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Summary.—The effect of an increase in speed relative to the speed of sound on the unsteady flow round a harmonically
oscillating aerofoil, is to increase the lag of the aerodynamic forces and moments behind the deflection when the frequency
is small. It is shown theoretically that this will result in a serious deterioration of the damping of both the lateral
osciltation and the high frequency longitudinal oscillation with high Mach numbers. Use is made of derivatives calculated
for flutter purposes to estimate the unsteady derivatives at aircraft oscillation frequencies. Illustrative examples are

presented.

1. Introduction.—Calculations on the dynamic stability of aircraft are generally made with
quasi-steady aerodynamic coefficients, 7.e., the forces and moments acting on each aerofoil
surface at any instant of an oscillatory motion are calculated on the assumption that the aerofoil
is in steady motion under the conditions pertaining at that instant.

In the past flight-test results have confirmed the quasi-steady theory within the accuracy
possible in such tests. Recent flight tests with the Mefeor, however, showed a marked divergence
between the measured damping in yaw with rudder fixed and theoretical estimations based on
quasi-steady aerodynamic derivatives ; this divergence increased with Mach number. The
difference between theory and experiment is shown in Fig. 1, where the logarithmic decrement 6
of the directional oscillation is plotted as obtained from flight tests; quasi-steady theory and
unsteady theory. It is seen that the observed loss in damping with higher Mach numbers can
satisfactorily be explained by the effects of unsteady flow.

Recent flight tests on a tailless aircraft at high speeds have also tended to throw doubt on the
quasi-steady theory and some experiments in the free-flight tunnel at Langley Field by W. E.
Cotter® seem to confirm the results of theory considering the effect of unsteady flow on the
damping in pitch of tailless models even with incompressible flow.

The effect on the damping of aircraft of taking into account the unsteady flow conditions was
first considered by Glauert'. In common with more recent publications®' this treatment dealt
only with incompressible flow. Under these conditions the effect of allowing for unsteady flow
does not appear to be large for aerofoils oscillating about a point forward of the quarter-chord,
at any rate for the range of frequencies likely to occur in flight.

In this report an attempt has been made to take into account the unsteady conditions in
compressible flow. The treatment is confined to conditions when no shock-waves are present,
and it is assumed that compressibility effects on the derivatives obey the Glauert Law.

* R.A.E. Report Aero. 2378, received 7th December, 1950.
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Owing to the inadequacy of the basic data needed for this work, the results presented in this
report are far from being complete, and the conclusions are therefore somewhat tentative. There
seems little doubt however that with increasing Mach number the reduction in damping due to
the unsteady flow conditions become very much more marked, and there are important
implications of the theory on' the damping of tailless aircraft at high speed. The purpose of this
report is mainly to draw attention to these extremely important trends, and to suggest the lines
along which future theoretical and experimental work should proceed in order to investigate
them further.

After the completion of the work presented in this report an American paper® on the instability
of the oscillation of an aerofoil in incompressible flow has been received which arrives at con-

clusions very similar to those represented by the stability boundary for Mach number = 0 in
Figs. 9 and 10 of this report.

2. The Physical Basis of the Theory of Unsteady Flow.—TFor detailed information on the
subject reference should be made to the extensive special literature, in particular to two recent
publications by G. Temple® and A. I. Necrasov®. For readers who are not familiar with the
aerodynamic theory of unsteady flow this section is intended to give a very brief description
of the main physical phenomena involved. Generally the flow pattern and thus the pressure
distribution round an aerofoil moving in a frictionless fluid is determined by the geometry of
the aerofoil itself and by velocities induced by the free vortices, mainly those in the vortex wake
behind the trailing edge of the aerofoil. In steady motion there is only one starting vortex
which is assumed to be curled up at an infinite distance aft of the trailing edge.

i
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Vortex sheet and starting vortex aft of an aerofoil in steady motion after a sufficiently long time.

Since during an unsteady motion of an aerofoil the circulation round the aerofoil changes with
time there is a continuous emission of new starting vortices into the wake, the distance of each
vortex from the aerofoil increasing continuously with time as the aerofoil moves ahead. For

example during an angular oscillation of an aerofoil the distribution of the free vortices aft of
the wing will appear as sketched below.

iwt

\€ a=a¢o¢

N

Free vortices in the wake of an aerofoil oscillating with the period T and the amplitude «,.

A=TV

Since the flow pattern round the aerofoil is affected by the contributions of the free vortices
aft of the wing it must be expected that:

() the pressure distribution round an aerofoil in unsteady motion differs from that obtained
with quasi-steady flow

(b) the main parameter describing the aerodynamic situation round a harmonically oscillating
aerofoil will be the ratio between the chord ¢ of the aerofoil and the wavelength
A = TV of the oscillation. This parameter is usually given as the reduced frequency

2rc

Matters become more complicated if wings with finite span are considered since then the
induced flows from the unsteady trailing vortices have to be considered as well.
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Another contribution to the forces acting upon a wing in unsteady motion which is not taken
into account in the quasi-steady theory is caused by the reaction of the air being accelerated.
This can be interpreted as an increase of the apparent mass and inertia of the aerofoil.

Finally the speed of sound enters into the calculations, since all disturbances and inductions
can only be propagated with the speed of sound. Thus the velocity of propagation upstream
relative to the aerofoil decreases with increasing Mach number and this will result in a delay of
the aerodynamic forces at the aerofoil. The occurrence of shock-waves interferes with this
simple physical concept. The calculations referred to in the next paragraphs only hold for
compressible flow without shock-waves at the aerofoil concerned.

3. Available Numerical Results.—Numerical solutions for unsteady aerodynamic coefficients
have been obtained by many authors.  The most comprehensive results® available are for
two-dimensional flow and they cover a wide range of speeds including incompressible flow
conditions, the high-subsonic and the supersonic range of speeds. Solutions exist too for the
unsteady coefficients due to flap deflections with various configurations®®. Some authors™® have
investigated wings with finite aspect ratio up to the extreme case of an ocsillating circular wing’;
but these solutions are for incompressible flow only.

