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Summary.—A method is derived for calculating the spanwise load distribution over a lifting wing having a long
circular-cylindrical body at one end. The solution is derived for arrangements giving constant induced downwash,
but can be generalised to obtain approximate results for other plan-forms including those with sweepback. = €harts
are given for the case in which the sectional lift slope is constant along the span. The lift distribution over both
wing and body can be determined quickly, or the overall load obtained directly.

The results are applicable to the determination of side forces on a fin in combination Wlth the rear fuselage of
an aircraft, or of the lift loading on a wing with a weapon or fuel tank at one tip.

1. I'ntroduction.—Calculations have been made to determine the spanwise loading on a wing
with a cylindrical body at one end only, analogous to the case of a wing with endplate at one
end only. The corresponding problem of a wing with cylindrical bodies at both tips has been
solved by Hartley* (1952) using a similar method to that used here.

The case of the single body and wing may represent a rear fuselage with a fin, particularly
if the rear fuselage is a jet-pipe so that it is approximately cylindrical and the diameter is consider-
able relative to the fin height. It can also represent a wing carrying a single. drop-tank or
weapon on one tip.

A solution of the problem can be obtained for arrangements where the downwash produced
by the trailing vortices is constant along the span. In this case the load distribution can be
calculated in the Trefftz-plan far behind the wing. The body is assumed to be of circular
cross-section, cylindrical at the wing, and long enough to ensure that the wake behind the
system has the shape of the spanwise cross-section through wing and body.

The same method of solution has been used by Nagel and Mangler®® (1938, 1947) for ‘a wing
with two endplates, by Rotta*® (1942, 1947) for a single endplate and by Hartley* for a wing
with two tip tanks. In all these calculations, the assumption of constant induced downwash is
made. It has been shown by Hartley* and by Kiichemann and Kettle’ (1951) that if the
differences obtained by this method are added to the actual span loading of the wing alone, a
good approximation is obtained with either unswept or swept wings.

* R.A.E. Report Aero. 2467, received 30th October, 1952. -
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The present report does not include any comparison with experiment. This will abpear

elsewhere. The actual calculation procedure to be applied in a practical case is described in
section 6.

2. The Calculation of the Potential Function in the Trefftz-plane—The load distribution over
the wing and fuselage is proportional to the difference of the potential function on the upper
and lower surfaces of the vortex sheet in the Trefftz-plane. To determine the flow in the
Trefftz-plane is a two-dimensional problem, which can be solved by conformal transformation,
for instance by transforming the wake contour into a circle. The flow in the Trefftz-plane is
that around the wake contour moving downwards with constant velocity v,.,. The conformal
transformation does not lead to the flow around the circle moving downwards with the velocity
U, , since the velocities are changed by the transformation. But we can still make use of the
conformal transformation, for the flow around the moving wake is the same as the flow around
the fixed wake contour in a parallel stream of velocity —u,.,, superimposed upon a parallel
flow of velocity v,,,. The conformal transformation transforms the flow around the fixed wake
contour into the flow around the fixed circle, for which the potential function is known. Our

first task is, therefore, to determine the conformal transformation and thus corresponding points
on the circle and the wake contour.

A rectangular co-ordinate system x,y,z is chosen, with x along wind, y spanwise, z positive
downwards, with the origin on the body axis. For a thin wing attached to a circular body, a
cross-section through the wake in a vertical plane x = co (Trefftz-plane) has the shape of a
circle y* 4 2> = R” joined to a straight line — (b + R) <y < — R, where R is the radius of
the body and b the span of the wing outside the body (see Fig. 1)

The transformation of the wake contour into the circle is done in two steps. The ¢-plane

=2z + 1y . - . ‘e . . (1)
is transformed into the ¢,-plane
:1221+?:y1 .. . . “ s v . (2)
by the transformation
’ 2
a=c+§. €

Thus the wing-body configuration of the ¢-plane is transformed into a wing with vertical endplate
in the ¢,-plane (Fig. 1). The height % of the endplate and the wing span b, are

h=4R .. .. .. . @
b+ 2R

=0 . .. .. .. .. .. 5

h=PTER | )

The flow around a wing with one endplate has already'been treated by Rotta®. The ¢,-plane

is transformed into a {,-plane in such a way that the wing with endplate is transformed into a
circle of radius R,. The transformation is '

a=/ (6= 2 — 2Ri)(z, —

R .
‘. c: — 2R, cos B . z)} . .. (6)

