerofoil, equation (6-14), and make
use of the fact that for elliptic aerofoils :

5<3>(x)=te“(‘)ﬁ=/\/<2%>, L 48

(see equation (3-46)). For the 4z of equation (6-14) we have

N-1

45®(x = 0) = Elsﬁ,N“’)AzH
e
with .
21— (=1 1
®_g 02
Su¥ S T N sin#, 1+ cosd,

2 cos &,
- N[l — (=1 sind, (1 4+ cos#,)

' (6-47)
by equationé (6-15) and (6-41). For the ellipse, z, = %%sin Dy

N-1 f,v-11 — (— 1)*  cosd,
1 N 14 cosé,

Then, from

© 0 N—1 @ N—1 @
S (x — O) == 2 E "|_ El S;LN z;z - 21 S,uN Ze,u
u= =

we obtain finally

SO(x — 0) = g\/@ i) F T s L (648)

7. Calculated Example—To illustrate the calculation procedure a worked example will be
given. We calculate by equation (4-6) the pressure distribution on a sheared wing, swept by
an angle ¢ = 45 deg, at an incidence «. The aerofoil section parallel to the main stream is a
twelve per cent thick RAE 101 section (see Ref. 9).
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The layout of the calculation is given in Table 13, for N = 16, 7.e., we fix the section shape by
its ordinates at 16 points along the chord. This number of points does not involve a great amount
of computational work and gives results of sufficient accuracy for almost all practical cases.

From the given section data, with the co-ordinates x, 2 made dimensionless by reference to
the wing chord ¢, the ordinates z, = z(x,) are determined at the fixed points x, given in Table 3.

For determining the function S®(x) from equation (3—33) the term 4/(o/2c) is needed, where o
is the radius of curvature at the leading edge. When the nose radius is not given, the term

e __ (%
2 as /
can be determined from a plotting of z against ¥ near the leading edge, where

¥ =mn — cos™* (1 — 2x).

Such a plotting of z(¢) is also often advisable to obtain values of %z, near the leading edge which
are as accurate as possible. For sections which are ellipses up to the maximum thickness position

Xmaxs
A«/ <2£> B 2&2 V(;ﬁxm '

The functions SW(x), S®(x) and S®(x) are then calculated at the points %, for » = 1,2, ...
N — 1 from the relations '

) oo
SW(x,) = 21 S 2,

p=

N—1
SOx,) = % 5,22

.op=1 #

(3 N @ ® [/ o
S )(xv) = Nzl S/“, Zl‘ + Sy /\/ 50

using the coefficients s, s,,%, 5, and s,,® given in Tables 7, 8 and 9. These sums are easily
obtained by using a calculating machine.

The functions SP(x = 0) and S®(x = 0) at the leading edge, » = 16, are calculated from the

relations
SO(x — () = 2N e e
(x - ) - 20 —l_ ,UE=1 suN Z/,c

SO =0 =N, J( L)+ "5 5,92
2¢ =y

with s,4® and s, from Tables 7 and 9.

The pressure coefficient at the points x,, for a giveﬁ effective incidence «, is then calculated

from equation (4-8) :
et st (54 S
)

S®(x)]?
L+ [cos'qa:l

where the positive sign holds for the upper surface and the negative sign for the lower surface.
40 |
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If the pressure coefficient is required at points other than the fixed x,, the calculated values
of SW(x,), S®(x,) and S®(x,) are plotted against x, or preferably against 4/, near the
leading edge, and continuous curves S®(x), S®(x) and S®(x) are drawn. To avoid the infinity of
S®(x) = dz/dx at the leading edge, the term '

dfjx = 24/x S®(x)

is plotted, taking into account the relation

7)., =N (2D

The pressure coefficient near the leading edge is calculated from the equation

Jeos ateosy + S9yr & sinay/t — 0 1+ ]

cos ¢

=1 — cos® asin®¢p —
! ‘ 7 ¥ 1 dz \°
4 cos® g \d+/x
If the pressure distribution is required for a given value of the normal-force coefficient Cy,

the corresponding value of the effective incidence « has to be determined first. For this purpose
the function

SW(y SOy
TG )
—AC? 1 —x CoS @ Cosg
—————— = 4cosg , 5
COS o S1N & x 5(2)(x)
1+ —
Ccos @

is calculated and integrated along the chord. This integration is best done from a plotting of

COS ¢ SiIt ¢

4/% against 4/x. The incidence is then determined from the relation :

Cy
1
, cos asin o

€os aSin o = 3 sin 20 =

NEX2VE

LIST OF SYMBOLS

2,0, 2 Rectangular co-ordinates, x-axis in direction of the main' strean, y-axis
spanwise ; ¥ = 0 at leading edge
£, 2 Rectangular co-ordinates used for sheared wing, £ normal to leading edge,
7n parallel to leading edge
{ = x - 2z complex co-ordinate in original plane:
{* = x* I iz¥ complex co-ordinate in the plane where the aerofoil contour is
transformed into a slit
¢, &a Complex co-ordinates in transformed planes
g, &* Real co-ordinates in ¢ or {*-plane, used for flow around flat plate, ellipse
and Joukowski profile ; & and &* differ from x and x* by an additive
constant
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o

&g

*x,

%

Ve

VoV, V,

Vi Vi

Vo

Voo Vo, Vaor Vo

LIST OF SYMBOLS——continued

Polar co-ordinates in ¢;-plane, see equation (2-50)
Length of arc along the aerofoil surface

Aerofoil section

z(x,) where x, = ~—2—E , 0, = %

Wing chord

Maximum wing thickness

Wing span

Nose radius

Radius of circle in {;-plane into which the slit in the ¢-plane is transformed

Radius of circle in ¢;-plane into which the ellipse or Joukowski profile are
transformed ' '

Aspect ratio

Angle of sweep

Sweep of quarter-chord or semi-chord line

Arigle of incidence

Geometric angle of incidence

Effective angle of incidence

Total local velocity

Velocity of main stream

Velocity components in direction of the axes

Velocity components normal and tangential to the aerofoil surface
Velocity component in plane normal to the leading edge of a sheared wing
Components of V,

Velocity increments in direction of the axes

Complex potential function

Local strength of source distribution

Local strength of vortex distribution

Circulation

Pressure coefficient

Diiference between pressure coefficients on upper and lower surface
Normal force coefficient

Tangential force coefficient

Lift coefficient

- Drag coefficient
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S®e ( X,,)

y7g

No.

LIST OF SYMBOLS—continued

.11n1+5m¢

z 1 —sing

See equations (5-8), (5-9)
Thickness parameter for Joukowski profile, see equations (2-40), (2-53),

(2-54)
cos™! (2 — 1)
waf/N

Suffix indicating the pivotal point

Suffix indicating the inducing point

Number of points taken along chord

N—1

E syv(l)zlu
p=1

N—-1

> 5,2,
p=1

S @ ¢
> s, %2, + Sw, = ),
o2 g o N; 20

, see also equation (2-16)

, see also equation (3-28)

, see also equation (3-29)

Coefficients, see Tables 4, 7 and 10
Coefficients, see Tables 5, 8 and 11
Coefficients, see Tables 6, 9 and 12
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TABLE 1

Various Approximations of the Velocity Distribution V|V,
along the Surface of the 20 per cent Thick Joukowsky

Aerofoil in a Flow Parallel to its Chord-line

() ) ) (@) (e) ()
present linear
exact method theory
x/c equation equation equation equation equation equation
(2-52) (2-15) (2-58) (2-60) (2-61) (2-61)
exact z(x) £ =0-1538 & =0-1538 g =0-1538 & =0-1833

