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Summary.--The need of using stability derivatives of unsteady.(oscillatory) motion is explained, and requirements 
of tunnel experiments for determining t}lem are established. • These are based on simple theoretical considerations, 
valid for both incompressible and compressible (sub- and supersonic) flow. Two alternative schemes of experimental 
tests are critically examined. Non-dimensional derivatives are defined and applied in modified 'stability equations, 

' referred to fixed or moving systems of co-ordinate axes[ 

i 

1. tntroduction.--Recent experience with some prototypes of modern aircraft (both tailed and 
tailless) has revealed a definite loss of damping in the short-period longitudinal oscillation at high 
subsonic speeds. This may become so serious that it Jmay jeopardize the highest performance 
whichwould otherwise be attai/lable. 

Un t i l  recently, the damping of the short-period oscillation has always been more than adequate, 
'andthese oscillations almost disappeared within a few seconds after an~Jnitial disturbance, leaving 
only the phugoid oscillation t6 persist. With our uncertainty about the stability derivatives, it 
was difficult to predict the damping of the phugoid oscillation with any accuracy,, but although 
this damping was always small, and sometimes negative, the motion was of such long.period that 
i t  could always be controlled by the pilot, and the uncertainty about the value Of the damping 
was not considered important. ~ Uncertainty about the damping of the short-period oscillation is, 
however, much more serious, for if ~ *his oscillation Becomes unstable it may reach a dangerous 
amplitude in a few seconds. Under these conditions it becomesof paramounti importance that 
we should increase our knowledge of the stability derivatives a t  both low and high Mach numbers, 
and particularly those,,which affect the, damping of the short period motion. / 

In the  past our study of aircraft dynamics has been based on the theory of 'quaSi-steady' 
derivatives, i.e., we have assumed that  the forces and moments, Which arise from the aircraft 

J motion at any instant, depend only on the attit~ude and velocities at. the same instant as if they 
Were constant. This has led to a substantial simplification both of the theory and of experi- 
mental  technique, and to the derivatives dependent only on geometrical data. For instance, the 

• important derivative ms, has l~een calculated as due to a rotation at constant rate, as in a steady 
• circular flight, and de{ermined experimentally by  whirling-arm tests rather than by oscillatory 

,experiments in wind {unnel. " The forces and moments, however, depend not only on the instan- 
t a n e o u s  v, alues of the variables but on the complete history of the motion. To deal with the 

*-R.A.E. Tech. Note Aero. 2059, received 8th January, 1951. 
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equations of motion in sucha  way as to allow for an arbitrary past history is both, difficult and- 
laborious, but if we are concerned mainly with poorly damped oscillations, it may be adequate 
to consider the effects which arise in simple harmonic motion. In this motion the past hi.story is 
completely defined by the instantane0us values of the displacements and velocities, and the 
frequency. We can therefore obtain derivatives which will be analogous to our 'quasi-steady' 
derivatives but  will now be dependent on frequency as well as on th e geometrical data. 

The failure of the quasi-~steady treatment of the problem may be expected to incre'asewith the~ 
frequency of the motion. The derivatives of simple harmonic motion have been used therefore 
for many years in flutter work where the reduced frequency ~ = nc/V (n =,angular frequency, 
c ----- mean chord, V = forward speed) is high, of the order u n i t y . ,  In a disturbed motion of an- 
aircraft much lower reduced frequencies occur, thus about 0.01 or less in phugoid motion, and 
about 0.1 in so-called 'short-period' oscillations which have now become troublesome. It  n o w  
seems necessary touse the harmonic treatment in this low frequency r6gime. 

It  may be mentioned that flutter calculations have dealt practically with two-dimensional 
derivatives only, and the theory of those has been well known for quffe a long time. 

Some indications that aerodynamic derivatives (in particular the 'damping' ones) of unsteady 
motion migl~t be needed in the investigations of flight disturbances, even with their low frequencies,, 
resulted already from the two-dimensional theory of unsteady f low.  Glauer~: z has shown t h a t  
it is precisely at low frequencies that the rotary derivative may change sign So as to lead to increas- 
ing rotary oscillations, though this would occur at rather unrealistic positions of the i~xis (in 
front of quarter-chord point). The three-dimensional unsteady theory is still in its infancy, but 
there are indications ,already 2' 4 that it may lead to results considerably different from those of 
the two-dimensional one; especially to reduced or negative rotary damping in wider regions f o r  
various designs, in particular highly swept-back and tailless. Finally, the Occurrence of negative 
damping may be strongly enhanced by compressibility at high Mach numbers ' 5 

It  is seen that stability derivatives muStbe  considered, for every geometrical shape a n d  
arrangement, as functions of reduced frequency and Mach number .  Their theoretical estimates 
should be based on the theory of unsteady flow, and the experimental determination on simple 
harmonic oscillatory tests in wind tunnels, of low reduced frequency, (up to 0.2 at the highest as 
far as can be foreseen). 