Since
{o=1.R,e" .. .. .. .. .. . (7
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is the equation for the circle (Fig. 1), the relation between corresponding points on the circle
and on wing and endplate in the {;-plane is

by =1 .2R, 4/{(cos® — 1)(cos & — cosdy)} . .. .. .- (8)

# = 0 corresponds to the f)oint y =R, 2= 0 on the body ; # = -+ @, to the junction of wing
and endplate, .., the junction of wing and body. The ends of the endplate { = + th, i.e., the
top and bottom of the body, correspond to the angle 4 ¢, for which

cos P, = §(1 + cosdy) . .. .. .. .. (9)
The height of the endplate is |
h = 2Ry(1 —cosdy) . .. .. . .. .. (10)
The point ¢, = 0 — ¢b; corresponds to ¢ = , so that
| b= Ry.2¢/2¢/(1 +costy). .. .. .. .. (1)

The square root 4/{(cos® — 1)(cos® — cos®d,)} must be taken with the positive sign for
0 <& <9, and with the negative sign for 8, <# <=. Equations (4), (5) together with equations
(10), (11) give two relations for the unknown quantities ¢, and R, :

h _ 1 — cos ¥, _4R( + R) (12)
b, A/24/(1 +cosdy)  b(b + 2R) o o o
2R :
= =" . .. .. . 13
R 1 — cos ¥y (13)

The points on the circle 0 < |#] < ¥, are related to the points on the body cross-section in the
¢-plane by the equation ‘

h- /0= @)= /-1

_ /i 1 4R (1 — cos#)(cos & — cos ﬁz)}

TV 4R
% — + \//{1 g (e fosﬁz)z (1 — cos #)(cos & — cosﬁz)} foro <P < .. (14)
% = — \//{1 — (I——j:LOEW (1 — cos #)(cos & — cosﬁz)} for ¢, < |9 < 9. (15)

The points on thé circle 9, < |#| << = are related to the points on the wing section in the {-plane
by the equation: ‘

y_1n /{ 1112}
R=2R 1JT<2R

2 I
— — '(9 '19‘;) - '19‘
1 9. ’\/‘L(l COs )(COS COos )}

+ \//{1 + (_f_—(i)é—@ (1 — cos #)(cos &y — cosﬁ)}:l . e . .. (16)
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The potential function for the circle in a parallel flow with the velocity — v, is
$1 = 2Ry, sind L a

for points on the circle. This is also the potential function for the flow around the fixed wake
contour. The potential of the parallel flow is '

$o = V0% . . .. .. . .. .. (18)

Hence, the potential function for the moving wake contour in the Trefftz-plane is

4R

‘IS :951 +¢2:vzw[1——COS'l’;

sinﬁ-l—zjl . .. .. .. (19)

where equations (14), (15) and (16) give the relation between y and 4 ; 9, is determined by the
ratio R/b according to equation (12). -

3. The Calculation of the Load Distribution and the Overall Lift Coefficient.—The local lift
coefficient on the wing and body is related to the difference of the potential function on the
upper and lower surfaces of the vortex sheet in the Trefftz-plane by

_ 2 _
Com b —ds) o . (@)

where ¢ is the local chord, used as reference chord for the local lift coefficient C, , and V, is the
velocity of the main flow. This relation can be justified as follows. In linear theory, the
pressure coefficient C, at any point is given by

_ _oU _ __ 204
Cp=— 2z P

The lift coefficient is equal to the integrated difference of the pressure coefficients on upper and |
lower surface:

-0
CL=J — AC, d(x[c) .
From equations (19) and (20), |

cL.c=4"_’T§f[4_]zs%smﬁ—\/(R2~y2)} L@

for |y| < R, i.e., for the body

and

4R '
Cooc=4%= 2 _gny ce e
L. C 4V0 I cos, sin ‘ (22)

for |y| > R, i.e., for the wing

since # is posit_ive and z = 4/(R? —Vyz) 1s negative on the upper surface of wing and body.
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The coefficient of the overall lift over the wing is obtained by integration ;. C, is referred
to the wing area b¢ , where ¢ is the mean wing chord. We find

Cow.0= [ fchL.cd(%)

which gives ,

~ _ U,,b 18(R[B)? (1 . ¥

Crw= Voél_—mj_(%ﬂ) 51nw<R) (29
or,

C‘LW:‘Z)ZOOA.]W . e .. . .« .. .« . (24)

0 .
where A is the aspect ratio of the wing and | '
_ 18(RBE [ |
Jw= mf o smﬂd(R> .. . . (25)

is a function only of R/b .