0 0 0 1-461 0 0 0
0-0096 0-807 0-802 1-456 0-807 0-785 0-730
0-0381 1-191 1-190 1-438 1-203 1-138 1-119
0-0843 1-322 1-320 1-410 1-336 1-257 1-274
0-146 1-347 1-345 1-372 1-354 1-285 - 1-319
0-222 1-323 1-321 1-325 1-324 1-273 1-312
0-309 1-275 1-273 1-272 1-270 1-239 1-276
0-402 1-214 1-212 1-214 1-206 1-193 1-225
0-500 1-149 1-147 1-154 1-140 1-140 1-164
0-598 1-084 - 1-082 1-094 1-077 1-085 1-104
0-691 1-024 1-022 1-036 » 1-020 1-031 1-035
0-778 0-971 0-969 0-983 0-968 0-980 0-975
0-854 0-926 - 0-924 0-936 0-9526 0-935 0-921
0-916 0-891 0-889 0-898 0-891 0-897 0-877
0-962 0-865 0-863 0-870 0-866 0-869 0-844
0-990 0-850 0-848 0-852 0-851 0-852 0-824
1-000 0-845 0-844 0-846 0-846 0-846 0-817




or

TABLE 2

Various Approximations of the Velocity Distvibugion V[V 4
along the Surface of the 20 per cent Thick Joukowsky
Aerofoil wn a Flow Normal to its Chord-line

(@) (®) () (@) (e) () &)
exact present thin
xfc ' method aerofoil . . _ .
equation equation equation equation equation equation
(3-51) (3-26) (3-53) (3-54) (3-54) (3-863)
exact z(x) £=0-1538 | ¢=0-1538 | ¢ =0-1833 | ¢ =0-1538
0 8-610 8-650 0 8-502 8-502 7-456 7-502
0-0096 7-344 7-344 10-153 7-326 7-128 6-534 6-460
0-0381 5-358 5-383 ‘ 5-027 5-400 5-107 4-949 4-753
0-0843 3-894 3-906 3-297 3-924 3-693 3-682 3-443
0-146 2-898 2-904 2-414 2-903 2-753 2-780 2-538
0-222 2-198 2-199 1-871 2-190 2-105 2-130 1-902
0-309 1-689 1-685 1-497 1-670 1-630 1-646 1-440
0-402 1-303 1-296 1-219 1-283 1-270 1-274 1-097
0-500 1-007 0-998 1-000 0-988 0-988 0-984 0-836
0-598 0-776 0-765 0-821 0-760 0-765 0-754 0-636
0-691 0-594 0-582 0-668 0-580 0-587 0-570 0-479
0-778 ©0-449 0-437 0-535 0-437 0-442 0-424 0-356
0-854 0-331 0-320 0-414 0-321 0-324 0-306 0-257
0-916 0-232 0-223 - 0-303 0-224 0-226 0-211 0-178
0-962 0-147 0-140 0-199 0-142 0-142 0-132 0-111
0-990 0-072 OL068 0-098 0-069 ~0-069 0-063 0-054 .
1-000 0 0 0 0 0 0




TABLE 3
Position of the Prvotal Points

N=8 N =16 N =32
Y Xy Y %, P %,
0 1-000 0 1-0000 0 1-0000
1 0-9976
1 0-9904 2 0-9904
3 0-9785
1 0-9619 2 0-9619 4 09619
5 0-9410
3 0-9157 6 0-9157
7 0-8865
2 0-8536 4 0-8536 8 0-8536
9 0-8172
5 0-7778 10 0-7778
11 0-7357
3 0-6913 6 0-6913 12 0-6913
13 0-6451
7 0-5975 14 0-5975
15 0-5490
4 0-5000 8 0-5000 16 0-5000
17 0-4510
9 0-4025 18 0-4025
) 19 0-3549
5 0-3087 10 0-3087 20 0-3087
21 0-2643
11 0-2222 22 0-2222
. 23 0-1828
6 0-1464 12 0-1464 24 0-1464
- 25 0-1135
13 0-08427 26 0-08427
27 0-05904
7 0-03806 14 0-03806 28 . 0-03806
29 0-02153
15 0-00961 30 0-00961
31 0-00241
8 0 16 0 32 0
TABLE 4
su for N =8
# 1 2 3 4 5 §] 7 8
1 20-905 —4-072 0 —0-224 0 —0-072 0 —0-052
2 —7-524 11-314 —3-359 0 —0-298 0 —0-133 0
3 0 —4-389 8-659 —3-154 "0 —0-389 0 —0-242
4 —0-586 0 —3-414 8-000 —3-414 0 —0-586 0
5 0 —0-389 0 —3-154 8-659 —4-389 0 —1-212
6 —0-133 -0 —0-298 0 —3-359 11-314 —7-524 0
7 0 —0-072 0 —0-224 0 —4-072 20-905 |—33-022




TABLE 5

Su\? for N = 8
v
f 1 2 3 4 5 6 7
1 6-309 4-993 —1-531 0-828 —0-634 0-664 —1-082
2 —17-048 1-414 4-718 —2-000 1-405 —1-414 2-266
3 8-922 —8-055 0-448 4-828 —2-613 2-398 —3-696
4 —5-657 4-000 —5-657 0 5-657 —4-000 5-657
5 3-696 —2-398 2-613 —4-828 —0-448 8:055 —8-922
6 —2-266 1-414 —1-405 2-000 —4-718 —1-414 17-048
7 1-082 —0-664 0-634 - —0-828 1-531 —4-993 —6-309
TABLE 6
S for N =8
v
u
1 2 3 4 6 7 8
1 20-905 1-955 0 14190 0-729 0 0-627
2 —10-786 11-314 —1-179 0 0-351 0 0-301 0
3 0 —6-057 8-659 —1-740 0-108 0 0-150
4 —1-127 0 —4-721 8-000 —2-107 0 —0-045 0
5 0 —0-886 0 —4-568 8-659 —2-721 0 { —0-335
6 —0-567 0 —0-947 0 —5-539 11-314 —4-262 0
7 0 —0-873 0 —1-638 —10-099 20-905 |—15-858
8 —0-130 0 —0-181 0 —0-405 0 —3-284 —

48
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TABLE 7

Sw' for N = 16

P

—15-061

: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1| 82-013—15-061] 0 —0-651] 0 —0-136 0 —0-051] 0 —0-028 0 —0-017] 0 | —0-013 0 —0-012
2 |—29-544| 41-810,—11-203 0 —0-705 0 —0-180| 0 —0-076] 0 —0-044| 0 —0-031 0 —0-026] 0
3] 0 |—16-265| 28-799] —8-980| 0 —0-690 0 —0-201] © —0-094] 0 —0-059] 0 —0-045 0 —0:041
4] -—2-30 0 |—11-430| 22.627] —7-698 0 ~0-674 0 —0-217| 0 —0-111] 0© —0-075] 0 | —0-0682 0
50 0 —1-532] 0 —9-052 19-243| —6-954] 0 —0-673 0 —0-2368] 0 —0-130, 0 —0-095 0 —0-086
6| —0-646 0 —1-147, 0 —7-727] 17-318 —6-563 0 —0-692| 0 —0-262] 0 —0-157] 0 —0-124| 0
71 0 —0-462] 0 —0-935 0 —6-968] 16-314| —6-442) 0 —0-735| 0 —0-301] © —0-198/ 0 —0-172
8| —0-260 0 —0-362 0 —0-810| 0 —6-569| 16-000] —6-569 0 —0-810| 0 —0-362] 0 —0-260 0
9 o —0-196 0 —0-801] © —0-735 0 —6-442 16-314] —6-968] 0 —0-935 0 —0-462 0 —0-378
10| —0-124] 0 —0-157] 0 —0-262 0 —0-692 0 ~6:563 17-818 —7-727 0 —1-147] 0 —0-646 0
1] o —0-005| 0 —0-130, 0 —0-236] 0 —0-673 0 —6-954| 19-243] —9-052 0 —1-532 0 —1-052
12| —0-062] 0 —0-075| 0 —0-111] 0 —0-217 0 —0-674 0 | —7-698 22-627|—11-430| 0 —2:360 0
13| 0 —0-045| 0 —0-059 0 —0-094 0 —0-201] 0 —0-690] 0 —8-980| 28-799|—16-265| 0 —4-890
14 | —0-026] © —0-031] © —0-044] 0 —0-076) 0 —0-180] 0 —0-705 0  |—11-203 41-810(—29.544] 0
15| 0 —0-013] 0 —0-017] © —0-026 0 —0-051 0 —0-136] 0 —0-651] 0 82013/ —132-103
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TABLE 8

