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Summary.—A review is given of the effects associated with the subsonic inviscid flow past swept wings at zero lift
with the aim of providing the information needed for an understanding of the flow phenomena. Methods of obtaining
the full benefit of sweep are described.

Detailed solutions for incompressible flow are given for three hasic cases :
(a) the sheared wing of infinite span
(b) the centre-section of a swept wing of infinite span ]
(c) the flow in the curved intersection line between wing and body.
These solutions are used to find approximate solutions for any given wing of finite aspect ratio. The Prandtl-Glauert
procedure is extended and applied to derive approximations for the compressible flow in the subcritical region. The
special cases treated in detail are: the flow in the tip regions of wings; tapered wings; wing-fuselage interference for

symmetrical arrangements; and modifications to the wing or to the body shape, for instance to restore sheared-wing
conditions.

1. Introduction.—The reasons for the use of swept wings in the design of aircraft for high
subsonic speeds are now well-established. A swept wing has a greater critical Mach number—
above which the drag may rise sharply—than a corresponding unswept wing. Briefly the effects
of sweepback on the flow over the wing are:

(i) At low Mach numbers the perturbation velocities are smaller than on the unswept wing
with the same aerofoil section along wind
- (ii) The rate of change of the pressure coefficient with Mach number is smaller
(i) The critical value of the pressure coefficient is reached at a higher free-stream Mach

number. Thus there is a gain in critical free-stream Mach number from point P, to
point P, in Fig. 1..

To obtain precisely this gain in critical Mach number, the flow must be ‘ two-dimensional ’ with
the isobars as straight lines inclined at an angle (other then 90 deg) to the main flow. Thus,
in theory, the precise effect of a given angle of sweep can be achieved only with an ideal sheared
wing of infinite span. '
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The flow round a sheared wing of infinite span at zero incidence is associated with a particular
pattern of the streamlines, as seen from Fig. 2. These streamlines are curved in plan view.
Any obstructions to this curved flow will alter the ‘ sweep effects’. For example, two sheared
wings of opposite sweep joined to form a A-wing of infinite span must have a straight streamline
at the centre-section, for reasons of continuity and symmetry, and the gradual straightening of
the streamlines as the centre is approached alters the characteristic pattern of the two-dimensional
flow and reduces the sweep effects. Similar effects occur at the tips of a wing of finite aspect
ratio where the streamlines are again straightened as the tip is approached, although they are
likely to be entirely straight only at some distance from the tip, as indicated in Fig. 2. Finally,
bodies mounted on the wing, such as a fuselage or engine nacelles, again disturb the curved flow
of the ideal sheared wing.

One purpose of this paper is to investigate the distortions of the fow at the centre of the wing,
the wing tips, and at a junction with fuselage or engine nacelle, and to provide practical methods
of calculating them. At the same time, an attempt will be made to understand the physics of
the flow. Another purpose is to find ways of counteracting these distortions and restoring, for

“example, two-dimensional conditions as far as possible. The approach adopted is to find detailed
solutions for three basic cases: (a) the sheared wing of infinite span ; (6) the centre-section of a
swept wing of infinite span; (c) the flow in the curved intersection liné between a wing and a
body. These solutions can be combined to obtain approximate solutions to the general case
of a tapered swept wing of finite aspect ratio, and to calculate the pressure distribution over the
surface of a given wing with symmetrical aerofoil sections of non-zero thickness, at zero incidence
without or with a body. The methods are derived for inviscid incompressible flow and sub-
sequently extended to compressible flow at subcritical Mach numbers.

2. The Sheared Wing of Infinite Span.—Although the concept of a sheared wing of infinite
span is somewhat academic, it is helpful to an understanding of the flow past swept wings; it
may also serve as a guide to perfection. We shall find that the sheared wing of infinite span is
one of the few cases where a simple solution of the equations of motion can be found, with a speed
and accuracy sufficient for practical purposes. As a basis, the two-dimensional unswept aerofoil
is discussed first, in section 2.1, and the results obtained are then applied to the sheared wing
in section 2.2. The subsequent sections deal with the compressible flow past the sheared wing
in the subcritical range, the extent of which is first defined in section 2.3.

2.1. Incompressible Flow past a Two-dimensional Aerofoil.—Because of later applications to
three-dimensional flow problems, we use the method of singularities rather than conformal
transformations in treating the two-dimensional aerofoil. The aerofoil is replaced by a distribution
of straight source filaments of strength g(x) dx along the chord ¢(= 1) from x = 0 (leading edge)
to x = 1 (trailing edge), the x-axis being in the direction of the main stream. The source lines
are of infinite length in the y-direction, i.e., normal to the free stream. The source distribution
induces the velocity components v, and v, in the directions of the x- and z-axes, t.e., parallel
and vertically to the main stream. The source distribution is determined by the condition that

the induced velocities together with that of the main stream, V,, make the given aerofoil 2(%)
into a streamline :(—

dz(x) v,(%,2)
dx Vo v.(%,2)°

(2.1)

This relation is usually simplified in two ways :—In the first place, the velocity increment v,
is assumed to be small compared with the velocity 7, of the main stream. This is justifiable
only for thin aerofoils, and even then only outside their stagnation regions, since v, = — V, at
a stagnation point. Secondly, the value of v, is determined on the chord-line z — 0 instead of

on the surface z(x) of the aerofoil. Again this is justifiable only for thin aerofoils. With these
simplifications, ‘

v.(x.0) = + g(x)/2, . .. .. .. .. .. o (2.2)



and the streamline condition reads:—

Glr) _ el _ 4 1) or gx) = 2V, R X

By integration,

and in particular,

Lot o g
- ov, _[0 g(x")dx" =0,
i.e., the overall strengths of the sources and sinks must be equal in order to obtain a practical
aerofoil section which forms a closed contour. The validity of the two main assumptions above
must be checked in the later applications.

With the source distribution being known, the streamwise velocity increment v, can be
determined. On the chord-line of the aerofoil, the increment due to a single source filament is

1 g(x")adx
dv,(x,0) = 5w
so that, by integration,
v (%00 1 . ody 1 (day) ax 9
v, _ZnVOJoQ(x)x—x’_%Jo ax’ x —x o - (24)

which expresses the velocity increment as a function of the aerofoil shape.

The approximation V(x,z) = V.(x,0) = V, + v,(x,0) for the velocity along the surface of the
aerofoil is not adequate in most practical cases and a more accurate solution is needed. For
this purpose, consider the circulation around the aerofoil (the line integral of the velocity along
the contour) and the circulation around the sources on the chord-line. Both of these must be
Zero ’

45 Vigg)ds = 36 V(4,2)/{dat + de(x)® = 0; and 3(5 V,(4,0)dx =0 .

If the assumption is now made that over any elemental part of the section

Vix,z)ds =V (%,0)dx ,
we have '

Vix,2) = V,(,0) L 1

o e Y

Hence, by equation (2.4),

Vi(xz) 1 | () dx 2
i’ d\/{1+<dz_@ﬂ)>2}<1+v?]o%'“m>- e (286)
ax
It can be shown (R. & M. 2918), by means of the method of conformal transformations, that

equation (2.6) is strictly correct for aerofoils with elliptic cross sections of any thickness/chord
ratio; and that the numerical results obtained for the Joukowsky aerofoil and also for the R.A.E.
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sections 100 to 104 (see R, C. Pankhurst, H. B. Squire?, 1950) in the normal range of thickness/chord

ratio, up to about 20 per cent, agree well with the exact solutions and with the results of S. Gold-
stein’s method? (1942). '

The numerical evaluation can be simplified considerably by replacing the integral and the
function dz/dx in equation (2.6) by summations,

1 tdz(x")  dx’ v,(x,,0 N=1
7 ( d(x’) X =% T <V“‘ . >seMn =S, 0 L (27)
- i " ! 0 p—=1i
V1 . }
dzag;) = 2> S =8, L e . . (2.8)
=1

i

following the methods of H. Multhopp® (1938) and F. Riegels and H. Wittich* (1942). The

functions S®(x) and S®(x) represent approximate expressions for the two terms at certain
discrete points ‘

I - cos

Vi .
N2
2

X, =

along the chord. The accuracy will, of course, increase with the number, N, of points taken.
N = 16 is usually sufficient for practical purposes. The sums involve only the given ordinates
z of the aerofoil at the pivotal points x,." The values of the coefficients s, and s,,® can be
determined once and for all for any given aerofoil. Numerical values are given in Tables 1 and 2.
The complete calculation of a pressure distribution takes about 2 or 3 computor hours.

The velocity on the surface of the aerofoil now becomes

V(x,2) 1 4 SW(x)

- .. .. .- . .. (2.10
Vo ~ VTSP (210
by equations (2.6), (2.7), (2.8); and the pressure coefficient

— 1= (VY (L SY)*  — 25T(x) — SW(x)? 4 SO()?
Cﬁ(-x’ ) =1 (T) =1 'TZT_”STZT(XV = '"‘“““A"—i‘qjm—)g— - (2.11)

If (S¥)* and (S®)* are negligible compared with unity and S,
C, = —25(x). .. . . . . . o (2.12)

Since S®(x) can be written as a function of multiplied by the thickness/chord ratio, #/c, of the
aerofoil, by equation (2.7), it is only when the approximation of equation (2.12) is used that the
pressure coefficient is proportional to the thickness-chord ratio. Fig. 3 shows in an example

the various approximations ; only the full relation (2.11) gives a satisfactory result over the whole
chord. ’

2.2. Application to the Sheared Wing—The flow past a sheared wing of infinite span, being
essentially two-dimensional, is closely related to that past the two-dimensional unswept aerofoil.
This is easily seen when considering the flow in a system, £, #, of co-ordinates which are normal

and tangential to the direction of sweep, ¢, Fig. 4. These co-ordinates are related to the rectangular
system #, y, z, with x in the streamwise direction, by -

= XCOS¢@ — ¥sin g

N =xsing -+ ycosg | . .. .. .. .. . (2.13)
=z



The main stream velocity 1/, has then the components

l'/,-:; ¢ —* ["’0 COUS 2
and
Vo = Vesing .

Obviously, the component V), , parallel to the wing meets the condition that the wing surface
- is a stream surface whatever its shape. The remaining velocity components

Vo= Vycos ¢ + v,
and
V.=uv,

in the &, z-plane, normal to the direction of sweep, must satisfy the streamline condition, which
reads in analogy to equation (2.1),

CTdE TV, V,cosg + ul6q)

d2(&) V. . u(p) 218

This is again simplified by ignoring v, compared with ¥, cos ¢ and by calculating v, on the
chord-line instead of on the surface. Thus,

aag) el gl o )

which determines the source distribution —-

dz(x)

T = g(x) .. . .. (2.16)

q(&) = 2V, cos g 6%;) = 2V,

by equation (2.13). We find that the two~dimensiona1 aerofoil and the sheared wing with the
same shape z(x) in the streamwise section are produced by the same source distribution g(x).

There is no velocity increment v, along the wing. The velocity increment normal to the line
of sweep induced by an infinite source filament ¢(&) d¢ is given by

1 g(¢') ¢’

d‘v;‘(é’o) = O E T g?’ ’

so that, by integration,

vel§0) At e _dE
Vo —.ZWI/OJOQ(S )5 _ 5”

i analogy to cquation (2.4). With equations (2.13) and (2.16),

ve(£,0) Lt odx’ 1 ftdzx’) dx' o 2
7 =g, 1) g = S e =S, o @217)
B



by equation (2.7). The velocity increments on the chord-line in the %- and y-directions are then :—

2,(%,0) = c0s pvs(£,0) = cos eV SB(x) = cos pv,(%,0),_,

. (2.18)
Uy(%,0) = — sin ¢v,(£,0) = — sin ¢V ,SP(x) == — sin guv,(x,0),_,
The existence of a non-zero velocity component v, in the transverse direction implies that the

projections of the streamlines on to the plane of the wing are curved. Their shape can be obtained
by integrating '

dy(x) v,
dx Ve + v,

e

Uy
Ve
that is,

. A v' N A V., o N 21 v,\: 0 ) )
(%) _j_w,Vo b _J_w P dx = sm(pj_w A (219)

by equation (2.18). For points on the wing chord, v,(x,0),_, can be determined from equation
(2.7). We find that on the ‘ stagnation ’ line, where v, = — ¥, cos g,

dy  sin ¢ cos oV,
—_ S o —— e /= t

dx  Vy— Vycos?g cot e

so that the air flows outwards along the nose of the wing. Further downstream, the streamlines
curve round into the direction of the main stream which occurs when v,(x,0)-= 0. The stream-
lines are subsequently deflected inboard and the largest deflection angle is reached where v,
has its maximum, i.e., at the peak-suction line, Downstream of that the streamlines gradually

approach the direction of the free stream, reach it where v, = 0, turn outwards, and finally
form a parallel flow again, Fig. 2. ' :

As on the two-dimensional aerofoil, the velocity on the chord-line does not give a sufficiently
accurate approximation for the velocity on the surface. A better approximation, which is
correct for ellipses, is obtained in analogy to equation (2.5) from

14 0(£,0 Sw
Vn-:ﬂ(&’z) = \/(VEZ + sz) = e 4 * 15(5:2) =V, Scel a (2) (X) 2 «
\/{1 N (0_Zg(_§)> } ,\/{1 . (S (x))} . (2.20)
a& \ COS @
by equations (2.8), and (2.17). With V, = V,sin ¢, we obtain for the pressure coefficient

Col) =1 — (1) — @Z)T — () =1t il sy

Ly (S
cos ¢
so that finally
 — 208 ¢ SY(x) — SV(x)? 4 SP(x)*
Colx,2) = S‘Z)(x)>2 ] o, .. .. (2.21)
cos ¢ | |

The functions SW(x) and S®(x) can again be determined at discrete points along the chord
from equations (2.7) and (2.8). ‘
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If this relation for the pressure coefficient is linearised by omitting quadratic terms in the
functions S®(x) and S®(x), which contain #/c as a factor, then

C,=—2cos ¢ SMx)=cos¢g X C,, 4 .. .. S . .o (2.22)

by equation (2.12). Only in this approximation are the pressures on a sheared wing reduced
by a factor cos ¢ as compared with those on an unswept aerofoil. Fig. 3 illustrates that again
only the full equation (2.21) gives adequate results. The results of the linearised theory become
necessarily less accurate as the angle of sweep increases since the assumptions made in deriving
equation (2.22) are

S“i(x) << cosqg and S®(x) < < cos ¢ .

The thickness terms also become more important with sweep because they are proportional to
(t/c)/cos @, t/c being measured along wind.