The overall lift over the body, also referred to the wing area 5¢ , is

= T o)

or,
Con="i2A . Jo .. " . e e ... (28)
with
]B:Tl%ﬂsmﬁd( >”4( ) + {1_<R> d(R)
= 1% frlsmﬁ d<R> —2n<R> e .. .. {27

Js too is dependent only on R/b. The ratio between the lift on the body and the lift on the wing is

CLB__]B
EE= e (28)

Thus we find that the rat1o C LB/C .w between the individual load contributions depends only

on the ratio R/b between body radius and wing span Values of Jw and CLB/C rw are plotted
in Figs. 2 and 3.

The shape of the spanwise load distribution depends only on R/b. By equations (21), (22)
and (23), : .
Cre 1 sin &

_1(%+1) sin & d(%)

A 1 — cosd
sin —~———>"2 {1 —
Cre _ 1 4 <R> } for the body, |y]| < R. (30)

Crwé RJb rzbﬂ) sinﬁd(%)
“\r
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Again equations (14), (15) and (16) give the relation between y and ¥ . For the practical range
of values of R/b, the spanwise load distributions have been calculated and the results plotted
in Fig. 4. Tig. 4 shows that with bodies of small diameter the shape of the load distribution
already differs considerably from the elliptic distribution of the wing alone ; there is a large
increase of wing lift near the wing-body junction. The determination of the shape of the load
distribution for any R/b value is easily done from Figs. 5 and 6 ; in Fig. 6 the load on the body
is referred to that in the wing-body junction. To find the actual load the coefficient of the
- overall wing-load is needed ; this is determined by equations (24) and (25) except for the factor
U;0/Vo. The next step in the calculation is therefore to determine v,,/V, in terms of known
quantities.

4. The Calculation of the Dowmwash Velocity.—The value of the downwash depends on the
aspect ratio of the wing, the sectional lift slope @, and the ratio R/6. The local lift is equal
to @ multiplied by the effective incidence, which is equal to the geometric incidence « of the
wing, increased by the additional upwash 4y produced by the flow around the isolated body
and reduced by the induced incidence «; .

As has been explained in detail in Ref. 6 for the case of a body with symmetrically attached
wing and zero wing-body angle:

Aog = o

1
OIRP (1)

The incidence «; which the trailing vortices induce at the wing can be taken as proportional
to the downwash far downstream:

(32)

The value of w depends mainly on the aspect ratio of the wing. = 1 for wings of large aspect
ratio and « = 2 for wings with 4 - 0. A method for calculating o has been derived by
Kiichemann' (1952) for isolated wings, and the relation from which w can be determined is given
in section 6.

It is not strictly correct to apply this relation to our case where the vorticity is essentially
composed of two parts, the first determined by the geometric incidence « and the other by
Aoy . - The first part is similar to that of a wing alone, but with the second one the bound vorticity
is concentrated near the leading edge and is changing rapidly spanwise. Thus as for very small
aspect ratio wings the downwash produced by the chordwise vortices and the trailing vortices
is the same on the wing as far downstream in the wake. This means that different values for
the ‘effective aspect ratio’ should be taken in determining e , so that the value of o is nearly
2 for the part of v,., produced by the second part of the vorticity and w < 2 for the first part.
It has been found possible to distinguish between these different values of o for wings attached
symmetrically to a body (see Ref. 6) but since in the present case there is no possibility of splitting
¥, into the corresponding parts and since the second part is only a correction term to the first
part, we take the same o for both.