As the theory of unsteady flow in three dimensions can be expected to develop only gradually, 
and will always need an independent confirmation, the experimental tests are absolutely indis- 
pensable at the present stage. Theexperimental technique will probably be able to furnish the 
necessary data sooner than the theory. It  is very important that the general scheme of tests be 
planned in a way to provide the users with such data as will be needed by them. The purpose of 
the present paper is to summarise the requirements, but not to meddle with the experimental 
technique itself. 

T h e  elementary theory Of dynamic stability shows that the short period damping factor is' 
.roughly proportional to  the linear combination of derivatives: 

m ~ _  rnq + m~ . . . . . .  (1.1) 
B ----- --z~ -- "i, z~ -- iB . . . . . .  

(see Appendix, A.15). I t  may seem that only the derivatives appearing in this-expression are 
needed, and particular attention should be paid to m~ which is most likely to change sign. 
However, a complete study of dynamic stability requires a greater number of de~ivati;ves: The 
longitudinal disturbance may be treated as a combination of a vertical (heaving) oscillation (w)and 
of a rotary oscillation (v~) about the c.g. axis. Each of these oscillations gives rise to force and 
moment increments, so that four effects will appear, and all ought to be known. If the oscillations 
are simple harmonic, the effects will also be simple harmonic functions of time, normally not in 
phase with the originating oscillation; each of the four effects may be split illtO two component s, 
one in phase with the oscillation, and another 90 deg out of phase. We therefore obtain the total 
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of 8 derivatives which, in the notation most likely to be used in connection with tunnel experiments, 
will ~ be s ty led:  

z~, z~, m~, m;~ and z~, zs, m~, ms. . . . . . . . .  . . . . .  (1.2) 
i 

Of those, only the first a~d last one appear in (1.1), but  all others are needed for determining both 
frequency and damping of the aircraft oscillations. As, however, all derivatives depend on 

r educed  frequency, it is clear that  limiting the investigation to two selected ones would deprive 
it of much of its value. I tm igh t  be argued tha t  the chief aim is merely to examine the important  
critical case of zero total damping (B = 0) within the anticipated range of fi~.equency, which 
could be roughly  delimitated according to flight experience. • However, it is possible t h a t  the 

- unsteady derivatives at high Mach numbers m a y  produce unexpected frequency values and e v e n  
aperiodic modes. Even  if this proves not to be so, there is everything to be •said for starting with 
a n  experimental  scheme which will determine all the  derivatives for any axis of rotation, as 
functions of mean incidence, Mach number and relative frequency. This may  lead to safe 
approximations Which would simplify the subsequent scheme of tests. 

Section 2: of this paper gives the definitions of fundamental  derivatives and the relationships 
between the i r  values corresponding to various c.g. positions. In sections 3 and 4, two most 
natural  schemes A and B of experimental tests are suggested and critically examined, both invol- 
ving only rotary Oscillations a n d  avoiding the moretroublesome heaving ones. The scheme A 
limits the number of axes of oscillation to tfwo, but requires recording both resultant moments 
and forces; the scheme B requires three axes, but only moments to be recorded. I t  is showntha t  
the scheme A is to be greatly preferred theoretically, but  it is expected that  it will be also more 
welcome from the point of view of experiment'al technique. In section 5 the derivatives are 
written (as they always should be in summarising experimentai results) i n  the standard 
non-dimensional form. ~ 

AS Commonly done at present in all investigations of oscillatory phenomena, complex variables 
• are used throughout, so that  the derivatives, eight in number, are combined into four 'complex 
derivatives',, thus, e.g., m~ and ms are represented by one complex quantity,  and similarly for 
other derivatives. This practically halves the number of equations and formulae, but is also 

_ convenient for presenting ~the experimental results which are always recorded as sine curves, 
with ~he{r amplitudes and phase angles determihing exactly the complex derivatives. Splitting 
up the final numerical results in'to real and imaginary components for substitiiting into dynamical 
equations is, of Course, an ext#emely simple procedure. 

T h e  Appendix gives the equations of small motion of the combined heaving and rotary motion 
~ (colloquially the short-period oscillation) as a disturbance from straight flight. These are referred 

first to the~same space axes as are used'in the  analysis of the model tests, and then to the more 
/ ~ usual wind axes fixed in the body. The derivatives in both systems are furnished completely, by 

the model • tests/ I t  is hoped that  this discussion will clear up the confusion that  sometimes arises 
between workers in the different Systems. 

I t  should be noticed finally tha t  the analysis, which gives in effect no more than a framework 
for expressing the aer0dynamic forces in a prescribed motion, is based on first principles of 
kinematics and dynamics only, and therefore applies to the whole range of Mach number. 