2.3. Compressible Flow—Critical Mach Number —Before extending the solutions described in
the previous paragraphs to subcritical compressible flow, we shall have to determine the limit of
this flow régime, 7.¢., the so-called critical Mach number. If the Mach number of the free stream
is'increased, the flow will first become supersonic in a limited region near the body and eventually
become supersonic everywhere, with the possible exception of a region near the nose of a rounded
body. Subcritical flow is defined here as one where a body in it does not experience a drag force.
It obeys a differential equation of the elliptic type. The differential equation must be of the
hyperbolic type before there is any possibility of a drag. Such a drag force is the manifestation
of an increase of entropy associated with shock-waves. We therefore call that free-stream Mach
number at which the differential equation which governs the flow changes its type the critical
Mach number M, ..., or M., for short. Whether such a drag will occur immediately when the
critical Mach number is exceeded is not yet known and will not be discussed here.

The compressible, irrotational, inviscid flow is governed by the well-known equation for the

velocity potential ®(x,y,2). In the co-ordinate system &, 4, z, defined by equation (2.13), the
potential equation reads:—

oo [1 <6?/8§)2J L PO (09[R (e0)0n) | 2 [1 <”F1’/.f7,~f/l'“] 0

ﬁ? a’ 2 az

i 2.23
0& dz a? "o ( )

The problem is essentially two-dimensional ; thus only two variables appear. Critical conditions

in the above sense prevail when equation (2.23) changes from elliptic type to hyperbolic type.

The theory of partial differential equations shows that the equation is of the intermediate
parabolic type when

[1 ~(* a‘fﬂ [1 <a_q’é/.i>z] - [@::ﬁ)ﬂ_(f F’)/BZJT —0

(see R. Courant, K. O, Friedrichs®, 1948). This gives

[ (09[08) + (90/05)°
a 2

3
[
*=

Now,

o

0&

: |
= s by cos g A v

"o .. (2.25)
=T I/.z == vz
0z

~1



so that the condition reads
V- VE = V2= gor A =17 tsin g = gt . .. (2.244)

since the total velocity is 1?2 = Ve -+ 12+ 1.2 This states that only the velocity component
V., normal to the direction of sweep must be sonic and not the total velocity which may, in fact,
exceed sonic speed since V2 = ¢* - V2 sin® ¢ = at

The various régimes occurring in the flow past an infinite sheared wing as the free-stream
Mach number is increased are as follows :—Pure subsonic flow exists until the total velocity
along the peak-suction line becomes sonic. If the wing has no sweep, this is also the end of the
subcritical régime. If the wing is swept, subcritical flow exists until the velocity component
normal to the peak-suction line becomes sonic ; this marking the end of the subcritical régime.
This may thus include a Mach number range in which local supersonic regions exist. For a thin
and highly swept wing it is also possible that subcritical conditions persist with supersonic free
streams. The flow cannot have shock-waves in the subcritical régime, and it seems possible
that there is a régime where the flow is supercritical without having shock-waves and a drag rise.

In order to determine the critical Mach number, the velocity, or pressure, at the critical
condition must be related to the free-stream Mach number Volay = Vor/ (pol ko)

aZ J— Ol02 + (VOZ . VZ) ,
: 2
assuming isentropic flow. Hence, with equation (2.24q),

T =R =l g Bt - Mool e

Introducing the static pressure

go - {’1 + k%l M2 [1 . (T%ﬂ }kuk‘.l)

and the total head

HO . J IIE - lM 2]_ k/(k—l)
'2-5‘0* = ll + o Mo ;
as measured by a pitot-tube, for isentropic flow, we find
113 — 1 Rtk - 1)
(&) =(GZ=)" L Mooty ‘ (2.27)
HO crit k+1 1+k_1M02 ‘ . )

This implies that the air can expand over a swept wing more than the well-known St. Venant
expansion which gives for the pressure ratio

1= (i) =0



for £ = 1-40, as for the unswept wing. Instead of the critical pressure ratio, the critical pressure
coefficient

may be used. This leads to

2 1y 20 \MEY £—1 ktk=h '
[ — o= R ¢
Cr = kI i(k T 1) (l e 5 M g? cos? rp> 1l . . (2.28)

for 1sentropic How.
The differential equation (2.23) is often simplified to read

e p =0, where pr— 1= (22REY )

This makes it amenable to an analytic treatment. Equation (2.29) is correct for incompfessible
flow, where § = 1. It is normally used also for flat bodies in the subcritical flow range on the
grounds that the mixed term in equation (2.23),

o 00 (90/38)(30[0z) _ 5oV, V.V,
2 ' =927
o0& 0z a? _ E  a?

contains the cross-flow component V', and its derivative, which can be assumed to be small
compared with the velocity of sound (see L. Prandtl®, 1936). The simplified equation (2.29) is
further used at sonic conditions by Th. von Karman®, 1941, although the first term then vanishes,
by equation (2.24), and equation (2.29) implies that the third term vanishes too. It would have
to be shown in the general case that the solutions obtained from equation (2.29) lead to a mixed
term in equation (2.23) which is still small compared with the other two terms (see also E. V.
Laitone', 1951).

In the present paper, the simplified equation (2.29) will be used throughout the whole sub-
critical flow range. This leads to # = 0 as defining critical conditions and this is the same as
equation (2.24) for flat bodies where 99/0z < < a.

2.4, Approximate Solutions for Sub-critical Ilow.—The snnphﬁed potential equation (2.29)
can readily be solved if some further simplifications, including linearisation, are introduced.
The factor into the first term

- AEY -

can be approximated by

pr=1 - Loy Vo bty
) a® a?

because for flat aerofoil sections, the term (v,/2)® can be neglected compared with 1. The flow
in the leading-edge region of bodies with rounded noses is thus excluded. Hence,

vy <
s costp + (= ) — 1
Vicosy + VP Ve, v ( ) L 2s)

R == A

pr=1—

e



Further, we may assume that the local velocity V is not very different from the free-stream

velocity V,, so that
kR —1 VN2 }
Yoo Me2I(S —] < 1.
g~ Mo [ VU> =
In that case,

(32:1—M02-}coszrp—|—[(%)2—1”. L es

A simple solution of equation (2.29) can be obtained if f is assumed to be constant, z.e.,
independent of & and z. The function V(&,2) in equation (2.31) must then be replaced by a
constant mean value, suitably chosen to represent the actual velocity over the suction region
of the aerofoil.

In many cases, the velocity will be known only for incompressible flow*. The velocity term
can then be replaced by a suitably chosen mean value of the pressure coefficient, C,,, on the
aerofoil in incompressible flow,

so that _
pr=1— MHcos* ¢ — C,;} = const. .. .. .. . .. oo (2.32)

This includes the well-known Prandtl-Glauert approximation as the special case C,; = 0.
To solve equation (2.29) with p from equation (2.32) the transformation
£, = §& ]
J R (=

Z, = Pz

of the wing into another, ‘ analogous ’, sheared wing can be used. By this transformation, the
perturbation potential @' = @ — V,cos ¢ . £ will also be changed and we put

&, =&, —Vycosg.& =2A4D — Vycosg.§&) = i’ .. . .. (2.34)

The factor 4 is determined by the condition that both wings must be stream surfaces in their
respective flows (* Streamline analogy’ of A. Busemann®, 1928; and B. Gothert?, 1941). By
equations (2.1) and (2.25),

dz v, 00[0z and 6’324 v, 09,/03,

ha V. _ 09]02 A Ve 9B0F (2
AE =V, edfoE U dE, T V.. 60,[0E, (2:35)

This gives
dz_dz, 1 _ 2 230/0z
TET@EF T PV cosy - A[30]aE = Vycos pl)
B PRLIEY: dz
BV, cos ¢ + A[0@[oE — V, cos ¢]) dé
so that

i a@/ag__ s
Vocos g -+ A[0@/3& — V, cos ¢ '

* A method of iteration can also be used whereby the velocity V in equation (2-31) for g is replaced by its value in
compressible flow as obtained from a first approximation. Using the Prandtl-Glauert rule to obtain a first approximation
leads to the method of E. V. Laitonel®, 1951,
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Here again we simplify matters by assuming that the velocity increment v, is small as compared
with 7, cos ¢ so that 9¢/9& = V, cos ¢, in which case

i = p?
and
Q) =&, — Vycosgp.&E = pP — Vycosp. &) = g0 . . . (3.34a)

The potential equation (2.29) reads then

20, 20, 20,/
=0, or

e, _
T oer

=0, (238

i.e., it has been reduced to Laplace’s equation.

A solution of equation (2.36) is given by equation (2.17) if we restrict ourselves again to thin
bodies where the velocity increment can be calculated on the chord-line instead of on the surface.
Using the expression for S® (x) from equation (2.7), we find

N—1
v
’ﬁrl_b - Sa(l)(x) - E S/U(rl)zya .
I/ 0 fe==1

Now, the aerofoil section of the analogous wing is thinner than that of the given wing by the
factor 8, by equation (2.33); hence,

N

Vs, 4 L . [ 9

"f‘ = f > 5,5 = p Vl .. .. .. .. .. .. (2.37)
[ =1 0

where v;; is the velocity increment on the given wing in incompressible flow, by equation (2.17).
The velocity increment on the given wing in compressible flow is

ve 80 100, 1w, 9
—_ T — — — azw--"” .. .« .. .. « e . ..4.38
Ve 08 pros, BV, (239

by equation (2.34a). Combining equations (2.37) and (2.38),

Vs 1w,

— Ui . (2,39
A (239)
By equations (2.18) and (2.22), the velocity increments in x- and y-direction and the pressure
coefficients will also increase in the ratio 1/, within this approximation, so that

U, lo,,. v, 1v,,. 1

2=ty 2= ieoand C, == C,y . . . .. (240

Vo BVo' Vo BTu e (240
The method described above follows the well-known procedure of L. Prandtl®, 1936, and H.

Glauert®, 1928; it enables the calculation to be done for incompressible flow using the method

described in section 2.2, and a compressibility correction applied afterwards. To obtain the

Prandtl-Glauert rule, the value of  in equation (2.40) is taken from equation (2.32) with C,; = 0,

i.e., the aerofoil is assumed to be so thin that the pressure coefficient can be ignored as compared
with cos? ¢. In this case,

v _ Gy 1 )
v Cp; A/ (1 — MPcoste)’
11
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If C,, is not so small that it can be ignored altogether, it can be replaced by its mean value over
the suction region, or by the peak value. in which casc

i (_ | )
P . e ) . .. .. .. L. (242
[ C/,, \ /{ | - ;WOZ(COSz e - G0 ( )

This rule (2.42) was derived by J. Weber, 1948, and a similar relation was again proposed by
E. V. Laitone', 1951, differing, however, by some terms with M2C »+ which cause the velocity
to rise more steeply with Mach number. The Weber-Laitone rule represents the logical second-
order refinement of the Prandtl-Glauert rule; it is consistent with the transonic similarity law
of von Karman,

Strictly, the rule (£.42) applies only to the velocity increase and not to the pressures. The

velocity 7 in compressible flow should be determined first and the pressure coefficient afterwards
from Bernoulli’s equation for compressible flow :—

2 IR S R b7NE] ) o 1
C,— kMﬁ[l' LI MUZ[] (I"/oﬂf } . (2.43)

To facilitate the calculation of C, from equation (2.43), a diagram has been prepared, Fig. 5,
from which the value of C, in compressible flow can be read if the value of V/V, (= 1 + v,/V)
1s known.

The relation for (/, can be written as a power series in (v,/V )% where V = 1", + v, if

g , | .w[] | G)] o

S T TR VA AT . .. . (2
C, L M[,)Vﬂ) o L (245)

In this case,

or

There is little reliable evidence from experiments to check the accuracy of the various rules.
The particular examples in Figs. 6 and 7 show that equation (2.42) agrees better with experimental
values than either the Prandtl-Glauert rule or the rule of Th. von Karmédn' (1941) for both
unswept and swept-back aerofoils. The necessity of applying the rule to v, and of evaluating
the C, afterwards can be seen. : :

- By applying any of these rules, the pressure distribution from incompressible potential flow is
multiplied by a factor and no overall drag results. The rules apply, therefore, only to subcritical
flow, the range of which was discussed in section 2.3. In particular, the critical pressure co-
efficient is given by equation (2.28). Combining equations (2.42) and (2.28), the critical flight
Mach number 34, ., can be found for any given value of C,; and ¢. Charts on this basis are
drawn in Fig. 8 to enable a quick estimate for the critical flight Mach number of sheared wings of
infinite span.

3. The Centre-section of a Swept Wing of Infinite Span.—The peculiarities of the low past the
centre region of a swept wing may be more readily understood by considering first the properties
of a kinked source line, as is done in section 3.1. From that a general formula for the velocity
distribution over the centre-section of a swept wing is derived in section 3.2. The relation between
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section shape and source distribution is considered in section 3.3." A simple method of calculation
for practical purposes is then given in section 3.4 together with a brief discussion of the resulting
aerodynamic properties. Very little is as yet known about the effects of compressibility ; some
approximate solutions for subcritical flow are given in section 3.5.

3.1. Properties of a Kinked Source Line.—Since the swept-back wing will be built up by a
distribution of kinked source lines let us consider first a single kinked source line of strength
E per unit length as indicated in Fig. 9. One semi-infinite side of the kinked line produces the
following velocity components normal and tangential to the line:— ‘

E . U .
Vo= e [ )¢ ), P, 8 /A - .. . N \%]
), s (I + cos p) / i S g (0.1

" For a given point on the line of symmetry we have

4 — Agn
T T,

-

so that the total velocity on the centre-line, induced by the whole kinked line and directed along
the main stream amounts to

v, = 2(v, cos ¢ - u, 8N ¢)

B [(1 4 sin ¢) cos ¢ — cos ¢ sin ¢

" 2nx CcOS @

0o £ - X

This result, first shown by H. Ludwieg', 1946, in another way, states that at any point on the
line of symmetry the velocity induced by a kinked source line is equal to that of a straight source
line of infinite length through the kink point. Nothing can, however, be stated about the kink
point itself. The important result follows that, for any given distribution of kinked source lines
along the x-axis to represent a swept wing, the velocity increment v, at a point % in the line of
symmetry is equal to that of the corresponding distribution of straight source lines, representing
an unswept wing, but for a contribution which may arise from the source element through the
point x" = x itself, which, in turn, must depend on the local source strength.

The singular kink point therefore requires special attention and to obtain the velocity there
by integration of the contributions by a distribution of source lines the limit must be taken by
approaching this point along a path outside any singularities, for instance the limit as z— 0.
For this purpose, we determine first the three velocity components which are induced at a point
(#,7,2) by a single kinked source line as in Fig. 9.