As far as is known there are no reliable solutions for bodies of revolution representing fuselages
or nacelles.

Another important limitation is that the majority of the theoretical solutions apply to constant-
amplitude oscillations and they are therefore applicable strictly only to the boundary conditions
of oscillations where the damping is exactly zero. Jones has shown how the unsteady forces vary
with the damping of the supposed motion. In order, however, to simplify the approach in this
paper, it will be assumed that the more extensive data on the derivatives applying to
constant-amplitude oscillations, also apply to damped motions. It must be remembered,
therefore, that the solutions given in this paper are strictly true only at the stability boundaries,

In papers dealing with the flutter problem, the aerodynamic coefficients are given in the
form of complex numbers, e.g.,
ly=1lg+ls .. . . . (2)

where /, is the rate of change of lift with angle « during an osc111at10n The real part, /,p, 1s the
component in phase with the deflection considered, the imaginary part is the component in phase
with the corresponding rate of deflection, thus representing a damping or undamping effect.
The apparent mass effect is sometimes given as a separate term which as a real number can be
included in the real part of the coefficient, that is in phase with the deflection, though strictly
only as long as the oscillation is of constant amplitude. This term is however small at the low
frequencies to be considered and the error
in including the acceleration term in the
deflection term is small for the general,
damped motion to be considered ; the
relationship between the two terms is of
course dependent on frequency but since
both are already functions of frequency
é . no complication is added by putting
, : them together. An example of the
l physical meaning of a complex coefficient
. 1s demonstrated in the figure, in
| which 7, defined according to equation (2)
______ is plotted in the complex plane. The
| Lo angle between the lift vector /, and the

Physical interpretation of a complex lift coefficient in vector form. deflection referred to o is the phase lag of

@

the lift due to unsteady flow e, = of, B N N N N y (3)

where ¢, 1s the phase-angle lag,

¢, is the lag in time.
3
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The modes of oscillation generally considered in the compilation of flutter coefficients are an
angular oscillation a,e** and a translational oscillation z,e™* of a rigid aerofoil ; several modes of
structural deformation are also considered, but we will not concern ourselves with them here,

though strictly they should be considered when the frequency of the aircraft oscillation is
approaching the frequencies of the wing modes, etc.

The axis of reference for the moments and for the centre of angular oscillation concerned, in
the various papers is by no means constant. The figures extracted and presented in this report,
however, have been corrected to refer uniformly to the quarter-chord point of the aerofoil
considered. Most of the data has been extracted from the summary paper, Ref. 5; in this paper
the coefficients have been presented in the form

= (I, + 02, + 2°L)

where Z 1s the lift force on the aerofoil
Z is the oscillatory vertical deflection, etc.
They have all been converted to the form given above
b=l + 4,
with the acceleration term /; included in the 7, term as explained above.

hll\zl

(4)

To give a few typical examples in the vector form, results are presented in Figs. 2 to 6 of
calculations of the aerodynamic forces and moments of an oscillating wing with infinite aspect
ratio in compressible subsonic flow extracted from Refs. 5 and 6. The coefficients are plotted
as vector loci with Mach number and the reduced frequency 1 as parameters. Fig. 2 shows the
lift coefficient /,, corresponding to a translatory oscillation; Fig. 3 the lift coefficient /, due to an
angular oscillation about the quarter-chord axis. The corresponding moment derivatives m, and
m, are given in Figs. 4 and 5. Finally the unsteady flap effectiveness /, for the oscillation of a
ﬂap with 20 per cent chord about its hinge axis is plotted in Fig. 6.

The vector loci of the lift coefficients 7, and /, start with frequency zero (2 = 0) at a finite real
value which corresponds to the steady lift slope a, (or control effectiveness a, respectively).
With increasing frequency these lift forces are reduced in magnitude and delayed. At frequencies
far beyond the range corresponding to the aircraft oscillations considered (1<~ 0-1) a damping
effect becomes more marked until at frequencies corresponding to 1 >~ 0-4 the lift vectors
cross the real axis and advance against the corresponding deflections.

With a translatory oscillation of an aerofoil the aerodynamic incidence is actually produced
in the velocity phase # of the motion. Thus, when discussing /, in Fig. 2, the corresponding
quasi-steady term is a vector at the positive imaginary axis which increases in proportion to the

frequency parameter 2. Compared with these quasi-steady values, the unsteady lift /, behaves
similarly to /, and /,.

4. Equations of Motion.—The assumptions made in developing the equations of motion to
take into account the unsteady flow conditions are :—

(@) The oscillation will be assumed to be in two degrees of freedom, ¢.e., the effect of variation
in forward speed will be neglected in the longitudinal oscillation, and the rolling motion
will be neglected in the directional oscillation.

(6) As explained in section 3, the derivatives obtained from constant-amplitude calculations
will be assumed to be applicable to damped motions and the apparent mass effect of
the air will be included in the derivatives in phase with deflection.

(¢) The unsteady derivatives are all dependent in some way on the frequency parameter, 1,
but in general the equations of motion will be derived assuming constant derivatives.
If necessary the solution can be improved by successive approximation using the
obtained frequency for an improved estimation of the derivatives.

4



When steady-flow conditions are being assumed the wing incidence «(= w/v) and the rate of
pitch g are convenient variables to define the aerodynamic condition of the aircraft at any instant
of the longitudinal oscillation. Similarly g(= v/V) and rate of yaw » are convenient variables
to define the directional motion.

With unsteady flow, however, the aerodynamic load exerted upon an aircraft with a given
instantaneous incidence « differs according as to whether this incidence is produced by a change
in attitude or by a translatory motion of the aircraft.