" 2. Definition of Derivatives in a Fixed System of Co-ordindtes, and Fundamental Relationships.---~ 
A longitudinal disturbance in the motion of an aircraft (supposed to fly horizontally with th e 
Velocity V) may  be considered.to consist of a t rans la tory  vertical (heaving) motion, coinciding 
with tha t  of the c.g., and of  a pitching rotation about the c.g.; the translatory horizontal distur- 
bance will be neglected. The vertical motion is conveniently defined by its velocity w (positive 
downwards, Fig. 1)as a function of time. similarly, the rotary motion isdefined by the angle of 
pitch ~ (positive clockwise in Figs. 2 and 3) as a function of time. The problem consists in 
determining vertical forces, and moments about c.g., resulting from the disturbance. As only 
sfnall disturbances are to be taken into account, the forces and moments i n the  resultant motion 
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can be determined by superposition of the two component motions. Therefore, all stability, 
derivatives can be defined by examining the two component .motions separately. W e  shall 
assume that  both are simple harmonic oscillations of the same angular frequency n ---- 2a f,  but  
generally out 'of  phase with each other. The two component motions will therefore be defined, i 
ill complex notation, by the equations" 

w = w~e ~', ~ = ~ e  ~c"~+~ . . . . . . . . . . . . . .  (2.i) 

where w ~ and ~ are amplitudes of w and ~, respectively, and ~ is the angle of phase difference. 
Differentiating (2.!) wi,th respect to  time, we obtain: 

(v = i n w  *~ e ~ = i n w ;  6 = i n ~  ~ e ~c~+a~ = i n ~  . . . . . . . . .  . .  (2.2) 

Considering the vertical (heav ing)Osc i l la t ion  first~ (Fig. '1), the resultant force Z ,  and moment  
M (°~ about the origin of Co-ordinates 0, must both be simple harmonic functions of time, o f  
frequency n, generally out of phase with either w or w. Such functions may be determined either 
theoretically or experimentally, and they can always be represented as sums of tx¢o terms, in 
phase with w and w, respectively?: 

Z = Z~w 4- Z j a  = (Z~ + inZ;~)w --=- Z,~w . . . . .  . .  . .  (2.31 

M c°~ ---- M~,C°~w 4- M;~°~fv ----- (M~,C°~4- inM;oC°~)w = f/f~C°w . . . . . . .  (2.4) 

where i f  has been found convenient to introduce complex derivatives 2~ = Z,, 4- inZ;~ and 
79f,, c°~ ~ M ~  c°~ + i n M ~  C°~. The force Z and its derivatives obviously do not dependon the position 
of t h e  origin' 0 in this case; the ,moment, however, does, and if it is required t o  determine the 
moment about any alternative point A, at a distance x from O, this will be given by: 

M = M ~°~ - -  x Z  ---- (79f~ ~°~ - -  x Z ~ ) w  - -  M , y ,  .' . . . . . . . .  (2.5) 

so that  the complex moment  derivative (with'respect to A) 7 ~  = M ~  + inM;~ becomes: 

, _71~ = 717~ <°~ -- z?~x . . . . .  . . . . . . . . . . .  . .  (2.6) 
q 

Let us now consider the rotary osci l lat ion,  first about the origin 0 (Fig. 2). The resuitant force Z 
and moment Mo (about O) are again simple harmonic functions of  time, of frequency n, generally 
out qf phase with both ~ and #, and can be represented as sums of two terms, in phase with 
and #, respectively" 

Z = Zo, o# + Z#,o~ = (Zo, o 4- inZ~,o)# - -  f o ,o# ,  . .  . .  . . . . .  (2.7) 

Mo -= Mo,o# + M~,ob = (M~,o 4- inM~.o)# ---- 7YI~.o~ . . . .  . . .  . .  (2.8) 

where, again, complex derivatives 2~,o and 717~,o have been introduced. " 

Next, let us consider a rotary oscil lat ion about an  i~rbitrary p o i n t  A (Fig. 3)$i SuCh an0scillat~on 
may be obtained by superposition of a rotary oscillation about 0 aiid a vertical oscillation whose 
velocity w is permanently determined by the relationship: 

w = - -  x~  = - -  inx~9, • . . . . . . . . . . . .  . .  (2.9) • 

? I f  Z has  been found exper imenta l ly  as a ha rmonic  funct ion out  of phase  wi th  the  motion,  xvhich Call be expressed 
in the  form: ' " - 

Z = Z ~ e~(n~+~), [written instead of Z ---- Z ~ cos (nt + 3)] . . . . . .  . . . . .  . (2.3a). 

Z ~ being the  ampl i tude  and 3 phas  e difference angle relat ive to w, then, compar ing  i2.3) and  (2 .3a) /we obtain:  
Z ~ Z ~ Z*  

Z~ ---- ~-~ cos 3, Z~ ----.~-~ sin 3, Z~---- ~ e i~ . . . . . . . . . . . . . . .  (2.3b) 

An 'ana logous  procedure  applies  to ~ r ,  and  similar ly to ~ and M--~, as defined be l0w.  