The velocity dv at the point x,y,z (in the direction of the radius vector) induced by a source
element £ds in x',y’,2" has the direction of the radius vector and is

'

MTQQZELJK L 83

where
R =/ — a4+ (v — vV b (v — 22 = (v — v tan 9)2 - (v — )2 L 22,



This square root, being a geometric distance, is always positive. The streamwise component
of the induced velocity is

dx:dV‘x—x’: E x—y’tanqad '
v R 47 cos ¢ R? 4

The total induced velocity component of a straight semi-infinite line—which can be regarded
as the right-hand side of a kinked source line—is obtained by integration :—

— ytan ¢ : ) Y e
B (x — v tan ?)(\/(" + 2+ cos tp) cos ¢
el ) = g S -

e
M —yt
((% ¥ tan p)* +COSZ¢

Vi 4+ 2
The whole kinked source line as shown in Fig. 9 gives:—

) sin ¢,
cos P cos? (p

}«/(x Y

(¢ — ytan g)(v/ (6" + 3 + 2
v,t(xxyyz) = Z;’t

[ 2
{(x ytan(p)+c082<p

. L Y sing _,
N (x + y tan QD)(’\/(X + ¥+ ) 7:'—005 @ ~ cos? 4 i

[+ ytano)y + 2

cos? ¢

(3.4)

In the same way we find the induced velocity component ,-in the direction of the positive
y-axis i—

v, (%,5,8) =

E [_ (x — y tan g)(sin g4/ (** + ¥* + 2°) + ) + *

47 cos (f 2 | o2
((x y tan ¢) + ool 5] V(x* + Yt - 27

_l_

(3.5)

(v +ytang)(sin o/ (¥* + 3* + 2% + ) + 247
W+ ytan g2 + 2o by 402 +2)

cos? ¢

and the induced velocity component v, in the direction of the positive z-axis (downwards) :—

v.(%,9,2) =

E 2 \/(x2—|—y2+z2)—i—(xsinqa—{—ycoéqo)_
47 cos® ¢ . 2 z 2 2 2
[{(x ytang) + Zl e+ + )

+

(3.6)

*\/(x2 4+ 92+ 28 + (xsing — vy cos @) - ‘
{6+ ytan g + 2 by + 9+ zZ)}

cos? p

By integration these relations can be used to calculate the velocity components induced at any
point by any distribution of such source lines. In the present paper, they are used only to
determine the velocity increment at the centre-line of a swept wing.
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3.2. General Formula for the Streamwise Velocity Increment.—The swept wing of infinite span
with a kink at ¥ = 0, as shown in Fig. 4, is replaced by a distribution of sources and sinks of
strength ¢(x,y) per unit area. These can be regarded as composed of single kinked source lines
of constant strength E per unit length along the »-axis. The source strengths are related by
the identity

_g Y -
‘Eds_ECOS(p_qudy

so that
EF=gqgcosqpdy. .. .. .. .. .. .. .. .. (8.7)

With equation (3.4) we obtain

_cose(t ., 1
%(x0,2) = Oz Jo 9) (x — x)? + 2*/cos® ¢
o 2*[cos® ¢ | 7.0
{x x Sm[p\/[(x—x’)z—{—zzj) ax’ . . . .o (3.8)

In this relation, all the co-ordinates are again non-dimensional with the wing chord. We can
see already that the singularity at x = x" as z— 0 is not of such a kind that the principal value
of the integral can be taken. The integration is therefore done first and the limit as 2—0 is
taken afterwards.

It is convenient to split the integral into two terms —

2n

o5 7 v.(%,0,2) = I,(x,02) + Iy(x,0,2) ©. .. .. .. .. .. .. (3.9
where -
L x — x ,
If(x,O,z) = jﬂ g(x") T (Eoes (p)zdx , ... .. (810
— vine o (z/cos @)° :
I,(%,0,2) = smtpfofc_](x ) T oo o) I~ ax’ ... (3.11)

Putting z = 0 before integrating is permissible for the first integral, and the principal value
must be taken:—

Il(x,0,0) - J'l q(x,) dx, 7 = 2737)_5(.%,0),,,:0

0 X — X%

by equation (2.4). This leads to a first term
2,4(%,0,0) = cos @ . 1,(%,0),-0 = 0,4(x,0) .. . A .. (812

which is equal to the velocity increment v,5(x,0) of the sheared wing of infinite span. The
existence of such a term has been predicted in section 3.1 from the properties of a kinked source
line. The cos ¢ factor to [v,],_, arises from the corresponding factor in equation (3.7).

In the second integral, z can be .put equal to zero before integrating within two intervals not
containing x” = x; that is from 0 to x — 2 and from x + 4 to 4 1; a being a finite positive -
number which is small compared with unity. Within these intervals, I,— 0 as z2— 0. If g(x)
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is a continuous function, it can be replaced by a constant value within the remaining interval
—a < x— x" < -+ a, byits value at x' == x say. I,(x,0,0) can then be written as

~ta 2
L,(x,0.0) = — sin ¢ . g(x) li o _ (#[cos o) i — x
00 = = sin GO | Tageos PG — 5T A )
which gives '
[o(x,0,0) — - ¢(x) lim In VAL 4 (z/a)’) + sin g

s A4 A (zla)®) - sing

The limit as z tends to zero is independent of the choice of a, and we find

L(%,0,0) = — mg(x) flg) where flp) — L@ LFsine 33

%z 1 —sing’

This leads to a second term
D,(#,0,0) = — ‘L(Zx_)cos v flg) O ¢ S U

which depends only on the local source strength and on the angle of sweep, again as prediéted
above. v,, = 0 for ¢ — 0. Tor small values of ¢, the function f(¢) can be expanded into a power
series in g —

fo) =2(o+%+..), e

of which the first term gives a good approximation up to about ¢ = 30 deg. The term v,,, which
is caused by the ‘ centre effect * changes sign with the angle of sweep because f(¢) changes its
sign. Some numerical values of f(p) are given below :—

(deg) (deg) | (deg) |
0+ 0 - 30 ‘ 0-350 80 0-838
5 | 0:05 35 0-416 65 0-959
10 | 0-112 40 | 0-486 70 1105
15 0-169 45 ‘ 0-561 75 1-291
20 0-227 50 0-643 80 1-551
25 0287 55 ' 0735 85 1-993
i . 1 20 e

The total induced velocity v, = v., + v,, at the centre-line is then given by
2(%,0,0) = v,y + Vps = Ves(w) — 2(7’5) cos @ (o) (318
by equations (3.9), (8.12), and (3.14).
The type of solution, equation (3.16), and in particular the existence of an additional term

‘proportional to the local source strength, may be illustrated by considering the midpoint of a
uniform distribution of sources over a kinked strip, as shown in Fig. 10. In the two-dimensional
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case, i.e., for a straight strip without kink, the value v, of the induced velocity at the midpoint
would be zero, there being always a source element on one side of the midpoint to counterbalance
~ the effect of another on the other side. With a kinked strip, however, only the sources in the

shaded area counterbalance each other. Obviously, the remaining sources produce a velocity
increment directed against the main stream, the magnitude of which is given by equation (3.14)
as can be seen by considering 2a as the chord of the strip.

3.3. The Vertical Velocity Component and the Shape of the Section—So far, the velocity
distribution at the centre is known only in terms of the source distribution g(x) which replaces
the aerofoil. The next step is, therefore, to relate g(x) to the shape of the aerofoil and, in particular
to check whether equation (2.2) which holds for the unswept and the sheared wing of infinite
span is still true.

v, can be found from equation (3.8) by integration. Using equation (3.7), we have

x o Vilx —x')? 4 2 4 (x — 2') sin /
27 cos ¢ jo at) {(x — «")* + (z/cos )*} v/{(x — x')? _?_9 zz}dx

vz(x,O,Z) -

which it is convenient to split into two integrals:—

—_ 1 1 ! Z '
v:(%,0,2) = 27 oS @ J.o ) (x — %")" + (2/cos @)* dx

tan ¢ x — %'

o - ZJD g(xl) {(x_ xr)z T (Z/COS (p)z} \/{(x — x/)z T ZZ} ax’.

We are again chiefly interested in the limiting value of v, as z— 0. Splitting the range of
integration into three intervals, as above, we note that v,— 0 as ¥ — 0 outside the interval
—a < x — x" < a. Inside this interval, the second integral also vanishes because the integrand
is antisymmetrical to x = x’. The first integral requires special treatment. In a small range
about the point x = %', ¢(x) can again be replaced by its value at x = x’, so that

+ . (8.17)

(GO z /
w0604 = ¢ o @ .[-a (x — %)% + (z/cos p)? 4x — %)

which gives

e

v,(%,0,2) = () arc tan

z/cos ¢

d

In the limit as z2— 0, provided z tends to zero more quickly than «,

mmm:i@zn R ¢ B 1)

which is the same result as equation (2.2). It may be noted that the derivation given here
includes, of course, the straight wing as the special case ¢ = 0. Equation (3.18) allows a swept
wing of constant chord and constant section to be represented by source lines of constant strength
along the span. :

It has been found, from a numerical evaluation of the integral (3.17) for the special case of a
30-deg swept-back wing with a biconvex parabolic section, #/c = 0-2, that equation (3.18) still
gives a good approximation for the actual distribution of ,(%,0,2) along the surface. Other cases,

17
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in particular sections with rounded noses, still require to be investigated. Nor has it been
checked whether the streamline condition (2.1) can be replaced by the simplified relation (2.3)
with sufficient accuracy, and it is particularly questionable whether v, can be ignored compared
with the free-stream velocity V', now that v, contains a term proportional to g(x) which is tending
to infinity at the leading edge of sections with rounded noses. In the following, however, we
shall assume that equation (2.8) is adequate for practical purposes.

3.4. Method of Calculating the Pressuwre Distribution and Evaluation of the Aerodynamic
Characteristics.—Combining equations (2.3), (3.16), and (3.18), we have

0.500) _ 2.5(500) _ dx(x) |
A v cos q?f((p)%—— .. . .. .. .. (3.19) .

0

or

%%gm:{aﬁplﬂ—ﬂ@%%}mwt.ﬁ U (3.19)

The most important features of this relation are:

(a) that it contains a term which does not differ from that for an infinite sheared wing,

() that the additional term, the ‘ centre effect’, depends on the angle of sweep and the local
slope of the aerofoil section only.

Thus, compared with the velocity increments of an infinite sheared wing, the velocity is decreased
upstream, and increased downstream, of the maximum thickness position,. for positive angles of
sweep. Therefore the value and the chordwise location of the maximum velocity at the centre-
section differ from those at the sheared wing, and this difference varies appreciably with the
maximum thickness position and the trailing-edge angle. On swept-forward wings, the maximum
value of the velocity at the centre is usually much higher than at a station which is not influenced
by the centre effect ; in this case, the nose thickness is the most important parameter. Generally,

the velocity peak is shifted backwards for swept-back wings and forwards for swept-forward
" wings.

This change of flow near the centre of a swept wing was first pointed out by B. Gothert®
(1942), who also measured the pressure distribution at the centre of a swept-forward wing.
W. Kriiger™ (1946) showed the effect for the centre of a swept-back wing. Calculations have
been made by R. T. Jones™ (1947), S. Neumark® (1947) and F. Ursell” (1948) on the basis of
linearised theory for the biconvex-parabolic and other related aerofoil sections. The general
relations above were given by Kiichemann (1947).

It is convenient for numerical calculations to introduce the functions S®(x) and S®(x) from
equations (2.7) and (2.8) into equation (3.19a), which gives

%$@:mwpﬂm&%mww R £ 1)

With the coefficients given in Tables 1 and 2,S® and S® represent sums involving the given
ordinates z(x) of the aerofoil section. Equation (3.20) then represents a system of linear equations
from which either the velocity distribution can be obtained for a given section shape, or the
section shape defined for a given velocity distribution. In the latter case, certain conditions

must be observed in order to obtain a reasonable section contour which closes and does not
overlap (see also section 4.4.). ‘

Since equation (3.20) is based on linearised theory and since it gives the velocity increment
only on the chord-line, it is not normally accurate enough to put V(x,z) = V, + v,(x,0),
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especially for round-nosed sections. An approximation* for the velocity along the surface of
the aerofoil may be obtained by using equation (2.5), which gives

Vg 1 {(‘f’i%@)qD /o) djg)} cos

— . (3.21)
Vs )
T+ (T
or by equation (2.8),
Vixz) _ 1+ (S%(x) — flp) S9(x) cos :
= ST 5‘7”2 &h LA .. . . .. (8.22)
The pressure coefficient is then
o) — — 2205 (SO%) = ) S°e) — (50— fl) S cos' e £+ SV g

It must be noted, however, that the use of equation (2.5) has been justified for two-dimensional
aerofoils only and is correct for the line integral of the velocity around the aerofoil contour.
It is not necessarily true at all chordwise positions at the centre of swept wings. An analytical
check on its validity, which would be very tedious, has not yet been made.

A comparison between experimental values for the velocity at the centre of two swept-back
wings and values calculated from equation (3.22), in Fig. 11, shows that a satisfactory approxima-
tion is obtained. It is possible that the slight deviations between the experimental and calculated
results are genuinely due to an error introduced by using equation (2.5). It appears that the
correction is too large near the nose of a swept-forward wing and too small near the nose of a
swept-back wing. The values near maximum thickness (where dz/dx = 0) are not affected,
however. At the centre of a swept-back wing the peak suction value may be higher (for sections
with their maximum thickness far back) or lower (for sections with their maximum thickness
further forward) than that for the same section on an infinite sheared wing (see Fig. 11).

The change of the pressure distribution near the centre of a swept wing causes a finite value
of the local form drag, in spite of the assumed potential flow. Thisnormal-pressure drag may be
obtained by integration of the pressure distribution or, more conveniently, from the theorem of
A. Betz® (1932) (analogous to the Kutta-]Joukowsky theorem for the lift force)

— AL — ' x(x) g(x)
A = = A . . .. .. o .. .
CD %P V2 2 Jo Vo T, ax (3 24)

* In this approximation, ¥ is not zero at the leading edge. A better approximation near the leading edge is given by

( /0.(2,0) dz/dx
Vs T {( Vo )00:0 —/0) T (dz/dx)Z}} cose ... (321
Vo VAl + (dzjdx)3
or i
D) flg) )
Vizz) ! +<S () — /o) VAl + S®(x 2}) cose . . .. . . .. (8.22a)
VO - - \/{1 +S(2)(x)21
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Since, at the centre, V, = V, + v,5 — cos ¢ f(¢) . dz/dx, by equation (3.19), to a first approxi-
mation ; and since no drag can result from the two-dimensional terms, we have

1 N 2
ACD:4cos<pf((p)fo<;Z_; A, .. .. .. .. .. .. (32

using the relation dz/dx = ¢/2V,. This can be refined for round-nosed sections by using equation
(8.22) :—

ACD:4cos<pf(zp)j:<%>2\/{1_’_dzcdz/dx)z}. L (329

Equation (3.25) applied to the biconvex parabolic section*

2(x) = fo(l — %)

c
gives .
16 7 £\ :
AC, = (= . .. .. . . . .. (827
b= (2) cos g flp) , (3.27)
and equation (3.26) applied to an elliptic section
A
) =/t — ~
as another extreme, gives
N? k) — E(k
a¢y =4 (1) cowf(qa)%_(l, 3

where (k) and E(k) are the complete elliptic integrals of the first and second kind respectively,
with ‘ .
e 1 __ (B
F=1-(0).