This means that a great number of terms has to be used for describing the aerodynamic loads
on the aircraft when unsteady effects have to be taken into account. To avoid confusion with
flutter theory we shall use the flutter parameters «* and z and their derivatives. o* is the angular
deflection of the aerofoil during an oscillation and is identical with the parameter 6 usual in
aerodynamic theory for longitudinal motion, or y for directional motion. Similarly z defines the
translatory motion so that for longitudinal motion

E=—yV .

and for directional motion
F=—y=—xV. .. .. . .. .. . (6)

4.1. Longitudinal Oscillation.—The two independent variables describing the longitudinal.
oscillation are 6 and y as shown below.

mgan  flight path

The downwash delay term i, will be assumed to maintain its quasi-steady definition since it
is unlikely that unsteady values for the downwash ¢ are available. In order to express the
required variable a in terms of the above variables, use is made of the relationship

a=0—9y. .. .. .. .. . . (7)

Now the differential equations of the pitching moments M and the lift forces L can be written
as —
oM oM oM I oM 1, oM I . )
W T Y T v T v Ty v (0 — ) = B
oL oL oL 1 , oL I | )
a0 T Vaamy v Tagymy vt = T =
5
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Expressing the acrodynamic derivatives in the usual way (see list of symbols and section 5)
and introducing, as usual

Mmoo m 4 =L
Pi=0S1 T T eSS ARG T
this gives the determinant
Yy _ My 4o (M _ M
T ( o A (iB 7, o
2 .
Zp 4 720 A Zy—}—l<1—l—;b’il>

The corresponding frequency equation is a cubic

P4+ A2+ Bar+C,=0.. . .. . .. (10)
with the coefficients:

5. { (105 ([ B 2 ED L
m, My

2\t
C“:‘u1<1+/l—,: {—zﬂ_—z

5 5

Contrary to the corresponding solution of the orthodox treatment with quasi-steady coefficients
(equation (16)) the solution of equation (10) contains an aperiodic mode of motion the damping
of which is described by the real root of approximately 4, = C,/B,. The existence of such a
non-periodic motion contradicts the definitions of the derivatives used which have been derived
from an oscillatory type of motion. Thus the aperiodic solution 2, can be expected to have no

physical reality. In fact the two terms in C, (equation (11)) when considering steady motion
are identical with the quasi-steady coefficients.

O ¢ )

w=0 ’LB

Thus C, = 0 and consequently 4, = 0. The identity (12) holds with very good approximation
for unsteady flow as well, z.c.,

w,

L]
—Z A I N
1570 T 157

Thus generally C, == 0 and the cubic collapses into a quadratic

B4+ Aa+B,=0 .. .. A O &)

with the coefficients 4, and B, from equations (11). Damping time £, and perlod T, of the high
frequency longitudinal oscillation are then given by:

=5 (14
Ot
Lo~ X B — A3 - e e e (1)
wherei—pg%-



When comparing equations (11) with the orthodox solution with quasi-steady derivatives:
AF = — {”.iq-;_zw-{-@(l +- ﬁ)]
‘g 7] M1
(16)
SN &Y _ ]
Boc>I — {Ml iB (1 +M1 — Zy

1]

it is seen that apart from minor contributions the following coefficients are comparable with
respect to their effect on damping and frequency of the longitudinal oscillation

m,, corresponds to

: m
quasi-steady flow { " 7 unsteady flow.
2w » [F Zy
{ Py Iy 3r Wy

Therefore it can be concluded that an approximated estimation of the effect of unsteady flow on
the longitudinal oscillation can be obtained by substituting the above unsteady terms for the
corresponding quasi-steady derivatives. This process may be advantageous when converting
existing quasi-steady solutions of more complicated degree into unsteady solutions, in particular
the lateral stability case with freedom in roll, and also for treatments of control free stability.

4.2. Directional Oscillation.—The two parameters defining motion with two degrees of freedom
are yawing v and the lateral displacement of the c.g. : y. As shown in equation (16) and the
figure below, ¥ can be expressed by the azimuth angle at the flight path x.

/
\d 4} mean flight path
N

"ight path

Sidewash can be neglected. Then the differential equations of the yawing moments N and the
side forces Y for unsteady aerodynamic derivatives can be written:

oN 8N oN b . 8N b .

oy ¥ T ax X Tageen) 2 ¥ T agapy)av i = O 17
oY Y oY . b oY b . .. .

W P T e X Tageery Vay Tagenar i =mi =mVi. (1§

Introducing as usual 7, 4y = 2m/pSb and %, = 4C/mb® and performing the same operation as with
the longitudinal stability equations one obtains a cubic

P+AL+BAHC,=0 .. .. .. .. (19
7



with the coefficients:

a,= |2+ (1-2)" (5L +5))
B, { T+ - )(;v.ﬂr , Ty ) @)
e (1 =2 ()
Again the identity
%yw = 7f—y wioz%yv.. @

makes C, = 0 and reduces the frequency equation to a quadratic with the coefficients 4,and B,
from equation (20). Damping time {, and period 7, of the directional oscillation are then

21
t:Z . .. .. .. .. .. .. .. .o (22
2l
T,,, - ’\/(—i_ Bw - Aw2/4) - (23)
The coefficients of the corresponding quasi-steady frequency equation read
A = — {7—;’ —i—yv}
‘ (24)

b= [ (1= 2

Comparison between equations (20) and (24) again indicates that there are main terms which
can be substituted with an approximated treatment:

n, corresponds to — #,

quasi-steady flow { #, s . n, » unsteady flow.
yv 22 3 .yx

5. The Formation of the Aevodynamic Derivatives for the Complete Aircraft.—Having obtained
the solution of the equations for longitudinal and directional oscillations in section 4, all that
remains to do is to substitute the values of the unsteady aerodynamic derivatives into the ex-
pressions for frequency and damping. A brief explanation is given in this section of the method
used to obtain the particular derivatives for an aircraft from the general flutter derivatives.