J{ For  simplici ty,  Figs. 1 to 3 have  been drawn as if t h e  equi l ibr ium posit ion were t h a t  of zero ' incidence,  b u t  the  
theory  applies in the  more  general  case. - , 
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so that  it differs in phase by 180 deg from ~, and by 270 deg from v~. 
now be obtained by  adding the expressions (2.7) and (2.3), while taking (2.9) into account" 

z = &,o~ - 2 ~ x ~  = ( & : o  - i n Z ~ x ) ~ ,  . . . . . . . . . .  

'and hence the complex derivative Z~ = Z ~ +  inZ~  will become: 

2 s  = Zs, o - -  i n Z w x  . . . . . . .  ~ . . . . . . . . . . .  (2.11) 
i 

Similarly, we obtain the resu l tan t  m o m e n t  about  O, by adding (2.8) and (2.4), while taking (2.9) 
into account: 

M (°) = ~/I~,o~ - -  1F/Iw(°)x~ : (2~I~,o inff~,(°)x)a , . . . . . . . .  (2.12) 

~so that  the Comp!ex derivative ~r~(o)= M~(o) + inMi(o) becomes: 

M~(°! = fls,o - -  infI,~(°)x . . . . . . . . . . . . . . . . . .  (2.13) 

In this case, the resu l tan t  m o m e n t  about  the centre A o f  ro tary  osci l la t ions  is what really matters,  
and this will be: 

M = M (°) - -  Z x  = (M~,o - -  inY['l~(°)x - -  2s, ox + in2~/2)~, . . . .  ,(2.14) 

and the complex derivative ~ = M s  + i ~ M ~  finally becomes: 

~?s = ~rLo ( Z o , o +  in~J°))x + inZ~xy. . . . . . . . .  ' . .  (2:1s) 

• I t  is seen that,  when considering a disturbed motion of an aircraft, with its c.g. at an arbi t rary 
point A, we shall need four complex derivatives 2~, 2I¢~, 2a_and 2II~ (which really represent eight 
real derivatives). Of these, Z_~ does no£ depend on x ;  M~ and 2~ are linear functions of x 
(equations 2.6 and.2.11); .and Ms is a_ quadratic function of x (equation 2.15). - Supposing that  
the values of derivatives ZT~, M~(°) , Z~,o.and M~,o (related to the origin O) have been determined 
theoretically or experimentally, we can easily calculate the corresponding values for an arbi trary 
point A. 

If the derivatives are to be determined experimentally in a wind-tunnel,, one difficulty arises" 
it is comparatively simple to arrange experiments with rotary oscillations (and to record variable 
forces and moments during such oscillations), but  it would be much more difficult to do this for 
heaving oscillations. However, if experiments with rotary  osci l la t ions  about  more  t h a n  one ax i s  
are made, and a sufficient humber of torce and/or moment records obtained, it,will be possible, by  
using equations (2.6), (2.11) and (2.15), to determine all derivatives, either for the origin O, 
or for. an arbi trary c.g. position. If • only some particular derivatives are needed, a certain 
reduction of the number of measurements may  be expected. Two schemes of th is  kind are 
examined in the next sections. 

3. S c h e m e  A • Osci l la tory  Tes t s  A b o u t  T w o  A x e s ,  Forces  a n d  M o m e n t s  R e c o r d e d . - - F o r  every 
particular aircraft model , there are four independent unknown complex derivatives. ,To deter- 
mine all of them we require four  independent measurements, each recording one sine curve, ol/ 
rather its amplitude and phase, which count as one complex experimental datum. The simplest 
way to achieve.that  is to arrange for oscillatory tests about two convenient axes, sufficiently 
distant from each other, say A~ and A~ (ab_sciss-ae x~and xy), and to record Z and M in each case, 
thus obtaining four complex derivatives Zs. ~, Z~. 2, M~,~ and _/17Is,2. Applying the equations (2.11) 
and (2.15) t_wice,-for A~ and A~, we obtain the following system of four linear equations with four 
unknowns Z~, M ~  (°), 2~,o and  5~r~.o • 

2~,o - -  inZ~x~  = Z~,~ 

&,o - i ~ 2 o X ,  = & , 2  , . . . . . .  (3 .1 )  

' # G , o  - (2s,o + in~£IJ°))x~ + inZ~x~ 2 = ~r~,~ 

~G,o - (2s,o + in~J°))x.  ~ - inZoxy" = ~ o , ~  

The resu l tan t  force  Z will 

(2.10) 

t 



the solution of which is: 

X 2 - -  X 1 X 2  - -  X 1 

' X2 -- xi 

inY/~w(O) = (~/~,,1 - -  -]~'va,2). , +  ( X l & , l  - -  x 2 & , 2 )  
X2 X i  

l 
(3.2) 

Substituting,(3.2) into (2.6), (2.11) and (2.15), we obtain all derivatives in terms of those originally 
measured, for arbitrary x " . 

X 2 - - X  i , .  