5,2 for N = 16

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

‘1 95-769 17-917| —4-703  2-016| —1-104| 0-708{ —0-506] 0-398 —0-338| 0-310, —0-305 0-327| —0-388  0-535 —1-020
2 |—68-941] 6-309] 14-908 —4-993 2-499 —1-531] 1-071) —0-828 0697 —0-634| 0-622| —0-664| 0-785 —1-082  2-060
3 | 38-144/—31-420] 2-694| 12-636 —4-844] 2-680 —1-780] 1-336| —1-104/ 0-991| —0-963  1-021| —1-203/ 1-654 —3-143
4 | _26.486] 17-048/—20-468| 1-414| 11-224| —4-718 2-816] —2-000| 1-598/ —1-405 1-347| —1-414| 1-654 —2-266) 4295
5 20-046|—11-798| 10-849|—15-519 0-804] 10-411) —4-704] 2-993| —2-259| 1-918| —1-800| 1-862 —2-158  2:937 —5-548
6 |-15-836 8-922 —7-411| 8-054—12-854 0-448 10-043 —4-828 3-261 —2-613 2-369 —2-398 2:739 —3-696| 6-946
7 12-797| —7-033| 5-548' —5-418| 6-546|—11-318] 0-203| 10-055 —5-126| 3-675| —3-143| 3-075| —3-439] 4-581| —8-551
8 |—10-453] 5-657| —4-330] 4-000] —4-330| 5-657|—10-453 0 10-453 —5-657 4-380 —4-000| 4-330| —5-657] * 10-453 -
9 8551 —4-581| 3-439 —3-075 3-143| —3-675 5-126/—10-055| —0-203 11-318| —6-546] 5418 —5-548 7-033—12:797
10 | —6-946] 3-696| —2-739] 2-398 —2-369 2-613 —3-261| 4-828/—10-043) —0-448) 12-854 —8-054 7-411| —8-922| 15-836
11 5-548 —2-937] 2-158 —1-862 1-800] —1-918| 2:250| —2.993| 4-704/—10-411] —0-804| 15-519/—10-849| 11-798—20-046
12 | —4-295| 2-966| —1-654] 1-414) —1-347 1-405| —1-598] 2-000] —2-816| 4-718/—11-224| —1-414| 20-468—17-048 ~26-486
13 3.143| —1-654| 1-203 —1-021] 0-963] —0-991| 1-104| —1-336] 1-780] —2-680| 4-844/—12-636| —2-694 31-420|—38-144
14 | —2.060] 1-082 —0-785| 0-664 —0-622] 0-634 —0-697 0-828 —1-071] 1-531f —2-499| 4-993]—14-908 —6-309 68:941
15 1-020| —0-535| 0-388] —0-327| 0-305| —0-310] 0-338] —0-398| 0-506| —0-706{ 1-104 —2-016 4703 —17-917—25-769




IS

TABLE

9

S for N =16 .

v

- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 82-013] 7-458] O 4-031 0 2-006] O 1-256/ 0O 0-914, O 0-742 0 0-659; 0 0-635
2 —.4_1-(_)24 41-810] —4-134| O 1-068 O 0-716, O 0-507, O 0-398 0 0-341 O 0-317] 0.
3 0 —21-134| 28-799] —5-362) O - 0-313] 0 0-340f O 0-276) 0 0-234 0 0-211y 0 0-204
4 1 —3-562 0 —14-273| 22-627 —‘5~365 0 0-016| 'O 0-175; .0 0169 0 0-155, 0 0-147, 0 '
5 0 —2-349, 0 —11-086] 19-248] —5-215; O —0-132 0 0-084 0 0-108 0 0-108 0O 0-107
6 | —1-098 O —1-750, 0 —9.203 17-318] —5-121] O —0-224 0O 0-026) 0 0-066 0 0-074) 0
7 0 —0-811f 0 —1-433| O —8-326/ 16-314| —5-136{ O —0-203 0 —0-019] O, ©0:032 0 0-042
8 | —0-515) 0 | —0-662 O —1-260 O —7-850| 16-000 —5-287| O —0:360] O —0-061] O —0:005] 0
9 0 —0-424) 0O —0-584| O —1-176] O —7-749| 16-314| —5-609) 0O —0-437] O —0-112) O —0-062
10 | —0-323 O —0-380; O —0-5511 0O —1-1601 O —8-006| 17-318] —G-162f O —0-544| O —0-193] 0
11 0 —0-208 0 —0-369. O —0-557] 0 —1-215] O —8-694] 19-243 —7-068 0O —0-716] 0 —0-376
12 | —0-271] O —0-305| O —0-391] O —0-609, 0 —1-365 0 —10-031| 22-627 —8'-587 0 —1-068 0
13 0 —0-301 O —0-351 O —0-465] 0 —0-742) O —1-692( 0 —12-599, 28-799—11-395 0 —2-220
14 | —0-369] O —0-403| O —0-485 0 —0-660] O —1-076 0 —2-479) 0 —18-2731 41-810/-18-064| 0O
15 |0 —0-686 O —0-776 0 —0-966 O —1:357 O —2-279 0 —5-334) 0 —37-580| 82-013—65-410
16 | —0-063 O —0-068] O —0-080] O —0-105) 0 —0-155] 0 —0-281) 0 —0-7420 0 —6-505
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TABLE 10
S for N = 32

2

el
3]

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 326-474|—59-103] 0 —2-410| © —0-457] 0 —0-148 0 —0-063 0 —0-033 0 - | —0-019] 0 —0-012
2 |—117-636| 164-027|—42-889 0 —2.495 0 —0-565 0 —0-203 0 —0-094] O —0-051] 0 —0-031] ©
3 0 —63-816| 110-237|—33-198, 0 —2:305| 0 —0-581] 0 —0-225] 0 —0-110 0 —0-063] 0 —0-040
4 —9:409] 0 —43.765| 83-620—27-171] 0 —2-1021 0 —0-571 0 —0-234| 0 —0-118] 0 —0-070 ©
5 0 —6-029] 0 —33-470| 67-883—23-149] 0 —1-928 0 —0-553 0 —0-236| 0 —0-125 0 —0-076
6 —2-591| 0 —4-4111 0 —927-9287| 57-599|—20-321] 0 —1-788| 0 —0-536] 0 —0-237] 0 —0-129 0
7 0 —1-837] 0 —3-484 0 —93-9207| 50-442|—18-258 0 —1-677] 0 —0-520 © —0-2371 0 —0-133
8 —1-0850 0 —1-416] 0 —2-892 0 —90-350| 45-255/—16-717| " 0 —1-591] 0 —0-509] 0 —0-238 0
9 0 —0-805 0 —1-153 0 —92.488/ 0 —18-275| 41-897/—15-552] 0 —1-525| 0 —0-501] 0 —0-240
10 | —0-538 0 —0-645] 0 —0-976] © —2.198 0 —16-728| 38-486—14-689 0 —1-477] 0 —0-496] 0
11 0 —0-425| 0 —0-538. 0 —0-850] 0 ~1.984 0 —15-560, 36-284|—14-008 O —1-444] 0 —0-496
12 —0-308] 0 —0-350 0 —0-463 0 —0-758] 0 —1-8231 0 —14-674| 34-637|—13-527] 0 —1-425 0
18 0 —0-251] .0 —0-298 0 —0-408] 0 —0-688 0 —1-700 © —14-010{ 83-440/—13-199] 0 —1-420
14 —0-192] 0 —0-211| 0 —0-2680 0 —0-367] 0 —0-635 0 —1-606] 0 —13-529) 82-627/—13-010] O
15 0 —0-160 0 —0-182| © —0-231 0 —0-335 0 —0-594] 0 - | —1-535, O —13-201| 82-155—12-948
16 —0-126/ 0 —0-137] 0 —0-181] 0 —0-209 0 —0-811| o0 —0-563 0 —1-483 0 —13-011| 82-000
17 0 —0-107, © —0-119] 0 = | —0-144/ 0 —0-1920 0 | —0-201} O —0-538 0 —1-448 " 0 —12-948
18 —0-087] 0 —0-092] " 0 —0-108 0 —0-131] 0 —0-178 0 —0-276] 0 —0-520| © —1-427] 0
19 0 —0-074, 0 —0-081 0 —0-095 0 —0-120 0 —0-167) 0 —0-264 0 —0-508 0 —1-420
20 —0-061] 0 —0-084] 0O —0-072 0 —0-086] 0 —0-112] 0 —0-158 0 —0-255] 0 —0-500] 0O
21 0 —0-052 0O —0-057, 0 —0-085 0 —0-079] 0 —0-105] © —0-151] 0 —0-248 0 —0-496
—0-043] 0 —0-045] 0 —0-050] O —0-059] 0 —0-073 0 —0-099] O —0-145| 0 —0-243 0
23 0 —0-037, 0 —0-040, 0 —0-045| 0 —0-054 0 —0-068 0 —0-093 0 —0-140| 0 —0-240
24 —0-031] 0 —0-032 0 —0-035 0 —0-040, 0 —0-049] 0 —0-064 O —0-089 0 —0-136|. ©
25 0 —0-0268] 0 —0-028 0 —0-031 0O —0-036| O —0-045 0 —0-059] 0 —0-085] 0 —0-183
26 —0-021 0 —0-022( 0O —0-024 0 —0-027] 0 —0-0320 0 —0-041] © —0-055 0 —0-080] 0O
o7 0 —0-0177 0 —0-018 0 —0-020 0 ~ | —0-023 O —0:029] 0 —0-037, 0 —0-051] O —0-076
28 —0-018] 0 —0-013f 0 —0-015| 0 —0-017 0 | —0-020] 0O —0-025| O —0-082 0 —0-046 0 .
29 0 —0-010| © —0-010] O —0-011 0 —0-018] 0 —0-016| 0 —0-020 © —0:027] © —0-040
30 —0-006] 0 —0-007] 0 —0-007] O —0-008 0 —0-009] © —0-012] O —0-015| 0 —0:021 0
31 0 —0-008] O —0-003 0 —0-004 0 —0-004 0 —0-005 O —0-007| © —0-009] 0 —0-012