Thus we obtain

CL(y) — a(y) |:1 T+ <y/1R)2 . % 'Uzoo/Vo} . - .. . (33)

x e

The sectional lift slope is a function of 4 , and for swept wings, of the angle of sweep and the
spanwise position, see Refs. 7, 8. A relation from which @ can be found is also given in section 6.
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The condition that the arrangement considered gives constant induced downwash implies
that the wing must have a certain plan-form*. This plan-form can be found by combining
equations (22) and (33):

o(y) _v/Vo . 16 1 sin &

R o« 'Imcosﬁz'a(y)'1+ L)Z_gvm/Vo' (34)
(y/R 2 «
Integrating c(y) along the span,
) gy _eb_ 11
J_(;;.H) ¥ d<R>_ F= w8

gives the required relationship between v‘”—“%ﬁ and 4, a, w, R/b:

11 9.e/Vy 16 -t sin @ y
ARE? o 1—cosdy j_(%ﬂ) d(y)[l N (y/lR)2 — '1_2>“Uzoo/Vo] d(f?)' .. (36)
o

For constant a(y) = a:

ot o vZ;/VO RN\? 32 =1 sin & y '
A2 « <5> l—cosﬂzf_(%+1)l+ 1 _gvm/Vod R) - (37)
(y/R)? 2 @« |

which shows that the term wa/A is a function of R/b and o/ = 4 (,/V,)/x. Though we
cannot express oo explicitly as a function of wa/4 and R/b we can determine values of the
integral in equation (37) graphically and thus prepare a diagram from which values of o/« can be
read. Such'a diagram, which covers most practical cases, is given in Fig. 7.

If a spanwise variation of a is to be taken into account, o/« has to be worked out by an
iterative process. Since the spanwise variation of a is a function of the distances from the wing-
body junction and the wing tip, measured in terms of the local chord ¢(y), this must be determined
from equation (34) assuming a first approximation for v,./V, and a(y). Then with a known
¢c(y), new a(y) values can be found. Determining the integral of equation (36) will then yield
the second approximation to v, /V, . :

We restrict ourselves in the following to constant values of @. The error involved is not
necessarily great (see also Ref. 4) and will be small as far as the overall values of the lift are
concerned. For swept wings we take the lift slope of the ‘sheared’ part of the wing.

- The uncertainty about the value of , discussed above, will also affect the load distribution
across the body, which acts as a lifting surface of small aspect ratio. Hence, wy = 2 seems
- appropriate for the body in most cases. It is not possible to take account of this fact if we
retain the restriction to constant induced downwash, 7.e., assume that the wing and body wakes
move downwards with the same speed, so that a spanwise section through the wake has the same
shape as a spanwise section through the actual wing and body. In reality the downwash
distribution in the wind direction behind the wing will be different from that behind the body
(corresponding to different values of  for wing and body). This implies that the wake cross-
section does not keep its shape and that the body vortex sheet moves downwards more rapidly

# Such plan-forms for swept wings by themselves have been derived by Kiichemann in Ref. 8.
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than that behind the wing. This, of course, cannot be taken into account completely in any
theory, but we may make some allowance for it by increasing the downward velocity v,., (and
thus the potential 4,, equation (18)) for the body by the factor 2/w . It is still reasonable to
assume that the potential ¢, is determined with sufficient accuracy by equation (17) from the

original shape of the wake, since this is mainly due to the interference between the actual wing
and body. '

This leads to a change in the load coefficient given in equation (30) by

A(CLC):_O)B~0)4R/6\//{1_ %)‘2}, ... (38

CLW5 w ]W

Where wp = 2 In most cases, and to a change in the overall load on the body by

x w w o

ﬁfﬁz_wzafznA<§z. (39

The load over the body calculated by equations (26), (30), (88) and (39) includes some of the
load at the nose of the body. An approximation to the overall load on the body induced by

the wing, excluding forces on the nose and the rear end of the body, is obtained by reducing
the value given in equation (26) by

= = ()
:_Eﬁi.zm.(fg)g{ 2T

w o

An approximation to the corresponding load distribution is obtained by reducing the value given
by equation (30) by o

ACisc _  4R[b /1 7wV
oy AV (E> N 780

5. The Limiting Case R —0.—To show the effect of the body on the various terms and to
facilitate the plotting of the diagrams, it is useful to consider the case of decreasing body diameter
R —0. As R—0 the arrangement approaches a wing with elliptic load distribution. This

follows from the above equations ; when R —=0: 4,—>0, R, — 10, cosd =1 —y/ip,

Cic - 27)I;‘Z)°Ac' \//{1 —_ (’1, _vb%ZY} .

