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Summary.—The need of using stability derivatives of unsteady (oscillatory) motion is explained, and requirements

- of tunnel experiments for determining them are established. These are based on simple theoretical considerations, -

valid for both incompressible and compressible (sub- and supersonic) flow. Two alternative schemes of experimental

tests are critically examined. Non-dimensional derivatives are defined and applied in modified 'stability equations,
“referred to fixed or moving systems of co-ordinate axes. ‘ ~ Co

L. Introduction.—Recent experience with some prototypes of modern airéraft (both tailed and

~ tailless) has revealed a definite loss of damping in the short-period longitudinal oscillation at high

subsonic speeds. This may become so serious that it ‘may jeopardize the highest performance
which would otherwise be attainable. :

. Until recently, the damping of the short-period oscillation has always been more than adequate,
and these oscillations almost disappeared within a few seconds after an-initial disturbance, leaving
only the phugoid oscillation to persist. With our uncertainty about the stability derivatives, it -
was difficult to predict the damping of the phugoid oscillation with any accuracy, but although
this damping was always small and sometimes negative, the motion was of such long.period that
it'could always be controlled by the pilot, and the uncertainty about the value of the damping

- was not-considered important. . Uncertainty about the damping of the short-period oseillation is,
however, much more serious, for if this oscillation becomes unstable it may reach a dangerous
amplitude in a few seconds. Under these conditions it becomes ‘of paramount importance that
we should increase our knowledge of the stability derivatives at both low and high Mach numbers,
and particularly those which affect the damping of the short period motion. :

In-the past our study of aircraft dynamics has been based on the theory of ‘quasi-steady’

'~ derivatives, 7.e., we have assumed that the forces and moments, which arise from the aircraft
- “motion at any instant, depend only on the attitude and velocities at the same instant as if they
- were constant. This has led to a substantial simplification both of the theory and of experi- -
~mental technique, and to the derivatives dependent only on geometrical data. For instance, the

- Important derivative s, has been calculated as due to a rotation at constant rate, as in a steady
circular flight, and determined experimentally by whirling-arm tests rather than by oscillatory
.experiments in wind tunnel. * The forces and moments, however, depend not only on the instan-
~‘taneous values of the variables but on the complete history of the motion. To deal with the

*. R.AE. Tecfl. Noté A'ervo.r 2059, received 8th January, 1951.‘
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equations of motion in such'a way as to allow for an arbitrary past history is both difficult and-
laborious, but if we are concerned mainly with poorly damped oscillations, it may be adequate

‘to consider the effects which arise in simple harmonic motion. In this motion the past history is

completely defined by the instantanecus values of the displacements and velocities, and the

frequency. We can therefore obtain derivatives which will be analogous to our ‘quasi-steady’

derivatives but will now be dependent on frequency as well as on the geometrical data.

The failure of the quasi-steady treatment of the problem may be expected to increase with the
frequency of the motion. The derivatives of simple harmonic motion have been used therefore
for many years in flutter work where the reduced frequency o = nc/V (n =.angular frequency,
¢ — mean chord, V = forward speed) is high, of the order unity. In a disturbed motion of an’
aircraft much lower reduced frequencies occur, thus about 0-01 or less in phugoid metion, and
about 0-1 in so-called ‘short-period’ oscillations which have now become troublesome. It now
_seems necessary to use the harmonic treatment in this low frequency régime. ‘

It may be mentioned that flutter calculations have dealt practi(;ally with two-dimensional
derivatives only, and the theory of those has been well known for quite a long time.

Some indications that aerodynamic derivatives (in particular the ‘damping’ ones) of unsteady
" motion might be needed in the investigations of flight disturbances, even with their low frequencies,
resulted already from the two-dimensional theory of unsteady flow. - Glauert® has shown that
it is precisely at low frequencies that the rotary derivative may change sign so as to lead to incréas- -
ing rotary oscillations, though this would occur at rather unrealistic positions of the axis (in
front of quarter-chord point). The three-dimensional ‘unsteady’ theory is still in its infancy, but
there are indications already® * that it may lead to results considerably different from those of
the two-dimensional one; especially to reduced or negative rotary damping in wider regions for
various designs, in particular highly swept-back and tailless. Finally, the occurrence of negative

. damping may be strongly enhanced by compressibility at high Mach numbers®®. '