Z a  = Z ~ l  X ~ - x  + Z.~ x ~ Xl 
x2 x~ ~ , __ , X z _ _ X i  

X 2 - z - X l  

(3.3) 

linear equations: , 

~ , 0  - (Z ,~ ,o  + inf¢~(°!)x~ + inZ~xl ~ = ~ , ~  

M~,o --  (Z~,o + in~(°))x~ + i~Z~x~ ~ = ~?~,~ 

6 
i 

. . . . . .  ( 4 . 1 )  r / 

= .~7~,1(x2 - x)  + ~ , 2 ( x  - x i )  + ( & , l  - & ,2 ) (x  - x l ) ( x  - x J  
2 2 - -  X i 

The formulae (3.3) would become somewhat simpler (thoughless symmetrical) if the origin of 
co-ordinates 0 were chosen so as to coincide with one of the oscillation centres A1 or As. 
However, it ,will be more convenient to have them written as above, becatise ,the c.g. position 
(x) will usually be measured from the, leading edge of the, standard mean chord, or of the root 
chord, and it will be rather unusual to have one of the~experimental oscillation centres exactly 
at either of these positions. , 

The four complex formulae (3.3) are equivalent to eight formulae in real terms, which are  
obtained by simply separating the real and imaginary parts in (3.3). For example, the first 
formula may be written: 

• i n ( z ~  + i n & )  = ( & '  + i n & l )  - (Zo,~ + i n & 2 ) , ,  
X~ 7-- X 1 

• and hence: 
& _ z~,~ - z ~ , , ,  n~ & = z~, ,  - z~,~ , . .  . .  . .  . .  . .  (3.4) 

X2 - -  X l  X2 ~ X l  

and theremain ing  formulae are split in a similar way. • , 
/ 

4. Scheme B" Oscillatory Test About Three Axes; Only Moments Recorded.--From t h e p o i n t  of 
view of the experimental technique, it might be convenient to measure only resul tant  moments 
about the axes of oscillation, while avoiding the troublesome procedure of measuring the resultant 
forces. The question arises, what  can be achieved by  sucti partial measurements ,  If only 
oscillations about two axes were considered, we should have merely the last two of equations (3.1) 
at our disposal, and none of the four unknowns could be determined. If ,  however, three axes 
are used, then, applying the equation (2.15) three times, we get the following system of three 



which may 'be t hough t  to contain three unknowns 3f~,o, Z~ and (Z~,o + inf/f~(°)). These are 
easily determined: 

• i . Z ~  = (xl  x ~ - ~ l  : x3) + (x3 - x l ) (x~ - x3) + ( ~  - x l ) (x~ - x3) 

x~x3 x lx~ x lx~ (4.2) 
~¢~,o = ;~ss,1 (xl  - x~)(xl  - ~ )  + ~¢s,2 (x~ - x l ) (x~ - x~) + ;Is,~ (x~ - ~l)(x3 - x~) 

x~ +,x~  " x l  + x~ x l  + x~ 
&,o + i ~ F c  co) = F¢~,1 (~1 - x3) (x l  - x~) + ~¢s'2 (x2 - x l ) (x~ - x~) + ;Is,~ ( ~  _ x ~ ) ( ~  - x~) 

and, substituting into (2.6), (2.11) and (2.15), we Obtain, for  arbitrary x: 

¢ . z o  = ( 2 1 -  " + - - x i l  + ( L  - -  - 

r .  ( x =  x2)(x  - x3) ~ r .  (~ - x~)(x  - x , )  . ~-. (~ - x~)(x - x2) 

I t  is seen tha t  the two complex derivatives Z~ ~ Z~ + inZ;~ and  f/Is - -  M s  + inM~ can be 
determined for any x. As to the remaining derivatives, only their linear combination: 

Z~ + inf/f~ = (Zs - -  n~M~) + in(Z# + M,~) . . . . . . . .  (4.4) 

can be found. I t  would obviously not help at all to. use four axes of oscillation: an 'additional 
e_quationof the same kind as in (4.1) would be redundant,  while it  would not enable us to find 
Zs and M~ separately. Therefore, methods consisting in measuring only moments about the  
axes of 0scillation do not provide a full solution of the problem, i.e:, do not furnish the values of 
all derivatives. 

Nevertheless, the experimental scheme ]3 can be at least par t ly  useful in some cases: 

(a) The damping of short-period oscillations depends primarily on two derivatives, Z~ and M#, 
both determinable in this scheme. If, therefore, we  are merely interested in the condition of 
zero damping, it may  seem sufficient to know these two particular derivatives. The matter  Js 
not so simple, however. One must keep in mind tha t  all derivatives are functions of Mach 
number and of reduced frequency. If Z~ and M# are determined as such functions, it will be 
possible to find the condition of zero damping, e.g., the critical value of Mach number for any 
assumed reduced frequency. However, the true frequency, in any given conditions of flight, 
depends itself on all other derivatives. Hence, t h e  data furnished by the scheme B are 
insufficient, though quite valuable. 