Then
C‘L_n Vs | . _x ‘
2 a4 1.e.-, w=g% o - .. .. oo (42)
and A '
Ce _ 4 /{1_ 1_L2} 43
=1 ( b/2> L 48

When the sectional lift slope is constant along the span:



which gives

o 2 «
wa
&  oU./Ve_ 2x4
il . —1_‘_0)61:' .. .. .. (44
2 Q7

To obtain the shape of the load distribution over the body for R ~> 0, we expand sin# and
(1 — cos#) as power series in ¢ and take only the first term:

sin 9 = ¢
1 —cosd = ?;—2 .
Equations (14) and (15) then read:
IR = i«//{1_( 52/2)° 02 ﬁz %2 }
=1- 2(192)2
o=o, /LI

Equation (21) becomes:

o 4R 1 —cosd /(y _ lg}jl
CLC_4V01—COSﬁ2I}9 4 vV (1 R)

-8/ -4 /- @]

G

since for R =0, i.e., 9, —= 0, the second term in the bracket tends to zero. Since the load in
the wing body ]unctlon is

8R
Cpc: = 4%
LJC] V() 'ﬁo ’
we have -
Crc —_ /{l_y/R] 45
CL]] 5 [o o .. .. .. .. (45)

The aerodynamic centre of this body load measured from the wing-body junction is

[ VAL = 9/RY1 + 9/R) dy/R)
ya.c.:R =0 -8R.

f_lx/{l — Y[R} d(y/R)
9




6. The Calculation Procedure.—The known quantities for a given fin-body combination are:
the aspect ratio 4 of the wing outside the body, the angle of sweep ¢ of the mid-chord line and
the ratio between the body radius R and the wing span 4. The first step is to determine the
term wa/2xA. The sectional lift slope ¢ and the downwash factor & are calculated by the
method of Ref. 7 as follows:—

The lift slope a, of the two-dimensional wing is approximately

tle ‘ _
a0~k2n<1+08cos(pe> R Tt

where #/c is the thickness/chord ratio; % is a factor for the lift reduction due to the boundary

layer, which changes with Reynolds number (R =0-92 for R about 2 x 10%). The value of
the sectional lift slope # to be used here is given by ‘

g— 2WNCOSe. 4

1 —ancotan
where # is a parameter depending on the sweep and aspect ratio in the following way

1
T .
Pe
. 4(1 +ief)
2y COS @,

nA, }

w=2n. .. .. ce .. ..o (49)

n=1—

(48)

21+(

The downwash factor w-is then

For wings of small aspect ratio, the effective angle of sweep is smaller than the geometric sweep
due to centre and tip effects. This can be taken into account by reducing the geometric sweep ¢
to

%:{H(“"Ejf‘p)z}m N 10)

and ¢, is the value to be inserted into equations (46), (47), (48).

The effective aspect ratio 4, which has to be taken in equations (48) and (50) varies between
the aspect ratio 4 of the wing outside the body for R/6 — 0 and 24 for R/b - co . A formula

" which satisfies the two limits is

_Rb
A(1 CrRR) e e e (D)

which means that we take as the effective span b, the distance between the wing tip (& + R)
and the image of the wing tip in the circle R?/(b + R) (see Fig. 8).

Using relations (46) to (50) the term wa/2z4 is calculated, and the induced incidence oo
for the given value of R/b is read from Fig. 7. The value of Jy forgiven R/b’is then found from

10



Fig. 2 and the coefficient of the overall wing lift from

CLw:_z_EzA]W P (%)
e

The ratio C,5/C, for constant induced downwash w, = , is read from Fig. 3 and the overall
lift coefficient, excluding the forces on the nose and rear end of the body, is

Qg CLW CLB 4% Ez
” QW)- 27:A<b>. N (<)

The spanwise load distribution is obtained from

C—L_LZCL—W_C#C_ for the wing .. .. e e .. (54)
ol o Crwt
and

Coo _ Cow( Cie 4RIE /
« o C‘LWC Jw

Y )> for the body C .. (55)

where C;c/C,w¢ is read off Figs. 4, 5 and 6 for the appropriate values of R/b.

Although in practice the plan-form will be different from that which gives constant downwash,
the results can be applied to wings of any plan-form. A rough approximation for the lift
distribution-on the actual wing-body arrangement is obtained by dividing the calculated load
distribution equation (54) by the actual ¢(y)/¢ values.