It is seen that stability derivatives must be comsidered, for every geometrical shape and .. =
arrangement, as functions of reduced frequency and Mach number. - Their theoretical estimates
should be based on the theory of unsteady flow, and the experimental determination on simple
harmonic oscillatory tests in wind tunnels, of low reduced frequency, (up to 0-2 at the highest as
far as can be foreseen). =

As the theory of unsteady flow in three dimensions can be expected to develop only gradually,
and will always need an independent confirmation, the experimental tests are absolutely indis-
pensable at the present stage. The experimental technique will probably be able to furnish the
necessary data sooner than the theory. It is very important that the general scheme of tests be
planned in a way to provide the users with such data as will be needed by them. The purpose of -
the present paper is to summarise the requirements, but not to meddle with the experimental
" technique itself. ' : : ‘

" The elementary theory of dynamic stability shows that the short period daniping ‘f,actrc‘)r is
roughly proportional to the linear combination of derivatives: o L

Be —g, — Mo _, Tt O ¢ V)
> 1B 5 B '

(see Appendix, A.15). It may seem that only the derivatives appearing in this expression are -
needed, and particular attention should be paid to m; which is most likely to change sign. .
However, a complete study of dynamic stability requires a greater number of detivatives. The
longitudinal disturbance may be treated as a combjnation of a vertical (heaving) oscillation (w)and
of a rotary oscillation (#) about the c.g. axis. Each of these oscillations gives rise to force and -
moment increments, so that four effects will appear, and all ought to be known. If the oscillations
are simple harmonic, the effects will also be simple harmonic functions of time, normally not in :
. phase with the originating oscillation; each of the four effects may be split into two components,
one in phase with the oscillation, and another 90 deg out of phase. We therefore obtain the total
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of 8 derivatives which, in the notation most li kely to be used in connection with tunnel eXperlments
Wlll be styled '

z,,,,zw,mw,m and zﬁ,zﬁ,mﬂ,mz, _ e e o (1.2)

Ot those only the first and last one appear in (1.1), but all others are needed for determining both
frequency and damping of the aircraft oscillations. As, however, all derivatives depend on
‘reduced frequency, it is clear that limiting the 1nvest1gat10n to two selected ones would deprive

" it of much of its value. Tt might be argued that the chief aim is merely to examine the important

1]

_critical case of zero total damping (B = 0) within the anticipated range of frequency, which
could be roughly delimitated according to flight experience. . However, it is possible that the

' unsteady derivatives at high Mach numbers may produce unexpected frequency values and even-

aperiodic modes. Even if this proves not to be so, there is everything to be said for starting with

~an experimental scheme which will determine all the derivatives for any axis of rotation, as

functions of mean incidence, Mach number and relative frequency. This may lead to safe
approx1ma.t10ns which would snnpllfy the subsequent scheme of tests.

Section 2 of this paper gives.the definitions of fundamental derivatives and the relatlonshrps
between their values corresponding to various c.g. positions. In sections 3 and 4, two most
natural schemes A and B of experimental tests are suggested and critically examined, both invol-
ving only rotary oscillations and avoiding the more troublesome heaving ones. The scheme A-

* limits the number of axes of oscillation to two, but requires recording both resultant moments

- and forces; the scheme B requires thiree axes, but only moments to be recorded. It is shown that
. the scheme A is to be greatly preferred theoretrcally, but it is expected that it will be also more
~ welcome from the point of view of experimental technique. In section 5 the derivatives are -

~written (as they always should be in summarlslng experimental results) in- the standard
non-dimensional form.

As commonly done at present in all investigations of oscillatory phenomena, complex variables
-are used throughout, so that the derivatives, eight in number, are combined into four ‘complex
derivatives’, thus, e.g., m, and m; are represented by one complex quantity, and similarly for
other derrvatlves - This practically halves the number of equations and formulae, but is also
_convenient for presenting the experimental results which are always recorded as sine curves,
with their amplitudes and phase angles determining exactly the complex derivatives. Spllttmg
-up the final numerical results into real and imaginary components for subst1tut1ng into dynamical
equations is, of course, an extremely snnple procedure.