Now as explained in section 3, the flutter derivatives used in this report are given in the form
loc - locR + ’ﬂtxi H etC

where
oC
I p= BocL*R =f ( A= c%c , Mach number, A) 2
0
I, = aC“ f (y, Mach number, A)

and o* is the angular deflection of an aerofoil during an angular oscillation. Correspondingly the
lift due to a translatory oscillation of an aerofoil is given by

aCLR oCy,
a(zfc) 3(zfc) -
8

ler and [, = (26)



The moment coefficients C3; about the axis of reference of an individual aerofoil (in this report
the quarter-chord line is used throughout) are represented analogously by complex numbers:—

aCMR acﬁ'i

Mor — aOC* My; = -TO!}F (27)
0 C‘M‘ R . 0 CTVf i
Mer = 5z]c) i = 3afe) (28)

All these coefficients are functions of 4, Mach number and aspect ratio 4. Numerical figures
for the flutter coefficients in the form needed for the estimation of the stability derivatives are
given in Tables 1 and 2. These values are computed from Ref. 5 and hold for two-dimensional
flow with a thin aerofoil. If g, is the lift slope of the actual aerofoil with an aspect ratio 4 then
we can obtain an approximated estimation of the three-dimensional value by multiplying the
thin-aerofoil flutter derivative by a factor a,/2=. This value of @, can either be taken from steady
wind-tunnel tests or it is approximately given by the relation

A

a, = m a, . (29)

5.1. Longitudinal Derivatives.—We have to evaluate the terms:
2y 2y, 'Zy: Z;')
Wy, My, mw m;l': mw .

Dealing with the ¢ and 6 terms first and remembering that the flutter «* is identical with the 6

used in the stability equations, consider the general case of any aerofoﬂ (wing or tailplane)
hinged at a point 7, forward of the quarter-chord point.

M A AL

Pl

o

Then the total lift in terms of the derivatives given for the quarter-chord point is

Ly

L:%pVZS(RB—I—zZMO—]—ZzRG Ll ) R 7 )
Now remembering that we are evaluating the derivatives for undamped oscillations only we have

0 =iwd .. .. .. .. .. .. .. .. .. .. .. (31
and this can be used to transform equation (30) into

0 1

L = 39S, (luab + ilui 7 +z,,Ra £y ZW—C—JC—“> O )

This equation contains real terms only and can be split up into the partial derivatives
oC S l
B=—%mg = —% A{zaRJr 21, } .. .. .. .. .. .. .. (33)



and

eC, [ S4 { |4 I,V ]
w=—dgagny = s et all &
Substituting 2 = wc,/V this gives
Sailcalui | il
%:—gs{; +%ZL L )

Examination of the derivative data, however, shows that /,; and /,; vary approximately linearly
with 1 over the range 0 << 4 <<~ 0-08 which is roughly the range to be considered in dynamic
stability problems. The equation (35) can therefore be rewritten in the form

Sicq (0, 1,0,
w-— 13¢5 +am}

(36)

The moment M about the c.g. of an aircraft as produced by an aerofoil oscillating at an arm /
from the c.g. is given by

M=My—Ll,. .. .. .. .. ... @

Adding these two contributions the moment derivatives with respect to 6 and 0 are obtained:

¢ oC Sic l Li\?
M %f.lé{mﬂ—}—(mm-lw)é—lm C_j)} .. .. .. .. (38)

mo:zc_z Gl/V %S<CA> {amaur(am” _/_l_al“( )} - L (39)

For the determination of the stability derivatives with respect to y and y the kinematic relation-
ship between 2 and y (equation (5)) must be remembered. IFurther corresponding to equation (31):

i R £10)

7.
1w’ 10

The total lift L acting on an aerofoil 4 during translatory oscillation of the c.g. of the aircraft
is given by:

L:%pvzsA{leé-;-ﬂné}. N O3 )

Using equation (40) this can be transformed into an equation having real components only:

Lzth&L~mfﬂ+@Z;k.. L (49
This gives the partial derivatives required:

R Lot bt 3

%=—%£%q=*%%%% (44)



As seen from Table II /., (anid s,z as used later for s, in equation (47)) is small and changes
approximately with 2*—mainly because it represents as a major contribution the apparent mass
of the air. Thus it is felt that the use of a constant derivative for 9/,/04* and later oms,/04®
does not involve any appreciable inaccuracies and the equation (44) can be rewritten:

SA €4 ol,p

= TES Ta (45)

For the determination of the corresponding moment derivatives equation (37) has to be applied
which gives finally:

c o M_lSAcA{Blzi_Zé_amzi]

=93 %S 1 |%rc, 04 (46)
c Cy [ Sifc4 {amzR ol.g 1,

myzila(yZ/V)—'f?(z_ it ang,lt o o e 0)

If the equations (33 to 47) are applied for the evaluation of the contributions of wing, and
tailplane, the geometric parameters S,, I,, ¢, in these expressions have to be substituted by the
corresponding values of the wing (S, Iy, ¢) or tailplane (Sy, /, ¢7) respectively.

In dealing with the effect of downwash on the tail we will as usual divide the total effect into
two components:

(a) First, assuming that the magnitude of downwash at the tail corresponds to that which
would be developed in a steady state with the angle of wing incidence at the same
value as that at the instant considered.

b) Then allowing for the lag in downwash produced
g g p
(i) by the lagging of the wing lift behind the wing incidence due to unsteady flow
(ii) by the time delay in the flow reaching the tail from the wing.

This part constitutes the m, term.
The first effect of the downwash reducing the actual incidence of the tailplane can be provided

for by multiplying all terms with the tailplane derivatives which can be associated with a
simultaneous change of incidence at the wing with a factor

(1~2—§). O -

These are the coefficients /, and m, in the derivatives with respect to 6 and ¢ and the whole
expression for the tailplane contribution to the derivatives with respect to y and 7.