The drag of the round-nose section is larger than that of the sharp-edged biconvex section,
The following table gives some numerical values for the elliptic section —

aC,
(_z > cos o f(p)
tle c
Elliptic Biconvex
section section

0 o 53 (= 16/3)
0-05 13-5 5-3
0-10 10-8 53
0-15 9-3 53
0-20 82 5-3

* The biconvex parabolic section represents a conveniently simple case where first-order solutions can easily be
obtained. For example,

V (x,0) . U, s ¢ _
S =14 2 leos o flal1 — 20

+

at the centre, which follows immediately from z(x) = 2 ; % (1 — x); dzfdx = 2

(SRR

(1—2%) ; and equation (3.19).
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For exarhple, with ¢ = 45 deg, ¢/c = 0-1, an elliptic section gives 4C, = 0-043; the centre
effect on the normal pressure drag thus amounts to several times the ordinary profile drag.

The local drag, being proportional to the centre velocity increment v,, from equation (3.16),
can be used to define the spanwise extent of the centre effect. Obviously, v,, and 4Cp, are both
largest at the centre section and fade out gradually as the spanwise co-ordinate y increases.
Measured and calculated values of 4C,, for sections outside the centre have been plotted in Fig. 12,
the calculations having been made for the special case of the biconvex section. These values
do not differ greatly from one another, and the full line in Fig. 12 may be used to estimate the
fading-out and the spanwise extent of the centre effect, giving the percentage of the value
,2(%,0), or Cp, which is left at a station v from the centre. This distance must be measured in
terms of the wing chord ¢. No great accuracy is required for this interpolation. The centre
effect does not reach farther than about half a chord from the centre-line.

3.5. Approximate Solutions for Sub-critical Flow—A simple treatment of the compressible
flow on a two-dimensional basis as for the sheared wing in section 2.4 is not possible for the
centre-section of a swept wing because of the essentially three-dimensional character of the flow
there. Instead of equation (2.23), the full potential equation

0%P 1 700N 82¢ 1 /799N 0P 1 70D\?
a—ﬁ[l‘;(a)ha?[l_;z(@ 1+ 5 - 2G)]

2 00 0000 2 B0 0000 20D 2000 .
a* 3y 02 0y 0z a0z 0% oz 0x  a° 0% 0y 0% 0 .. .. .. (3.

must now be used. At the centre-section, 8®/dy = V, = 0, for reasons of symmetry. We
may further restrict ourselves to flat bodies where

2
<a@ﬁm>,<<<1’
a -

as in equation (2.29). We ignore again the mixed term

2 20 sa o
a% 9z 0x 0z ox

Equation (3.29) then reads:—

20, D 0D
a—xgﬂ —i—’a?_l_a—zz——o, .. . . .. (3.30)
where
T I A ,
g2 =1 EGQ_J A

again for flat bodies. As in section 2.4, g will be replaced by a constant value to make a solution
of equation (3.30) possible. It is

v (V[Vo)?

pr=1-— =1-— M’ ]
W+k;1Wﬁ—W) 1—@1Mm{v _}. .. (3.32)

i
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which naturally differs from the corresponding relation (2.30) for the infinite sheared wing.
Assuming again that the section is thin, so that

B—1, 00V
TMD [(7()) 1} <<1,
we have
pr=1—MI(VIV)P=1—M:2(1-—C,) .. .. .. .. .. (3.33)

if we restrict ourselves here to the problem of relating the velocity in compressible flow to that
in incompressible flow (suffix 7).

We follow again the Prandtl-Glauert procedure by transforming the wing into an analogous
wing (suffix @) by means of '

Xy =X ] ,
Yo = BY . .. .. .. .. - .. (3.34)
Z, == Bz [

The perturbation potential functions of the two flows are related by

(Da.’ = @a - Vﬂxu = /1(@ - VOx) = ‘3'@, .

The factor 2 is so determined as to make both wings into stream surfaces, and in the same way
as in section 2.4 and with the simplifying assumptions made there, we find 2 = g2, as before.

It may be noted that the transformations (3.34) imply that the analogous wing is thinner
than the given wing:

gt 335
¢ ¢
further, the analogous wing is more highly swept :
tan ¢, = 1 tan ¢
i
sin g, = ARP e (338)
v/ (B* + tan® p)
COS ()Da o _._____/_3.___
4/ (% -+ tan® ¢)
With these transformations, equation (3.30) reduces to
0% oD R *d,’ 0@ 2 o*®,’
2 & 2 == () d - “ 2 = .o .. (8.
ox, 1 0y, + 02,2 05 or 0x, + oy,” - 02,7 0 (8:37)

of which the solution is known to be, by equation (3.20)

)

U

= [596) — flr)s.20) | cos g,
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or, by equations (2.7), (2.8), (3.34), (3.35)

. ;,;a _ [ﬁS(l)(x) _f(%)ﬂsm(x)} cos @, , .. .. .. .. (3.38)

to a first approximation. With 4 = £ the velocity increment of the given wing in- compressible
flow is

2,(2,00) 1 v,,(x,0,0) (3.39)
B bl T e . . .. . .. . R

so that, with equations (8.36) and (3.38),

V. _ 1 [sw(x) — f(%)S(Z)(x)] ... (340)

Vo 4/(B* + tan®¢)

Using p as given by equation (3.33), we obtain finally

v, cos . 2 |
¥ = T [S”(x)— flg) S >(x)] L. (341

It is not possible to give a simple expression for the velocity ratio »./v,; because the factor f(p,)
in the centre term in equation (3.40) depends on the angle of sweep of the analogous wing.
Putting C,; = 0 leads to an approximation which corresponds to the Prandtl-Glauert rule (2.41).
It is suggested that equation (3.41) be used together with equation (2.43) for calculating the
pressure coefficient in compressible flow. ' '

It may be noted that the compressibility factor in equation (3.41) differs from that of the
Weber rule (2.42) for the infinite sheared wing. This is due to the fact that the third mixed
term in equation (3.29) is not zero for the sheared wing but gives a contribution to the term
with 9°®/ox® Since
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for the sheared wing, this mixed term can be written
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Taking this together with the first term containing 9*®/9x?, we have
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Ignoring quadratic terms in (v,/V,), we find

p=1—mp(1- S

cos® ¢

which gives for the compressibility factor in equation (3.40)
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which then leads to equation (2.42) for the sheared wing. This indicates, at the same time, an
alternative derivation of equation (2.42), which does not resort to the transformations (2.13)
that enable results from two-dimensional flow to be used.

There are as yet no experimental data available to check equation (3.41). The main error is
likely to arise from the fact that the boundary condition that the aerofoil should be a streamline
is not adequately fulfilled. Such an error may come in twice. First in the calculation of the
incompressible flow past the analogous wing, as explained in section 3.3; and again in the trans-
formation to compressible flow by putting 1 = g2, -

An assessment of the critical conditions and of the critical Mach number, corresponding to
“the treatment of the sheared wing in section 2.3, cannot easily be made for the centre-section
without considering the wing as a whole. Some remarks will, therefore, be left to a later stage,
section 4.3 (se¢ also the paper by G. H. Lee, 1950).

As an illustration, calculated velocity distributions for the centre-section of a 45-deg swept-
back wing of large aspect ratio are compared in Fig. 14 with those on a 45-deg sheared wing of
infinite aspect ratio. Fig. 18 shows that the pressure rise with Mach number at the centre differs
from that at the sheared wing. C, = — 2, has been assumed.in calculating Fig. 13.

4. Application of the Sheared Wing and Cenire-Section Solutions to Special  Problems.—It is
not in general possible to find an exact solution for the flow past a swept wing of given plan form
and section shape. Tixisting papers deal with special cases where the generality has been
restricted by the use of special section shapes, such as the biconvex parabolic section and by the
application of linearised theory throughout (see S. Neumark and J. Collingbourne®, 1949).
Calculation methods are needed, however, which are applicable to any given section shape and
which take second-order terms into account whenever the need arises. The procedure followed
here is to combine the known solutions for the infinite sheared wing and for the centre-section to
obtain an approximate solution for any other section on a given wing. This method is used first
to investigate the flow over the wing tips, section 4.1, and is then applied to wings of finite aspect
ratio, including those with taper in plan form or thickness, in section 4.9. Compressibility
effects are briefly considered in section 4.3, and section 4.4 deals with the possibility of modifying
the plan form, or the section shape, of a given wing in order to restore flow conditions which
may appear desirable, such as sheared wing conditions.

4.1. The Wing Tip.—Since the velocity increment v, at the centre of a swept wing of infinite
aspect ratio is produced in equal parts by the two halves of the wing, as a first approximation
half the value of v, given by equation (3.19) would correspond to the velocity increment for a
semi-infinite sheared wing at its tip section, the angle of sweep being reversed. However as this
wing would be composed of source lines of equal strength along the span, its thickness would
decrease in approaching the tip. This can easily be seen from equation (8.6); in particular,
since the normal velocity v, at the centre of a swept wing is produced in equal parts by the two
halves of the wing, v,/V, = ¢/4 at the tip instead of g/2 at the centre, by equation (3.18)

The decrease of v, towards the tip spreads over an appreciable area inboard. To illustrate this,
consider a parallel strip of semi-infinite length normal to the main stream and covered with a
uniform distribution of sources as shown in Fig. 15. The induced normal velocity at and above
the centre-line of the strip is, by equation (3.6), and integration,

' 7 = 9(1 1 1, Y 4.1
,(0,v,2) 2<ﬂarctanz+narctanz\/(1+y2+zz)). . .. .. (4.0

Numerical values are shown in Fig. 15 where v,” = ¢/2. Tt will be seen that, for z == 0, v,/v,
decreases steadily towards the tip. At the tip (y = 0) v, has half the value of the two-
dimensional case (y — o), the latter itself being smaller than g/2 for z # 0, i.e., for wings of

24



non-zero thickness. At z = 0, i.e., wings of zero thickness, v, jumps discontinuously from g¢/2 at
v 5= 0to g/4 at y = 0. Since any source distribution can be composed of such strips, this result
has a general validity.

The reduction of the normal velocity component induced by a constant source distribution
is related to a certain streamline pattern in a span-wise section through the wing. Fig. 16 shows
the streamlines turned outwards near the tips of a wing of finite aspect ratio. This implies that
‘there is also an induced velocity component v, in a transverse direction, which is necessarily
zero at the centre-line of a wing for reasons of symmetry. The existence of this cross-flow com-
ponent adds considerably to the difficulties encountered in an analytical treatment of the flow
near the wing tip. For example, we cannot take it for granted that the flow will form a closed
contour at the tip if the wing is represented by the usual source-sink distribution. In a parallel
flow, a closed body is obtained from a source and a sink only if these are of equal and opposite
strength and, further, if they are directly behind one another. If the latter condition is not
fulfilled, as in the case sketched in Fig. 17, the stagnation streamline will not be continued as the
dividing streamline behind the body ; in fact, no closed body is formed.

Tt will be helpful for a better understanding of the tip flow to consider the cross-flow component
in more detail and, in particular, to investigate its magnitude. Consider a source distribution
g(x) between x == 0 and ¥ = 1 in the plane z = 0, beginning at y = 0 and extending to y = .
The unswept wing which is produced by these sources in a parallel stream along the x-axis will
not be of rectangular plan form, but will bulge out beyond the line y = 0, Fig. 18. We assume
for the time being that the plan form, y(x), of this end fairing forms a closed contourt and that
it has a shape similar to that of the given aeroil section, z(x) :

y(x) = o* 2(x) , .. . .- .. .. oo (4.2)

where o* is a constant factor to be determined. The basic aerofoil shape is related to the source
distribution by the streamline condition dz/dx == ¢(x)/2V,; and the shape of the end fairing is
similarly related to the cross-flow velocity v, in the plane z = 0:—dy/dx == v,/V,. Hence, by
equation (4.2),

&) L 43

1.e., the cross-flow velocity is proportional to the local source strength.

The value of the constant factor o in equation (4.3) will be of the order 1. o¢* = 1 means
that the end fairing is composed of semi-circles along ¥ = 0, like the conventional fairing of
wind-tunnel models. It is unlikely, from Fig. 18, that o* could be appreciably greater than 1.
A lower limit for the value of o* can be obtained as follows :—Consider a cylinder of length dx
and radius # around the edge y = 0. The spanwise extent of the sources forming the wing,
which are enclosed by the cylinder, is  and the source material inside the cylinder is thus g(x)r dx.
We now assume that all the source material flows out through the outer half of the cylinder
with a constant radial velocity »,. This would be similar to the flow condition on a body of
revolution where the source material passes through the whole of the surface of the cylinder,
and our assumption implies that the end fairing has the properties of a half-body of revolution,
which may be regarded as an extreme case. Thus, by continuity,

g(x)r dx = zur dx v,(x) ,

or

+In the conditions described further on, there is [ v, d¥ == 0, at least, by equation (4.3).
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For z == 0, v, == v,, so that ¢* == 2/x == 0-64 in this case. For y =0, v, = v, = g/n, whereas
the true value of v, at this point will be smaller: linear theory gives ,(0) = ¢/4. This implies
that », at z = 0 will be greater than ¢/, so that ¢* > 0-64.

Analytically, the value of v,(x,y,2) is obtained from the integral

R (% — &) — 2 , |
U, (%,9,2) == 4_7J0 g(x") =L A =7 T 7 ax’ .. ..o (4.4)

which follows from equation (3.5). This can be written as
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For z = 0,
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since the second integral vanishes. Thus v, has a logarithmic infinity at the edge y == 0, as is
to be expected since there is a non-zero source strength at y = 0. v, falls to zero at either side
of the edge. This shows that the linearised theory, in which the velocities are calculated in the
plane of the source distribution and not on the surface of the wing, fails in the treatment of the
~cross-flow component of the induced velocity. Further, the velocity at the wing tip cannot
be taken as V' ="T, + v,, with v, from linearised theory, because of the existence of an infinite v,.

The integral in equation (4.5) occurs also in the treatment of the entirely different problem
of finding the chordwise load distribution and the downwash at the centre of swept wings. It
has been shown elsewhere (R. & M. 2935) that, on the wing contour y(x), the value of the
integral in equation (4.5) can be approximated by v, = ¢%g(x)/2, in agreement with equation (4.3).