"The Appendix gives the equatrons of small motion of the combrned heaving and rotary motion
(colloqurally the short-period oscillation) as a disturbance from straight flight. These are referred
first to the'same space axes as are used in the analysis of the model tests; and then to the more

/-usual wind axes fixed in the body. = The derivatives in both systems are furnished completely by

- the model tests. It is hoped that this discussion will clear up the confusion that sometimes arises
between workers in. the different systems. '

It should be notlced finally that the analySIS which grves in effect no more than a framework

. for expressing the aerodynamic forces in a prescribed motion, is based on first principles of
_ kinematics and dynamics only, and therefore applies to the Whole range of Mach number. '

2: Definition of Derivatives in a Fixed System of Co- oydmates and Fundamental Relatw%skzps —
A longitudinal disturbance in the motion of an aircraft (supposed to fly horizontally with the
velocity V) may be considered-to consist of a translatory vertical (heaving) motion, coinciding
with that of the-c.g., and of a pitching rotation about the c.g.; the translatory horizontal distur-
bance will be neglected The vertical motion is conveniently defined by its velocity w (positive
downwards, Fig. 1) asa function of time. Slmllarly, the rotary motion is defined by the angle of
pitch ¢ (p051t1ve clockwise in Figs. 2 and 3) as a function of time. The problem consists in
determining vertical forces, and moments about c.g., resulting from the disturbance. As only
siall disturbances are to be taken into account, the forces and moments in the resultant motion -

. 3’
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can be determined by superposition of the two component motions. Therefore all stablhty\
derivatives can be defined by examining the two component motions separately ‘We shall
- assume that both are simple harmonic oscillations of the same angular frequency # = 2af, but

generally out of phase with each other. The two component motlons w111 therefore be deﬁned :
in complex notation, by the equations:

w=wke™, § =9kt - . e e (21)~\'

where w* and 9* are amplitudes of w and 9, respectively, and ﬁ 1S the angle of phase d1fference
Differentiating (2. 1) with respect to time, we obtain:

- W = tnw* e = inw; B = ind* WD = iy e ce (22)

Considering the vertical (heaving) oscillation first (Fig. 1), the resultant force Z, and .moment
M® about the origin of co-ordinates O, must both be simple harmonic functions of time, .of
frequency #, generally out of phase with either w or @. Such functions may be determined either
theoretlcally or experimentally, and they can always be represented as sums of two terms in
_phase with w and w, respectivelyt:

Z=Zgw+ Zyp = (Zo + inZw = Zyw, e e (2.3)

M® = M0 + My = (M0 + inM;")w = M0, .. .. ~.. (24
where it has been found convenient to introduce complex derivatives Zy=2,+inZ, and

M, =M, + inM,>. The force Z and its derivatives obviously do not depend on the position
of the. origin' O in this case; the moment, however, does, and if it is required to determine the'
moment about any alternative pomt A, at a distance x from 0, this will be glven by

M=M° —xZ = (1,2 — xZ,)0 = M, R )
so that the complex moment derivative (with respect to A) M, = M, + mM becomes
M, =M, — Zx. .. .. . e (2.6)

Let us now consider the rotary osmllmfzon first about the origin O (Fig. 2). The- resultant force Z
and moment M, (about O) are again SImple harmonic functions of time, of frequency 7, generally .
out of phase with both # and #, and can be represented as sums of two terms, in phase thth B
- and ¢, respectively:

Z= Z,,oﬁ—l—Zﬂoa‘}—(ZM—]—mZM)ﬂ_ZM , e (2.7)“‘ |
M, = My® + Myb = (My, + inM;,9 = M9, .
where, again, complex derlvatlves Zs, and M, have been mtroduced . '

Next, let us consider a 70ta7y oscillation about an arbitrary point A (Fig. 8)1. Such an osc1lla,t10n -
may be obtained by superposition of a rotary oscillation about O and a Vertlcal oscrllatlon whose -
velocity w is permanently determined by the relationship:

W= — %) = — mxd, .. .. . . (2.9)/

+ If Z has been found experimentally as a harmonic functlon out of phase with the motion, which can be expressed
in the form: .

© Z = Z* eiti+), [written instead of Z = Z* cos nt + 8] .. e .. .o . (2.8a)

" Z* being the amplitude and 8 phase dlfference angle relative to w, then, comparing (2 3) and (2. 3a) we obtaln
—_ *

* ’ *
ZW=Z—COSS Zw=-i sin §, Z,,,:—Z—-—e"’ .. .. .. .. .. e (23b)
w* nw* w¥ T At
~ An-analogous procedure applies to M, and similarly to Zp and My, as defined below. -