This need only be demonstrated by two examples:

e =32 (1= ) (e — 1 Z)+mw — (L Dl )

|y r = 3 2 (CT)(I Nl )

From the discussion of equations (11) and (16) and the comparability of the moment
coefficients m,, = m,, m, = m, it can be concluded that in the modes of oscillation present during
the longitudinal motion considered ¢ and y are of quite different order and y obviously does not
contribute much to the pitching moments, 7.e.,

0 == o; y L 0.
11
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Thus for the determination of the downwash delay, which is defined as a derivative with respect
to &, only the lag of /, against «* = 6 will be considered. The downwash, e, arrives at the tailplane
with a phase lag ¢, against 6 which can be added to the above discussed two contributions

L | by

& = oh =03 — Tl e (51)
This can be used for determining the derivative

—_ ¢ oCy Srde { ¢ (0l,/04 }

Mo == 57 8(0'(1/17) Tz (ZaR r S do 1= Z( Lo )W ) o - (52)

5.2. Directional Derivatives—The only aerofoil surface to be considered with lateral motion
with two degrees of freedom is the fin. Remembering equation (6) and the conclusion from
section 4 the following identities can be used for the determination of the derivatives:

L=Y
flutter terms Ai f N y stability terms. .. .. .. (53)
of =y

Sidewash can be neglected. Performing the same transformations as in section 5.1 the lateral
stability derivatives are obtained.

e T ey 2 P 2
y:lﬁéﬁ—%%{%—l—?ﬁg} )
m= = et E =t — ()] (59
L 59
y=2uT%%?):%%ilzR N )
n= =35 5w )
oCy Sy 2 [ omper  Olpls
"x=§(7[6/2—1/):§77{m75”5725}- .. .. .. .. (81

5.3. Fusclage and Nacelles.—1f unsteady aerodynamic coefficients are known for bodies of
revolution such as fuselages and nacelles, they can be expressed in the form of the above
determined derivatives. At present no such solutions exist. Thus one is confined to the use of

12



known quasi-steady values. These can best be expressed in terms of the above defined unsteady
derivatives by using the following identities which hold for infinitely slow motion (@ — 0).

=2y Mg =My Y=Y My = — N,
2y = 2, My = mq Yo =Yy oy =Ny . .. .. (62)
By = 2y MWy = — Wy Ye B Do My = My

Ay =Wy =Yy = %220

6. Numerical Examples.—The consequences of unsteady flow on the dynamic stability of
aircraft will best be illustrated by numerical examples. For these specific calculations two
types of aircraft have been chosen which can be expected to respond differently to the particular
effects of unsteady flow.

Example A is an orthodox tailed aircraft with a relatively long tail arm, which thus possesses
basically sound damping both in pitch and in yaw.

Example B is the tailless version of A with a fin at a relatively short arm. When discussing
lateral stability this example will therefore be referred to as short-tailed version as compared
with the long-tailed version A. There are two versions of the tailless aircraft B considered with
longitudinal stability. They are distinguished by different sizes of the fuselage.

Since there are no unsteady aerodynamic coefficients available for sweptback wings the wings
in hoth cases are assumed to be identical both without sweep. It must be noted that for a wing
with sweep the damping in pitch with unsteady flow is probably much higher than for a straight
wing.

The geometrical data for both aircraft are given in Table 3. The unsteady aerodynamic
derivatives have been obtained with the formulae derived in section 5. The two-dimensional
lift slope, a,, has been assumed as 5-65 for all aerofoils concerned ; the finite aspect ratio of each
surface has been allowed for by using equation (29). For the tailed aircraft A, the downwash
slope, de/da, has been assumed to be 0-3. The fuselage contributions are dealt with as indicated
in section 5.3. In all cases considered the calculations have been done for 4 different Mach
numbers (0, 0-5, 0-7, 0-8) and the results are presented in Tables 4 to 6.

Table 4 refers to the longitudinal stability of the tailed aircraft, A. First the unsteady
aerodynamic derivatives are given as wing contributions (suffix ,) and tailplane contributions
(suffix 7). The complete derivatives including fuselage contributions as well are given as sums
(Z...). The coefficients of the frequency equation (equation (13)) are given in the dimensionless
form 4, and B,. The u; and z, used correspond to ground level.

The change of dynamic stability with altitude has been checked in all cases considered.
Apart from the generally known decrease in damping proportional to p a slight change of the
damping coefficient 4, (and 4, for directional stability) is to be expected since some of the terms
contain p, or u, respectively. These terms, however, are so small that no appreciable change of
the stability boundary has been observed.

For the determination of the reduced frequencies 2 as the important parameters for the unsteady
derivatives the indicated wavelength of the longitudinal oscillation is computed from equation (15)

which gives
Y 1Wl/ S
W_TI~%7J<+B_AWD Y ()

The cerresponding expression for the wavelength of the directional oscillation is
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Since the reduced frequency is the ratio of the individual chord ¢ to the wavelength A

Qnc

L T T O (¢ )

the formulae (63) or (64) respectively can be used to evaluate the reduced frequency by considering
the relationship between the indicated wavelength 4; and the true wavelength 4

c
=2 o N ()

For the determination of the real parts of the flutter coefficients (Table II) needed, the value of
4 for the various aerofoil surfaces has been first estimated by a quasi-steady approxlmatlon for
the periods of the oscillations concerned. The values for the reduced frequencies 4 given in
Tables 4 to 7, however, have been obtained from the actual frequencies resul‘tln{r from the
calculations with unsteady derivatives.

The corresponding figures tor the longitudinal oscillation of the tailless aircraft B are given
in Table 5 for two different c.g. positions, 7.e., for the different values of the distance /., of the
quarter-chord of the wing from the c.g. of the aircraft. Table 6 contains the corresponding
figures for tailless version with a smaller fuselage.

The corresponding figures for the directional stability calculations for both the long-tailed
version (A) and the short-tailed version (B) are given in Table 7.

The most important results, the values of the damping roots 4, and A4, for longitudinal and
directional oscillations respectively, are plotted against Mach number in Figs. 7 and 8. The
results of the calculations with unsteady derivatives are represented by full lines. Corresponding
calculations have been done with quasi-steady aerodynamic derivatives which are assumed to
change with Mach number according to Glauert’s rule. The results of these calculations are
presented for comparison and shown by dotted lines.

As Fig. 7 shows, the results with unsteady derivatives compare very favcurably with quasi-
steadyv results for the damping of the ]ongltudmal oscillations of the tailed aircraft. The close
agreement seen, however, is mere coincidence. It results from adding basically different effects,
namely dqmpm{f in pltch my and downwash delay m,. With appreciable downwash present,
this tendency can generally be expected for conventionally tailed aircraft.