To obtain a better approximation the differences between the local loads with body and
without body are taken

AC.c = C c ~ 4 / "
=C = — (= 1—{1— 56
z Lw - - G LE ~ ( b/2> (56)
where C,y is the lift of the elliptic wing alone:

CLE — 2 0(-1'}3 T

Co _Zowygz L)

The induced incidence o;z/« can be determined from Fig. 7 for R = 0 when 4 and o have been
calculated from equations (46) to (50) for the given 4 and ¢ . This 4C,/« distribution is added
to the C;/a distribution of the actual wing without body, which can be calculated by the usual
methods. This procedure has been satisfactorily applied to wings with endplates, see Ref. 5.

The wing alone and the wing with body, both giving constant downwash, do not have the
same plan-form, so that a better approximation for the 4C, distribution is obtained by calculating
from equation (34) the plan-form of the wing which in the presence of the body gives constant
down wash, and calculating the load distribution of that wing without a body. This gives the
exact effect of the body on the load distribution of a certain wing. In this way, different values
of the sectional lift slope.a along the span can be taken into account. In practice, this refinement

11



alters the results very little, as has been shown in Ref.4. It is essential, however, to use variable
values of & in the calculation of the distribution on the wing alone.

7. The Induced Drag.—Considering the change of energy and momentum of the flow far
upstream and in the wake, we obtain for constant downwash along the span, wy = o, the well-
known relation between the induced drag and the lift coefficient

~ _luv,, =
CD”_QVOCL' . e TR .. (58)
With )
Ao U : Cip
we obtain _
— 2
Cpi= Cr LA (59)
"ord1+ S
v Crw
Introducing the notation ~
- . CLZ
CDi——%.”—A— .. . .. . .. .. (60)

(as is done in the theory of end plates) we can find » from the values of [, and Crs/Crw in
Figs. 2 and 3. Values of », which depend only on the ratio R/# , are plotted in Fig. 9.

It may be noted that one cannot determine an equivalent end-plate for a body attached to a
wing. The lift distribution and thus the vortex-system are different for a wing with endplate
and a wing with body, since the body can take a lift force, which vertical endplates cannot do.
. With increasing ratio R/b, the lift distribution over the wing does not tend to the half-ellipse
as it does for increasing height of the endplate. '

LIST OF SYMBOLS

xX,Y,% Rectangular system of co—ordinatés, % in the wind direction, ¥ spanwise,

z positive downwards ; origin on the body axis

{ = z+ 1y, complex co-ordinate in the. Trefftz-plane

{x = % + 1y;, co-ordinate in the transformed Trefftz-plane, where the body cross-
section is transformed into a vertical end-plate ' '

{s = 25 + #v,, co-ordinate in the transformed Trefftz-plane, where the wake
contour is transformed into a circle

9 Angular co-ordinate in the ¢,-plane _

9y “#-value of the point corresponding to the top of the body

By . 9-value of the point corresponding to the wing body junction

Local wing chord

S O

Mean chord of the wing outside the body
12



LIST OF SYMBOLS—coniinued

b Wing span
by Wing span in the {;-plane
R Body radius
h Height of the end-plate in the {;-plane
R, Radius of the circle into which the wake contour is transformed in the ¢,-plane
4 ZZ: , aspect ratio of the wing outside '_the body
@ Angle of sweep of the mid-chord line
R Effective angle of sweep, see equation (50)
o Geometric incidence
At Additional upwash produced by the flow around the isolated body
o Induced angle of incidence
Vo Velocity of the main flow
Vyon Downwash velocity in the Trefftz-plane
¢ Potential
Cr Local lift coefficient
Crw Coefficient of the overall lift on the wing
o Coefficient of the overall lift on the body referred to the wing area &¢
C, Crw + Cypy, overall lift coefficient referred to the wing area b¢
Co: Coefficient of the overall induced drag referred to the wing area &¢
a goccez , local sectional lift slope
ay Lift slope coefficient of the two-dimensional aerofoil
w u j;VO Downwash factor
7 2 :
wg Downwash factor for the body
Iw 4 .Cvff/vo
Suffices:
W Wing
B Body
; Junction
. Effective
E Elliptic wing alone

13
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