1 For simplicity, Figs. 1 to 3 have been drawn as if the equ111br1um position were that of zero 1n01dence but the
theory apphes in the more general case.
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so that it differs in phase by 180 deg from 8, and by 270 deg from 9. The resultant force Z will
- now be obtained by adding the expres51ons (2 7) and (2. 3) while taking (2.9) mto account:

Z = Z,;.,,ﬁ — Z a9 = (Zso — inZ )9, e .. .. oo (2.10)
and hence the complex derivative Zy = Zy+inZ; WJII become: ‘
Zy = Ly, — MZyx . .. .. . .. . .o (211

Slmﬂarly, we obtain the resultant mommt about O, by addmg (2.8) and (2 4), while taking (2.9)
into account: :

| M© = I, .0 — M,O% — (Mﬂ,, mlOne, .. .. L. .. (219
50 that the complex deérivative M,@ = M © " M becomes: ) :
0 = My, — inl, % . ... .. . .. .. . .. .. .. (213

In this case, the resuliant moment about the centre A of rotary oscillations is what really matters,
and this will be: :

M =M© — Zy = (I1,, — nll,Ox — Zyx + inZx08 , .. .. .. (2.14)
and the complex derivative M, = M, + ¢#M; finally becomes: E
My = M,, — (Zy, + inll, )% + inZ x*. .. .. e (2.15)

Tt is seen that, when considering a disturbed motion of an aircraft, with its c.g. at an arbltrary
point A, we shall need four complex derivatives Z,, I, » Z,and I, (which really represent eight
real derlvatlves) Of these, Z, does not depend on x; M, and Z, are linear functions of x
(equations 2.6 and-2.11); and M, is a quadratic function of % (equation 2.15). -~ Supposing that
the values of derivatives Z,, M,?, Z,,-and M,, (related to the origin 0) have been determined
theoretically or experlmentally, We can easily calculate the corresponding values for an arbitrary
point A.

If the derivatives are to be determined expenmentally in a wind tunnel, one difficulty arises:
it is comparatively simple to arrange experiments with rotary oscillations (and to record variable
forces and moments during such oscillations), but it would be much more difficult to do this for
heaving oscillations. However, if experiments with rotary oscillations about more than one axis
are made, and a sufficient number of force and/or moment records obtained, it will be possible, by
using equatlons (2.6), (2.11) and (2.15), to determine all derivatives, either for the origin O,
or for an arbitrary c.g. position. If only some particular derivatives are needed, a certain
reduction of the number of measurements may be expected Two schemes of this kind are
examined in the next sections. :

3 Scheme A : Oscillatory Tests About Two Axes, Forces and Moments Recorded —TFor every
particular aircraft model, there are four 1ndependent unknown complex derivatives. To deter-
mine all of them we require four. independent measurements, edach recording one sine curve, or
rather its amplitude and phase, which count as one complex experlmental datum. The SJmplest
way to achieve.that is to arrange for oscillatory tests about two convenient axes, sufficiently -
distant from each other, say A, and A, (abscissae x, and «,), and to record Z and M in each case,
thus obtaining four complex derlvatlves Ly, Za s Mi9 ; and ]\/I,, .- Applying the equatlons (2. 11)
and (2.15) twice,-for A, and A,, we obtain the following system of four linear equations with four
unknowns Z,, M@, Z@o and M,, :

Zy, —inZ w1 = Zs1
Z — inZ Ky = Z,L},2
— (Zap + 10l 92, + inZ X2 = 1141,,1
Mﬂ,o — (Zy, + M ,P)x, + mexZ = I,,,
5
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-the solution of which is:

7 Xols1 — x1Z_ﬁ,2 MZZ Z_a,1 — Zys
A do T o — 961 > w Xy — xl
. = (x2M«9,1 — leﬁ,z) —+ x1%z(Z—5,1 — Za,z) L ,
e X — 4 : IR - (3.2
inll.© — (M0,1 — Mﬂ,z) + (xlz_fu — sza,z)
. @ o - ' xg —_ 961

-

Substitutihg (8.2) into (2.6), (2.11) and (2.15), we obtain all devivatives in terms of those originally
measured, for arbitrary x : : ,

'i%Z_w:: —Z—ﬁ’l — Z_ﬁ‘z ‘ ) \ .
X "-‘xl !
Zy=2,, 2" % 7 2=
8 8,1 X, — 7, -+ _192 i, %, > (33)
WLMW — My, — My — Zﬂ,z(xz‘— x) — 2y 1(5\7 - x1)
.962 '—xl
M@ — Mﬂl(xz - x) + Maz(x - xl) -+ (Zﬂl — Zﬁz)(x — xl)(x — x)
x2 —x1