In particular,
ot tan ¢ + #f(e)
27 sin g

with f(p) from equation (3.18). For ¢ = 0, using equation (3.15),

of = Em PR e 29 _ .go
g>0 2w sin @ '

This is a reasonable value between the limits discussed above.

The above considerations confirm that the wing produced by sources of constant spanwise
strength becomes appreciably thinner towards the tip as indicated in Fig. 18. Therefore, the
source strength must be increased near the tip if a wing of constant thickness is to be produced.
This in turn makes both normal and streamwise velocity increments greater than half the value
of the two-dimensional aerofoil. The flow in the tip region is thus essentially three-dimensional,
the tip representing an intermediate stage between a body of revolution, with the thickness of
the body proportional to the square root of the source strength, and a two-dimensional body,
with a linear relation between thickness and source strength.

There are no methods available for calculating the velocity distribution over the surface of
such a body of given shape, and we must be content with a crude approximation. Since the
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velocity at the tip section can be expected to lie between the full value obtained for the centre-
section and half this value, we retain this type of distribution and put

”x(;;‘?’) _ z(’l%xo@ — 08 ¢ fl— @) dfi(;‘)) T

by analogy with equation (3.19). The centre term must be determined as for a wing of opposite
sweep because, for a swept-back wing, the tip behaves similarly to the centre of a swept-forward
wing. (See Fig.2.) The factor 2 must be determined from experiments. Its value is likely to be
greater than % (linearised theory) but smaller than 1 (full ‘ reflection ’ of the flow, s.c., straight
streamlines, at the tip, Fig. 2). Several experiments indicate that a relation of the type of
equation (4.6) is indeed sufficiently accurate for practical purposes. The value of 2 obtained
from the tests is 1 = 0-7 so that, at the tip,

%:0-7(@%2)_005(pf(—¢)‘@_xx)>. @)

Numerical values of v, can be obtained by using the methods described in section 8.4. A simple
approximation is

%:O'7COS¢[5(1)(x)—Jf(— ) SO(x)] N C X))

which corresponds to equation (3.20). A better approximation will be obtained from
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which corresponds to equation (3.22a). Some experimental evidence is shown in Figs. 19 and 23.

It may be noted that this decrease in velocity to about 0-7 times the two-dimensional value has
also been confirmed by tests on unswept wings.

(4.9)

In the absence of any evidence about the velocity rise with Mach number, equation (3.41)
for the centre-section may be suitably modified to apply to the tip section. This leads to

v, 0-7 cos ¢ a . 2
= T ey S — A= e Sl . (410

where again the simplified terms corresponding to equation (4.8) can be replaced by the better
approximation from equation (4.9). As an illustration, Fig. 14 shows calculated velocity distri-
butions for a tip section at various Mach numbers. It will be seen from Fig. 13 that the pressure
rise with Mach number is normally steeper at the tip than at either the sheared part of the wing
or the centre. This may offer an explanation of the tip stalling tendency of swept-back wings
at high Mach numbers.

The resemblance of the flow in the tip region to that in the centre region of a wing with opposite
sweep implies the existence of non-zero drag forces there. . For a swept-back wing, there is a
drag force at the central region (section 4) and a thrust force in the tip regions. These two forces
must exactly counterbalance each other on a wing of finite aspect ratio in inviscid flow. The
thrust near the tip is caused by increased suction near the nose and lesser suction in the rear
part of the section, Figs. 14 and 19. At the tip, the thrust force as given by equation (3.26) 1s
only 0-7 times the drag force at the centre. As a consequence, the spanwise decrease of this
Jocal thrust is different from that near the centre, extending further inboard, as shown in Fig. 20.

27



The dotted line in Fig. 12, which has been obtained from various experiments, may be used to
interpolate the tip term for stations between the tip and the sheared part of the wing, v being
measured in this case from the tip inwards.

4.2. Wings of Finite Aspect Ratio. Effect of Taper—It can be concluded from the previous
considerations that the distortions of the centre and tip regions are localised and of limited
spanwise extent. This should be measured in terms of the wing chord (Fig. 12), and it is not
larger than about one chord in the direction of the y-axis, Fig. 3. In going either outboard from
the centre or inboard from the tip, the flow conditions approach those of an infinite sheared
wing. Thus all wings of aspect ratios greater than about 2 have well-defined and sometimes
extensive regions about mid-semi-span with very nearly two-dimensional flow. It is convenient,
therefore, to regard swept wings as basically sheared wings with modifications, or distortions,
near the centre and the tips.

Such a sub-division of the wing into centre region, sheared part, and tip region is also suggested
by the analytical expressions obtained above. The relations for the velocity increments both
at the centre section, equations (3.20) or (3.22), and at the tip section, equations (4.8) or (4.9),
contain a basic term, cos p S™(x), which is the velocity increment on the infinite sheared wing,
the centre and tip terms being additive to the sheared wing term. It presents no difficulty,
therefore, to interpolate between centre and sheared part of the wing and between sheared wing
and tip by using the curve suggested in Fig. 12 to determine the magnitude of the centre and tip
terms. Even if the centre and tip regions overlap, there must be one section along the span
where centre and tip terms cancel each other all along the chord and sheared wing conditions
exist. In this approximation, both centre and tip terms contain the same function of x.

This is borne out by the results of experiments on wings with constant chord, shown in
Figs. 21 and 26. Isobars, 7.e., lines of constant pressure, have been drawn as a convenient means
of describing the pressure distribution over the surface of the wing. These results from wings
of aspect ratio 2 show that the isobars are straight and parallel to the leading edge in a narrow
region around mid-semi-span, so that the pattern for a similar wing of greater aspect ratio can
be obtained by lengthening this parallel portion (see also Fig. 2).- With wings of aspect ratio
less than about 2, this region vanishes and the centre and tip distortions merge, as shown in
Fig. 21. The full geometric sweep of the wing is then never achieved by the isobars. It will
be noted, however, that the pressure distributions at the centre and at the tip are not affected
by the aspect ratio. It was found experimentally, Fig. 19, that, at aspect ratios 1 and 2, they are
still the same as those calculated for infinite aspect ratio. Further tests are needed to confirm
this for other aspect ratios and angles of sweep, in particular for unswept wings. The analytical
treatment of wings of very small aspect ratio is difficult for the reasons mentioned in section 4.1
in connection with the three-dimensional flow near the wing tips ; the applicability of linearised
theory, in particular, becomes doubtful.

The above solutions for wings of constant chord can be applied also to tapered wings*, to a
first approximation. The definition of the ‘angle of sweep’ of a wing tapered in plan form
presents some difficulty. For wings of moderate taper, it is usually adequate to take the angle
of sweep as that of the maximum-thickness linet. ‘A refined solution can he obtained by con-
sidering a “local * angle of sweep which varies along the chord. Lines of equal local sweep are
obtained by connecting points of equal percentage of the local chord at the different spanwise
positions (Fig. 22). These lines contain the maximum-thickness line as well as the leading edge
and the trailing edge, and the angle of sweep varies along the chord between that of the leading
edge and that of the trailing edge. It is convenient in such cases to measure the co-ordinate
from the local leading edge in terms of the local chord. In calculating the velocity distribution,
the relations derived above can be used with ¢ being replaced by its local value ¢(%).

* “ Cranked ’ wings where the angle of sweep changes at one or several spanwise stations must be excluded here.

T The quarter-chord line is, of course, not relevant to the present considerations.
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Physically, this procedure implies the substitution of the given wing by a fictitious one which
incorporates the correct chord at any given spanwise station and the correct angle of sweep at
any chordwise position on that station but does not represent any changes of the chord at
neighbouring stations. If a section is near the centre of the wing, the centre of the fictitious wing
is made to coincide with the centre of the real wing, the wing chord, however, being that of the
station considered (see Fig. 22). This procedure is not new but in fact the same as that tacitly
assumed in calculating the velocity distribution over the surface of an unswept wing of finite
aspect ratio where the flow at any spanwise station is assumed to be like that over a two-
dimensional aerofoil section. ' :

The chordwise velocity distribution obtained by this method is usually not very different from
that obtained by taking a constant mean angle of sweep. This is shown in Fig. 23 for the example

of a highly tapered wing of delta plan form, where it will be seen that the proposed calculation
method is adequate. '

The fictitious wing to replace the given wing has a constant absolute thickness along the span
whereas the given wing hasnot. Even for a delta wing, this is a reasonable approximation for the
part of the wing near mid-semi-span since the effects of the increasing thickness on one side of
a given station are neutralised roughly by the effects of the decreasing thickness on the other side.
But the approximation is clearly not good enough near the centre and tips of the wing. At
the centre, the absolute thickness of a tapered wing decreases on either side and replacing the

wing by another without any ‘thickness taper ’ must lead to calculated velocities which are
too high.

To find the order of this velocity reduction at the centre due to absolute thickness taper, the
velocity at the mid-chord point on the centre-line has been calculated for several rectangular
wings with biconvex-parabolic sections. The thickness of all these wings decreased linearly
from a maximum value at the centre-line to zero at the wing tips. The result is expressed as the
ratio, 7, between the velocity at the wing with thickness taper to that at the corresponding two-
dimensional aerofoil of the same thickness as that at the centre of the tapered wing. The value
of = depends on the ratio, s/c,, between the spanwise distance s from the centre line at which the

thickness falls to zero to the centre-line chord ¢,. s/c, = A/4 for delta wings with pointed tips.
Numerical values are :—

sko; 0-25 0-50 0-75 ‘ 1-0 1-50 2-0 2-5 0

T 0-48 0-65 0-74 ‘ 0-79 0-85 0-89 0-91 1-00

For the present this may be used also when the wing is swept, in which case

Vo 14 2((S®x) — fle) S(é)( )) cos -
Vo VI sg><x>2}x : A

by equation (3.22). Clearly, a more detailed investigation is needed, which takes into account
separately the effects of section shape, thickness taper, plan-form taper, and angle of sweep.

Experimental velocity distributions from the centre-line of delta wings, of which Fig. 24 gives
an example, show good agreement with calculations by equation (4.11) using the values of ¢

given above. In the case of Fig. 24; v is about 0-8; this velocity reduction is large enough not to
be ignored.

Near the tips of a tapered wing the greater thickness on the inboard side of a given section
more than compensates for the smaller thickness on the outboard side. Hence the local velocities
on the outer part of a tapered wing should be higher than those found on a corresponding wing
of constant chord and thickness. This effect has been little investigated so far owing to the
obvious theoretical and experimental difficulties.
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4.3. Compressibility Effects—Consider an untapered swept wing of large aspect ratio. A
considerable portion of such a wing should show straight isobars swept at the geometric angle of
sweep of the wing, thus signifying that sheared-wing conditions prevail. For this part of the wing
the considerations of sections 2.3 and 2.4 concerning compressibility effects will apply. Critical
conditions, as defined in section 2.3, occur at the peak-suction line when the velocity component
normal to the peak-suction line is equal to the local velocity of sound, equation (2.24a). This
leads to a critical pressure coefficient C,* given by equation (2.28). At the centre-section, however,
critical conditions occur when § = 0 in equation (3.30) so that the streamwise velocity ¥V is equal
to the local velocity of sound, by equation (3.31). The critical pressure is still given by equation
(2.28) but with ¢ = 0; its value is then much smaller (see Fig. 13). Critical conditions will again
occur first at the point of peak suction.

There will be a region of transition between the ‘ unswept ’ centre and the sheared part of the
wing. It can be assumed that this region coincides roughly with that part of the wing where the
peak-suction line curves round and where the isobars deviate from straight parallel lines (see
Figs. 21 and 26). A crude estimate of the critical Mach number can therefore be obtained by
determining that free-stream Mach number at which the velocity component normal to the
peak-suction line equals the local velocity of sound, .e., at which the minimum pressure coefficient
reaches the value given by equation (2.28) where ¢ is the angle of sweep of the peak-suction line.
Available experimental evidence has supported this procedure so far.

Similar considerations apply to the regions near the tips of a swept wing. There is again an
appreciable portion of the wing inboard of the tip where the isobars deviate from straight parallel
lines and where the peak-suction line curves round to a direction normal, or nearly normal,
to the free stream. The position is aggravated by the fact that the peak-suction value is often
higher at the tip than anywhere else on the wing (see Figs. 14 and 19) and that the pressure rises
more steeply with Mach number (see Fig. 13).

It may be repeated that exceeding the critical Mach number does not imply that shock-waves
and a drag rise associated with them should immediately occur. The development of the super-
sonic region is not considered here.

4.4. Modifications to the Wing to Improve the Flow.—-It follows from the above considerations
that any deviations from the straight isobar pattern of the sheared wing, such as occur on swept
wings with constant section in the centre and tip regions, are normally detrimental to the perfor-
mance of the wing at high subsonic speeds. Centre and tip effects reduce the benefit to be
obtained from sweeping the wing. To obtain the full effect of a chosen angle of sweep over the
whole of the wing, at least as far as the attainment of a certain critical Mach number is concerned,
it is necessary to modify the aerofoil sections or the wing plan form to offset the distortions of
the isobars in the centre and tip regions, as suggested by Kiichemann (1947).

The peak-suction line in the central region can be straightened by enlarging the wing chord
there. This amounts to a leading-edge fillet for swept-back wings, and to a trailing-edge fillet
for swept-forward wings. The extent and shape of the fillet can be found by successive approxi-
mations, calculating for each step the position of the peak suction at the centre from equation
(3.23). The isobars obtained by this method need not be straight. The fact that the local angle
of sweep in the central region is somewhat higher than the original one must be taken into account.
The spanwise extent of the fillet can be estimated from Fig. 12, the interpolation curve being
used also for the fading-out of the chord extension at the centre. Care must be taken to avoid
cranks (z.e., sudden changes of sweep, for instance in the leading edge) away from the centre,
since increased suction peaks will arise there.

Another way of straightening the peak-suction line is to modify the aerofoil section, leaving
the plan-form unaltered. In this case, the ordinates of the centre-section can be determined
so as to give a velocity distribution which appears to be desirable. To make it equal to the
velocity distribution on the sheared part of the wing is an obvious choice; in that case, the
peak-suction line and the isobars would be straight right up to the centre. Another choice would
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be to have the peak-suction line straight but the whole velocity level lower at the centre than
further out ; in that case, possible supersonic regions on the two wing halves would be separated
by a central strip without local supersonic flow.

An approximate shape for the modified centre-section can be found by assuming the wing
to have a uniform aerofoil section of the modified shape. Then equation (8.22) can be applied,
the values of z(x) which occur in the functions S®(x) and S®(x), equations (2.7), (2.8), being
calculated for given values of V(x). If the simplified equation (3.20) is used, this process involves
the solution of a system of 15 linear equations ; this may be done by an iteration. Because of
the changes occurring due to compressibility effects, it is better to do such a calculation not for
incompressible flow but for the design Mach number. This means that the modifications to the

analogous wing are first determined and then the shape of the real wing, using equations (3.34) to
(3.38).