(b) I f  only small reduced frequencies a re taken  into consideration, then two addffional relation- 
ships between t h e  unknown ' (real) derivatives hold approximately, viz., 

Ms--~ V M ~ ,  Zs--"- V Z ~  . . . . . . . . .  - . . . . . .  (4.5) 

These relationships are obviously and exactly true in the case of steady motions, and then they 
means imply  that ,  for a constant #, the resultant force and moment are the same as for a constant 
w -~ V#.  For oscillat0ry-motions; the relationships are only approximately true, because the 
effects of apparent mass and of periodically varying vortex wake differ in the cases of rotary and 
plunging ,oscillations. However, it can be shown easily, at least ~n the two-dimensional case, 
t ha t - t he  differences are small of the order higher than one% in reduced frequency. If, therefore, 

* In the two-dimensional case, the order'of magnitude of the differences is that of co Sin co, where co is reduced 
frequency', in the three-dimensional case, we may expect 2 differences of theorder co S. 
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an accuracy Of the first order is deemed sufficient, then the relationships (4.5) may be used as a 
makeshift, and then all derivatives are determinable in the scheme B. The Pro.cedure is obviously 
not quite satisfactory: the experimental method should be free from all inexact or doubtful 
theoretical assumptions, for which it should provid e the ultimate check. 

The final conclusion is that  the scheme 13 may be of some limited use, but the scheme A should 
be greatly preferred. 

5. No,z-dimensioraal derivatives.--It  is essential to present' the experimental results in non- 
dimensional notation; so tha t  data obtained in different laboratories for different models, wind 
speeds, and frequencies, could b e  easily compared and supplement  each other. The ~on- 
dimensional i~depende~t Variables, against which the stabili ty derivatives will be plotted, are: 

Non-dimensional abscissa of the axis" h = x/c, . . . . . .  . .  (5.1), 

and reduced frequency: co = nc/V = 2~fc/V . . . . . . . . . .  (5.2) 

The Mach number Via will be an important  additonal parameter, but  it will not appear in our 
equations. I t  should be noticed that  the definition of the reduced frequency is based on the  
length c (mean chord) according to the 13ritish custom, and not on the semi-chord, as in German 
and most American publications. Our definition leads to simpler formulae in What follows. 
The difference must be remembered when comparing.results from various sources. 

B 

The following ~on-dirriensio~al stability dei, ivaEves will be introduced; equivalent or analogous 
to the standard expressions of Bryant  and Gates6: 

z~ = & / p s v  

m~, = M d p S V c  

zs = z d p S v  ~ 

ms = M d p S V ~ c  

z;~ = & / o S c  

m; = M;/pSc ~ 

m~ = M~/pSVc  ~ 

• ° (5.3) 

I t  will be noticed that  the standard mean chord c has been used throughout as length of reference, 
instead of l ( ta i l  arm). This is because the technique will be dften applied to tailless models and 
it also leads to a desirable simplification of the formulae *. 

The non-dimensional complex derivatives will be obtained as follows: 

~ = z~ + i~z~ = ( &  + i n & ) l p S V  = 2 & ~ s v ,  ' ] 

t and similarly: : 

~ = m~ + i ~ m ;  = ~ o / p S v c  . . . . .  . ( 5 . 4 )  

~s - z~ + i~oz~ = Z ; / p s v  ~ ~ " 

~ = ms + ioom~ = YIflpSV~c J 
r 

The fundamental  relationships (2.6), (2.11) an d (2.15) for stabil i ty derivatives, corresponding to 
varying positions of the axis, will assume the following form in non-dimensional notation: 

~. = ~ (o) _ ~ h ,  L = L ,o  - -  i c o ~ h ,  \ . . . . . .  (5.5) 
~ = ~rCs,o - (&o + i~o~(°))h + i~o&h ~ f " "" 

Another difference will be fourfd in the definition of m~ which, according to Ref. 6, should be defined as M~g/Wc 
(W being the weight of the aircraft) which would be/~ times smaller than in (5.3), /~ denoting the relati,<e density. 
Our definition is more consistent with those of other derivatives. 
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These three complex formulae are equivalent to the following six formulae in real terms: 

m ~  : m J  °~ - z~h m ~  = m j  °) - -  z~h 

zo =_z~,o + co ~z;fl z~ : Z~,o - -  z,~h L F " (5.5a) 

m~ ---:j m~,o - -  (z~:o - -  ~o ~m~(°))h - -  co ~z~h ~ m~ = m~,o - -  (2~,o + m~(°))h + z~h ~ ] 

we'  shall now transform into non-dimensional notation the formulae of sections 3 and 4, 
giving the derivatives for arbitrary position of the ax~s in terms of those originally measured, for 
~he schemes A and ]3. 