es

TABLE 10—continued

# 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 0 —0-009] 0 —0-007] O —0-005 0 —0-004] 0 —0-004 0 —0-003 0O —0-003] . 0 —0-003
21 —0-021 0 —0-015 0 —0-012] O —0-009| © —0-008] 0 —0-007] 0 - | —0-007] © —0-006 0
3. 0 —0-027] 0 —0-020 0 —0-016| 0 —0-018f 0 §{ —0-011] © —0-010, © —0-010 0 —0-009
4| —0-048 0 —0-032 0 —0-025 0 —0-020] © -—0-017| O —0-015| 0 —0-018 0 —0-018 0
5/ 0 —0-051| 0 —0-0370 0 —0:029] 0 —0-028] 0 —0-020 0 -—0-018] 0 —0-017 0 —0-017
6, —0-080) 0 | —0-055 O —0-041| 0 —0-032] O —0-027, 0O —0-024] 0 —0-022] 0 —0-021 0
7 0 —0-085 O —0-059] © —0-045 0 —0-036] 0 —0-0381 0 —0-028 0 —0-026 0 —0-025
8| —0-136 0 —0-089 ¢ —0-064 0 —0-049] O —0-040, 0 —0-035] 0 —0-032 0 —0-031 0
9 0 —0-140| O —0-093 0 —0-068 © —0-054 0 —0-045| 0 —0-040, - 0 —0-087 0 —0-036
10| —0-243 0 . | =045 ¢ —0:099] 0 —0-073) 0 —0-059, 0 —0-050, 0 —0-045| 0 —0-043. 0
11 0 —0-248 O —0-151] © —0-105| 0 —0:079] 0 —0-065] 0 —0-057] 0 —0-052 - 0 —0-051
12 | —0-500 0O —0-255 ¢ —0-158, 0 —0-112] 0 —0-086 0 —0-072] 0 —0-0684 0 —0-061 0
13 0 —0-508, O —0-264 07~ —0-167] "0 —0-120] © —0-095] 0 —0-081 0 —0-074 0 —0-072
14| —1-427, 0o | —0-520 ¢ —0-276 0 —0-178] 0 —0-1381] 0 —0-108| 0 —0-092 0O —0-087 0
15 0 —1-448 O —0-538| . 0 —0-291] 0 —0-192] 0 —0-144| 0 —0-119] © —0-107 0 —0-103
16 |—13-011] 0 —1-483 ¢ —0-563 0 —0-311| 0 | —0-209 © —0-161] 0 —0-187] 0 —0-126 0
17 | 32-155(—13-201] O —1-535 0 —0-594| 0 —0-335 0 —0-231 0 —0-182] 0 —0-160| _ 0 —0-153
18 |—13-010] 382-627|—13:529) ¢ —1-606/ 0 —0-635] 0 [ —0-367] 0O —0-260, O —0-211] © —0-192 0
19 0 —13-199, 33-440l—14.010| © —1:700, 0 —0-688 0 —0-408; 0 —0-298 0 —0-251 0 —0-237
20 | —1-425 0 —13-527| 34-637—14-674| G —1-8231 0 —0-758] 0 —0-463 0 —0-350, 0 —0-308 0
21 0 —1-444/ 0 —14-008 36-284|—15-560] 0 —1-984f 0O —0-850| 0 —0-538 0 —0-425 0 —0-395
22 | —0-496, 0 —1-477] 0 —14-669| 38-486|-—16-728] 0 —2-198] 0 —0-976; 0 —0-645 0 —0-538 0
23 0 —0-501 © —1-525|— 0 —15-552| 41-397|—18-275| 0 —2-488] 0 —1-153 0 —0-805 0 —0-723
24 | —0-238] 0 —0-509] 0 —1-591| 0 —16-717| 45-255/—20-350| 0O —2.802| 0 —1-416/ 0 —1-065 0
25 0 —0-237] 0 —0-520| 0 —1-677] 0 —18-258| 50-442/—23-207| 0 —3-484/ 0 —1-837 0 —1-539
26 | —0-129 0 —0-237 0 —0-536 0 —1-788 0 —20-321] 57-599|—27-287] 0 —4-411| 0 —2.591 0
27 0 | —0-125] 0 —0-236/ 0 —0-553] 0 —1-928/ 0 —923-149| 67-883—33-470| 0 —6-029 0 —4.298
28 | —0-070| 0 —0-119] 0 —0-234 0 —0-571] 0 —2-1020 0 —27-171] 83-620|—43-765| 0 —9-409 0
29 0 —0-063 0 —0-110, 0 —0-225 0 —0-581] 0 —2-305 0 —383-198| 110-237|—63-816 0 —19-572
30 | —0-031 0 —0-051] 0 —0-094] 0O —0-203] © —0-565 0 —2-495 0 —42-889| 164-027|—117-636 0
31 0 —0-019] © —0-033] 0 —0-063] 0 —0-148] 0 —0-457] 0 —2-410, 0 —59-103| 326-474|—528-400
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TABLE 11
s, for N = 32

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1| 103-586] 69-783—17-658] 7-184] —3-671| 2-155| —1-391|* 0-962 —0-703] 0-536| —0-424| 0-346| —0-291) 0-250| —0-220] 0-197
2 |—9276-452| 25.769] 56-370|—17-917 8-372, —4-703| 2.960 —2-016] 1-457| —1-104| 0-869 —0-706, 0-590| —0-506/ 0-444| —0-398
3| 154-8761—124-802] 11-356 45-888|-16-417| 8-329| —4.976| 3-286] —2-328/ 1-740| —1-356] 1-094] —0-910} 0-777) —0-679]  0-607
4 |—109-508  68-941{—79-750| 6-309] 388-696/—14-908 7-997| —4-993| 3-420| —2-499] 1-918 —1-531 1-262| —1-071] 0-931] —0-828
5 84-923| —48-880| 43-293-58-716] 3:969| 33:636—13-645 7-627] —4-927| 3-474] —2-604| 2-044] —1-665 1-400| —1-209| 1-069
6 | —69-243| 38-144|—30-507) 31-420|—46-720| 2-694| 29-961|—12-635  7-293| —4-844| 3-499| —2-680; 2-146| —1-780| 1-522 —1-336
7 58-263| —81-301| 28-764/—21-976| 24-713—39-066| 1-921| 27-227|—11-841) 7-018] —4-770| 3-518| —2:747| 2-238 —1-889 1-641
8 | —50-084] 26-487|—19-500| 17-048/—17-161| 20-469|—33-826/ 1-414| 25-160|—11-224] 6-803] —4-718] 3-546/ —2-816; 2-333] —2-000
9 43-717| —22-878| 16-512—13-956| 13-250/—14-120| 17-581|—30-069] 1-062 23-589—10-755 6-648 —4-695] 3-588) —2-896| 2-437
10 | —38-592| 20-046|—14-273| 11-798/—10-809] 10-849|—12-055| 15-519|—27-292| 0-804] 22-401}—10-411] 6-551) —4-704| 3-652 —2-993
11 34-356| —17-749] 12-514—10-186] 9-115/ —8-817| 9-218—10-583| 13-999/—25-202) 0-606] 21-521|—10-177) 6-509) —4-747| 3-742
12 | —30-778] 15-836|—11:084| 8-922] —7-851| 7-411] —7-462 8-055| —9-496, 12-854|--23-617| 0-448 20-898—10-043 6-522| —4-828
13 27-700| —14-207| 9-890 —7-893| 6-862) —6-365| '6-250) —6-493 7-195 —8-677 11-982(—22-420| 0-317, 20-499—10-002  6-593
14 | —25-013] 12-797| —8-866| 7-033| —6-059 5-548/ —5-350| 5-418 —5-776| 6-545| —8-050| 11-318/—21-533) 0-203| 20-305—10-055
15 22-634 —11-557| 7-983 —6-298 5-386| —4-885 4-648) —4-621| 4-800| —5-232| 6-044; —7-568 10-818—20-905| = 0-099| 20-306
16 | —20-503| 10-453| —7-200| 5-657| —4-811| 4-330] —4-078] 4-000| —4-078] 4-330| —4-811| 5-657| —7-200] 10-453—20-503] 0