The formulae (3.3) would become somewhat simpler (though less symmetrical) if the origin of
co-ordinates O were chosen so as to coincide with one of the oscillation centres A, or A,.
However, it will be more convenient to have them written as above, becatise the c.g. position
(x) will usually be measured from the leading edge of the standard mean chord, or of the root

chord, and it will be rather unusual to have one of the experlmental oscﬂlatlon centres exactly
at either of these p051t10ns

The four complex formulae (3.3) are equivalent to eight formulae in real terms, which are‘.

obtained by simply separating the real and 1mag1nary parts in (3 3). For example the first
formula may be written:

(2, + mZ,) = (Zox + 1123 1) (Zos + mZg ), |

“and hence:

:—', 7/1/22,;,2_—, .o .. e . . (3.4)
x2"—‘x1 xz'_‘xlv .

and the remaining formulae are split in a similar way. - \

4. Scheme B : Osmllatowy Test About Three Axes, 0nly Mowments Recorded. ——From the point of
view of the experimental technique, it might be convenient to measre only resultant moments
about the axes of oscillation, while avoiding the troublesome procedure of measuring the resultant
forces. The question arises, what can be achieved by such partial measurements. - If only
oscillations about two axes were considered, we should have merely the last two of equations (3.1)
at our disposal, and none of the four unknowns could be determined. If, however, three axes

are used, then, applymg the equation (2.15) three times, we get the followmg system of three
linear equatlons ‘ ‘

Mz‘},a — (2_19,0 —l" 'L-%Mw(é?)xl + 'i%Z—wxlz — Mﬂ,l
W,y — (Zo, -+ 01Oyt + inZons® = My,
Mﬂ,o - (Z_g,o -+ i%Mw(o))xs + ,L'%Z_wxsz — Mqé,s

O O
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which may ‘be thought to contain three unknowns #,,, Z, and (Z,, + ind,®). These are
easily determined: ‘ " :

-

7 — a1 . 8,2 9,3
e (¥ — #3) (%1 — %) * (%2 — %) (22 - %3) + (%5 — %1) (%5 — %s)
My, =M 273 )78 1¥3 T X Liao
8 " " ( r xz) (xl _ .’/'C3) + Aﬂ,2 (x2 _— xl) (x2 - xS) + Mos (x3 — X1) (5\73 - X2) ( )
Z nld @ = I Xs +%s Vi %1+ %5 7 %y + Xs
e e e A e A A R R A )]

and, substitﬁting into (2.6), (2.11) and (2.15), we obtain, Jor arbitrary x:

. = ' Mg,l ]“719,2 ‘ ‘ Mf}ﬁ
-‘ me\ = (0, — %) (%, — %) T (X5 — %1) (%2 — %) (%3 — #1) (%s — %)
s o Xy % — 2 o %y — 2% - %y 4 2%, — 2% L
ot lﬂMw = Mo (%1 — %) (%1 — %3) + Mss (%2 — %1) (%2 — %) T ]Mﬂfs (%3 — %1) (%5 — %) - 4.3

(x — 2)(x — x,)
¥z — xl)(x3 — xz)

(x — %1) (x — %3)
Xy — %1) (%2 — Xs)

(¥ — x,) (k — Xg)
(%1 — %) (%1 — %a)

It is seen that the two corﬁplex derivatives Z, = Z, + inZ, and M, = M, -+ inM; can be
determined for any #. As to the remaining derivatives, only their linear combination:

Zyindl, = (Zy — M) +inl(Zs + M) .. e oo oo (44)

can be found. It would obviously not help at all to. use four axes of oscillation: an additional
equation of the same kind as in (4.1) would be redundant, while it would not enable us to find
Z, and M, separately. Therefore, methods consisting in measuring only moments about the
axes of oscillation do not provide a full solution of the problem, i.e., do not furnish the values of
all derivatives. . |

‘Nevertheless, the experimental scheme B can be at least partly useful in some cases:

(@) The damping of short-period oscillations depends primarily on two derivatives, Z, and M;,
both determinable in this scheme. If, therefore, we are merely interested in the condition of
zero damping, it may seem sufficient to know these two particular derivatives. The matter is
not so simple, however. One must keep in mind that all derivatives are functions of Mach
number and of reduced frequency. If Z, and M; are determined as such functions, it will be
possible to find the condition of zero damping, e.g., the critical value of Mach number for any
assumed reduced frequency. However, the true frequency, in any given conditions of flight,
depends itself on all other derivatives. Hence, the data furnished by the scheme B are
" insufficient, though quite valuable. ' |