The resulting section for the centre of a swept-back wing is in general of about the same
thickness/chord ratio as the original section, but the maximum thickness is further forward,
giving a large nose thickness. The trailing-edge angle is much smaller. An example is shown
in Fig. 25. It may happen that the resulting modified section shows an unreasonable shape in
which the upper and lower surfaces cross over near the trailing edge. In that case the required
velocity distribution cannot be achieved. If the section is further modified arbitrarily so as to
give a finite trailing edge angle, it appears essential to retain the distinctive inflexion of the
profile shape aft of the maximum thickness which normally occurs.

If the use of thickened wing roots is contemplated, it implies that the absolute thickness tapers
down in going out from the centre. The reduction factor  should be taken into account and
equation (4.11) applied.

If, for such a calculation, the angle of sweep is taken as that of the unmodified wing, the
velocity increments at the centre are lower than those required. This happened in the example
shown in Fig. 25 and can bhe explained as follows. The shift of the maximum-thickness position,
being greatest at the centre-section, fades out towards the sides according to a function which
can be approximated by the interpolation curve of Fig. 12. Thus the maximum-thickness line
possesses an increased effective sweep in the central region, which amounts to about 48 deg at
the centre instead of 40 deg further out on the wing in the example shown in Fig. 25. It can be
seen that the curve, calculated from equation (3.22) with ¢ = 48 deg, agrees well with the measured
values. To obtain a better approximation, the calculation of the modified shape should be
repeated, taking the increased sweep into account. Mathematically, the attainment of perfectly
straight isobars right into the centre presents great difficulties, as has been shown by F. Ursell”
(1949).

An estimate of the magnitude of the shift of the maximum-thickness position and the change
of thickness/chord ratio which result from such modifications can be obtained by considering the
special case of the biconvex parabolic section. Although results obtained for this section are
often misleading if applied directly to conventional aerofoil shapes, the section is sufficiently
general for the present purpose where only changes of section shape are investigated. The
results derived here have also been checked against those obtained for conventional sections
with rounded noses and maximum thickness further forward, and satisfactory agreement was
found.

To find explicit relations for the profile parameters we begin with the source distribution and
put

1—2(1 — 2
Vil — (1 — 2x)%}°

where o, and ¢, are two constants to be determined later to give the required velocity distribution.
The first term in equation (4.12) would give a biconvex paraboli¢ section on an infinite sheared
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wing ; the second term allows for centre modifications. The velocity increment produced at
the centre by a source distribution is

P rcosg (L[ 90 2 - fin 1))

by equations (3.16) and (4.11), if we restrict ourselves to linearised theory. With equation (4.12),
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At the sheared part of the wing,
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This has its maximum at x = { and its value there is
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The conditions to determine o; and o, are that v, from equation (4.18) has its maximum at
¥ == % and that its value there is equal to v, (%). This gives '

[% (%)Lm = 7 c0s ¢ (40, + 20,f(0)) = 0,

so that
Gy _M .
i 5 .. .. . . . .. .. (4.15)
and
(%) 2 4t
N —rcos<p<7_zol sz(qn)> __.7;<E>Scos Ps . .- .. R (4.16)
From equations (4.15) and (4.16),
COS s . 17ty cosgs  flg)
Gl-_ >sCOS(p1~]—~7zf() (>sc09¢1—|—4nf() (4.17)

The velocity at the centre becomes, by equation (4.13),

vx
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This velocity distribution differs slightly from the required one as given by equation (4.14);
but the differences are small in the range of angles of sweepback in practical use and, of course,
- disappear entirely at the maximum velocity. Thus no further refinement is required.

The shape of the aerofoil section at the centre can be derived by integration from equation
(2.3), with ¢(x) from equation (4.12). This gives :—

(%)
) = O%Vod

_*(f) cos s 7 ( _x2+f(_4‘f_)(1,_ 21— (1—20%).  © .. (419

s COS @ 1+4n

z=0atx=0and atx = 1. The maximum thickness of this section is

t_ (to)scos ps 1 + /{1 + fl9)"} | |
ek v w = v U TP chl

and its maximum thickness is shifted forward (for ¢ > 0) from ¥ = { by the amount

Ay — 2\/2\/[ V{lif }] . (421)

The effective angle of sweep, ¢, at the centre of the modified wing is greater than the angle of
sweep, ¢s, of the sheared part of the wing. If we assume that the centre modification fades out
in practice at y = ¢/2, and if the maximum-thickness line is replaced, for the present purpose,
by a straight line from the new maximum-thickness position at the centre-line to a point on the
original maximum-thickness line at y = ¢/2, we find

tan ¢ = tan ¢s + 24% . .. .. .. .. . .. .. (4.22)

These relations can be simplified for.estimation purposes by using the expansion of f(g) for
small ¢ given by equation (3.15). In that case, ignoring terms in ¢*, ‘

4 t/c L ‘7352 (t/C) . 2

L= (1 n_1)> D1 4019 L (423)
~and

Ax:%. . . . . . .. .. (4.24)

This shows that the change in thickness is less significant than the shift of the maximum-thickness

position. #/c is independent of the angle of sweep, to a first order, except when thickness taper .
is introduced. In that case, the wing root can be considerably thickened, provided that the

increased thickness is made to fade out rapidly enough to give the necessary value of z (see

section 4.2). This means in practice that any thickening of the sections in the centre region -
of a swept-back wing should extend over only a comparatively small part of the wing span.
Whether there are any detrimental effects in the region where the thickened part joins the basic
.wing has not yet been investigated.

The aerofoil sections in the tip regions can be modified by the same method using equation
(4.7). If the velocity increments at the tip are to be equal to those of the mfinite sheared wing,
the resulting section shape will have a considerably larger thickness/chord ratio than the original
one because of the reduction factor 0-7 in equation (4.7). This possibility is unlikely to be
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exploited in practice; in special cases, the thickened wing tip could be made tuse of for storage
purposes. Reducing the thickness/chord ratio of the modified section to that of the original
section also reduces the velocity increments, Fig. 25, so that some of the isobars form closed
loops, Fig. 26. There is as yet no experimental evidence to decide whether this is detrimental
at high Mach numbers or whether it is sufficient to have the peak-suction line swept.

With the thickness/chord ratio kept constant, the nose thickness of the modified tip section
becomes rather small and the trailing-edge angle correspondingly large (see Fig. 25). These are
undesirable features for high lift. An alternative method of improving the tip region, with
beneficial effects on the lift distribution too, is to alter the plan form of the wing, leaving the
(streamwise) section shape unaltered. Fig. 26 shows the leading edge curved parabolically while
the trailing edge is kept straight in this case. The curved part of the leading edge extends inboard
by 25 per cent of the tip chord. The idea behind such a shape is to produce the unavoidable
tip thrust not by increasing the suction but by reducing the positive pressure near the leading
edge. Although this modification does not straighten the isobars completely, it appears to be
satisfactory for practical purposes. A combination of a curved leading-edge tip with modifica-
tions to the section shape would seem to provide a perfect solution. In this case, only a slight
thickening of the rear of the section and no reduction of the nose radius is needed.

5. Body Interference—In the following, the methods explained so far are extended to wing-
body combinations. The treatment is restricted to bodies of circular cross-section in a
midwing position on the line of symmetry of the wing. Asymmetrical wing—fuselage arrangements
and nacelles outboard on the wing show basically similar flow phenomena but some extension
of the'method is required. This is not discussed here. The effect of the shape of the intersection
line in the junction between wing and body is considered in section 5.1 and the additional effects
introduced by wing sweep in section 5.2. An alternative, in some respects, to the wing modifica-
tions discussed in section 4.4 is the modification of the shape of the body as originally suggested
in 1947 ; this is investigated in section 5.3. A Drief discussion of compressibility effects is given
in section 5.4. Much of this work was done together with D. E. Hartley.

5.1. The Junction Effect—-1f a fuselage is fitted to a wing, one might expect that (to a first
approximation) the velocity fields could be superimposed, that is the velocity increments vy, of the
wing alone, and v, of the body alone would be added. This method was tried by J. Liese and
E. Vandrey21 (1942). The source distribution representing a fuselage was superimposed upon
* another representing an unswept wing. It was found that the resulting shape of the wing—body
combination differed from that aimed at by a bulge in the region of the junction. This indicates
that a simple addition of the two component velocities is not sufficient to represent the conditions
at the intersection of a given body with a given wing. There will be an additional velocity
increment dependent on the shape of the wing—fuselage intersection.

Consider the use of an unswept wing with a long cylindrical body mounted in a symmetrical
position, Figs. 27, 28. The intersection line is not straight but curved, and if the body is large
enough the streamlines follow the shape of this intersection line. Generally, this means a
divergence of the streamlines on the wing and a corresponding reduction in velocity. This
velocity decrement, — v, is related to the shape of the junction.

If the body height is not fairly large compared with the wing thickness, the streamlines may
not follow exactly the intersection liné. v, is then not determined only by the shape of this line.

Although this junction effect has usually been 1gn0red altogether in previous stud1es of
body interference, its magnitude is nevertheless apprecmble Fig. 29 shows some experimental
results for cylindrical bodies on an unswept rectangular wing. The effect is larger on the smaller
of the two bodies investigated, since the intersection line is more curved in that case, the depth
of the ‘ waist ’ being about twice the depth of the waist of the large body. The ratio of the body
diameter to the wing thickness, D/t, is the main parameter in this respect.
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Two methods have been used to calculate the junction velocity increment v, :

(«) * Vortex method °. Ring vortices are placed on the surface of the body, and their strength
is determined from the condition that their induced radial velocities are proportional
to the slope dr/dx of the intersection line. Their induced axial velocity is equal to »;.

(b) “ Source method ’. Since part of the wing is ‘ inside the body ’, a fictitious body, obtained
by subtracting the wing thickness inside the body from the given body thickness, is
considered and replaced by a source distribution. This induces a velocity increment
equal to vy 4 2. ‘

In the second method, the displacement. flow round the wing-body junction is considered to be
the determining characteristic, whereas the first method emphasises the curved flow in the
intersection line.

In the first method, a number () of standard distributions y,(x) of ring vortices on a cylinder*
(diameter D, length L} are used :—

y{x) = Z y,(%) .. .. .. . .- . . .. (5.1

“where y,(x) = ¢, . f,(x); the ¢, are constant coefficients to be determined later. Suitable functions
»,(x) are given in Table 3. The velocity increments, induced on the outer surface of the cylinder,
are:— :

%:g:cﬁ%yj; Y
and

O X

7, *o,

Values of the function v,,* and v, ,* are tabulated in Tables 4 and 5 for a number of special functions
»,(x). The velocity components on the stream surface are assumed to be the same as those on
the cylinder.

If the shape of the intersection line is given, the deviations

Ay == yjunction _— Rbody .. . P .. . “ . (5.4)

along the y—afcis (normal to x, Fig. 28) are known; they are usually taken as deviations 47 of
the radius of the cylindert. These are related to v, by the streamline condition :—

A?(x)zgjx?#dx, L ss)

x, being the value of x where A7 = 0. Values of the functions 47,(x) are given in Table 6. The
coefficients ¢, can be obtained from the system of equations (5.5), using equation (5.3). The
velocity increments v, are then obtained from equation (5.2) and these are identical with v;.

This method can also be used to solve the reverse problem. If v,(x) is given, the values ¢, are
determined from equation (5.2) and the junction shape from equation (5.5). In either case, the
equations are satisfied at a number (#) of points along the chord.

* Placing the vortices on a cylinder instead of on the actual stream surface reduces the amount of work considerably.
This is justified for shallow stream surfaces, and the approximation corresponds to the usual method of calculation for
two-dimensional or annular cambered aerofoils (see Ref. 22).

t This assumption means that the body is supposed to have the waisted intersection shape round the whole of ifs
circumference.
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The vortex method has been used to calculate the velocity distributions in the junctions for
the examples in Fig. 29, and it is seen that a good approximation is obtained. "For a body with
elliptical cross-sections, however, the method of ring vortices on a circular cylinder is not suitable.
Noticeable discrepancies between the results of this method and experimental values were found
for a body the height of which was twice its width. In such cases, the method may be modified
and two plane vortex sheets used, placed at 0 < ¥ < ¢;y = 4 ,; — o <2z <. The strength
of the vortices may be constant along the z-axis. The distribution y(x) can be obtained,
as for the ring vortices, by adding standard distributions y,(x), and the corresponding
induced velocity components v,, and v,,. The vortex strips were placed at the ends of the minor
axis of the ellipse, and the results were found to agree well with experimental values. Numerical

tables for the velocity components induced by the standard vortex distributions from equation
(5.1) are given in Ref. 22. :

Using the source method, the wing cross-section area inside the body, at a station =, is
subtracted from the cross-section area A of the given body ; and a smaller cross-section area A
is obtained. The source distribution per unit length which produces such a body is

a4 (x)

E(X):Vow, .. .. P . e . .. s (56)

assuming a thin body with a slight waist*. A further assumption must be made as to the position
of this source distribution. In general, a single line of sources and sinks along the x-axis can be
used. This produces a velocity increment v, at a given point (x,7) :—

1 JL ¥ —x  dAx)
Vo dmto{(x — x")2 + #2P2 gy

v,(x,7)

dx’ . .. .. ... (59

For long cylindrical bodies, only the contribution of the waist differs from zero, and the
integration is done only for the length of the waist, that is the wing chord. Generally, the integral
(5.7) has to be evaluated graphically. The induced velocity should not be calculated on the surface
of the body of area 4 but on the actual body.

The value of v, in equation (5.7) represents the sum of v, and v;. The value of v, can be
obtained directly by calculating in the same way the velocity increment of a body which has the
same volume as that part of the wing which is ‘ inside the body ’.

The source method in this simplified form tends to overestimate the junction effect slightly
but it is capable of further refinement, in particular as to the position of the sources. The source
method usually involves more work than the vortex method, and the calculation of a body
shape to give a certain velocity distribution in the junction is more complicated and has to be
done by trying out a series of shapes. But there are cases where the vortex method fails and
where the source method can be used with advantage. An instructive example is the inter-
section of two wings without fairing. Here the vortex method is not adequate, but the source
method gives a satisfactory solution. The velocity increment is the sum of the velocity increments
of the single wings, minus the velocity induced by a body in the line of symmetry the cross-section
area of which is equal to the area common to the two wings.