17 18-575| —9-457] 6-499| —5-090 4-309| —3-854| 3-602 —3-496 3-516| —3:663] 3-963 —4-482 5-356| —6-924| 10-202—20-306
18 | —16-813 8-551| —5-866, 4-581) —3-864] 3-439| —3-193| 3-075| —3-059| 3-142| —3-337] 3-675| —4-223| 5-126] —6-725 10-055
19 15-190| —7-718] 5-986| —4-119] 3-464| —3-071] 2-837| —2-714| 2-678| —2-721] 2-849| —3-078] 3-445| —4-020, 4-953) —6-593
20 | —13-682 6-946| —-4-752] 3-696) —3-100] 2-739) —2-520{ 2-398 —2-350| 2-369| —2-453  2-613| —2-869 3-261) —3-862 4-828
21 12-270| —6-226/ 4.254| —3-308| 2-765] —2-437| 2-234| —2-117] 2-063] —2-066| 2-121| —2-285] 2-420| —2-698  3-113) —3-742
22 | —10-940 5.548| —3.788] 2-937| —2-454| 2-158/ —1-973| 1-863] —1-808| 1-800| —1-836] 1-918 —2-054| 2:259| —2-557] 2-993
23 9-679] —4-906, 3-347, —2-593 2-163| —1-898 1-732 —1-630| 1-576] —1-563| 1-585| —1-645] 1-747| —1-900| 2-121 —2-437
24 | —8-476 4.995 _2.928! 2-266| —1-888| 1-654| —1-506| 1-414] —1-364| 1-347 —1-361 1-405| —1-482| 1-598/ —1-765| 2-000
25 7.321] —3-708] 2-527| —1-954] 1-626] —1-423] 1-294/ —1-212] 1-166] —1-149] 1-156] —1-188 1-247; —1-336 1-464] —1-641
26| —6-208] . 3-143] —2-140{ 1-654] —1-376) 1-203} 1091} 1-021} —0-981] 0-963 —0-967] 0-991) —1-035 1-104| —1-201° 1-336
27 5.124| —2-594| 1-766| —1-364| 1-134] —0-990, 0-898 —0-839 0-804] —0-789 0-790 —0-807| -~ 0-840| —0-893{ 0-967] —1-069
28 | —4-069 2.060, —1-402] 1-082| —0-899] 0-785| —0-711] 0-664 —0-635 0-622 —0-622 0-634) —0-659| 0-697 —0-753/ 0-828
29 3.034| —1-536] 1-045] —0-807| 0-670] —0-584] 0-529 —0-493 0-472 —0-462| 0-461] —0-469| 0-486| —0-514| 0-553 —0-607
30| —2-015 1-020] —0-694| 0-535| —0-444| 0-388] —0-351| 0-327| —0-313| 0-305| —0-305| 0-310 —0-321] 0-338/ —0-363] 0-398
31 1-005| —0-509] 0-346] —0-266| 0-222| —0-194| 0-175| —0-163 0-156 —0-152 0-152| —0-154] 0-159| —0-167| 0-180| —0-197
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- TABLE 11——00%t¢'nued

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
1 | _g.180| 0-167) —0-159 0-154/ —0-152] 0-152| —0-156] 0-163| —0:175| 0-194| —0-222| * 0-266| —0-346] 0509 —1-005
2 0.363 —0-338 0-321] —0-310] 0-305| —0-305| 0-313 —0-327 0-351| —0-388 0-444] —0-535| 0-694] —1-020{  2-015
3 | _o.553 0-514) —0-486 0-469| —0-461] 0-462] —0-472| 0-493 —0-529 0-584| —0-670| 0-807| —1-045 1-536| —3-034
4 0753 —0-697| 0-659] —0-634| 0-622( —0-622 0-635 —0-664 0-711| —0-785| 0-899| —1-082| 1-402{ —2-060|  4-:069 .
5 | _g.0g7| 0-893 —0-840| 0-807] —0-790| 0-789| —0-804| 0-839] —0-898 0-990] —1-134| 1-364| —1-766| 2-594/ —5-124
6 1-201| —1-104/ 1-085| —0-991| 0-967| —0-963 0-981| —1-021| 1-001 —1-203 1-376| —1-654| 2-140| —3-143  6-206
7 | _1.464  1-336| —1-247] 1-188 —1-156 1-149| —1-166 1-212] —1-204] 1-423| —1-626] 1-954| —2-527| 3-708 —7-321
8 1-765 —1-598| 1:482] —1-405| 1-361| —1-347] 1-364) —1-414| 1.506{ —1-654] 1-888| —2-266| 2-928| —4-295|  8-476
9 | _o.io1| 1-900] —1-747| 1-645| —1-585| 1-563 —1-576] 1-630] —1-732] 1-898 —2-163| 2-593| —3-347] 4-906] —9-679
10 9.557] —2:259| 2-054] —1-918) 1-836| —1-800 1-808] —1-863 1-973 —2-158| 2-454| —2-937| 3-788| —5-548| 10-940
11 | —_3.113 2:698 —2-420| 2-235 —2-121] 2-066| —2-063 - 2-117| —2.234| 2.437| —2-765) 3-303| —4-254| 6-226] —12-270
12 3.860] —3:261] 2-869) —2-613{ 2-453] —2-369] 2-350| —2-398] 2.520| —2.730| 3-100] —3-696| 4-752] —6-946] 13-682
13 | _4.953 4:020] —3-445| 3-078| —2-849| 2-721] —2-678] 2-714) —2.837| 3-071] —3-464| 4-119 —5-286| 7-718 —15-190
14 6-725| —5-126] 4-223 —3-675 3-337] —3-142] 3.059) —3-075| 3193 —3-439| 3-864| —4-581| 5-866| —8-551] 16-813
15 |—10-202| 6:924| —5-356] 4:482| —3-963  3-663 —3:516| 3-496) —3-602] 3-854{ —4-309| 5-090 —6-499 9:457| —18:575
16 90-503/—10-453|  7-200 —5-657| 4-811| —4-330| 4-078| —4-000] 4.078| —4-330] 4-811] —5-657| 7-200—10-453| 20-503
17 | —0-009 20-905|—10-818] 7-568) —6-044] 5-232| —4-800| 4-621| —4-648| 4-885] —5-386 6-298) —7-983 11-557| —22-634
18 |—20-305 —0-203] 21-533—11-318] 8-050| —6-545 5-776| —5-418] 5-850>—5-548| 6-059| —7-033| 8-866|—12:797] 25-013
19 10-002—20-499 —0-317| 22-420|—11-982 8-677| —7-195 6-493| —6-250| 6-365/ —6-862| 7-893| —9-890 14-207| —27-700
20 | —6-520] 10-043(—20-898| —0-448 23-617|—12-854] 9.496| —8-055 7-462 —7-411| 7-851] —8-922| 11-084/—15-836/ 30-778
21 4747 —6-509| 10-177|—21-521| —0-606 25-202/—13-999| 10-583 —9-218| 8-817| —9-115| 10-186/—12-514{ 17-749|- —34-356
22 | —3.652] 4-704] —6-551| 10-411|—22-401) —0-804 27-292(—15-519 12-055—10-849| 10-809|—11-798 14-273|—20-046] 38-592
23 2.806| —3-588]  4.695| —6-648 10-755/—23-589 —1-062| 30-069/—17-581 14-120/—13-250| 13-956|—16-512| 22-878 —43-717
24 | —2-333] 2:816] —3-546| 4-718] —6-803 11-224|—25-160| —1-414| 33-826/—20-469| 17-161|—17-048 19-500|—26-487| 50-084
25 1-880| —2-238| 2-747| —3-518) 4-770) —7-018 11-841|—27-227) —1-921| 39-066|—24-713 21-976(—23-764| 31-301| —58-263
26 | —1-522] 1-780] —2-146| 2-680| —3-499| 4-844| —7-293 12-635—29-961) —2-694| 46-720(—31-420| 30-507|—38-144| 69-243
27 1-209) —1-400 1-665| —2-044| 2-604| —3-474] 4.927| —7-627| 13-645/—33-636| —3-969, 58-716|—43-293 48-880 —84-923
28 | —0-931] 1-071] —1-262 1-531] —1-918| - 2-499) —8.420| 4-993| —7.997| 14-908/—38-696] —6-309| 79-750|—68-941) 109-508
29 0-679, —0-777 0-910] —1-094| 1-356 —1-740, 2328 —3-286| 4-976] —8-320| 16-417|—45-888/—11-356| 124-802(—154-876
30 | —0-444| 0-506] —0-590| 0-706] —0-869 1-104] —1-457| 2-016| —2-960| 4-703) —8-372| 17-917,—56-370/—25-769| 276-452
31 0-220| —0-250 0-291| —0-346] 0-424 0-703 —0-962| 1.391] —2-155| 3-671| —7-184| 17-658/—69-783|—103-586