(6) If only small reduced frequencies are taken into consideration, then two additional relation-
ships between the unknown (real) derivatives hold approximately, viz., |

CM,=VM,, Zy==VZy. .. e e ee e e .. (45)

These relationships are obviously and exactly true in the case of steady motions, and then they
mean-simply that, for a constant 9, the resultant force and moment are the same as for a constant
w = V#®. For oscillatory-motions, the relationships are only approximately true, because the
effects of apparent mass and of periodically varying vortex wake differ in the cases of rotary and,
plunging oscillations. However, it can be shown easily, at least in the two-dimensional case,
- ‘that the differences are small of the order higher than one¥, in reduced frequency. If, therefore,

Mﬂ == MM “I‘ Mﬂ,‘s (

o

* In the two-dimensional case, the order of magnitude of the diﬁérences is that of ®? ln «, where « is reduced
frequency; in the three-dimensional ¢ase, we may expect? differences of the order w?.

7



an aceuracy of the first order is deemed sufﬁcient, then the relationships (4.5) may be used as a
makeshift, and then all derivatives are determinable in the scheme B. The procedure is obviously
not quite satisfactory: the experimental method should be frée from all inexact or doubtful

theoretical assumptions, for which it should provide the ultimate check.

The final conclusion is that the scheme B may be of some limited use, but the scheme A should
be greatly preferred. ' ‘

5. Non-dvmensional derivatives—It is essential to present the experimental results in non-
dimensional notation, so that data obtained in different laboratories for different models, wind
speeds, and frequencies, could be easily compared and supplement each other. The non-
avmensional independent variables, against which the stability derivatives will be plotted, are:

Non-dimensional abscissa of the axis: 4 — 9&/0, e ce (5.1)

and reduced frequency: o = nc/V = 2afc/V. .. .. .. o (5.2)

The Mach number V/a will be an important additonal parameter, but it will not appear in our
equations. It should be noticed that the definition of the reduced frequency is based on the
length ¢ (mean chord) according to the British custom, and not on the semi-chord, as in German
and most American publications. Our definition leads to simpler formulae in what follows.
The difference must be remembered when comparing results from various sources. ‘

The following non-diniensional stability derivatives will be introduced; équivalent or analogous
to the standard expressions of Bryant and Gates®: Y : ‘

Ty

Zy = L,[pSV ' zw = Z,/pSc
My = My[pSVe = - my = ]W/z;,/pSC L (5.3)
2 = Zo|pST? z = ZiJpSVe. [ ,
e = M,[pSV % my = My[pSVe®

It will be noticed that the standard mean chord ¢ has been used throughout as length of referencve,

instead of / (tail arm). This is because the technique will be often applied to tailless models, and -
it also leads to a desirable simplification of the formulae*. - ‘

The non-dimensional complex derivatives will be obtained as follows:
By = 2y + G002y = (Z, + inZ3)[pSV = Z,J¢SV,
and similarly: |
Wy = My + LM, = Mw/pSVc
Z =1 +iwz = Z/pSV?
Wy =My - tomy = My[pSV %

(5.4

e —
: .

The fundamental 7éloztionships (2.6), (2.11) and (2.15) for stability derivatiyves, corresponding to ,

varying positions of the axis, will assume the following form in non-dimensional notation: -
W_;Z‘w == mw(o) - th, 2—19 - Zﬁ,o _ sz—wh’ \L | | (5 5)
T = Ty — (B + G0V -+ G0Zh° j ' e

“# Another difference will be found in the definition of s which, according to Ref. 6, should be defined as Mz;,g/ We

(W being the weight of the aircraft) which would be p times smaller than in (5.3), denoting the relative density.
Our definition is more consistent with those of other derivatives. ‘ "

8



These three complex formulae are equivalent to the followmg six formulae in real terms

Wy = M, — 2 h ' my = m, @ — 2.k 1
2 =.,z1,,o + w22k ' B X = %5 — Zuhl . (5.5a)
My = Mg, — (2, — @2 m,Nh — w?2,h* My = My, — (%, + M ("))h + 2, ha J '

We shall now transform into non-dimensional notation the formulae of sections 3 and 4,
giving the derivatives for arbitrary p051t10n of the axis in terms of those originally measured, for
the schemes A-and B.