S c h e m e  A (formulae 3.3)" 

i ~  z~'~ -- ~'~ 
= "  h~ -- hi 

- -  he - -  hi 

~ , ~ ( h ~ -  h) + ~o,~(h - -  h~) + (Z. ,~  Zo,~)(h - -  h J ( h  - -  hJ 

S c h e m e  B (formulae 4.3): 

m ~ , 2  t o o , 3  

- h.) + (h.  - h~)(h. - -  ha) + (ha - -  h~)(h3 - -  h~) 

O 
. .  (s .~)  

l .  (5.7) he + h 3  2h hi  + h 3 - -  2h h l + h e  2h 
~° + ¢ ~  = ~ ' ~  (hi  - -  h~)(hl  - -  h3) + ~ ' ~  (he - -  hl)(h~ - -  h3) + ~° '~ (h~ - -  h~)(h~ - -  h~) 

(h - -  h ; ) ( h  - -  h~) (h - -  h~)<h - -  ha) (h - -  h l ) ( h  h e )  J 
It must be kept in mind that  each of the complex formulae (5.6) and (.5.7) represents two formulae 
in real terms, obtainable by  separating the real and imaginary terms in each formula. 

No. • Author 

1 I-I. Glauert .~ 

2 ,T. W. Miles 

3 ]3. Smilg .. 

4 I.C. Statler 

5~ W. Pinsker 

6 

. . . .  yr . .  

L. W. Bryant  and S. ]3. G a t e s . .  
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APPENDIX 

Equations of Dynamic Stability for Level Flight with Derivatives of Oscillatory Motion 
In the theory of dynamic stability, the equations are usually set u p i n  the system of moving 

axes x, z, the x-axis being fixed in the moving aircraft and directed along the undisturbed flight 
velocity V, thus horizontally in undisturbed level flight (Fig. 4), and the z-axis pointing vertically 
downward in such a flight*. Hence, the moving 'axes coincide, in undisturbed flight, with those 
xl, zl, fixed in space, which are always horizontal and vertical respectively. 

During a disturbance, the att i tude of the aircraft in space varies and is determined, at any time, 
by the small angle of pitch 0 (positive clockwise in Fig. 5). The moving axes x, z rotate with the 
aircraft through thesame  angle 0, while x~, z~ remain unaltered. The velocity of the c.g. varies 
throughout the disturbance so that ,  in addition to l/', there may be small incremental velocity 
components u and w along x and z-axes. We neglect the component u (thus assuming a distur- 
bance at constant forward speed, ~nd eliminating the phugoid motion). Therefore, the  small 
variable components of the disturbance are only 0 and w, and the resultant linear velocity: 

= x / ( v  2 + v ,  . . . . . . . . . . . . . .  

the small terms of the second order being neglected. The same disturbance • can be referred t o  
the fixed axes xl, z~, the resultant velocity being now resolved along them, so t ha t  the horizontal 
component will become: 

Vh = V cos 0 -~- V ,  ' . . . . . . . .  . . . . . . . .  (A.2) 

and the vertical component: 

w ~ = w c o s 0  - - V s i n 0 - " - w - -  VO, . . . . . . . . . . . .  (A.3) 

the higher-order, terms .being again neglected. I t  is seen that  the horizontal component may be 
considered as constant, and the entire disturbance represented, in line with the 'experimental'• 
method used in t h e  main text, as .a combination of vertical (heaving) oscillation with small 
variable velocity w, and rotary oscillation with the small variable angle e, always equal to 0 : 

e = 0 . . .  . . . . . . . . . . . . . . . . . . .  (A.4) 

I t  is clear now that  the equation of motion can be written either in the moving system (with w, 
0 as unkfiown functions of time), or in the fixed system (with w~, e as unknown functions of time), 
and the transformation needed for passing from one system to the other one will be simply (A.3) 
and (A.4). 

We shall start  by writing the equations in the fixed system, so as to use the 'experimental'  aero- 
dynamic derivatives of the main text, and )co transform them afterwards to the moreusual moving 
system. The equations are: 

W dwl Z~e + de dwl 
7"  d--Y Z --di + + & dt 

k 

WkB2 dye -- Moe + de dw~ 
g dt 2 Mi--f[ + M~w~ + M;o dt 

3 
To write them in non-dimensional terms, we introduce three auxil iary constants" 

unit  of aerodynamic time ?=  W/gpSV 

relative density of the aircraft ~ W/gpSc I "" 
moment of inertia ratio ~ i~ = k~2/c 2 

. .  ( A . S )  

. .  ( A . S )  

• In  Figs. 1 and 3, referring to tile main text  of this Report,  the abscissa x was conveniently 
backwards: this does not lead to any inconsistency., 
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' further, nondimensional values of time, and vertical velocity component: 

k 'i  

z = t / g  and z ~ = w ~ / V ,  . . . . . .  
t 

and finally, non-dimensional derivatives, as defined by 
multiplying the first one by 

g t / W V  = 1 /pSV ~ = t /pSVc#  , 

and the second one by 

g P / W k ~  ~ = ~ /pSV~c i .  = ~/pSVc~i~, 

(s.3). 