The damping of the longitudinal oscillation of the tailless aircraft (I3) may, however, be radically
altered when considering the effects of unsteady flow at high subsonic speeds. Much depends,
with the simple theory used, on the value of [, /c assumed, 7.e., the distance between the c.g.
and the aerodynamic centre of the wing in terms of the mean chord. With wellforward c. gs.
with a I, /c of between 0-1 and 0-2 (such values correspond roughly with those of the DH.108),
the destabilisation of the dynamic stability is very marked at high Mach numbers, neutral
stability being predicted at Mach numbers between 0-7 and 0-85. With a /,./c of 0-05, "however
the dampmg calculated at high Mach numbers using unsteady-flow theory is very similar to that
obtained using quasi-steady flow ; this value of /,./c could only be obtained on an aircraft with a
very small or negligible fuselage for the destabilising effect of the fuselage would otherwise
cause an unacceptably low or a negative static margin. Thus this admittedly approximate theory
of unsteady flow is predicting in some practical condition of aircraft layout, a negative damping
of the longitudinal oscillation at Mach numbers where the theory does not necessarily break
down due to the presence of shock-waves on the wing surface.

The results of the calculations of the damping of the directional oscillation of the two aircraft
considered are shown in the diagram Fig. 8. It is seen that calculations with quasi-steady
derivatives give far too optimistic results. In both examples considered a rapid deterioration of
damping due to the effects of unsteady flow occurs at Mach numbers beyond 0-6 and an undamped
oscillation would appear likely with the short-tailed aircraft at a Mach number just above 0-8.
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The aircraft with the fin at the longer arm has the better basic damping, and the undamping
effects of unsteady flow appear less severe ; actual instability would not therefore be predicted
until the assumptions on which the aerodvnamlc derivatives used in this paper depend break
‘down due to the presence of shock-waves,

The main effects of unsteady flow on the aircraft oscillations are mainly represented in the
damping derivatives m, and n, respectively. They are generally smaller as compared with the
corresponding quasi-steady values of m, and #, respectively, and they will become undamping
with higher Mach numbers in most cases. The other major damping terms affecting the aircraft
oscillations considered, i.e., 2z, and v, for longitudinal and directional motion respectively, are
hardly altered when con%1der1ng the effects ot unsteady flow. Thus dynamic stability of the
a1rcraﬂ oscillations is maintained up to Mach numbers above those associated with the change

n sign of the damping derivatives s, or #, respectively.

7. The Stability of an Oscillating Wind Vane.—Another more simple way of demonstrating the
effects of unsteady flow is by investigating the stability of the oscillation of a wind vane as it
changes with the length of the arm of suspension and Mach number. This may also be interpreted
as the stability of the longitudinal oscillation or directional oscillation in one degree of freedom.
In this case the wind vane can be identified with the fin or tailplane (or wing for the longitudinal
oscillation of a tailless aircraft) of the aircraft considered.

Dynamic stability of such a system is present if the imaginary part of the resultant moment
exerted upon the hinge during the oscillation is positive, .., there is a component of the moment
opposing the motion of the vane. If m,; , is the i 1mag1nary part of the hinge moment then this
condition reads

oC

mmo_—.a“jf/o .. .. . . .. . .. (87

Using the flutter derivatives as before and remembering that the translatory deflection of the

quarter-chord of the aerofoil surface of the wind vane of an arm / from the hmge axis is z = a*/,
Myio 1S glven as

Myi 0 = My {—mzz — lz,< > .. .. .. .. (68)

The flutter derivatives are functions of Mach number and 4, thus the stability boundary will
also depend on Mach number, 4 and the relative arm, //c, of the vane. The results of calculations
for two-dimensional unsteady flow corresponding to the figures given in Tables 1 and 2 are plotted
as stability boundaries in the //c—A4 plane with Mach number as a parameter, in Fig. 9. It is
seen that even with incompressible flow an unstable region exists for the range of hinge axes
between the quarter-chord point and 0-7c¢ ahead of the quarter-chord with relatively small reduced
frequencies. When suspended aft of the quarter-chord the wind vane is damped, but of course—-
without any additional spring in the system—statically unstable. With increasing Mach number
the unstable region extends towards longer arms / and higher frequencies 2. A cross-plotting of
the stability diagram against Mach number with the arm //c as parameter is given in Fig. 10.

In these calculations no reference is made to the relationship between the length of the arm !/
and the reduced frequency 4 which is treated as an independent variable. It will of course
depend upon the actual dimensions of the aerofoil, the inertia of the system and, if applied to
aircraft, upon other parts of the airframe contributing mass and stiffness.

Tt must be noted that the results of this approach towards the dynamic stability with unsteady
flow is more correct than the calculations of the preceding sections, since no additional lineari-
sations have had to be assumed. On the other hand it should be emphasized that the unsteady
aerodynamic coefficients used are still subject to experimental proof.
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8. Conclusions.—(a) It has been shown that if account is taken of the unsteady flow conditions
which exist during the oscillation of an aircraft, the damping may very well be less than would
have been expected on the basis of quasi-steady flow theory.

(b) If allowance is made for compressibility effects assuming no shock-waves are present, any
deterioration in damping associated with the unsteady flow conditions becomes very much worse
with increasing Mach numbers.

(¢) The deterioration in damping is likely to be particularly severe in the case of tailless aircraft
or aircraft with short tail arms. The dynamic longitudinal stability of tailless aircraft is
particularly affected with forward c.g. positions with respect to the neutral point of the wing.
This will generally be the case if some fuselage is present.

(d) The frequencies of the aircraft oscillations are not appreciably affected by allowing for
unsteady flow conditions.

9. Future Work.— This report aims only to give an indication of the procbable consequences of
the effects of unsteady flow on aircraft stability. The importance of the foregoing conclusions
to practically all ajrcraft with high subsonic speed suggests more thorough investigation of all
aspects of the problem. There are four lines along which further research should proceed :

(a) Flight research on the dynamic stability of high-speed aircraft.

(6) Wind-tunnel or flight measurements on oscillating aerofoils. A simple experiment
would be observation of self-excited oscillations of a freely suspended wind vane as
investigated theoretically in section 7 of this paper at high speeds.