- Scheme A (formulae 3.3):

- 519,1 - zﬂ,z
t0f, = __'h —
he h—hy
Zy = zz?l ‘|‘ 9,2
hy —h By — by
_ (s — 1) 0 h) L. .. (5.6
s _,WL@_l—WL@,g Zpolfte — M) — 218 —
zwm,,‘y = : . T : |
i — 74_’%9,1(}5 — h) -+ 7y, 2(h — h ) + (Z_al — 519,2) (h — h1)(h — hz)
e
‘ Chy — Iy _
Scheme B (formulae 4.3): ) ’ }
. - 3
oo ' mal 74_%,2 7’71'5,3
ke = G R e —F)) T Ui — B e —To)) e — ) (s — ) | |
_ by Ry —2n By + By — 20 _ hyths =20 . (5.7)

B e = o G R — ) T oy — T (e — B " T — ) (s — o)

- (B —h)h—hs) | _ (h—I)h —hy) . (b — k) — k)
Mo = Mo N o = o)+ % Ty — ) he — B) " Thg — o) (s — B3 |

It must be kept in mind that each of the complex formulae (5.6) and (5.7) represents two formulae
in real terms, obtainable by separatmg the real and imaginary terms in each formula.
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| APPENDIX

Equations of Dynamic Stability for Level Flight with Derivatives of Oscillatory Motion

In the theory of dynamic stability, the equations are usually set up in the system of moving
axes ¥, z, the x-axis being fixed in the moving aircraft and directed along the undisturbed flight
velocity V, thus horizontally in undisturbed level flight (Fig. 4), and the z-axis pointing vertically
downward in such a flight*. Hence, the moving axes coincide, in undisturbed flight, with those
%1, %1, fixed in space, which are always horizontal and vertical respectively.

During a disturbance, the attitude of the aircraft in space varies and is determined, at any time,
by the small angle of pitch 6 (positive clockwise in Fig. 5). The moving axes x, z rotate with the
aircraft through the same angle 9, while x,, z, remain unaltered. The velocity of the c.g. varies
throughout the disturbance so that, in addition to ¥/, there may be small incremental velocity
components # and w along x and z-axes. 'We neglect the component # (thus assuming a distur-
bance at constant forward speed, and eliminating the phugoid motion). Therefore, the small

variable components of the disturbance are only 6 and w, and the resultant linear velocity:

V,=+(V*+w)=V, .. .. .. . .. (A

the small terms of the second order being heglected. The same disturbanée" can be referred to
the fixed axes %y, z;, the resultant velocity being now resolved along them, so that the horizontal
component will become: o

y=Veos6==V, .. .. . .. . A2
and the vertical component: -
w, =wcos — Vsinfg==w—V6, .. .. .. .. (A.3)

the higher-order. terms being again neglected. It is seen that the horizontal component may be
considered as constant, and the entire disturbance represented, in line with the ‘experimental’
method used in the main text, as a combination of vertical (heaving) oscillation with small
variable velocity w, and rotary oscillation with the small variable angle 4, always equal to 0:

S =0. .. . L Al

It is clear now that the equation of motion can be written either in the mdving system (with w,
6 as unknown functions of time), or in the fixed system (with w,, ¢ as unknown functions of time),

and the transformation needed for passing from one system to thé other one will be simply (A.3)
and (A.4). : ‘

We shall start by writing the equations in the fixed system, so as to use the ‘experimentél’ aero-
dynamic derivatives of the main text, and to transform them afterwards to the more usual moving
system. The equations are: ’ ; ‘

= 2o+ 25 4 2w+ 2% 1 s
W—y f;’f — My +M,z,%:-+Mwwl —i_—M,-”% J' ' |
To write them in non-dimensional terms, we introduce three auxiliary constants:
' unit of aerodynamic time - t= W/gpSV | . R
relative density of the aircraft a= W |gpSc S .. (A8)
moment of inertia ratio . ip =Fkg*c? -