5.2. The Reflection Effect with Swept Wings.—The junction velocity increment v, is assumed
to be the same for both straight and swept wings if the shape of the intersection line is the same.
But the sum of the velocity increment vs of the sheared wing and v, does not give the velocity
increment in the junction of a swept wing with a body, as is shown in two examplest in Fig. 30.

* This approximation is known to fail in the stagnation region of conventional bodies of revolution of finite length ;
but this region is of little interest in the present case. ‘

1 The shape of the tested bodies, as shown in Fig. 28, is such as to ensure that the velocity increment vy of the body
alone is small.
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There exists another velocity increment which is plotted in Fig. 81 as the difference between the
experimental value of the velocity in the junction and the calculated value of vs + vy, for a number
of bodies. The points lie on one cmive which can be approximated by the velocity increment
v, == v, found at the-centre of a swept-wing alone, see section 3.4. This effect can be interpreted
as the body wall acting like a reflection plate. The reflection effect is, generally, not quite.
complete in the rear of the junction, Fig. 21. The effect exists even if the body diameter is very
small 'so that a full reflection would not be expected. But, since the junction is then near the
centre-line of the wing, there will be some  centre effect * from the wing itself.

Thus the total velocity in the body junction of a swept wing can be approxifnated by these
additive terms:

V,, free-stream velocity;
vs, increment of undisturbed (sheared) wing;
v, increment of body alone ;

v;, increment at junction, depending on the junction shape and not on the angle of
sweep;

Ye, increment at the junction.due to the centre effect and depending on the angle of
sweep. :

The sum of these terms gives a fairly accurate approximation for the total velocity, as can be
seen from Fig. 30. The approximation may be improved by assuming only a partial reflection
in the rear of the junction, about 80 per cent say.

The effect of the body on the isobar pattern on the wing is that v; reduces the velocity near
the body, and that v, reduced the effective angle of sweep. In particular, the maximum-velocity.
line has generally no sweep near the junction.

5.3. Modifications to the Body Shape to Improve the Flow.—The distortion of the isobar pattern
nearthe body may have a detrimental effect on the characteristics of the wing-body combination
at high Mach numbers ; this is, generally, slightly relieved by the reduction of the velocity
due to the junction effect. Since the different effects are independent of each other, one may
counteract the other. For example, by suitably shaping the body, vz + v; can be made equal
and of opposite sign to v;. This gives straight isobars on the wing, to a first approximation.

The vortex method of section 5.1 can be used to design a junction shape for this purpose.
If the body is long enough for v, to be néglected, equation (5.2) is used to determine the values
of ¢, so as to make v; = — v, where v, is obtained from equation (3.22) for the given wing section,
and angle of sweep.  The modification 4r(x) of the body shape is then obtained from equations
(5.3) and (5.5). In the junction, this deviation is to be regarded as a function 4y(x), ¥ being
normal to the centre plane and ¥ — 0 at the local leading edge. The corresponding deviation
of the spanwise ordinate is A#n(x), where

n=wylcosg, .. o . . . .. (5.8)

and ¢ is the local angle of sweep in the case of tapered wings.

Modified body shapes have been desigried for a 45-deg swept-back wing with bodies of different
basic size, Fig. 32:— -

Small body Dit=1-5 o ==3"7
Medium body D[t =2-0 o =23
Large body Dt = 3-0 c=17
Elliptical body Dt = 1-5/3-0 ¢ =10-8

The shape parameter o is defined below.
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The junction shape to give the sheared-wing velocity distribution is nearly the same for all
three sizes of body. The modification is such that the variation in width of the body does not
exceed 10 per cent of the wing chord for a 12 per cent thick 45-deg swept-back wing, Fig. 34.
The shape is rather similar to that of the streamline of the infinite sheared wing. This streamline
is the correct shape for hodies of very large diameters.

The experimental results for these bodies, Fig. 33 top, show that only the body with elliptical
cross-sections gives the required distribution. The reason for the discrepancies on the other
bodies was found to be the small height of the bodies above the wing surface. Obviously, the
flow does not follow the intersection lines in these cases. When the bodies were heightened above
the wing so as to prevent any flow across the inter-section lines, the junction pressures for all
the combinations tested agreed and coincided with the distribution on the sheared part of the
wing (Fig. 33 bottom). The actual junction shape was kept the same when the body was
heightened. A suitable parameter, characterising the flatness of the top of the body, is the ratio
o between half the width W/2 and the height H of that part of the body which is above the wing,
measured at the maximum thickness of the wing, Fig. 32: -

o = W/2H .

It is convenient to shape this cross-section of the body as a semi-ellipse, the ratio of the axes
being o; but the same result can be achieved with a body of circular cross-section, provided
the intersection line is the same and the value of o is not smaller. As a rough rule, a value of
o < 1-5 ensures that the flow will follow the intersection line. It is not certain, however, whether
such a modification to the top of the body is necessary to give the same results at high Mach
numbers ; even the modification of the junction alone results in a reasonable pressure distribution
in the junction where the suction peak is roughly at the same chordwise position as on the
undisturbed wing (Fig. 33 top).

Figs. 29 and 30 also show some velocity distributions along the top of the body. Generally,
these can be estimated by calculating the velocity due to the wing alone, at that distance from
the wing, and adding the corresponding velocity due to the body alone. This suggests that
there is only little interference between the top of the body and the junction.

Low velocities are usually found on the straight-topped bodies near the leading edge of the
wing so that the cabin can profitably be placed in this low-velocity area. This gives, at the same
time, a high angle of sweep to the isobars across the body. On the other hand, the low velocities
might separate the regions of high suctions on the wing and on the body by a belt of low suction
in between. Which of the two possibilities is more suitable for delaying the drag rise at high
Mach numbers is not yet known.

Relatively high velocities on the body near the trailing edge of the wing may be reduced by
means of a suitably faired dorsal fin. )

In all these tests, the theoretical intersection line has been realised on the model only in the
region from the leading edge of the wing up to 80 per cent of the wing chord (Fig. 34). The
deviation near the trailing edge appears to be of little importance as far as the velocities at and
upstream of the peak-suction line are concerned. Behind the peak-suction line, however, the
velocities are higher than on the sheared wing, Fig. 33, and the sweep of the isobars is reduced
in that region. The deviation from the theoretical curve near the leading edge gives a proper
stagnation point at the leading edge, in contrast to the flow round an infinite sheared wing
where a velocity component 17, sin ¢ remains at the leading edge (see section 2.2).  This is of
little consequence for a body on a swept-back wing; since the flow along the leading edge in the
outwards direction is accelerated. Serious effects would, however, arise from such a modified
body on a swept-forward wing. By stopping and diverting the inflow, T, sin ¢, the body wall -
would create a region of high velocities. Therefore, on a swept-forward wing, either the calculated
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body shape must be realised ahead of the leading edge, or the slope of the intersection line with
the wing has to be exaggerated and curved more than otherwise necessary in an attempt to
neutralise this effect.

So far, the modifications to the body shape aim at a given velocity distribution in the junction
between wing and body. There is some indication that the effects, induced by the body, fade
out more quickly than those induced by the centre effect of the wing. For example, if the shape
of the body has been chosen to give a satisfactory reduction in the velocity in the junction, there
is a possibility that the velocity farther from the centre is still too high. But experimental
evidence so far has shown that this occurs only to a degree which is of no great practical importance
Generally, this can only be overcome by modifying also the wing shape.

The modification of the wing section is an alternative means of compensating for the wing—body
interference. Since, with swept-back wings, the necessary alteration usually resultsin a thickening
of the wing root in the front part, it provides an opportunity of installing air intakes there.
The general method of designing the wing section has been explained in section 4.4. It should
be noted that a modification of the wing section causes a change in the shape of the intersection
line. Conclusive experiments have not yet been made, but preliminary tests show that the
thickness/chord ratio of the root section can be considerably increased (by about 33 per cent in
one case) as compared with that of the basic wing. Special care must be taken in designing the
rate of decrease of the wing thickness in going outwards from the junction. If the decrease is
not sufficiently rapid the sections are too thick and tend to produce local suction peaks exceeding
_ those on the basic wing (see section 4.2).

Thé effects mentioned above also occur with nacelles or other bodies on the wing at any
spanwise ‘position off the centre-line. The effects are different on either side of the nacelle:
the wing has to be regarded as swept-back on one side and swept-forward on the other; and the
intersection lines and thus the junction effect may differ. As a first approximation it is suggested
that the separate sides should be treated as though independent of each other. . The methods
‘explained above can then be applied. There are no extensive experimental results available.
These concepts have been successfully applied in designing an underslung nacelle on a 35 deg
swept-back wing, described in Ref. 22. Tests have also confirmed that in other cases the
respective velocity increments are additive (e.g., struts fixed to a wing, even when their chords
differ considerably from that of the wing); and that the same effects occur ‘and the same rules
apply to the design of a body at a spanwise position away from the centre (e.g., at the wing tip)
as have been described for a central fuselage. :

5.4. Comgpressibility Effects—In practice, the task is either to investigate the properties of a
given wing-body combination at a given Mach number, or to make a design for a given Mach
number. Therefore, the above methods, which are valid only for incompressible flow, have to
be adapted for this purpose.

If the incompressible flow round a given wing—body combination is known, the simplest method
of estimating the critical Mach number is to use one of the various rules, relating the incompressible
velocity increment to that at a given subcritical Mach number, the angle of sweep being that
of the peak-suction line. For example, applying equation (2.42) to the tested wing—body combina-
tions in Fig. 28, it is found that the critical Mach number for the swept-back wing alone would
drop from 0-96 on the undisturbed (sheared) part of the wing to 0-78 at the centre-section.
In the junctions with the cylindrical bodies, Fig. 30, there would be a slightly higher value of
M_,, of about 0-80. This is roughly the same for all cylindrical bodies tested. The modifications
to the body shape will increase M, in the junction to at least 0-92. The diagrams in Fig. 8
can be used for this purpose.

These estimates can only give a crude guide since they are based on a supposedly two-
dimensional flow. Regarding the various velocity increments, the actual velocity rise with
Mach number is likely to be different for the separate terms.
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As discussed in section 3.5 the compressible flow round a given body can be calculated from
the incompressible flow round an analogous body. This applies also to wing—fuselage combina-
tions, and the analogous combination is obtained by reducing the y- and z-co-ordinates of the
given combination by the factor 4/(1 — M%) ; then the x-component v, of the velocity increment
on the given combination is 1/(1 — M) times the incompressible value v,, of this analogous

combination. This procedure corresponds to the ordinary Prandtl-Glauert analogy, as explained
in section 2.4. '

In certain simple cases a relation between v, and v,; of the analogous and the given com-
bination, both in incompressible flow, can be found and thus a function U, = f(v.i; M,). The
sheared wing of infinite span has been treated this way in section 2.4, and the centre-section

of a swept wing in section 3.5. Isolated bodies of revolution have also been dealt with, and
Ref. 23 gives for bodies similar to ellipsoids:

Up;

Vg == (I—_—W N (59)
and A. D. Young and S. Kirkby®, 1947, for bodies with pronounced velocity peaks :—
S Ysi . (5.1
e B (5.10)

The velocity increment v, due to the junction also varies with Mach number. In the first
instance, ignoring the alteration of Z/D, the intersection line on the analogous combination is
similar to that on the given one, only flatter; the ratio D/t is left unaltered. Therefore:

Vsa = Vi (1 — M)
and

UJZW?TWF)' s

There are appreciable differences between the rates of increase with Mach number of the various
terms, as can be seen from the example in Fig. 35. '

It follows from the above that low-speed tests cannot give direct information with regard to
the flow at high Mach numbers. For example, a low-speed model with straight isobars cannot
be expected to show straight isobars also at high Mach numbers. It will be necessary to split
the measured total velocity into separate terms and to treat them separately, using the above
method as a first approximation. ~A more accurate result would be obtained by testing the
analogous wing—fuselage combination at low speeds, instead of the given one, and applying the
factor 1/(1 — M,* to the measured velocity increments.

Accepting the Prandtl-Glauert method, the design of a wing-body combination for a given
Mach number is comparatively straightforward. The basic geometry of the analogous combina-
tion is worked out first; the junction shape of this analogous combination is then determined
according to a given velocity distribution ; and, finally, the analogous combination is transformed

back by applying the factor 1/4/(1 — M, o’) to all y, and z-values and the factor 1/(1 — M?)
to all velocity increments.
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- *LIST OF SYMBOLS

Rectangular co-ordinates; x-axis in direction of the main flow, y-axis
spanwise :

Radial co-ordinate

Rectangular co-ordindtes, normal and parallel to the leading edge;
n = y[cos ¢ :

Thickness of the aerofoil section

Wing chord

Length of vortex cylinder

Maximum diameter of body; or diameter of vortex cylfnder

See Fig. 32

Aspect ratio

Angle of sweep

See equation (3.13)

Total local velocity

Velocity of the free stream

Velocity component in the direction of the x -axis

Velocity component normal to the leading edge '

V — V,; velocity increment _

Velocity increments in the directions of the respective axes

Velocity increment for the sheared wing |

Velocity increment for the body alone

Velocity increment due to the junction shape

Velocity increment at the centre of a swept wing (= v,, from equation
(3.14)) ; or velocity increment at the junction due to the wing being swept

Velocity increments in incompressible flow

Local velocity of sound

Velocity of sound in the free stream

V/a; Mach number ’ V

Vola,; free-stream Mach number

V,a

Free-stream Mach number at which critical conditions occur on the wing
Local static pressure ,

Free-stream static pressure

(p — po)/EpV ; pressure coefficient

Pressure coefficient in incompressible flow

- Pressure coefficient at critical conditions
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Suffixes :—

crit

~ O

No.