—0-536
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TABLE 12
S for N = 32

o . - e

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1| 826-474] 29-4620 0 15-475] 0 7-333 0 4-279 0 2-838 0 2:049] 0 1-5750 0 1-269
2 |1—162-133| 164-027/—16-018 0 3-986 0 2:519) 0 1-647] 0 . 1-164, 0 0877, 0 0-695 0

3 0 —81-875| 110-237/—20-1768| 0 1-127] 0 1-143 0 0-848 0 0-640, 0 0-502] 0 0-410
4| —18-990 0 —53-644| 83-620/—19-386 0 0-063 0 0-557| 0 0-488 0 0-397, 0 0-326| 0

5 0 —8-711 0 —39-790| 67-883—17-893] 0 —0-411; 0 0-260| 0 0-295 0 0-261 0 0-225
6] —3-9685 0 —6-204 0 —31.747| 57-599—16-472| 0O —0-6468] 0 0-089 0 0-179| 0 0-178 0

7 0 —2-785 0 —4-790, 0 —26-578| 50-442|—15-269] 0 —0:771, 0 —0-015] 0 0-104f 0 0-122
8] —1-679 0 —2-124 0 —3.903 0 —23-032] 45-255—14-286/ 0 —0-841f 0 —0-085 0 0051 0

9 0 —1-272 0 —~1-712] 0 —3-309] 0 —20-499| 41-397|—13-501] 0 —0-883 0 —0-133] 0 0-015
10| —0-880 0 —1-0200 © —1-437] 0 —2-889 0 _18-635| 38-486/—12-883 0 —0-910, 0 —0-167] 0

11 0 —0-703] 0 —0-851 0 —1-244 0 —92-585 0 —17-244| 36-284/—12-410, 0O —0-931 0 —0-195
121 —0-529 0 —0-586] 0 —0-734| 0 —1-105| 0 —2:361] 0 —16-199, 34-637—12-063 0 —0-950 0
13 0 —0-440{ 0 —0-504 0 —0-649 0 —1-001]. © —2-192/ . 0 —15-424| 33-440|—11-827| 0 —0-970
14| —0-351 0 —0-378/ 0 —0-446] 0 —0-588 0 —0-926 0 —2-067] 0 _14-868 32-627,-—11-697| .0
15 0 —0-302] 0 —0-334] 0 —0-4020 0 —0-541] 0 —0-869] 0 —1-976) 0 —14-495| 32-155|—11-667
16| —0-252] 0 —0-268 0 —0-303 0 —0-371, 0 —0-508, 0 —0-828 0 —1-914 0 —14-286| 32
17 0 —0-223] 0 —0-2420 0 —0-279] 0 —0-348 0 —0-483 0 —0-799| 0 —1-877, 0 —14-229
18| —0-194, 0 —0-203] 0 —0-224] 0 —0-263 0 —0-332 0 —0-467] 0 —0-783 0 —1-862 0

19 0 —0-177, 0 —0-189 0 —0-211 0 —0:251 0 —0-321] 0 —0-458 0 —0-777, 0 —1-870
20| —0-159] © —0-165] 0 —~0-179] 0 —0-203] 0 —0-245 0 —0-316| 0 —0-4568 0 —0-781 0

21 0 —0-150, 0 —0-159] 0 —0-174, 0 —0-199] 0 | —0-248 0 —0-317] 0 —0:461] 0 | —0-797
221 —0-140] O —0-144 0 —0-155] 0 —0-172] 0 ~0:199 0 —0-245/ 0 —0-323] 0 —0-473 0

23 0 —0-137] 0 —0-144, © —0-156| 0 —0-175 0 —0-204/ 0 —0-252 0 —0-335] 0 —0-495
24| —0-185 0 —0-138 0 —0-146/ 0 —0-159] 0 —0-181] 0 —0-214 0 —0-266 0O —0-357] O ,
25 0 —0-138 0 —0-144 0 | —0-154] 0 —0-169] 0 —0-193 0 —0-229 0 | —0-289 0 —0-388
260 —0-144 O —0-148 0 —0-155| 0 .—0-167] 0 —0-185 0 —0-214| 0 | —0-256 0 —0-822, 0 .
27 0 —0-159] 0 —0-165| 0 —0-175 0 —0-190| 0 —0-218] 0 —0-2470 0 —0-297 0 —0-377
281 —0-183 0O —0-187, 0 —0-196 0 —0-209 0 —0:230] O —0-259] 0 | —0-301) O —0-366] O

29 0 —0-232] 0 —0-239| 0 —0-252 0 —0-272] 0 —0-301] 0 —0-341 0 —0-400 0 —0-490
30 | —0-3301 ¢ —0-338] 0 —0-351 0 —0:373| 0 20-4068| 0 —0-453 0 —0-519] © —0-615, 0

31 0 —0-648 0 —0-668 0 —0-702] 0 —0-753) 0 —0-827] 0 —0-933 0 —1-080] 0 —1-293
32| —0-081] o —0-032] 0 —0-033 0 —0-035| 0 —0-038, 0 —0-042] 0 —0-048] 0 —0-0571 0