* In Figs. 1 and 3, referring to the main text of this Report, the abscissa x was conveﬁiently measured positive
backwards: this does not lead to any inconsistency. . : '
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" further, non-dimensional values of time, and vertical velocity component:

v=¢f and B, =w V, .. .. .o e e e . (AT

. and ﬁnally, non- d1men510nal derivatives, as defined by (5.3). The equations (A.5), after
multlplymg the first one by '

gIWV = 1/pSV? = [pSVeu ,
- and the second one by

2 Why® = pfpSV iy = i[pSVe%s,

become: )
. i, % " Zy A1,
= z50 ‘l‘ Tz ‘l‘ 2,01 + u dv
; (A.8)
a*y ,um,, Wy dd | pm, % my, A,
oLt RE T G, 1+—dr

We now obtain the equations in the moving system, by replacing w, by (A.1) and & by 0 in (A.5):

W/dw a6 ' , | df L
ola — V@)= = V2 + (& — VZ) g+ Zaw + L
Whs* d% b . . (49
e = (M, — VM)0 + (M; — VM) 5 + M + M

1t is seen that w—derivativ;es (Zy Zy, M,, M) are exactly the same in both systems, referring as
well to w, and w. Contrariwise, the 6-derivatives differ from #-derivatives, and may be written:
Zy=Zy—VZ Zy=2;—VZ, 1
- (A.10)

M, =M, — VM., My=M;—VM; |

The new equations can also be immediately re-written in non-dimensional form, by transforming
exactly as before, while introducing new non- -dimensional §-derivatives, analogous to #-derivatives
_in (5.8):

) 2y = Zy[pSV? =23 — 2 9
z, =2 = Z;,/pSVc‘ = 2 — %
‘ & (A.11)
my = M[pSV ¢ = my —
! mqr; my = M;[pSVe? = my — m, J
and putting § = ¢f = d6/dr (non-dimensional angular velocity). The equations (A.9) then
_ become: ‘
| L db dib
p 0+(1+ 83+ ab + 22 1
. (A.12)
dq My 4 ,umw o o e ﬁZE@ ‘
F il U o e el R J




Equations (A.12) contain a few more terms than usually written hitherto, viz., the terms with
derivatives z,, m;, 2, and z;. The two last ones have been normally omitted as supposedly very
small compared with g (the latter, particularly for fast aircraft, being of the order of 100); this
will apply in all cases we have in view, and therefore the derivatives z, and z, are of very little
importance, and the corresponding terms may be usually neglected—this also applies to terms
with z; and 2, in (A.8)%. Asto the terms with derivatives z, and m,, they are of particular interest.
On the basis of the ‘quasi-steady’ theory, the relationships (4.5) would apply, therefore (A.10) and
(A.11) would give 2, = 2, — 2z, = 0 and m, = my — m, = 0, and both terms would disappear,
the system of differential equations becoming of the second order in § and #, instead of third
order in 6 and @. The condition 2z, = m, = 0 has been always tacitly implied, this meaning with .
reference to the moving axis exactly the same as (4.5) in fixed axes. When having to deal with
aerodynamics of unsteady (oscillatory) motion, we may at most expect z, and s, to be small of
second order in w. The latter fact does not warrant the neglect of these terms in (A.12),
without a thorough investigation and numerical analysis. The simplification involved is not
particularly valuable, as the primary aim of the stability equations is to establish the
conditions of zero damping, and these will be simple enough even without neglecting the
Z,, M, terms. The determinantal equation for stability roots, corresponding to the full system

(A.12) is: )
Za ‘ _ %Y, _
(1 —;;)1 A (1 +M>l % :
a4(1) = . =Ai* + BA*+Ci+D=0,.. (A13)
My a2y B
(3] (7:] _ 3] ip
where:
A=1-"
"

¢ =B A () Eeys (1 ) Gy
22 4/ tp #/ tp

hld

(A.14)

D=4 (2,7 — Zghy)
ip )

while, assuming z, = m, = 0 (and neglecting z,/z and z,/u, as proper for consistency reasons),
we obtain: :

A=1 . A
? B L. ... (A5
C_,\_zwmq — UM, :Zw(mb '—mw:) __;umw
o i 15
D=0

# The derivatives z, and z3, although negligible in dynémic equations, are of great importance for determining
m., and m; for varying c.g. positions, see (5.5a). '
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The condition of zero damping in the last simpler case (quadratic equation) is:

B —g ="t _o 0 .. . (A1)

N . zB .
“while, taking the full cubic ( (A.18) with coefficients (A.14) ) into account, it becomes: -
 B—DIC=0. .. .. .. .. .. ... .@an

- As a thorough expefimental investigation must provide all derivatives, there should be no
- difficulties with using the more exact condition. '

18 ..
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