(¢) Theoretical analysis on the unsteady compressible flow round wings with finite aspect
ratio and sweep. An approach towards a solution of the unsteady flow round bodies
of revolution seems also desirable.

(d) More comprehensive treatment of the dynamic stability of aircraft with more than two
degrees cf freedom, and of the problem of auto-stabilisation with unsteady aerodynamic
control effectiveness.

If the conclusions of this paper are confirmed the provision of means for artificial dynamic
stabilisation of aircraft may prove inevitable in many cases and the development of such means
should be urged.
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LIST OF SYMBOLS
b*/S, aspect ratio
Damping root
Two-dimensional lift slope
Three-dimensional lift slope
Wing span
Inertia in pitch
Chord of wing (tailplane, fin)
L/%pV?S, lift coefficient
M%pV?Sc, pitching-moment coefficient
N/3pV*Sb, yawing-moment coefficient
Y/3pV?S, side-force coefficient
v — 1
B/ml?, inertia coefficient in pitch
C/m(b/2)?, inertia coefficient in yaw
Lift
Distance between the quarter-chord of tailplane (wing, fin) and the c.g.
oC,/oo*, lift derivative with respect to o*
8C./2(z/c), lift derivative with respect to 2
oC,/on, lift derivative with respect to # Flutter coefficients
eCy/oa*, moment derivative with respect to a*

eCy/o(z/c), moment derivative with respect to z
Mass of the aircraft
Pitching moment
Pitching moment about quarter-chord of an individual aerofoil
Yawing moment
g, rate of pitch
p, rate of yaw
Area of wing (tailplane, fin)
Period of the longitudinal (lateral) oscillation
Damping time of the longitudinal (lateral) oscillation
m[pSV, time unit
Lateral velocity component
Speed of flight
Weight
Vertical velocity component
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LIST OF SYMBOLS— continued

Side force

Vertical displacement

w/V, aerodynamic inclination
Flutter variable

v/V, angle of sideslip

Angle of climb

T/t, logarithmic decrement
Downwash angle

Phase lag angle

Control deflection

Altitude in pitch

wc/V, reduced frequency

TV, wavelength of an oscillation
m/pSl, relative density (longitudinal)
2m[pSh, relative density (lateral)
Air density

Azimuth angle at the flight path
Attitude in yaw

2=/T, circular frequency

aoC,, <
a2
B o Quasi-steady pitchi t derivati
3(ad]V) 2L Quasi-steady pitching-moment derivatives
oCy <
o(ql/V) 2l
Cuc
o8 2/
0Cy ¢
a(01/V) 21 o o
Unsteady pitching-moment derivatives
Wy €
oy 21
0C <
o(pllV) 2l
oC,
op : : L
aC Quasi-steady yawing-moment derivatives
——en N S
o(rb/21)
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LIST OF SYMBOLS—continued

oCy
", = 5‘1/;
" 0Cy
Bl 167, |
aé‘y)/ ) Unsteady yawing-moment derivatives
LR
_ oCy
BT B2V
Yo = %aa_cy |
aC Quasi-steady side-force derivatives
¥y
Yo = TRV
C
b = 1l
v 2 9(pb/2
C(w/ ) Unsteady side-force derivatives
C,
%= )
no- i
aC Quasi-steady lift derivatives
L
W= o)
oC
w o= —ig
., , Gy
T TRV
(O2/7) Unsteady lift derivatives
v o= iy
. C,
z = — 1
’ 2a(piV)
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TABLE 1
Derivatives of the Unsteady Aevodynamic Coefficrents with respect
to A or A* vespectively (Referred to quarter-chord)
Mach Ol s O Oz ol.r LT
number oA 04 oA oA 022 oR
0 — 712 6-06 —0-76 0 8 0-39
0-5 —12-87 6-90 —1-07 0 12 0-56
0-6 —16-85 7-38 ~1-25 0 16 0-71
0-7 —23-86 8-14 —1-58 0-03 21 0-94
0-8 —41-00 10-00 —1-90 0-08 47 1-40
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TABLE 2

Real Payis of the Unsteady Aerodynamic Coefficients with
Apparent Mass Effect Included

n?ﬁi%lér A lor Lr Mor Ll.p
0 6-284 0o 0 0
0 0-04 6-065 0-0163 0 0-0006
0-08 5-849 0-0483 0 00026
0 7-256 0 0 0
0-5 0-04 6-906 0-0261 0 0-0009
0-08 6-566 0:0763 —0-001 0-0037
0 8:798 0 0 0
0-7 0-04 8-148 0-0445 —0-003 0-0015
0-08 7-545 0-1261 —0-007 0-0061
0 10-440 0 —0-010 0
0-8 0-04 9-575 0-100 —0-040 0-0030
0-08 8-652 0-190 —0-080 0-0049
TABLE 3
Dimensions and Data of the Two Aircraft
Considered in the Numerical Example
Aircraft A | Aircraft B
Wing area S 320 ft?
span b 40 ft
wing load w/S 40 Ib/it? 35 lbjit2
chord c 8 ft
arm - 0 2 ft
aspect ratio Ay 5
Hy (ground level) 21-7 57-1
s (ground level) 26-1 22-85
inertia in yaw %, 0-15 0-11
inertia in pitch in 0-12 0-50
Tail area S 48 ft? 0
chord Cr 4 it 0
arm A 24 ft —
aspect ratio Ar 3 —
Fin area Sr 24 ft2
chord Cr 4 ft
arm Iy 24 ft 16 ft
aspect ratio Ag 1-5
(M) pus 0-050 0-15%
quasi-steady fuselage < (#,)pps —0-070 —0-045
derivatives (¥)ros —0-20 —0-15

* 0-08 for the smaller fuselage.
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TABLE 4

Unsteady Derivatives and Stability Coefficients of the
Longitudinal Oscillation of the Tailed Aircraft A