TABLE 13

Example of the Calculation of the Pressure Coefficient

Section : RAE 101, ¢/c = 0-12 A
@ = 45 deg ‘ . o = 4 deg

cos ¢ = 0-7071 ' cos o = 0-9976
sin ¢ = 0-0698 :
cos? ¢ sin? ¢ = 0-4976 C, C,
upper surface lower surface
1) @) ® W 6 ©) 7) ®) © 0 | ay a2 (13) (14) (15) (16)
. 2 — 2 1n2 — 2 1mn2
A o | so | so | so \/{1 + [ ] }""S o & \/{ 1;"}1 + cgq) O Jeosa @sine 10)(a1) + 12 S un -2 | RN
1] 0-9904 | 0-00103 [—0-1191|—0-1017}—0-2510 1-0104 0-5819 0:0984 | 0-6450 0-0628| 0-5805 | 0-0044 | 0-5849 0-160 0-5761 0-171
21 0-9619 { 0-00408 |—0-0671|—0-1082/—0-1670 1-0117 0-6326 0-1990 | 0-7638 0-1502 0-6311 | 0-0105 | 0-6416 0-091 0-6206 0-117
31 0:9157 | 0-00905 |—0-0352/—0-1073{—0-1267 1-0115 0-6643 0-3034 | 0-8208 0-2462 0-6627 | 0-0172 | 0-6799 0-040 0-6455 0-088
4] 0-8536 | 0-01571 |—0-0096/—0-1070|—0-0932 1-0115 0-6896 0-4141 | 0-8682 0-3554| 0-6879 | 0-0248 | 0-7127 —0-006 0-6631 0-063
507778 | 0-02385 | 0-0155/—0-1078/—0-0652 1-0116 0-7143 0-5345 | 0-9078 - 0-4797| 0-7126 | 0-0335 | 0-7461 —0-054 0-6791 0-041
6| 0:6913 | 0-03308 | 0-0438—0-1050—0-0335 1-0110 0-7427 0-6682 | 0-9526 0-6206 0-7409 | 0-0439 | 0-7848 —0-114 0-6970 0-017
71 0-5975 | 0-04261 | 0-0758—0-0969| 0-0034 1-0093 0-7757 0-8207 | 1-0048 0-8170| 0-7738 | 0-0570 | 0-8308 —0-188 0-7168 —0-011
8| 0-5000 | 0-05120 | 0-1092—0-0774] 0-0372 1-0060 0-8114 1-0000 | 1-0526 1-0463| 0-8095 | 0-0730 | 0-8825 —0-276 0-7365 —0-040
9| 0:4025 | 0-05749 | 0-1423!—0-0496| 0-0740 1-0024 0-8474 1-2183 | 1-1047 1-3426| 0-8454 | 0-0937 | 0-9391 —0-380 0-7517 —0-063
10 | 0-3087 | 0-06000 | .0-1736] 0-0017| 0-1119 1-0000 0-8807 1-4963 | 1-1583 1-7332| 0-8786 | 0-1210 | 0-9996 —0-497 0-7576 —0-072
11 | 0-2222 | 0-05713 | 0-1773| 0-0641| 0-1222 1-0040 0-8809 1-8709 | 1-1728 2-1854| 0-8788 | 0-1525 | 1-0313 —0-561 0-7263 —0-025
12‘ 0-1464 | 0-05021 | 0-1776] 0-1220 0-1274 1-0148 0-8718 2-4146 | 1-1802 2-8082 0-8697 | 0-1960 | 1-0857 —0-633 0-8736 0-049
13 | 0-08427| 0-04028 | 0-1774] 0-2061) 0-1305 1-0416 0-8492 3-2971 | 1-1846 3-7498| 0-8472 | 0-2617 | 1-1089 —0-727 0-5855 0-160
14 | 0-03806| 0-02811 | 0-1777, 0-3456) 0-1332 1-1131 0-7949 5-0269 | 1-1884 5-3670| 0-7930 | 0-3746 | 1-1676 —0-861 0-4184 0-327
15 | 0-00961] 0-01443 | 0-1772| 0-7430| 0-1340 1-4506 0-6096 | 10-152 1-1895 8-3247| 0-6081 | 0-5811 | 1-1892 —0-912 0-0270 0-502
16 0 (*0-07414) | 0-1777) — 0-1348 — (U — 1-1906 |**16-059 0 1-1209 | 1-1209 —0-754 —1-1209 —0-754

*Value of \/(2%> - o %
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TABLE 12— continued

v

1 18 19 20 21 22 23 %4 25 2 | 27 28 29 30 31 32
1| 0 1-062 0 0-920 0 0-818 0 0-745 0 0-694[ 0 0-662 0 0-642/ 00 0-636
2| 0573 0 0-489 0 0429 0 0-388 0 0-357 0 0-337 0 0-324 0 0-318] 0
3/ 0 0-346| 0 0-301 0 0-269 0 0-246 O 0-230] 0 0-219) 0 0-212 0 0-211
4| 0274 0O 0-237 0 0-209| 0 0-190 0 0175 0 0-166 0 0-161] 0 0-157, 0
5/ 0 0-195 0 0-173] 0 0-155 0 0-144] 0 0-135| 0 0-129] 0 0-125 0 0-124
6| 0162 © 0-146{ 0 0-132] 0 0121 0 0-118 0 0-107 0 0-104 0 0-102f 0
71 0 0-119) 0 0-111| 0 0:103. 0 | 0097 O 0-092 0 0-088 . 0 0-086| 0 0-086
8| 0084 0O 0-088 0 0-086| . 0 0-083 0 0-079 © 0-076 0 0-074 0 0-073] 0
9 o0 0-055| 0 0-066] 0 0-068 0 - 0-087 0 0-065 0 0-064 0 0-063, 0 0-063
10 | —0-013] 0 0-033 0 0-047 0 0-053 0 0-054 0 0-055 © 0-054[ " 0 0-054f 0
1| o —0-035, 0 0-015 0 0-033 0 0-041 O 0-044 0 0-045 0O 0-046| 0 0-045
12| —0-219] 0 —0-054 0 | © 0 0-021| 0 0-031 0 0-035, 0 0-037] 0 0-037 0
13] 0 —0-239] 0 —0-070| © —0-013 0 Co-011] O 0-021] 0 0-027 0 0-029] 0 0-029
| —0.9020 0 —0-957 © —0-085] © —0-024 ¢ 0-001 0 0-012 0 0-0193 0 0-0200 0
51 0 —1-019] © —0-277] 0 —0-099] 0 _0-038f O . | —0-009 © 0-004) O 0-009, 0 0-011
16 |—11-736] 0 1052 0 —0-208] 0 | —0-114 ¢ —0-047} 0 | —0-019, 0 —0-008] 0 0 0
171 39.1551—11-907] 0 ~1-094 0 —0-319] 0 _0-129/ O —0-060/ 0 —0-030| 0 —0-018]- © —0-014
18 |—14-324] 32-627/-12-190| O . | —1-145] © —0-344 —0-1468/ 0 —0-074| 0 —0-044] 0 —0-033| 0
19| 0 |—14-571] 33-440/—12:596] © —1-208 0 | _o.375 O —0-167] 0 —0-092 0 —0-062 0 —0-053
20 | —1-900, 0 | —14-991| 34:637—13-149] 0 —1-285 - ¢ —0-411]  © —0-192] 0 —0-114] 0 —0-087, 0
211 0 —1-957] 0 |—15-606 36-284—13-876] 0 | _1.383 O —0-4568| 0 —0-225 0 —0-147] 0 —0-126
29 | —0-825 0 —2-044f 0 |—16-455 38-486—14-821] ¢ —1-507, 0O —0:515 0 —0-27200 0 | —o0-196 0
o | o —0-869] 0 —2:167) 0 |—17-603 41-397|_1g.051| © —1-667] 0 —0-594 0 —0-338] 0 —0-281
24 | —0-528| 0 ~0-933( 0 —2.341] 0 |—19-148 45.055—17-668] 0 —1-881 0 —0-708/ 0 —0-451 0
25| © —0-578] 0 —1-025 0 —2:583 0 |_o1.047] 50-442—19-836] 0 —2-178] 0 | —0-889, 0 —0-671
96 | —0-436] 0 —0-653| 0 | —1-161] O —2-930] o |—24-170| 57-599|—22-827| 0 ~2-618] 0 —1-217] 0O
271 0 —0-511, 0 —0-767] 0 —1-366] 0 _3.445 0  |—28-405| 67-883—27-150, 0 —3-347] 0 —1-981
98| —0-466 O | —0-635 0 —0-956] 0 —1-699 o —4-267] 0  |—34.956/8 83-620|—33-891| 0 —4-828 0
29| 0 —0-628) 0 —0-860| 0 | —1-208 0 _9.305] O —~5-787] 0 | —46-220 110-237|—45-757, 0 —9-569
30 | —0-757] 0 —0-979| © —1-3520 0 | —2-053 —3-649] 0 8976 0  |—69-760 164-027] —73-139 0
31| 0 —1-613 0 | —2-115] 0 —2-964 0 _4.575] O —8-247] 0 - |-20-295| O | —147:668| 326-474|—263-566
321 —0-089] O —0-088 0 —0-118) 0 —0-171] 0 —0.275] 0 —0-529| 0 —1-451 0 —12.979] —
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F1c.2. Coefficient in equation (2-12) for Joukowski profiles.