1 R.C.Pankhurst and H. B. Squire ..

S. Goldstein

H. Multhopp ..
4 F. Riegels and H. Wittich ..
5 R. Courant and K. O. Friedrichs

6 A. Busemann

7 B. Gothert

LIST OF SYMBOLS—continued

Normal-pressure drag:
D/$pV 2c; local drag coefficient
Potential function
Perturbation potential
Strength of source line

" Strength of source distribution
Strength of vortex distribution

- Parameter to signify the intensity of the vortex distribution y,
Reduction factor due to thickness taper
See equations (2.7) and (2.8)
C,/C,; ratio of specific heat coefficients
Integer numbers
Incompressible flow
Analogous flow
Critical condition
Sheared wing
Centre of swept wing .
Body .
Junction between wing and body
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TABLE 1
Coefficients s, for N = 16

v R

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 4+82.013 |—15-.061| O |- 0651 0 |-0136| 0 |- 0081 0 —~ 0026 | 0 ~0-017| 0 |-0013] 0
2 —99-544 |+41-810 | —11-203| O  |—0-705| O |- 0-180| 0O ~0:076 | 0 — 0044 0 |—0031| 0 |- 00
3 0 |—16-265 |+28-799 |~ 8980 0 |- 0690 | 0 |- 0-200] 0 —~ 0094 0 |—0089| 0 |- 0045 | 0
4 — 2360 | 0  |—11-430 422627 |— 7:698 | 0 |- 0-674| O ~0-217| 0 [—0111| 0 |—-0075| 0 |~ 0-062
5 0 |- 1532, 0 |— 9052 +19243 (— 6954| 0 |- 0-673| 0 —02%6| 0 |-0-180| 0 |- 0095| 0
6 — 0646 0  |—1-147| 0 |- 7.727 |4+17-318 [— 6-563 | 0 —0692| 0 [—022| 0 |~0157| 0 |- 0.124
7 0 |—o0462| O [—0935| 0 |- 6968 |~16:314 |— 6-442 | 0 —~ 0735 | 0 ~0301| 0 |—0196| 0
8 — 0260 0 |—032| 0 |—080| 0 |- 6569|+16-000|— 6-569 | 0 |— 0810 O |- 0:362| 0 |- 0:260
9 0 1-0196| 0 |—0801| 0 |—073| 0 |— 6442 |+16-314 |- 6-968| O [~ 0935 0 |- 0462 0
10 —0124| 0 |—0157, 0 |—0-262| 0 |- 0692 0 ~'6-563 |+17-318 |— 7-727 | O |- 1147 | 0  |— 0-646
11 0 |—0095| 0 | —0180| 0 |—02%| 0 | —0678| 0 — 6954 |4+19-243 |- 9-052 | O |- 1-532| 0
12 — 0062 0 |—=0075] 0 |—o011| 0 |—0217| 0 —0674] 0 ~ 7-698 |+22-627 |—11-430 | 0 |- 2-360
13 0 |—0045| 0 |—0059| 0 |—0094| 0 |—0201] 0 — 069 | 0  |— 8980 |-+28:799 |—16-265 | O
14 —0026| 0 |—0038| 0O |—004| 0 |-0076 0 —0-180| 0 —0-705 | 0 _ |—11-203 |+41-810 |—29-544
15 o |—o0013| 0 |—0017, 0 |-0026| 0 |—0051 0 — 0136 | 0 |-0651| 0  |—15-061 |+82-013
"TABLE 2
Coefficients s,,” for N = 16
P
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 25760 |--17-917 |— 4-703 |-+ 2-016 |— 1-104 |+ 0706 |— 0-506 |+ 0-398 |— 0-338 |+ 0-310 |— 0-305 |4+ 0-327 |— 0-388 |4+ 0-535 |— 1-020
2 68941 |- 6-309 |+14-908 |— 4-993 |4 2499 |— 1-531 |4 1-071 |— 0-828 |+ 0-697 (— 0-634 |+ 0-622 |— 0-664 |+ 0785 |— 1-082 |+ 2-060
3 138144 |—31-420 |+ 2-694 |+12-636 |— 4-844 |+ 2-680 |— 1-780 |+ 1-336 |— 1-104 4+ 0-991 |— 0-963 |+ 1-021 |— 1203 4 1-654 |— 3-143
4 196486 |+17-048 |—20-468 |+ 1-414 |-+11:224 |— 4-718 |+ 2-816 |— 2-000 |+ 1-598 (— 1405 |+ 1-347 |— 1-414 |+ 1.654 |— 2:266 |+ 4295
5 120046 |—11-798 |+10-849 |—15-519 | 0804 |+10-411 |— 4704 |+ 2998 |— 2:259 |+ 1-918 |— 1-800 |+ 1-862 |— 2-158 |+ 2:937 |— 5-548
6 15836 |+ 8-922 |— 7-411 |+ 8-054 |—12-854 |+ 0-448 (4+10-043 |— 4-828 |+ 3-261 [— 2-613 |+ 2-369 |— 2398 |+ 2739 |— 3-696 || 6-946
7 +12.797 |— 7-033 |+ 5-548 |— 5-418 |+ 6546 |—11-318 |+ 0-203 |+10-055 |— 5-126 |+ 3-675 |— 3-143 |4 3-075 |— 3439 |+ 4-581 | 8851
8 —10-458 |+ 5-657 |— 4-330 |+ 4-000 |— 4330 |+ 5-657 |—10-453 | 0 +10-453 |— 5657 |+ 4-330 |— 4-000 |+ 4830 |— 5-657 |+10-453
9 4 8551 |— 4-581 |+ 3-439 |— 3-075 |+ 3-143 |— 3675 |+ 5-126 |—10-055 |— 0-203 |+11-318 |— 6-546 |4 5-418 |— 5548 |+ 7-033 |~12-797
Z 6946 |+ 3696 |— 2:739 |+ 2-398 |— 2-369 |+ 2613 |— 3261 |4 4828 [—10-043 |— 0-448 |+12-854 |— 8-054 |+ 7-411 — 8-922 |+15-836
4 5548 |— 2-937 |4+ 2-158 | 1-862 |+ 1-800 |— 1-918 |+ 2-259 |~ 2-993 |+ 4-704 |—10-411 | 0-804 |+15-519 |—10-849 |411-798 |—20-046
~ 1.295 |+ 2-266 |— 1-654 |-+ 1-414 [— 1-347 |+ 1-405 |— 1-598 |+ 2-000 |~ 2-816 |+ 4718 |—11-224 |— 1.414 |+20-468 | —17-048 | 426486
4 3-143 |— 1-654 |+ 1-203 |— 1-021 |+ 0-963 |— 0-991 |+ 1-104 |— 1336 |+ 1-780 |— 2-680 |+ 4-844 |—12-636 |— 2694 | 131420 | 38144
Z 2.060 [+ 1082 |— 0-785 |+ 0-664 |— 0-622 |+ 0-634 |— 0-697 |+ 0-828 |— 1-071 |4 1-531 |— 2499 |+ 4.993 |—14.908 |— 6-309 |+68-941
+ 1-020 |~ 0-535 |+ 0-388 |— 0-327 |+ 0-305 |— 0-310 |+ 0-338 |— 0-398 |+ 0-506 |— 0-706 |-+ 1-104 |— 2:016 |+ 4:703 |—17-917 |—~25-769




TABLE 3

" Numerical Values of Several Vortex Distribution Functions

n(Z) =2V fl1 = (1= 2]
r(D =205

) Ve <%) = 2nV e {1 . (1 . zfx 2}1/4

1) =2e (1= - (=B

75 (%) = 20V e, [1 ~(1- 2% }

7o (5) = 20V eg (1 — % [1-(1- 2 j

oI Vo(%) 7s(%) Ps(*) 2(%) Val®) Vo(%)
' 27V oy 2mV e 272V ocq 27V ¢, 27V s 27V o
0 0 0 0 0 0 0
0-05 0-436 0-392 0-660 0-594 0-190 0-171
0-10 0-600 0-480 0-775 0-620 0-360 0-288
0-15 0-714 0-500 0-845 0-592 0-510 0-357
0-20 0-800 0-480 0-894 0-537 0-640 0-384
0-25 0-866 0-433 0-931 0-465 0750 0-375
0-30 0-917 0-367 0-957 0-383 0-840 0-336
0-35 0-954 0-286 0-977 0-293 0-910 0-273
0-40 0-980 0-196 0-990 0-198 0-960 0-192
0-45 0-995 0-100 0-998 0-100 0-990 0-099
0-50 1-000 0 1-0 0 10 0
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L/D

TABLE 4

xf{L

Induced Axial Velocity Components* v, of the Vortex-ving Distributions

LD

x/L

* These include the term — Ly(x) and thus represent the velocities at the outer surface of the cylinder.
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TABLE 5

Induced Radial Velocity Components v, of the Vortex-ving Distributions

L/D

x/L

L/D
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TABLE 6

Radial Increments Ay Produced by the Vortex-ving Distributions

dr,
¢ L
L/D
x/L
2 3 4 5
— ® 0 0 0 0
—0-5 —0-025 —0-01 —0-005 0
—0-2 —0-075 —0-035 —0-02 —0-01
—0:1 | —0-12 —0-055 | —0:035 | —0-025
0 —0-225 | —0-135 | —0:095 | —0-07
0-1 ~—0-395 —0-28 —0-22 —0-18
0-2 | —0-52 —0-37 —0-295 | —0-245
0-3 —0-605 —0-43 —0-345 —0-285
0-4 | —0-65 —0-465 | —0-37 —0-305
0-5 | —0-665 | —0-475 | —0-38 —0-31
Ar,
c;, L
LiD
x/L
2 3 4 5
— 0 0-01 0-02 0-025
—0-5 —0-005 0-005 0-02 0-02
—0-2 —0-03 —0-005 0-01 0-015
—0-1 —0-055 —0-02 0-00 0-01
0 —0-12 —0-075 —0-045 —0-03
0-1 —0-215 —0-16 —0-125 —0-105
0-2 —0-23 —0-175 —0-14 —0-12
0-3 —0-18 —0-14 —0-115 —0-095
0-4 —0-10 —0-08 —0-:065 —0-055
0-5 0 0 0 0
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TABLE G—continued

1547,
¢ L
L/D
x/L
2 3 4 5
— @ 0 0 . 0 0
—0-5 —0-025 —0-01 —0-005 0
—0-2 —0-08 —0-04 —0-02 —0-01
—0-1 —0-14 —0-075 —0-04 —0-025
0 —0-28 —0-185 —0-13 —0-105
0-1 —(-485 —0-36 —0-28 —0-23
0-2 —0-595 —0-435 —0-335 —0-28
0-3 —0-665 —0-475 —0-365 —0-30
0-4 —0-70 —0-495 —0-375 —0-31
0-5 —0-71 —0-50 —0-38 —0-315
A,
¢ L
L/D
x[L
2 3 4 5
—® 0-055 0-025 0-02 0-025
—0-5 0-04 0-02 0-02 0-02
—0-2 0-01 0-005 0-01 0-015
—0-1 —0-02 —0-015 —0-01 0
0 —0-125 | —0-105 | —0-085 —0-065
0-1 —0-26 —0-215 —0-18 —0-15
0-2 —0-26 —0-21 —0-17 —0-14
0-3 —0-20 —0-16 —0-125 —0-105
0-4 —0-105 —0-085 | —0-065 —0-0585
0-5 0 0 0 0
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F1G. 18. Spanwise section of a wing produced by a source
distribution which is constant along span.
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F1G. 19. Velocity distributions at centre and tip
sections of two 53-deg swept-back wings with

constant chord (square-cut tips).
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F1G. 20. Coefficient of local form drag along the span of some 53-deg
swept-back wings with cohstant chord.
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F1c. 21. Isobars on two 53-deg swept-back wings
of different aspect ratios (square-cut tips).
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F16. 22. Substitutes for real wing at various spanwise stations.
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Fi1c. 23. Velocity distribution at about mid-semi-
span on a delta wing.
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Fi1c. 24, Velocity distribution at the centre-
section of a delta wing.
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Fic. 25. Velocity distributions at three spanwise
stations on a 40-deg swept-back wing of constant
chord with modified section shapes.
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Fi1G. 26. Isobar patterns on two swept-back wings.
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Fic. 27. Flow pattern near the junction
of a body with an unswept wing.
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F1c. 28. Cylindrical body on 45-deg swept-back
wing. Nomenclature.
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Frc. 29. Velocity distributions on an unswept
wing with cylindrical bodies.
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Fi1c. 32. Modified body on 45-deg swept-back wing.
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F1c. 33. Velocity distributions in the junctions of Fic. 85. Approximations for the velocity rise with Mach number,

a 45-deg swept-back wing with modified bodies.



R. & M. No. 290¢

Publications of the
Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL
RESEARCH COUNCIL (BOUND VOLUMES)

1938 Vol. I. Aerodynamics General, Performance, Airscrews. 5os. (515.24.) ‘
Vol. II. Stability and Contral, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 30s.
(315, 24.)

1939 Vol. 1. Aerodynamics General, Performance, Airscrews, Engines. 5os. (515, 24.)
Vol. 11. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc.
635, (644. 24.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control.
Structures, and a miscellaneous section. gos. (51s. 24.}

1941 Aero and .Hydrodynamics, Aerofoils, Airscrewé, Engines, Flutter, Stability and Control
Structures. 63s. (64, 24.)

1942 Vol 1. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 785 (765, 34.)
Vol. 1I. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels.
475, 6d. (48s. 84.)

1943 Vol. 1 Aerodynamics, Aerofoils, Airscrews. 8or. (81s. 44.)
Vol. I Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures.
gos. (g1s. 64.)

1944 Vol L Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls.  84.. v(8 55, 8d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance,
Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels.

845. (855, 84)
Aannual Reports of the Aeronautical Research Council—
1933~34 15, 64. (15. 84.) 1937 25, (25, 2d)
1934—35 15, 64. (15. 84.) 1938 15. 6d. (15. 84.)
April 1, 1935 to Dec. 31, 1936 45 (4. 44.) . 1939—48 35, (34. 24.)

Index to all Reports and Memoranda published in the Annual

Technical Reports, t.nd separately—
April, 1950 - - R. & M. No. 2600  2s. 64. (25. 73d.)

Author Index to all Reports and Memoranda of the Aeronautical
Research Council—
190g-January, 1954. R. & M. No. 2570 155 (155. 44)

indexes to the Technical Reports of the Aeronautical. Research

- Council—
December 1, 1936 — June 30, 1939 R. & M. No. 1850 15 34. (15. 434.)
July 1, 1939 — June 30, 1945 R. & M. No. 1950 15, (1. 134))

July ¥, 1945 — June 30, 1946 R. & M. No 2050 15 (15, 14d)
July 1, 1946 — December 31, 1946 R. & M. No. 2150 14 34. (15. 434.)
January 1, 1947 — June 30, 1947 R. & M. No. 2250 14 3d. (15, 444.)

Published Reports and Memoranda of the Aeronautical Research

Council—
Between Nos. 2251-2349 R. & M. No. 2350 11, g2. (15. 103d.)
Between Nos. 23512449 R. & M. No. 2450 25 (25. 144.)
Between Nos. 2451-2549 R. & M. No. 2550  2s. 6d. (25, 7%d.)
Between Nos. 25512649 R. & M. No. 2650 2+, 64. (25. 74d.)

Prices in brackets include postage

HER MAJESTY’S STATIONERY OFFICE

York House, Kingsway, London W.C.2 § 423 Oxford Street, London W.1 (Post Orders : P.O. Box 569, London S.E.x),
132 Castle Street, Edinburgh 2 § 39 King Street, Manchester 2; 2 Edmund Street, Birmingham 3- 109 St. Mary
Street, Cardiff : Tower Lane. Bristol, 1: 8o Chxchester Street, Belfast. o7 rhrough any bookseller

v . 5.0, Code No. 23—2908

R. & M. No. 290