Mach 0 0-5 0-7 0-8
number ,

(mo)r —0-170 —0-192 —0-221 —0-254
(my)r 0-177 0-200 0-235 0-289
Zmg —0-120 —0-142 —0-171 —0-204
Zm, 0-127 0-150 0-185 0-239
(me)r —0-216 —0-223 —0-222 —0-217
(mo)w —0-027 —0-038 —0-057 —0-068
Zmng —0-243 —0-261 —0-279 —0-285
(my)r —0-038 —0-058 —0-101 —0-229
(my)w 0-014 0-020 0-034 0-050
Sy —0-024 —0-038 —0-067 —0-179
(zo)r —0-178 —0-205 —0-246 —0-291
(zo)w —1-88 —2-12 —2-43 —2-78
Zzg —2-06 —2-32 —2-68 —3:07
(252 0-172 0:196 0-231 0-284
(2w 1-95 2-22 2-682 3-22
Z.y 2-12 2-42 2:85 3-50
(20)7 —0-216 —0-223 —0-221 —0-205
(zo)w 0-764 1-380 2-542 4-400
220 0-548 1-157 2-321 4-195
(25)2 —0-039 —0-058 —0-101 —0-226
(zp)w —0-860 —1-290 —2-260 —5-050
22y —0-899 —1-348 —2-361 -5:276
My —0-099 —0:132 —0-187 —0-272
Ay 4-90 5-59 6-52 7-43
B, 29-5 37-4 49-7 80-0
Ag ft 779 687 605 471
Y 0-064 0-073 0-083 0-106
Ar 0-032 0-037 0:042 0-053




TABLE 5

Uwnsteady Aevodynamic Derivatives and Stability Roots of the Longitudinal
Oscillation of the Tailless Aircraft B with Large Fuselage

Mach 0 05 07 0-8
number
Mo —0-189 —0-212 —0-245 —0-304
My 0-195 0-222 0-252 0-296
Mo pus 0-150 0-173 0-210 0-250
Zme —0-039 —0-039 —0-035 —0-054
o Zmy 0-045 0-049 0-042 0-046
T ome 0-018 0-070 0-259 0707
© om, —0-130 —0-212 —0-373 —1-060
I 2 —1-885 | —2-115 | —2.43¢ | —2.785
= 2z 1-950 2220 2620 3-220
7 2-48 4-36 7-96 13-50
2 —2:57 —3-86 —6:75 —15-13
A, 1-819 1-913 1-734 0-736
B, 4-62 472 4-32 7-02
Ay 1467 1478 1520 1090
o 0-034 0-034 0-033 0-046
Mo ~0-377 —0-424 —0-489 —0-585
"y 0-390 0-445 0-515 0-619
Zmeg —0-227 —0-251 —0-279 —0-335
Zmy 0-240 0-272 0-305 0-369
mo 0-138 0-395 0-956 1-906
S my —0-390 —0-593 —1-850 —2-675
S % —1-888 —2-120 —2-440 —2-800
| % 1-950 2220 2-620 3-220
) 1-904 3-660 7-15 12-57
£ oz —2:57 —3-86 —6-75 —15-13
A, +1-568 +1-222 +0-200 —2-096
B, 26-39 29-42 33-07 42-15
Ay ft 567 535 501 447
b 0-089 0-094 0-100 0-112
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TABLE 6

Uunsteady Aerodynamic Derivatives and Stability Roots of the Longitudinal
Oscillation of the Tailless Aircraft B with Small Fuselage

Mach 0 0-5 0-7 0-8
number

me —0-101 | —0-117 | —0-142 | —0-168
Ty 0-098 0-111 0-11 0-135
o pus 0-080 0-094 0-112 0-130
Iy —~0-021 | —0-023 | —0-080 | —0-038
Zm, 0-018 0-017 0-019 0-005
mo —0-132 | —0-1438 | —0-120 | 40-041
my —0-003 | —0-013 | —0-035 | —0-306
%0 —1-885 | —2-115 | —2:434 | —2.785
Z 1-950 2220 2620 3220
20 2-20 4-04 7-55 13-04
% —2-58 —3-87 —677 | —15'15
A, 2-302 2-666 3-218 4-14
B, 243 2-71 3-61 5-64
A, 2720 2990 2840 2470
Iw 0-0185 0-0168 0-0176 0-0203

Iw/c = 0-05 corresponding to c.g. at 20 per cent of the wing chord.



TABLE 7

Unsteady Aerodynamic Derivalives and Stability Cocfficients of the Lateral
Oscillation of the Long Tail A and Short Tail Version B

Mach 0 0-5 07 0-8
number
()5 —0-106 —0-121 —0-142 —0-167
(1) 0-105 0-120 0-142 0-174
Zn, —0-036 —0-051 —0-072 —0-094
Zn,, 0-035 0-050 0-072 0-104
ny —0-102 —0-100 —0-087 —0-067
n; —0-028 —0-042 —0-073 —0-162
(Vo)r +0-089 +0-102 0-120 0-142
A War —0-088 —0-100 —0-118 —0-145
Zy, 0-289 0-302 0-320 0-342
Zy, —0-288 —0-300 —0-318 —0-345
Y 0-085 0-083 0-072 0-055
vy 0-023 0-035 0-061 0-136
A, 0-974 0-977 0-892 0-816
B, 6-45 8-96 12-53 16-60
4, 1318 1114 936 811
Az 0-019 0-022 0-027 0-030
(1) —0-070 —0-079 —0-092 —0-108
(1)z 0-070 0-080 0-095 0-116
Zn,, —0-025 —0-034 —0-047 —0-063
Zn,, +0-025 0-035 0-050 0-071
1y —0-040 —0-035 —0-021 +0-001
gy —0-018 —0-028 —0-049 —0-109
B () +0-088 0-099 0-117 0-136
(Yo)w —0-088 —0-100 —0-118 —0-145
Zy 0-238 0-249 0-267 0-286
Zy, —0-238 —0-250 —0-268 —0-295
Yo 0-050 0-043 0-025 —0-003
Yy 0-023 0-035 0-061 0-136
A, 0-604 0-564 0-457 0-285
B, 5-26 7-15 9-94 13-40
4, 1265 1080 912 785
2 0-020 0-023 0-028 0-052
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