59



09

o = 0° 7
-0-3 P N\ :
\ © CALCULATION % Vx

). FROM REF. 9, '

\\ * NEW METHOD TFic. 4 Co-ordinate systems for sheared wing.
02 _

-0
“ I I

. N ¢ EQN (5-5)

R e e e e S Ry EQN (B8 -4
T L
ol 54
0
02 0-4 0-6 0-8 1-0
x/c
] 05 :
4 RAE. 10l, t/c:0-12
7 P -45°
S © MEAN VALUES
1eodls’ _A-2,3,5®
o3
T *54° -0'5

. 3 _ . 4
. a
C_= 04 .
c
o2 ™. P

@ CALCULATION \G\é\ ' o | _—F%
- FROM REF. :
ac, V2 9 . 0.

. 2//‘ “0-3 04
% NEW METHQD . \ x/c
O
05
NACA 63, A 012
- P ey :45°
° oz o4 % o6 o8 o A TAPER 045
< X e UPPER SURFACE
o x  LOWER SURFACE

R.A.E. 10l SECTION, %t/c:q-l0- . i
T1c. 5 Pressure distributions near the leading edge at

FiG. 3. Calculated pressure distributions for two-dimensional flow. . the centre-section of swept-back wings at zero lift.



19

of;
10 .| : T s 4e2°
1 .38
14 A e 20° : EXPERIMENT { & 83
i v 4.2° i ‘e 10.4°
\ EXPERIMENT % 5-3° sl
al— y =0-5 o g-a° \ CALCULATION:
\ v/2 ® 1Q-5° L N THIN PROFILE
\ g . ——— THICK PROFILE
\ CALCULATION I INVISCID FLOW
6 N - THIN PROFILE \‘é\
-4
\ p ————  THICK PROFILE __;(E.E_ N\ @
-O0Cp N\ ' INVISCID FLOW AN °
~
& N . ) .
4 AN \ g * . ~ \
\\ X, \\\
N ~ -
~ ~
~ . -~
~o ' %\
» - 2 ==
o -~ - \\
e~
\
: SN \
§ X
o =N J 08 0-4 06 0-8 -0
02 04 0-6 0-8 o
x/c ) x/c
k§
3
g e
& § ?
) ® ﬂx
TR 2 plat. 4 2 A e
2 =P 2 ® fﬁf” a
. T~ ACp E3 -
- AC A ~% -==P |
« F \/:c? e\\ « ¢
k:
?\\ 1
\ N - //
o \\ .
8§ N\ /
g\ /
&\
° 0z Y 06 08 o 0 0-2 0-4 0-6 0-8 10
x/c x/C
. ) 45° SWEPTBACK WING, A5 , CONSTANT CHORD,
45° SWEPTBACK WING , A=5 , CONSTANT CHORD,
SECTION R.AE. 101, t/c=0-12
SECTION RA.E. 10}, t/c =0-12

FiG. 6. Measured and culculated load distribtions at mid-semi-span. Fic. 7. Measured and calculated load distributions at the centre-section.



39

of = 2-1°
4:2°
6:3°°
g-4°

EXPERIMENT

0 X 4 p

CALCULATION; INVISCID FLOW
——— THIN PROFILE
R €Y
THICK PROFILE
@ = e (x)
THICK PROFILE
Y Pefe

02 0-4 06 0-8 ¢}

02 04 Q.6 Q-8 =G
x/c .
59° SWEPTBACK WING, A:3:6 , TAPER RATIO 025,
SECTION RA.E. 101, t/e =0-14,

F1G. 8. Measured and calculated load distributions at mid-semi-span.

8
A <= 4.2°
EXPERIMENT
o o =:8-4°
& CALCULATION! INVISCID FLOW
—_———— THIN PROFILE
Y Wl
\ JE— THICK PROFILE
~AC !
= A 9= P (x)
\ - THICK PROFILE
e P
[A-&“
2
o
z
2
-LCp /% -
4 2 X
// —l——T _-% D
| AT @
//6 = = 0\‘
/,c/ A\
A
~
'
Ve
0
02 04 0.6 08 e

59° SWEPTBACK WING; A:=3-6; TAPER RATIO 025,
SECTION R.ALE. 101; %/ < 0-14.

F1c. 9. Measured and calculated load distributions at the centre-section.



[-Q(P—-qk =

£l
0.8 ~”\,

R.AE N0, tfc:012 \
\P=4-5°

Cp \e
04t A Az :
X = 5
© = 3 : ]
EQN. (5 -5
o2 QN. (5-15)
Q
0
0-2 0-4 06 0-8 0 v e
Cun
10
. @ 7y
[o]
\
08 - X\
0-6 X
NACA 63, AOI2 \
cp
WYeja = 45 ) @\
o4}
A t 8 o
TAPER 048
02 - [} \
O \
0-2 04 0-6 08 1-0 2

CN

Fic. 10. Pressure coefficient at the leading edge at the centre-section
of swept-back wings.

J4348 Wt.19/8411 K9 9/55 D&Co. 34/263 PRINTED IN GREAT BRITAIN

63



R. & M. No. 2918

Publications of the |
Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL
(BOUND VOLUMES) '

1938 Vol. 1. Aerodynamics General, Performance, Airscrews, sos. (51s. 84.)
,Vol. IL. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 30s. (31s. 84.)

1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. sos. (51s. 84.) ,
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc.
635. (64s. 84.) _ - ’ ,
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control,
Structures, and a miscellaneous section. 5o0s. (51s. 84.)
‘1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures,
63s. (64s. 84.)
1942 Vol. 1. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 84.)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels, 475. 6.
(49s. 2d.) :
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 8os. (81s. 84.)
Vol. II. ‘Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures.
90s. (g1s. 114.) ‘ ,
1944 Vol. 1. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. (86s. gd.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance,
Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. - (86s. od.)

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL—-

1933-34 15, 6d. (15. 83d.) 1937 25. (25, 23d.)
1934-35 - 18, 6d. (1s. 834.) 1938 1S, 6d. (1s. 8%d.)
April 1, 1935 to Dec. 31, 1936 4. (4s. 534.) 193948 - 35. (35 334.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL
REPORTS, AND SEPARATELY— '

April, 1950 - - - -~ - R.&M. No. 2600. 25. 6d. (25. 73d.)

AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH
COUNCIL—

1909—January, 1954 -~ - - R. & M. No. 2570.  13s. (155. 53d.)
INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL—
- December 1, 1936 — June 30, 1939. R. & M. No. 1850.  15. 3d. (15, 43d.)

July 1, 1939 — June 30, 1943. -  R.&M. No. 1950,  15. (15. 13d.)

July 1, 1945 — June 30, 1946. - R. & M. No. 2050.  15.'(xs. 13d.)

July 1, 1946 — December 31, 1946. R. & M. No. 2150.  15. 3d. (15. 43d.)

January 1, 1947 — June 30, 1947. - R. & M. No. 2250. 1. 3d. (15. 43d.)

PUBLISHED REPORTS AND MEMORANDA OF THE AERONAUTICAL RESEARCH COUNCH.—

Between Nos. 2251-2349. - - R. & M. No. 2350.  15. od. (xs. 103d.)

Between Nos. 2351-2449. ~— - R. & M. No. 2450.  2s. (2s. 14d.)

Between Nos. 2451-2549. - -  R. & M. No. 2550.  25. 6d. (25. 73d.)

Between Nos. 2551-2649. - -~  R. & M. No. 2650.  2s. 6d. (25. 73d.)

Prices in brackets include postage ,
HER MAJESTY’'S STATIONERY OFFICE

York House, Kingsway, London W.C.2; 423 Oxford Street, London W.1 (Post Orders: P.O. Box 569, London S.E.1);
13a Castle Street, Edinburgh 2; 39 King Street, Manchester 2; 2 Edmund Street, Birmingham 3; 109 St. Mary Street,
Cardiff; Tower Lane, Bristol 1; 80 Chichestqr Street, Belfast, or through any bookseller

8.0. Code No. 23-2918

R. & M. No. 2918