. . . . . .  (A.7) 

The equations (A.5), after 

: become: 

( 

° 

1 

dzO~ ~ .  d~ z~ d ~ t  
d,  = z~O + ~ d-~ + z ~  + - ~  " d ,  

dz 2 - -  i ,  
m~ d~ vm~ zO~ + . m ~  dz~ 

0 + i~ dz + i ~  i~ d ,  

~ O O • • a . . . .  (A.8) 

We now obtain the equations in  the moving system, by replacing w~ by (A.1) and 0 by 0 in (A.5): 

W ( d w  d O  "~ 
- v ~ ,  = ( z .  - v z~)o  + (z~ - v z ; 3  2{d° + Z :  + Z;ow 

(Mo - -  VM~)O + (M;~ - -  V M ; )  dO - -  -d-{ + M,~w + M~:b 

(A.9) 
WkB 2. d20 

g dt 2 

~it is. seen that w-derivatives (Z~, Z~, M,,, M~) are exactly the same in both systems, referring as 
well to w~ and w. Contrariwise, the 0-derivatives differ from 0-derivatives, and may be written: 

z ~ =  z ~ -  v z ;  \ 

M~ = M i , - -  VM;o f "" 
(A.10) 

Zo = zo - v z ~ ,  
. 

Mo = M~ - -  VM~, 

The new equations can also be immediately re-written in non-dimensional form, by transforming 
exactly as before, while introducing new non-dimensional O-derivatives, analogous to O-derivatives 
in (5.3): 

Zo = z o / p S v  ~ = z~ - z~ 

'zq = zi = Z~/pSVc = z~ ,-- z;o 

mo = Mo/pSV2c = m~ - -  m,, 

mq = m~ = M~/pSVc ~ '=  m~ - -  m~ 

O I m 0 

X. 

(A.11) 

( . .  f 

and putting ~ -= q~ = dO/d, (non-dimensional 
become~ 

d~  = zoO.+ 1 +  + z~zO + - - - -  
d~ -~ Jq ~ d~ 

¢ -  

dd, 
d ~ -  iB i~ *B i~ d~ J 

j t . . ~  ", 

r ' ' ~  

4 .  " , .  " 

angular velocity). The 
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Equations (A.12) contain a few more terms ' than usually written hitherto, viz. ,  the terms with 
derivatives Zo, too, Zq and z~. The two last ones have been normally omitted as supposedly very 
small compared with/~ (the latter, particularly for fast aircraft, being of the order of 100); this 
will apply in all cases we have in view, and therefore the derivatives zq and z~ are of very little 
importance, and the corresponding terms may be usually neglected--this also applies to terms 
with z~ and z~ in (A.8) *. As to the terms with derivatives zo and too, they are of particular interest. 
On the basis of the 'quasi-steady' theory, the relationships (4.5) would apply, therefore (A. 10) and 
(A.11) would give Zo = z~ -- z~ : 0 and m o :  m~ -- m~ = 0, and both terms would disappear, 
the system of differential equations becoming of the second order in ~ and ~, instead of third 
order in 0 and ~. The condition Zo = mo = 0 has been always tacit ly implied, this meaning with 
reference to the moving axis exact ly  the same as (4.5) ill fixed axes. When having to deal with 
aerodynamics of unsteady (oscillatory) motion, we may at most expect Zo and mo to be small of 
second order in co. The latter fact does not warrant the neglect of these terms in (A.12), 
without a thorough investigation and numerical analysis. The simplification involved is not 
particularly valuable, as the primary aim of the stability equations is to establish the 
conditions of zero damping, and these will be simple enough even without neglecting the 
zo, mo terms. The determinantal equation for stability roots, corresponding to the full system 
(A.12) is: 

= 

( 1 - - ~ ) 2 - - z ~  

m;, 2 /~m~o 2 ~ - -  mq._,_ ~ #too 

=A)~ a+B;t ' + C ; . + D = 0 , . .  (A.13) 

where: 

A : 1  z~ 

+ 

_ _ _ 
C Z~mq--Zom;~ ( l _ ~ ' ) ~ m o  ( 1 +  

- i s  .' i s  

D = ~ ( z ~ m o -  zom~) 
SB 

s l (A.14) 

while, assuming zo = mo = 0 (and neglecting z~/~ and zJ / , ,  as proper for consistency reasons), 
we obtain: 

A~---1 

mq + m~ mb 
B ------ -- z~ is -- z~ is 

C - ' -  z~mq - -  ~m~ _ _ z~(mb - -  m~) - -  #m,o 

i s  i s  

(A.15) 

D-----0 

* The derivatives z~ and zb, although negligible in dynamic equations, are of great importance for determining 
m~ and mb for varying c.g. positions, see (5.5a). 
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The' condition of zero damping in the last simpler Cage (quadratic equation) is: 

• m q + m ~ _ 0 ,  . . . . . . . . . . . . . .  (A.16) B - ~  - -z~  iB 

while, taking the full cubic ((A.13) with coefficients (A.14)) into account, it becomes: 

B - -  D / C  ---- 0 . . . . . . . . . . . . . . . . . .  (A.17) 

As a thorough experimental investigation must provide all derivatives, there should be no 
difficulties with using the more exact condition. 

1 3  
-L, 
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